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Abstract

Legacy environmental contaminants such as polybrominated diphenyl ethers (PBDEs) are widely 

detected in human tissues. However, few studies have measured PBDEs in placental tissues, and 

there are no reported measurements of 2,4,6-tribromophenol (2,4,6-TBP) in placental tissues. 

Measurements of these contaminants are important for understanding potential fetal exposures, as 

these compounds have been shown to alter thyroid hormone regulation in vitro and in vivo. In this 

study, we measured a suite of PBDEs and 2,4,6-TBP in 102 human placental tissues collected 

between 2010–2011 in Durham County, North Carolina, USA. The most abundant PBDE 

congener detected was BDE-47, with a mean concentration of 5.09 ng/g lipid (range: 0.12–141 

ng/g lipid; detection frequency 91%); however, 2,4,6-TBP was ubiquitously detected and present 

at higher concentrations with a mean concentration of 15.4 ng/g lipid (range:1.31–316 ng/g lipid; 

detection frequency 100%). BDE-209 was also detected in more than 50% of the samples, and was 

significantly associated with 2,4,6-TBP in placental tissues, suggesting they may have a similar 

source, or that 2,4,6-TBP may be a degradation product of BDE-209. Interestingly, BDE-209 and 

2,4,6-TBP were negatively associated with age (rs=−0.16; p=0.10 and rs=−0.17; p=0.08, 

respectively). The results of this work indicate that PBDEs and 2,4,6-TBP bioaccumulate in 

human placenta tissue and likely contribute to prenatal exposures to these environmental 

contaminants. Future studies are needed to determine if these joint exposures are associated with 

any adverse health measures in infants and children.

Keywords

Brominated flame retardants; polybrominated diphenyl ethers; thyroid hormone; placenta

Corresponding Author: Heather M. Stapleton, Ph.D., Duke University, Nicholas School of the Environment, 9 Circuit Drive, Box 
90328, Durham, NC 27708. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Environ Int. Author manuscript; available in PMC 2017 March 01.

Published in final edited form as:
Environ Int. 2016 March ; 88: 23–29. doi:10.1016/j.envint.2015.12.002.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Rice University

https://core.ac.uk/display/83830587?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Introduction

Polybrominated diphenyl ethers (PBDEs) have been used as additive flame retardants for 

decades in a variety of applications from polyurethane foams to high-impact polystyrene 

(HIPS). The presence of PBDEs in consumer products has led to their accumulation in 

indoor environments, and subsequent human exposure via inadvertent ingestion and/or 

inhalation of dust particles1,2 Particular attention has been given to a PBDE commercial 

mixture known as pentaBDE, which had a primary application in polyurethane foam used in 

residential furniture3,4. Studies have documented higher serum concentrations of PBDEs 

associated with pentaBDE in the US population relative to other regions of the world, likely 

due to the higher use of this mixture in residential furniture to meet a regional (state of 

California) flammability standard5. While the use of pentaBDE has now been banned or 

phased-out throughout the world, many older products in the home still contain these flame 

retardants, which will continue to leach into the indoor environment during the product 

lifetime. As a result, human exposure to PBDEs will continue for years to come, especially 

with the use of recycled foams and plastics in consumer products that may contain these 

phased-out chemicals. As such, PBDEs continue to be measured in human tissues such as 

serum, breast milk, umbilical cord blood, and placental tissues, suggesting that prenatal 

exposures to PBDEs occurs during pregnancy, and continues during infancy via breast 

feeding6–9.

In contrast, 2,4,6-tribromophenol (2,4,6-TBP) is widely used as an industrial chemical with 

an estimated US production volume of 4500 to 23,000 tonnes in 200610. 2,4,6-TBP has 

multiple applications, including use as an antifungal agent (e.g. as a replacement for 

pentachlorophenol) in wood applications, as a reactive brominated flame retardant (BFR), 

and as an intermediate in the production of other BFRs. 2,4,6-TBP can also be formed as a 

result of the photolytic degradation of tetrabromobisphenol-A (TBBPA), a widely used 

reactive BFR, and during the synthesis of 1,2-bis (2,4,6-tribromophenoxy) ethane 

(BTBPE)11. In addition to the anthropogenic sources of 2,4,6-TBP, there are natural sources 

of 2,4,6-TBP and other bromophenols from marine organisms and algae12. Few toxicity 

studies have examined the effects of 2,4,6-TBP in animal models. One study examined oral 

exposure to 2,4,6-TBP in adult zebrafish and observed reproductive toxicity in addition to 

perturbed gonadal morphology when exposed to spiked food at concentrations of 3300 ug/g 

dw13. Only a few studies have examined environmental levels and human exposure to 2,4,6-

