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Abstract 

Microcapsules containing Phase Change Materials (MPCM) are widely used for passive 

systems in energy storage. When MPCM are mixed with a carrier fluid, Phase Change Slurries 

(PCS) are used for heat transfer fluids in active systems or heat transport systems. The thermal 

behavior of PCS can be measured as dry or wet basis, resulting in important differences in 

weight losses. This study explores the optimum conditions for analyzing the thermal behavior of 

dried PCS by thermogravimetric analysis (TGA) varying the parameter conditions for obtaining 

peak temperature and heat flow (latent heat). The factors that were taken into account were the 

atmosphere of study (air and nitrogen) and the heating rate (0.5, 1, 5, and 10 ºC·min
-1

). The best 

conditions to determine peak temperature are at 1 ºC·min
-1

 and in N2 atmosphere, whereas the 

decomposition fusion/latent heat of the sample is improved at higher heating velocities towards 

10 ºC·min
-1

. 
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1. Introduction 

Energy efficiency in buildings is nowadays an important objective to take into account for 

energy policy at an international level [1]. Thermal Energy Storage (TES) in buildings includes 

both the storage as sensible heat and latent heat. The former is performed by changing the 

temperature of the storage material (when it is heated or when the heat is removed from it) and 

is directly related with its specific heat capacity. The latter involves the heat release during the 

phase change of a material and it requires smaller volumes for storing the same amount of 

energy than the first case [2]. In this sense, Phase Change Materials (PCM) have attracted 

increasing attention because of their potential use in heat transfer and TES applications due to 
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their high energy storage density over a small temperature range [3–5]. PCM are substances 

with a high heat of fusion that melt and solidify at a certain temperature and are capable of 

storing and releasing large amounts of energy by absorbing or releasing heat when the material 

changes from solid to liquid or liquid to solid, respectively [6,7]. These materials are well 

known in many fields, such as textiles [8], packaging, food [9,10], and buildings [11,12]. 

The major concern in PCM applications is the fixation of the liquid phase when the PCM is 

melted for avoiding its leakage and migration. In order to overcome this problem, PCM can be 

microencapsulated in a polymeric shell of micron sized particles to form Microencapsulated 

Phase Change Material (MPCM). There are other reasons for encapsulating PCM; in some cases 

it allows minimizing leaching or volatilization risks [13–15] while preventing agglomeration of 

the melted paraffin wax when PCM is used for heat storage. Hence, it is important to develop a 

MPCM shell that is stable enough to support rough conditions [16–19]. For instance, MPCM 

are used in piping systems when they are mixed with a carrier fluid, commonly water [20] or 

other organic compounds such as glycerol [21]. These mixtures are called Phase Change 

Slurries (PCS) and are used for heat transfer fluids in active systems or heat transport systems 

[22,23]. They allow enhancing the energy efficiency while also reducing the amount of thermal 

fluids [24]. The most employed shell material in a MPCM or PCS is methacrylate [25,26] while 

n-octadecane is widely used as PCM [27,28]. In order to evaluate the capacity of a PCS to 

withstand hard environments (e.g. pumping conditions), a test rig can be performed in which the 

sample is subjected to different thermal cycling as described by Gschwander et al. [29]. 

Thermal properties of PCS can be determined by differential scanning calorimetry (DSC) 

and thermogravimetric analysis (TGA). The former measures the stored heat while the latter 

consists of the measurement of the amount and rate of mass loss of a material when it is heated 

at a given rate under a controlled atmosphere. By this manner, a TGA curve of mass loss vs. 

heating temperature can be obtained. Thus, a material that exhibits loss or gain of mass due to 

thermal decomposition, oxidation or dehydration, can be analyzed by this technique [30]. 

