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ABSTRACT AMERICAN OPTIONS

Abstract

One of the most important things that rules the world, is the economy. And the
science that explains better the economy, is maths.

When I was a child, I wanted to become an economist. So I decided to study
maths because the background of the economy is maths, and knowing maths, you
can understand the economy.

Studying maths, I have been so amazed on how from nothing, only using math-
ematical results, we can build real things.

This research work combines both things: a construction from nothing of an appli-
cation to the economy, more precisely, applied to the financial markets.
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CHAPTER 1 INTRODUCTION AMERICAN OPTIONS

1 Introduction

Financial markets are a location where buyers and sellers meet to participate in the
trade of assets at prices determined by the forces of supply and demand. This assets
can be goods or services like equities, bonds, currencies, derivatives, options...etc.
Depending on the asset negotiated, there are different types of financial markets.

In particular, one of the most popular financial markets is the ”Future and Op-
tions Market”. There, the buyers and sellers interchanges rights to sell or to buy a
certain product at a fixed price at a stipulated time: A farmer who thinks that his
harvest will not be so good, wants to make sure that he can sell his products to a
good stock price in spite of being lower than the one set by the market, or an airline
will not be so exposed to the volatility of the market and wants to ensure a fixed
price of the fuel in spite of being higher than the one set by the market in the future.

As we can suppose, it exists different type of options depending on the clauses
of the rights. This research work studies two type of options, the ”European Op-
tions” and the ”American Options”. The European options are rights to buy or
to sell a product at a certain price that only can be executed in the future. In
this work, we will see what is the fair price that the buyer has to pay for this
option and what does the seller have to do to face his obligation to the buyer in
the future, called hedging strategy. American options are like European options
but with the fact that the buyer can execute the option from the moment that
has been negotiated, and the expiry time. So, apart from what is the fair price
the buyer has to pay and what does the seller have to do to face his obligation,
additionally the buyer always faces the decision to execute the option or to wait
for a next time. This decision is not as easy as it could seem, because it is diffi-
cult to know if we will win more money executing the option later or executing now.

This work is composed by different parts:

• A first part dedicated to basic notions. Before to face the problem of deter-
mining the fair price to the buyer and the strategy to the seller for European
options, we have to introduce some mathematical results to understand how
we determine the fair price. Concepts about probability spaces like: what is
a probability space, the conditional probability and independent probability
with all their properties, expectation and conditional expectation are sup-
posed to be known. We introduce some concepts about stochastic processes
and martingales in discrete time and a formal definition of a financial market
in discrete time.

For the American options, for a better comprehension of how does they work,
it is necessary to understand how to price and how to hedge European options
before. So apart from the concepts described below, before to determine the
fair price, the hedging strategy and the optimal stopping of the American
options, we also need concepts about supermatingales, submartingales and
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CHAPTER 1 INTRODUCTION AMERICAN OPTIONS

optimal stopping.

• A second part dedicated to solve the problems of the fair price, hedging strat-
egy and optimal stopping: For the European options, we define a model of
financial market in discrete time in which we solve the problem of pricing and
hedging European options, called CRR model. We also see how to solve these
problems in two types of models derived from the CRR model: The single-
step binomial model and the two-step binomial model. For the American
options, as the model is used to price, to hedge and to determine the optimal
stopping time is the same as the European options, we will see how to solve
these problems in the two-step binomial model and in the CRR model, doing
a dualism with the European options pricing.

• A final part for a program in C++ that solves the problem of pricing and
which is the optimal stopping for American options.

2
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2 Stochastic processes and martingales in discrete

time

2.1 Basics elements of stochastic processes in discrete time

Definition 1. A stochastic process X := {Xn, n ∈ T} is a sequence of random
variables defined in a probability space (Ω,F ,P) and in a certain period of time T.
Usually T = {0, .., N}.

Definition 2. An associated filtration in a probability space (Ω,F ,P) is a sequence
of σ-algebras F := {Fn, n ∈ T} that:

• Fn ⊆ F , ∀n ∈ T.

• Fn−1 ⊆ Fn, ∀n ∈ T∗ := T− {0}.

A probability space with an associate filtration (Ω,F ,F.P) is called filtered probability
space.

Definition 3. Given a stochastic process X, we define its natural filtration as the
sequence of σ-algebras:

Fn := σ {Xk, k ≤ n} .

Definition 4. We say that a stochastic process X defined in a filtered probability
space is adapted if ∀n ∈ T, Xn is Fn-measurable.

Remark 5. Any stochastic process is adapted to his natural filtration.

Definition 6. A stochastic process X is predictable if:

• X0 is F0-measurable.

• Xn is Fn−1-measurable, ∀n ∈ T∗.

Remark 7. Any predictable process is adapted.