TBP. It has been measured in marine sediments at an average concentration of 3.02 ng/g dry 

weight and in riverine systems at 0.66 ng/g dry weight14. 2,4,6-TBP has also been measured 

in the indoor environment of Japanese homes, with indoor house dust concentrations ranging 

from 15–30 ng/g and indoor air concentrations between 220–690 pg/m3–15. Very few 

biomonitoring studies have included 2,4,6-TBP in the analyses of human tissues such as 

serum, cord blood, and/or breast milk. One Japanese study collected maternal serum and 

umbilical cord blood from a cohort of 16 mothers in 2006 for analysis of BFRs and PCBs. 

This study measured 2,4,6-TBP in maternal blood at a concentration of 22 pg/g wet weight 

and in cord blood at a concentration of 37 pg/g wet weight16. BFRs were also evaluated in 

Norwegian individuals working in electronics dismantling facilities, where 2,4,6-TBP was 

measured in plasma ranging from 0.17 to 81 ng/g lipid17. In a study measuring BFRs in a 
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Canadian Inuit population from Nunavik, Quebec, plasma samples contained a geometric 

mean 2,4,6-TBP concentration of 9.4 μg/kg lipid, however, these concentrations were not 

correlated with PBDE concentrations18. Finally, Qiu et al. measured mean 2,4,6-TBP 

concentrations of 5.6 ng/g lipid in fetal plasma and 0.8 ng/g lipid in maternal plasma19.

PBDEs and 2,4,6-TBP share a chemical structure that is similar to endogenous thyroid 

hormones (THs), and have been demonstrated to disrupt TH homeostasis either in vitro or in 

animal exposure studies20,21. Concentrations of PBDEs in human serum have also been 

found to be significantly correlated with circulating levels of THs in adults, and are 

associated with adverse neurodevelopmental outcomes in children22,23. Early childhood 

represents a developmental period that is vulnerable to endocrine disruption. Development is 

a hormonally-regulated growth process that is sensitive to perturbations by environmental 

contaminants, like PBDEs and 2,4,6-TBP. The in utero stage of development also represents 

a highly vulnerable period of fetal growth that may be even more sensitive to endocrine 

disruption due to the underdeveloped nature of the fetus’ detoxification pathways, in 

addition to the myriad different growth and developmental processes that are occurring 

throughout gestation.

The placenta acts to facilitate the materno-fetal transfer of nutrients, gas, waste, and 

hormones throughout gestation and can act as a protective barrier against toxins and 

environmental contaminants24. In the case of PBDEs, passive diffusion and/or active uptake 

of these chemicals into the placenta occurs, and the placenta can act as a repository for these 

lipophilic chemicals. For example, one study looked at mother-child pairs in China and 

compared the placental transfer characteristics of various environmental endocrine 

disruptors, including PBDEs. Their results indicated that PBDEs can be transferred across 

the placenta from maternal circulation, and eventually reach the fetus25. Additionally, 

Frederiksen et al. used an experimental ex vivo human placenta perfusion system to show 

the differences in transplacental transfer of PBDEs based on degree of bromination26. Thus 

there is a need to better understand the accumulation of these contaminants in placental 

tissues, in order to understand fetal exposures. In this study, we present our findings from 

the analysis of 102 human placental tissues that were collected in North Carolina, USA. 

Tissue samples were analyzed for a suite of PBDEs and 2,4,6-tribromophenol in order to 

increase our understanding of exposures during pregnancy and their accumulation within the 

placenta.