Different TGA curves recorded at different heating rates can provide accurate information 

regarding the mechanism and the kinetics of a polymeric degradation process [31]. Thermal 

stability has been used in MPCM characterization, such as in Tyagi et al. [32], Ma et al. [33], 

Qiu et al. [34] studies. Su et al. [35], Zhang et al. [16], and Li et al. [36] evaluated MPCM 

degradation by using TGA curves. However, in the case of PCS, TGA has been scarcely 

employed [37]. Taking into account the importance of thermal analysis in characterizing the 

PCS for properly describing a sample [38], the main goal of this study is to define and explore 

the best parameters and optimum conditions for analyzing the decomposition of PCS using 

TGA and DSC. The factors that were taken into account were the state of the sample (liquid and 
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air-dried), the atmosphere, and several heating rates. By this manner, a comprehensive 

characterization and evaluation of the thermal properties may facilitate the understanding of 

PCS performance. 

2. Experimental procedure 

2.1.  Materials 

The sample under study was Micronal
®
 DS 5045 X from BASF (M). It consists of a 

suspension made of a highly cross linked methyl methacrylate (MMA) shell and n-octadecane 

as core PCM, with a phase change between 24 and 28 ºC. The original sample was tested in 

liquid state and after being air-dried, MD. Drying took place for 24 hours at room temperature 

to avoid any thermal degradation. These drying conditions were chosen as reported by Giro-

Paloma et al. [39]. 

2.2. Methods 

2.2.1. Physico-chemical characterization 

In order to characterize the shape and size after the thermal reliability process of M sample, 

Scanning Electron Microscopy (SEM) JEOL JSM-6510 was used. Unlike conventional 

methods, the preparation of the sample required using N2 as freezing system to solidify the PCS. 

Hence, a Cryo Unit GATAN accessory (Alto 1000 model) for observing the size and shape of 

the sample was used. Due to the nature of the sample a conductive carbon coating was also 

required. The images were obtained by secondary electrons (SE) at 10 kV. Moreover, Fourier-

Transformed Infrared spectroscopy (FT-IR) using a FT-IR Spectrum Two™ from Perkin Elmer 

(400 - 4000 cm
-1

 working range) with Attenuated Total Reflectance (ATR) was used to 

chemically characterized the microcapsules shell. 

2.2.2. Thermal analysis 

Thermogravimetrical analysis (TGA) was performed by means of a SDT Q600 from TA 

Instruments under N2 and air atmosphere. The scanning rates were 0.5, 1, 5 and 10 ºC·min
-1

 for 

both atmospheres (50 mL·min
-1

) in a temperature range between 20 ºC (T0) and 600 ºC (Tf). The 

preparation of the solid sample prior TGA was always performed in the same manner and the 

amount was kept in a mass range of 10.0  0.5 mg using alumina 90 L crucibles. The 

differences observed in the TGA studies were evaluated by assessing the weight loss (%), the 

Derivative Thermogravimetry (DTG), and the simultaneous Differential Scanning Calorimetry 

(s-DSC) signal obtained from the Differential Temperature Analysis (DTA). 
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Close to melting interval temperatures of PCM (n-octadecane), a DSC analysis was 

performed to obtain complementary and more accurate information using a Mettler-Toledo 

DSC-30 calorimeter. The experimental conditions consisted of using aluminum crucibles of 40 

L in volume in a dry N2 atmosphere with a 50 mL·min
-1

 flow rate at 0.5, 1, 5, and 10 ºC·min
-1

. 

3. Results and discussion 

3.1. Physico-chemical characterization 

Figure 1 shows the size and shape of M sample after freezing with a cryogenic N2 system. 

As it shows, microcapsules are uniformly distributed and embedded in the water matrix. The 

size of the microspheres was lower than 5 μm. The SEM images for M sample show that 

microcapsules appear unbroken (Figure 1a). Moreover, some cavities can be observed 

corresponding to the space provided by some MPCM that was torn during the cryogenic 

preparation prior the observation. 

The MD spectrum obtained by Fourier-Transformed Infrared Spectroscopy (FT-IR) is 

shown in Figure 2 where the Transmittance (%) is presented vs. the Wavenumber (cm
-1

). 