3
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2.2 Martingales

Definition 8. We say that a process M := {Mn, n ∈ T} is a martingale respect the
filtration F if:

1. M is adapted to F.

2. E(|Mn|) < ∞, ∀n ∈ T, it means that all the variables of the process are
integrable.

3. E[Mn|Fn−1] = Mn−1, q.s, ∀n ∈ T∗.

Example 9. (Martingale process)

• Example 1: Given X1, X2, .., Xn a sequence of random independent variables
with E(|Xk|) < ∞, ∀k and:

E(Xk) = 0, ∀k.

We define S0 := 0 and:

Sn := X1 +X2 + ..+Xn.

Fn := σ(X1, X2, ..., Xn), F0 = {∅,Ω} .

We have that ∀n ≥ 1:

E(Sn|Fn−1) = E(Sn−1|Fn−1) + E(Xn|Fn−1) = Sn−1 + E(Xn) = Sn−1.

So, Sn is a martingale.

• Example 2: Given X1, X2, .., Xn a sequence of random independent variables
with E(|Xk|) < ∞, ∀k and:

E(Xk) = 1, ∀k.

We define M0 := 0 and:

Mn := X1X2· · ·Xn.

Fn := σ(X1, X2, ..., Xn),F0 = {∅,Ω} .

We have that ∀n ≥ 1:

E(Mn|Fn−1) = Mn−1E(Xn) = Mn−1.

So, Mn is a martingale.

Definition 10. Let M be a martingale, H a predictable and bounded process respect
to a filtration F, x0 ∈ R a constant. The transformation of the martingale M by
the predictable process H is the process X := {Xn, n ∈ T} defined as:

Xn := xo +
n∑

k=1

Hk(Mk −Mk−1), n ∈ T.

4
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Proposition 11. The transformation of a martingale is a martingale.

Proof. [3]: ”Modelización estocástica, J.M Corcuera: pag.9”.

�

Proposition 12. Given M := {Mn, n ≥ 0} an adapted and integrable process, we
say that M is a martingale if and only if for all predictable and bounded process H
and for all n ≥ 1:

E(
n∑

i=1

Hi(Mi −Mi−1)) = 0.

Proof. [2]: ”Introduction to Stochastic Calculus Applied to Finance 2nd Edition,
D.Lamberton and B.Lapeyre: pag.20”. �
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3 Discrete Financial Markets

3.1 Discrete-time formalism: Assets and strategies

Definition 13. A discrete-time financial model is built on:

1. A finite probability space (Ω,F ,P) where:

(a) Ω is a finite set of elements, where ω ∈ Ω represents a possible evolution
of the market.

(b) F = P(Ω) where P(Ω) denotes the collection of all subsets of the finite
sample space Ω.

(c) P is unknown and we assume P(ω) > 0, ∀ω ∈ Ω.

2. A filtration F := {Fn, n ∈ T}, where F0 := {∅,Ω} and FN := F . The set
Fn can be seen as the information available at time n and it can be called the
σ-algebra of events up to time n.

3. A set of time T := {0, 1, 2, ..., N} where N is finite and fixed. T∗ := T− {0}.

4. A deterministic process A := {An, n ∈ T} called riskless asset that represents
a bank account. We set A0 = 1. The return of the riskless asset over one
period is constant and equal to r, so An = (1 + r)n.

5. A finite number of risky assets S1
n, ..., S

d
n where Si

n represents the price of the
risky asset i at time n ∈ T. We suppose that this assets are adapted to the
filtration F given, so it is natural to choose the filtration:

Fn :=
{
Si
k, 0 ≤ k ≤ n, 1 ≤ i ≤ d

}
.

This filtration is called natural filtration. The coefficient βn = 1/An is inter-

preted as the discount factor and S̃i
n := Si

n

An
is the discounted price.

In our case S̃i
n := (1 + r)−nSi

n, ∀n ∈ T, and Ãn ≡ 1.

Remark 14. In the case that we have only one risky asset, its usual to denote Sn

the price of the risky asset at time n ∈ T.

Remark 15. Note that working with a finite probability space, all real-valued ran-
dom variables are integrable.

Definition 16. A portfolio Vn is a set of risky and riskless assets.

6
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Definition 17. A trading strategy is defined as a predictable stochastic process:

ϕn :=
{
(ϕ0

n, ϕ
1
n, ..., ϕ

d
n) ∈ Rd+1, n ∈ T∗}

where ϕi
n denotes the number of shares of asset i held in the portfolio at time n.

Recall that a trading strategy ϕ is predictable if ∀i ∈ {0, 1, ..., d}:

1. ϕi
0 is F0-measurable.

2. ∀n ≥ 1, ϕi
n is Fn−1-measurable.

Definition 18. The value of the portfolio at time n is the scalar product:

Vn(ϕ) = ϕnSn =
d∑

i=0

ϕi
nS

i
n.

So, its discounted value is:

Ṽn(ϕ) = βn(ϕnSn) = ϕnS̃n.