Materials and Methods

Participant recruitment

Participants were recruited from within an observational prospective cohort study assessing 

the joint effect of social, environmental, and host factors on pregnancy outcomes (the 

Healthy Pregnancy, Healthy Baby (HPHB) Study conducted by the Children’s 

Environmental Health Initiative)27,28. The HPHB study enrolled pregnant women from the 

Duke Obstetrics Clinic and the Durham County Health Department Prenatal Clinic at the 

Lincoln Community Health Center in Durham, NC. Our analyses included a subset of 

women from the HPHB study that delivered at the Duke University Medical Center between 

March 2010 and December 2011. The intentional study design was to oversample women 
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attending the Lincoln Community Health Clinic, in order to explore disparities in pregnancy 

outcomes by comparing African-American women with good outcomes to those with poor 

outcomes. As a result, the study population is predominantly African-American women with 

a lower socioeconomic standing and low educational attainment relative to the general US 

population. All aspects of this study were carried out in accordance with a human subjects 

research protocol approved by the Duke University Institutional Review Board.

Sample Collection

Consenting women had placenta tissue subsamples taken at the time of delivery at the Duke 

University Medical Center. Tissues (approximately 5–20 g) were stored in screwtop 

cryovials at −80°C until analysis.

Chemicals

All solvents used for the analysis were HPLC-grade or better. A fluorinated BDE standard, 

2,3′,4,4′,6-tetrabromodiphenyl ether (FBDE-69)(Chiron Inc., Trondheim, Norway), 13C 

labeled 2,2′,3,4,5,5′-hexachlorinated diphenyl ether (CDE-141) (Cambridge Isotope 

Laboratories, Andover, MA), and labeled 13C-2,2′,3,3′,4,4′,5,5′,6,6′-decabromodophenyl 

ether (BDE-209) were used as internal and recovery standards for the BFR extractions. 

PBDE calibration standards were purchased from Accustandard and 2,4,6-tribromophenol 

was purchased from Cambridge Isotope Laboratories, Andover, MA.

BFR Analysis and Lipid Determination

Extractions were performed using between 2 and 17 grams of placenta tissue, depending on 

the sample and the amount collected during delivery. Tissues underwent 24 hours of 

lyophilization in order to completely dry the samples. The freeze-dried tissue samples were 

then homogenized into a fine powder with a pre-cleaned mortar and pestle before adding 15 

mL of 1:1 hexane/dichloromethane (DCM) and letting the samples sit overnight, in order to 

allow for full solvent penetration. Samples were spiked with 1 ng of FBDE-69 and 13C-

BDE-209 as internal standards. All glassware used for BFR analysis were cleaned by muffle 

furnace, in addition to triple-rinsing with hexane, DCM, and methanol solvents in order to 

minimize background contamination. Samples then underwent 20 minutes of water bath 

sonication followed by centrifugation, after which the solvent was decanted to a separate 

tube. The extraction step was then repeated twice (three times total), and the solvent extracts 

were combined in a clean 50 mL glass centrifuge tube. Following extraction, the samples 

were blown down under a gentle stream of N2 to a volume of 1 mL. A small aliquot of the 

extract was used for gravimetric lipid analysis and the remaining extract was passed through 

acidified silica columns for sample clean-up. Deactivated silica (4.0 g) was acidified using 

40% by mass H2SO4, shaken, and loaded into a glass chromatography column. The columns 

were pre-cleaned by rinsing with hexane and acetone and then conditioned with 15 mL of 

the elution solvent mix. The extract was then loaded on to the column and eluted using 30 

mL of 80:20 hexane/DCM. Sample extracts were then blown down under a gentle stream of 

N2 gas to a final volume of 100 uL. Samples were transferred to 200 uL glass vial inserts 

and spiked with 1 ng of 13C-CDE-141 as a recovery standard. Finally, PBDEs and 2,4,6-

TBP were identified and quantified using authenticated standards and gas chromatography 

with electron capture negative ion mass spectrometry (GC/ECNI-MS).
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Quality Control/Quality Assurance

Laboratory blanks (e.g. sodium sulfate) were included with each batch of tissue sample 

extractions beginning with lyophilization (one batch includes 10 tissues samples plus two 

lab blanks). All sample values were blank subtracted and MDLs were calculated as three 

times the standard deviation of the lab blank values for each analyte. Individual values were 

normalized to the measured lipid content of each tissue sample used for the extraction 

procedure to yield a final value in ng/g lipid.