The different peaks indicate the different functional groups of MD particles. The broadband 

detected around 3368 cm
-1

 corresponds to some remaining humidity of the sample. The peaks at 

2921 and 2852 cm
-1

 with 63 % and 73 % of transmittance respectively are attributed to the 

aliphatic C-H stretching vibration while that at 1726 cm
-1

 with a 92 % of transmittance is 

attributed to the ester carbonyl group. Moreover, the peaks at 1466 and 720 cm
-1

 with 85 and 88 

% abundance, respectively, are associated to the C-H bending vibration. Finally, the shorter 

peak at 1116 cm
-1

 is due to the C-O stretching vibration of the ester group. These results are 

associated to functional groups of methacrylate forming the shell for both samples. The 

microcapsules are not broken since the functional groups of n-octadecane (PCM) were not 

detected, as it was already mentioned in SEM observation. 

3.2. Thermal characterization (TGA) 

3.2.1. Effect of atmosphere 

The effect of the air and N2 atmospheres at different heating rates in TGA performance for 

the M sample is shown in Figure 3. In all cases, the main difference between both curves is the 

second weight loss (> 250 ºC) in which the N2 atmosphere showed to enhanced stability. This 

fact is attributed to the thermo-oxidative degradation of the polymeric shell that takes place in 

air atmosphere. 
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A greater difference in air atmosphere was observed for the MD sample as it can be 

observed in Figure 4, where the TGA curves are presented at different heating rates. As it was 

expected, and due to the drying of the sample, a lower decomposition step was observed to what 

is attributed to water loss (< 100 ºC). As it can be observed, the main differences for the graphs 

considering the two different atmospheres, relays in air conditions; but taking into account the 

effect of different heating rates in the peak temperature in N2 atmosphere, there are some 

variances. These differences are in the decomposition temperature, which Tpeak values increase 

at increasing heating rate. In N2 conditions, two decomposition steps could be differentiated (as 

in Figure 3). However, an interesting behavior was observed in air conditions. At all heating 

rates, the mass loss step starting over 320 ºC and ending at 370 ºC presented a decrease in 

temperature and therefore a relapse in the weight loss curve was observed between 350 - 400 

ºC. This fact was also observed by Zhang et al. [40,41], although in that study the authors did 

not attribute it to any particular effect. The relapse step at every heating rate corresponds to an 

endothermic peak in the same temperature range. There is heat transfer between the crucible and 

the sample, therefore the heat generated by the endothermic reaction of the sample inside the 

crucible was attributed to increase the temperature of the thermocouple in the SDT equipment 

and therefore caused an overestimation of the temperature. Once the compound that is absorbing 

the heat is consumed, the extra energy produced by the endothermic reaction is stopped and 

consequently the temperature decreased slightly, producing the relapse in temperature to that of 

the corresponding compounds remaining in the sample. It is noticeable that this behavior is only 

observable in air conditions. 

In order to focus on the chemical decomposition, it will be used as example Figure 4d where 

the TGA curves are presented at 0.5 ºC·min
-1

 in air (solid green line) and N2 (broken dash blue 

line) atmospheres. When heating paraffinic microcapsules above 100 ºC, although the shell is 

still chemically stable, its mechanical integrity decreases abruptly [39,42]. While it cannot be 

directly observed in this experiment, the first and second weight losses are attributed to the 

evaporation/degradation of the PCM and shell, respectively [43]. 

On the other hand, oxygen increases the rate of degradation, favoring the formation of 

several oxidized intermediate species during degradation which takes place at substantially 

lower temperatures than those corresponding to the thermal decomposition in anoxic conditions 

(i.e. N2 atmosphere). In N2 atmosphere, after the loss of humidity (~ 5 wt %), two mass losses 

can be identified according to the literature [18,42]: the first one (35 - 40 wt %) between 200 

and 340 ºC is attributed to the decomposition of the paraffin wax, while the subsequent mass 

loss step (50 - 55 wt %) is associated to the decomposition of the polymeric shell. Moreover, 

silica based compound residue (< 5 wt %) was identified in N2 atmosphere as a result of the 

pyrolisis conditions. Taking this into consideration, the solely decomposition of paraffin wax 
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followed by a structural degradation of the shell in N2 was characterized by two overlapped 

mass loss steps with a total mass loss of 86.7 wt.%, as confirmed by the TGA/DSC analysis. 

3.2.2. Effect of the sample treatment 

The effects of the sample as slurry (M) and dried slurry (MD) at different heating rates are 

shown in Figure 5 and Figure 6 for N2 and air atmospheres, respectively. As expected, a great 

loss of water was observed for the slurry sample (M). The starting temperature of 

decomposition is earlier for MD for all the cases regarding Figure 5, although this 

decomposition temperature is more evident at 10 ºC·min
-1

. According to that, the starting 

temperature of decomposition of M sample approaches to that of MD when heating rate 

decreases. In this sense, the temperature at which the second step ended slightly decreased as 

the heating rate decreased. At temperatures above 400 ºC both samples lost their entire weight. 

A great number of differences in the shape and onset/offset temperatures of the weight loss 

curves were observed for the decomposition of the samples (M and MD) in air, as they are 

shown in Figure 6. Unlike in N2, after the water loss, a decomposition at T > 200ºC was 

observed before a mass loss step at T > 300ºC. The former is attributed to the paraffin wax 

decomposition while the second step is regarded to come from the shell. As described in section 

3.3.1, the relapse step is again observed around 350 ºC, only for the oxidizing atmosphere. 

3.2.3. Effect of heating rate 

Taking into account the differences observed in the decomposition steps taking place at 

different temperatures in air and N2, the effect of different heating rates was analyzed per 

atmosphere for both kind of samples (M and MD). Figure 7 presents the corresponding results 

in air for the M (Figure 7a) and MD (Figure 7b) samples. Both Figures show that increasing the 

heating rate, greater stability of the sample can be obtained, as the onset/ offset decomposition 

temperatures are delayed. The relapse step is clearly shown in Figure 7b. 

The profiles of the TGA curves in N2 (Figure 8) are smoother than those obtained in air 

atmosphere. As in air atmosphere, the effect of increasing the heating rates is clearly observed. 

This behavior has already been pointed out by Samtani et al. [44]. 

According to the results presented above, the PCS sample in dried conditions allows to 

better distinguish between the different mass loss steps. Therefore, a further analysis was made, 

where DTG and DSC curves were taken into account for elucidating the optimum experimental 

conditions (e.g. atmosphere and heating rate) in analyzing thermal behavior. 

3.3. Effect of atmosphere in DTG 
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DTG curves are commonly employed when analyzing TGA results because they are very 

sensitive to slight changes and therefore ease the identification of small mass loss steps, 

especially when these are slightly overlapped [45,46]. Thus, the effect of varying conditions in 

MD decomposition is presented as follows. The effect of air and N2 atmosphere in MD 

decomposition (solid and broken dash green lines, respectively) in the DTG curves (blue lines, 

online version) when varying the heating rate (0.5, 1, 5, and 10 ºC·min
-1

) is presented in Figure 

9 and Figure 10. The TGA curves are represented in order to facilitate analysis. 

As it can be seen in Figure 9a and Figure 9b, the decomposition pattern of TGA and DTG at 

both heating rates differed for each atmosphere, with the onset (T0) and offset (Tf) temperatures 

of the main mass loss steps being in the same range (T0=175-245 ºC for air, and Tf=350-360 ºC 

for N2). However, at 1 ºC·min
-1

, the anoxic conditions seemed to favor the entire decomposition 

in the later stages while the remained mass at 0.5 ºC·min
-1

 can be only attributed to the presence 

of impurities in the crucible prior analysis. It is worth to notice that at both heating rates all 

stages of decomposition take place earlier in air. An important effect of delay (of up to ~ 25 ºC) 

at 5 and 10 ºC·min
-1 

(Figure 10a and Figure 10b, respectively) could be observed in T0, 

especially in an anoxic atmosphere, in which the start of decomposition is observed to take 

place at greater temperatures with respect an air atmosphere at 5 ºC·min
-1

 heating rate. This 

behavior can be regarded to arise from early oxidation reactions of the paraffin and whose 

occurrence is avoided in anoxic conditions (pyrolysis). 