Labeled internal standards were used as surrogates and internal standards in all samples and 

included F-BDE-69 and 13C-BDE-209 as internal standards (spiked prior to extraction) 

and 13C-CDE-141 as a recovery standard (spiked prior to GC/MS analysis). The recovery of 

the internal standards was calculated for all tissue samples and laboratory blanks in order to 

assess the recovery efficiency of the extraction methods. The mean recovery in the lab 

blanks for FBDE-69 was 82.5 ± 14%, while mean sample recovery was 60 ± 12 %.

Additionally, the BFR extraction method was validated using Standard Reference Material 

(SRM) 1947 (NIST, Gaithersburg, MD). SRM 1947 is a Lake Michigan fish homogenate 

with certified concentrations of PBDEs. The BFR extraction procedure previously described 

was used on a triplicate set of SRM 1947 samples. The concentrations of PBDE congeners 

of interest (BDE-47, -66, -99, -100, -153, and 154) were measured at 99%–116% of the 

certified values. Recovery of 2,4,6-TBP was evaluated by spiking 10 ng into a laboratory 

blank (in triplicate) and carrying it through the method. Recoveries averaged 87% (± 29%).

Statistical Analysis

Statistical analyses were performed using JMP Pro 11. ΣBDE was calculated by summing 

all PBDE congeners including BDE-47, -99, -100, -153, -154, and -209, while ΣBFR 

includes all PBDE congeners plus 2,4,6-TBP. Only analytes with ≥50% detection frequency 

were included in statistical analyses. Values below MDL were assigned a value equal to 

one-half the detection limit for statistical analyses. Preliminary analyses (Shapiro-Wilkes 

Test) indicated that the PBDE data were not normally distributed. As such, Spearman rank 

sum correlation analyses were used to assess the relationships between PBDE congeners in 

placenta and to assess their relationship with maternal age. It is important to note that the 

BFR concentrations were not significantly and positively associated with lipid content; 

however, we conducted all statistical analyses with both wet weight and lipid normalized 

concentrations. Results were similar using both methods. We present statistics using lipid 

normalized concentrations to facilitate comparison with other studies. Alpha < 0.05 was 

considered statistically significant.

Results

Population characteristics

Participant demographics are summarized in Table 1. Sixty-eight percent of the women in 

the study were non-Hispanic black. Most (58%) women were relatively young, between the 

ages of 18–24 years old (range 18–40). This was the first pregnancy for 45.5% of the 

women. Of all participants, 43.6% reported completing high school, and less than 10% of 
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the women had private health insurance. Recruitment for this study used English literacy as 

an exclusion criteria, so the demographics of this study population are not entirely reflective 

of the population of women visiting the Prenatal Clinic at the Lincoln Community Health 

Center in Durham, NC. The population of women who most commonly use this prenatal 

clinic are Hispanic, while the women included in this study are predominantly non-Hispanic 

black women with a lower socioeconomic standing.

BFRs

Detection frequencies for BDE-47, -100, -99, -154, -153, -209, and 2,4,6-TBP were all 

greater than 50% and are presented in Table 2 along with the range and distribution of 

concentrations measured. It is interesting to note that 2,4,6-TBP was detected in 100% of the 

samples and constituted 47.8% of the ΣBFR concentration measured in tissues. The most 

prominent PBDE measured was BDE-47, representing 34% of ΣBDE burden. The 

geometric mean concentration of 2,4,6-TBP was 15.4 ng/g lipid (range: 1.31 – 316 ng/g 

lipid), while the geometric mean concentration of BDE-47 was 5.09 ng/g lipid (range: 0.12 – 

141 ng/g lipid). The PBDE congener ranking profile from highest geometric mean 

concentration to lowest geometric mean concentration is: BDE-47, -209, -153, -99, -100, 

-154 (Figure 1). Given the relatively homogenous distribution of our population, we were 

underpowered to examine associations between BFR exposures and race/ethnicity. 

However, we did examine associations with age. Interestingly, BDE-209 and 2,4,6-TBP 

were negatively associated with maternal age, rs=−0.16 (p=0.10) and rs=−0.17 (p= 0.08), 

respectively, although again the associations did not reach statistical significance at p<0.05. 

The remaining PBDE congeners showed no suggestion of associations with maternal age 

(p>0.20).

Associations between PBDEs and 2,4,6-TBP

Correlation analyses are summarized in Table 3. All BFRs were significantly (p < 0.001) 

and positively correlated with each other and with ΣBFR concentrations. BDE-100 showed 

the strongest correlation (rs=0.89) with ΣBDE content followed by BDE-47 (rs=0.84). 