Therefore, for the sake of determining T0 accurately, testing in N2 can be considered the 

optimum atmosphere that would avoid relapse in the weight loss (thermal inertia) as explained 

in section 3.3.1 due to oxidizing conditions. 

3.4. Effects on DTA and DSC curves 

The results of Differential Scanning Calorimetry (s-DSC) signal obtained from DTA in the 

temperature range below 100 ºC obtained from the TGA experimental trials commented above 

at different heating rates in N2 and air are presented in Figure 11 and Figure 12, respectively. In 

this temperature range it is possible to observe the endothermic peak corresponding the phase 

change. By this manner, the effect of different heating rates in the peak temperature (Tpeak) and 

heat flow (W·g
-1

) could be assessed. As it can be seen in Figure 11, as the heating rate increased 

in an anoxic atmosphere, the T0 and the Tpeak shifted towards higher values along with the 

widening of the endothermic peak. This broadening effect was very pronounced for 5 and 10 

ºC·min
-1

, in which the Tf extended to up to 80 ºC for the highest heating rate. This shifting 

pattern effect was also observed in air atmosphere (Figure 12), with an extending Tf value when 

increasing the heating rate. 
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Table 1 summarizes the results from the DTA analysis made on the MD sample as a 

function of the type of atmosphere and heating rate. The paraffin wax under different 

atmospheres at the beginning of the experiment plays an important role for phase change 

process, and thermo-oxidative degradation is a key point at higher temperatures. 

According to these results, the heat flow emitted from the PCS decomposition (and from the 

energy storage capacity of the PCM) is greater in N2 than air atmospheres, which suggests that 

the oxidizing or combustion events results less energetic than those from the anoxic conditions. 

However, Tpeak values were all in the same range regardless the atmosphere, although a decrease 

as the heating rate decreased was also observed. This effect is a direct consequence of the 

difference between the time of the furnace to attain a certain temperature (defined by the heating 

rate) and the thermal inertia of the sample. In practice, this PCS would be employed in 

situations where heating rates tend to be lower than 10 and 5 ºC·min
-1

 and hence a phase change 

enthalpy range of 88.7 - 108.8 J·g
-1

 seems to be the most appropriate reference value when 

evaluating the thermal storage capacity of this type of PCS. Therefore, low heating rates and 

hence time-consuming experiments are not necessary when defining Tpeak, while a 15 - 20 % of 

variation with respect accurately tests has to be assumed when assessing heat flow. The heat 

associated to the melting of the MD by means of a previous DSC analysis between 10 and 40 ºC 

at 0.5 ºC·min
-1

 dynamic heating rate was estimated in 168 J·g
-1

 [38], close to that obtained by 

the TGA/DSC at 10 ºC·min
-1 

in N2 (124.1 J·g
-1

). Thus, in order to accurately determine the heat 

flow or latent heat of PCS decomposition, experiments at 10 ºC·min
-1

 seemed to be more 

suitable. 

A DSC comparison of the effect of different heating rates (0.5, 1, 5, and 10 ºC·min
-1

) on 

DSC curves for MD sample in N2 using another equipment (Mettler-Toledo DSC-30 

calorimeter) is shown in Figure 13. As it is depicted, the heating rate increases the Tpeak of both 

endothermic peaks (around 30 and 350 ºC), although as higher is the temperature more 

significant is this behavior because of the internal temperature gradient within the sample [47]. 

Therefore, it is important to establish the optimum conditions to compare all PCS with the same 

parameters, as the results can change drastically. As it can be observed in the figure, the first 

peak around 30 ºC corresponds to the phase change of the paraffin wax while that at around 350 

ºC is attributed to some component of the MPCM shell, which is still under investigation. 

4. Conclusions 

Micronal
®
 DS 5045 X is a microencapsulated phase change material water suspension 

composed by an acrylic shell and paraffin wax in the core. The SEM observation coupled to a 

cryogenic N2 system denoted that the material is comprised by non-spherical and non-broken 
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capsules lower than 5 m. The TGA technique allows measuring several parameters in one 

experiment, which saves time during characterization. On the one hand, the optimum conditions 

for determining the Tpeak of this dried material are the heating at 1 ºC·min
-1

 rate in a N2 

atmosphere. In this sense, PCS are expected to be employed in cases with low heating rates. On 

the other hand, measuring the decomposition heat flow of the MD by means of TGA/DSC is 

improved at higher heating velocities towards 10 ºC·min
-1

, as the values obtained were close to 

that acquired by the more accurate DSC technique. In the light of the results, the experimental 

conditions and sample state exert a special influence over the results obtained. This study 

partially determined the best options for obtaining Tpeak and heat flow or latent heat more 

accurately. Other parameters such as the amount as well as the varying gas flow are currently 

under research. 
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Figure Captions: 

Figure 1.- SEM micrographies for M sample, Micronal
®
 DS 5045 X (magnification: x 2200 left 

and x 5500 right). 

Figure 2. FT-IR spectra of MD. 

Figure 3.- Comparison of TGA curves for M sample (Micronal
®
 DS 5045 X slurry) in air and 

N2 at different heating rates. a) 10 ºC·min
-1

 in air and N2; b) 5 ºC·min
-1

 in air and N2; c) 1 

ºC·min
-1

 in air and N2; d) 0.5 ºC·min
-1

 in air and N2. 

Figure 4.- Comparison of TGA curves for MD sample (dried Micronal
®
 DS 5045 X slurry) in 

air and N2 atmospheres at different heating rates. a) 10 ºC·min
-1

; b) 5 ºC·min
-1

; c) 1 ºC·min
-1

; d) 

0.5 ºC·min
-1

. 

Figure 5.- TGA curves of M and MD in N2 at different heating rates, a) 10 ºC·min
-1

; b) 5 

ºC·min
-1

; c) 1 ºC·min
-1

; d) 0.5 ºC·min
-1

. 

Figure 6.- TGA curves in air atmosphere at different heating rates for M and MD a) 10 ºC·min
-1

; 

b) 5 ºC·min
-1

; c) 1 ºC·min
-1

; d) 0.5 ºC·min
-1

. 

Figure 7.- TGA curves in air atmosphere at different heating rates for a) M sample (Micronal
®
 

DS 5045 X slurry) and b) MD sample (dried Micronal
®
 DS 5045 X slurry). Heating rates: 10 

ºC·min
-1

, 5 ºC·min
-1

, 1 ºC·min
-1

, and 0.5 ºC·min
-1

. 

Figure 8.- TGA curves in N2 atmosphere at different heating rates for a) M sample (Micronal
®
 

DS 5045 X slurry) and b) MD sample (dried Micronal
®
 DS 5045 X slurry). Heating rates: 10 

ºC·min
-1

, 5 ºC·min
-1

, 1 ºC·min
-1

, and 0.5 ºC·min
-1

. 

Figure 9. TGA and DTG results for MD sample in both atmospheres at a) 0.5 ºC·min
-1

 and b) 1 

ºC·min
-1

. 

Figure 10. TGA and DTG results for MD sample in both atmospheres at a) 5 ºC·min
-1

 and b) 10 

ºC·min
-1

. 

Figure 11. DTA curves at different heating rates (0.5, 1, 5, and 10 ºC·min
-1

) for the MD sample 

in N2 atmosphere. 

Figure 12. DTA curves at different heating rates (0.5, 1, 5, and 10 ºC·min
-1

) for the MD sample 

in air atmosphere. 

Figure 13.-DSC results at 0.5, 1, 5, and 10 ºC·min
-1

 from the dried samples in N2 atmosphere. 
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Table Captions: 

Table 1. DSC results for the MD sample. 
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Table 1 

Heating rate 

(ºC·min
-1

) 

Nitrogen atmosphere Air atmosphere 

Heat flow/ 

Latent heat 

(J·g
-1

) 

Tpeak (ºC) 

Heat flow/ 

Latent heat 

(J·g
-1

) 

Tpeak (ºC) 

0.5 108.5 32.3 88.7 32.3 

1.0 108.8 32.6 89.9 33.0 

5.0 121.2 38.8 92.8 40.3 

10.0 124.1 49.7 100.2 46.2 
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