Interestingly, 2,4,6-TBP was significantly associated with all PBDE congeners. For 

example, 2,4,6-TBP showed a moderately strong correlation with BDE-209 (rs=0.58; p < 

0.001; Figure 2).

Discussion

This is the first study to measure both PBDEs and 2,4,6-TBP in human placenta tissues, and 

observe a suggestive negative association with maternal age. It has often been assumed that 

the relative tissue concentrations of environmental contaminants within the placenta can be 

representative of fetal exposures for some contaminants29. In fact, numerous studies have 

examined the relationships of environmental contaminants, such as PBDEs, within maternal 

serum, umbilical cord blood, and placenta tissues. The results of these studies indicate that 

transplacental transfer (TPT) of PBDEs does occur, and leads to fetal exposure during 

gestation30–33. For example, a study by Frederiksen et al. found that PBDE exposure in the 

indoor environment, specifically from house dust ingestion, is linked to PBDE 

concentrations in maternal and umbilical cord plasma, which are additionally correlated with 
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the PBDE concentrations measured in the paired placental tissues. This study also showed a 

decreased rate of transport of PBDE congeners across the placenta with increasing degree of 

bromination29. These results illustrate the placental transfer of PBDEs following maternal 

exposure to house dust and/or dietary sources of PBDEs, and also show that PBDEs are 

transferred to the fetal compartment during gestation. However, to our knowledge, no 

studies have examined TPT of 2,4,6-TBP, which should be addressed in future studies.

Additional research has also been conducted using a human ex vivo placenta perfusion 

system to study the kinetics and placenta transfer characteristics of BDE-47, -99, and -209. 

Significant accumulation was observed for all PBDE congeners tested, with placental 

transfer of BDE-47 being faster and more extensive than BDE-99 and BDE-20926. These 

results indicate that in utero exposure to PBDEs occurs during gestation as a result of 

placental transfer, with higher rates of transfer and exposure for the lower brominated 

congeners. In contrast to these results, Chen et al. measured higher ratios between fetal cord 

blood and maternal placenta (F/M ratio) for PBDEs with a higher degree of bromination, 

suggesting that TPT increases with increasing degree of bromination34. In addition, the 

ability of a chemical to bind to plasma transporter proteins will likely affect TPT 

characteristics. In the case of PBDEs, which have chemical structures similar to that of THs, 

their ability to bind TH transport proteins such as transthyretin (TTR) and/or TH membrane 

transporters such as OATPSs, MCTs, and LATs, may affect their TPT properties35. 

Different compounds exhibit different partitioning and transport behaviors, and the exact 

mechanisms of TPT are not fully understood, however, the presence of contaminants found 

in both maternal and fetal circulation is clearly indicative of fetal exposure.

To date, only two other studies have measured PBDEs in placenta tissue samples from US 

populations9,36. Additionally, placenta tissues from China, Japan, and European countries 

including Spain, Denmark, and Finland have been evaluated for PBDEs31,37–40. The results 

from these studies are summarized in Table 4. The median value for ΣPBDEs4-7 (tetra-

through hepta-substituted congeners) in this present study was 13.8 ng/g lipid, and is similar 

to levels reported for placentae from individuals living near a Chinese e-waste site (19.5 

ng/g lipid and 19.4 ng/g lipid), as well as in another US cohort that had a smaller sample 

size (n=42; 23.7 ng/g lipid). However, these values are much higher than the average 

ΣPBDE concentrations found in European samples (1.09 ng/g lipid), as well as placentae 

from Japan (0.25 ng/g lipid)41.

These current findings align with previous studies that have reported higher concentrations 

of PBDE congeners associated with the pentaBDE mixture in human samples from North 

America. North American concentrations are generally one to two orders of magnitude 

higher than those measured in European and Asian populations as a result of differences in 

fire regulatory standards, chemical regulatory and policy frameworks, and overall use and 

exposure to PBDEs42. In Europe, Japan, and China, BDE-209 is often found to be the most 

abundant congener, accounting for more than 50% of the total concentrations in human 

placentae 31,39,43. In the US, however, BDE-47 is the most prevalent congener measured in 

human and other biological tissues, and this is consistent with the higher concentrations of 

BDE-47 measured in indoor dust in the US compared to other countries. It is interesting to 

note that in this study, BDE-209 concentrations measured in placental tissues were 
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approximately equal to measurements made in Chinese samples, twice as high as the Danish 

samples, and eight times higher than Japanese samples. Furthermore, the measured values 

for ΣPBDEs in American placentae from this study are relatively similar to those 

measurements found in samples from individuals living and working in Chinese e-waste 

recycling towns. E-waste dismantling and processing is an occupation that typically involves 

significant human exposure to flame retardants due to their higher contact with electronic 

components containing flame retardant chemicals. The concentration of PBDEs measured in 

placenta tissues from both populations suggests that the same level of PBDE exposure and 

accumulation occurs between the general US population and Chinese e-waste recycling 

town inhabitants, despite the stark discrepancy in their exposure scenarios, and likely 

exposure pathways. However, lower brominated PBDEs that are more commonly found in 

pentaBDE applications such as polyurethane foams sold in North America, were measured 

in high concentrations in the Chinese e-waste worker samples, despite the fact the pentaBDE 

has limited use in electronics. These may be the result of metabolic and/or abiotic 

debromination of BDE-209 and other higher brominated PBDEs that are more widely used 

in electronics and plastics.

In the current study, we also observed a suggestive negative association with maternal age 

for BDE-209 and 2,4,6-TBP, which to our knowledge, has not been observed previously. 

The explanation for this negative relationship is unclear, but may relate to differences in 

exposure based on difference in behavior with age (e.g. time spent in various micro-

environments). The fact that both BDE-209 and 2,4,6-TBP were negatively associated with 

maternal age, and that both were correlated with each other, suggests that they may share a 

similar source (e.g. electronics). Usually, PBDE congeners within a single commercial 

mixture are more strongly correlated with one another than between commercial mixtures. 

However, our results are partially in agreement with a recent assessment of placental PBDE 

concentrations that measured significant correlations between BDE-209 and BDE-28, -47, 

-99, and -183, but not between BDE-209 and BDE-100, -153, and -15444. There are 

currently no other studies that have measured 2,4,6-TBP in human placenta tissue. The 

specific applications of 2,4,6-TBP as a reactive flame retardant remain unclear; however it 

appears that exposure to 2,4,6-TBP is common within our study population since it was 

detected in 100% of samples. 2,4,6-TBP was found to have a positive correlation with all 

PBDEs quantified, but was strongest for BDE-99 and BDE-209. 2,4,6-TBP and BDE-209 

are not commonly analyzed together in biological tissues, likely due to the lower awareness 

of 2,4,6-TBP as an environmental contaminant of interest. As stated earlier, this unique 

relationship may be a result of these chemicals having related sources of exposure, or it may 

be indicative of a metabolic pathway that transforms BDE-209 into 2,4,6-TBP.

Previous work has explored the in vitro endocrine-disrupting potency of 2,4,6-TBP, as well 

as other BFRs, using a wide variety of assays. 2,4,6-TBP was found to be a potent inhibitor 

of estradiol sulfotransferase (ESULT) activity along with TBBPA and 6-OH-BDE-47, while 

the PBDEs showed much higher IC50 value (half maximal inhibitory concentration, or the 

concentration at which the enzyme activity is diminished by 50%) and/or no ESULT 

inhibition, indicating that ESULT inhibition potency is determined largely in part by the 

presence of a hydroxylated aromatic group. 2,4,6-TBP was also shown to be a very potent 

Leonetti et al. Page 8

Environ Int. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



thyroxine competitor in the transthyretin (TTR)-binding assay, with a TTR-binding affinity 

10.2 greater than the natural ligand, thyroxine45. Additionally, the ability of 2,4,6-TBP to 

inhibit thyroid hormone SULT activity in pooled human liver cytosol was evaluated, and 

2,4,6-TBP was shown to have an IC50 value of 8.3 nM, which was more potent than any of 

the hydroxylated PBDEs profiled46. However, more research is necessary to understand the 

sources of 2,4,6-TBP in the indoor environment, as well as to examine potential adverse 

effects from exposure to 2,4,6-TBP among the general population.

It is well known that the first trimester of pregnancy is a critical period for fetal 

neurodevelopment, and that these neurodevelopmental processes are largely driven by the 

action of THs47. Animal exposure studies with PBDEs have shown permanent effects on 

spontaneous motor behavior (eg. hyperactivity) and decreased performance in learning and 

memory tests, implicating PBDEs as developmental neurotoxicants and endocrine 

disruptors48,49. Additionally, PBDEs have been shown to disrupt TH homeostasis; therefore, 

the presence of PBDEs in the placenta may impact the materno-fetal transfer of THs during 

gestation, leading to the disruption of TH-mediated processes in the fetal compartment. 

Furthermore, growing epidemiological evidence show associations between prenatal 

exposure to PBDEs and subsequent neurodevelopmental deficits measured in 

children50,23,51. Overall, flame retardant levels should continue to be closely monitored in 

the placenta, as well as their potential effects on fetal TH status and neurodevelopment.

One potential shortcoming of this study is the subsampling technique used in the collection 

of the placental tissue samples. Placental samples were collected at delivery and then sub-

sampled to share among various studies. Therefore it was impossible to collect a whole 

placenta and homogenize the sample prior to sub-sampling. The placenta is a large, highly 

vascularized, heterogeneous organ. As a result, inconsistent or non-standardized 

subsampling techniques of the placenta organ may result in differences in our measurements 

of BFRs. For example, subsamples taken from the highly vascularized central region of the 

organ may contain different concentrations of BFRs than a peripheral subsample that has 

different vasculature and adipose composition. Normalization to lipid content may help 

control for some of these differences. However, we observed no significant correlations 

between BFR concentrations on a wet weight basis (ng/g ww) with percent lipid. But despite 

the inconsistencies in subsampling, the median values of PBDE concentrations from this 

study agree with PBDE measurements from previous studies9,34,44.

Results from this study indicate that PBDEs and 2,4,6-TBP bioaccumulate in human 

placenta tissues, and provide insight into fetal BFR exposure during pregnancy. This study 

also characterizes BFR exposures in a population of women from low socioeconomic 

backgrounds and represents a unique subpopulation of understudied women in the US that 

are not typically represented in other exposure studies. These data may provide useful 

comparisons to other study populations from different regions with different ethnic and 

socioeconomic backgrounds, and further our understanding of the exposure patterns across 

the US. Future studies should also consider investigating associations between adverse 

health outcomes and exposures to these mixtures of BFRs given their reported effects on 

endocrine function.
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Abbreviations

2,4,6-TBP 2,4,6-tribromophenol

BFR brominated flame retardant

DI deiodinase

GC/ECNI-MS electron capture negative ion mass spectrometry

HIPS high-impact polystyrene

LC-MS/MS liquid chromatography tandem mass spectrometry

PBDE polybrominated diphenyl ether

SPE solid phase extraction

SULT sulfotransferase

THs thyroid hormones

TPT transplacental transfer

TTR transthyretin
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Highlights

• A suite of PBDEs and 2,4,6-TBP were measured in 102 placenta tissue samples.

• BDE-209 was detected in more than 50% of the samples.

• 2,4,6-TBP was found in the highest concentrations in placenta tissue.

• 2,4,6-TBP was significantly correlated with PBDEs.

• BDE-209 and 2,4,6-TBP were suggested to be negatively associated with 

maternal age.
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Figure 1. 
Geometric mean concentrations of BFRs measured in human placenta tissues (n=102; Error 

bars represent ±SEM)
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Figure 2. 
Scatterplot showing correlation between 2,4,6-TBP and BDE-209
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Table 1

Cohort characteristics (n=101*)

Characteristic N (%)

Maternal race

 Non-Hispanic white 16 (15.8)

 Non-Hispanic black 69 (68.3)

 Hispanic 12 (11.9)

 Other 4 (4.0)

Maternal age

 18–19 21 (20.8)

 20–24 38 (37.6)

 25–40 42 (41.6)

Parity

 First birth 46 (45.5)

Male infant 52 (51.5)

Maternal education

 Less than high school 25 (24.8)

 High school diploma 32 (31.7)

 More than high school 44 (43.6)

Not married 82 (81.2)

Smoked during pregnancy 22 (21.8)

Private health insurance# 9 (9.3)

*
Demographic data was missing for one individual

#
No data is available on health insurance for four of the individuals
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