Definition 19. A strategy is called self-financing if the following equation is satis-
fied for all n ∈ {0, 1, ..., N − 1}:

ϕnSn = ϕn+1Sn

Proposition 20. The following results are equivalent:

1. The strategy ϕ is self-financing.

2. For any n ∈ {1, ..., N},

Vn(ϕ) = V0(ϕ) +
n∑

j=1

ϕj∆Sj.

3. For any n ∈ {1, ..., N},

Ṽn(ϕ) = V0(ϕ) +
n∑

j=1

ϕj∆S̃j.

where ∆S̃j is the vector S̃j − S̃j−1 = βjSj − βj−1Sj−1.

Proposition 21. For any predictable process ϕ̃ =
{
(ϕ1

n, ..., ϕ
d
n), 0 ≤ n ≤ N

}
and for

any F0-measurable variable V0, there exists a unique predictable process (ϕ0
n)0≤n≤N

such that the strategy ϕ = (ϕ0, ϕ1, ..., ϕd) is self-financing and its initial value
V0(ϕ) = V0.

Proof. The proof of both propositions can be found in [2]: ”Introduction to Stochas-
tic Calculus Applied to Finance 2nd Edition, D.Lamberton and B.Lapeyre: pag.17”.
�
Definition 22. A strategy ϕ is admissible if it is self-financing and Vn(ϕ) ≥ 0, for
any n ∈ {0, 1, ..., N}.
Definition 23. An arbitrage strategy is an admissible and self-financing strategy
that V0(ϕ) = 0, and VN(ϕ) > 0 with strictly positive probability.

7
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3.2 Viable and complete markets: First and second funda-
mental theorems of finance

Definition 24. A market is viable if there are no arbitrage opportunities.

Definition 25. A probability P∗ is equivalent to P if for any A ∈ F :

P(A) = 0 ⇐⇒ P∗(A) = 0.

It is written P∗ ∼ P.

Remark 26. Note that in our finite probability space, this means simply that P∗

satisfies also the condition P∗(ω) > 0, ∀ω ∈ Ω.

The first Fundamental Theorem of Finance, characterizes viable markets in terms
of the notion of equivalent probability measure and the notion of martingale. Note
that this mean that we are relating the pure financial hypothesis that a market is
viable with pure mathematical concepts.

Theorem 27 (First Fundamental Theorem of Finance or Fundamental Theorem of
Asset Pricing). The market is viable if and only if it exists a probability measure P∗

equivalent to P such that the discounted prices of assets are P∗-martingales. This
probability is called probability risk neutral.

Proof. [6]: ”Mathematics of Financial Markets 2nd ed., R.J.Elliot and E.Kopp:
pags.60-61”. �

Definition 28. Consider a FN -measurable and non-negative random variable H
that can represent a payoff that can be obtained at time N . It is said that H is
replicable if it exists a constant V0 and a self-financing and admissible strategy ϕ
such that VN(ϕ) = H.

Remark 29. Note that this is a pure financial definition and says that any quantity
can be replicated with a good choose of V0 and ϕ. Its validity in real markets is no
so obvious as no arbitrage.

Remark 30. If a market is viable and it exists a self-financial strategy that repli-
cates H, it is also admissible. Note that if it exists a risk neutral measure P∗,
processes S̃ are martingales and so it is Ṽn(ϕ) for any self-financing strategy ϕ
because it is a transformation of a martingale. Then:

Ṽn(ϕ) = E∗[ṼN(ϕ)|F ] = E∗[
H

AN

|FN ] ≥ 0.

because conditional expectation is a positive operator.

8
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Definition 31. The market is complete if every payoff is replicable.

Theorem 32 (Second Fundamental Theorem of Finance). A viable market is com-
plete if and only if there exists a unique probability measure P∗equivalent to P, under
which discounted prices are martingales.

Proof. [5]: ”Discrete Models of Financial Markets, M.Capiński and E.Kopp: pags.39-
40”. �
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3.3 Pricing and hedging contingent claims in discrete and
complete markets

It is assumed that the market is viable and complete. We denote by P∗ the unique
probability measure under which the discounted prices of financial assets are mar-
tingales.

Definition 33. An European option (European contingent claim) is a contract that
gives to you the right (not the obligation) to get a payoff G at maturity N , where G
is a non-negative FN -measurable random variable. Its value depends on the market
movement from n = 0 to n = N .

Definition 34.

• A call option is an European option that gives the right (not the obligation)
to the owner to buy a specified amount of a good at a strike price K in the
expiration date N . The payoff is G = (SN −K)+.

• A put option is an European option that gives the right (not the obligation)
to the owner to sell a specified amount of a good at a strike price K in the
expiration date N . The payoff is G = (K − SN)

+.

The good is called usually the underlying good and it can be a stock, an index, a
currency, a commodity or any thing priced continuously in an open market.

Remark 35. We notice that if at time N , SN ≤ K, to execute the call option has
no sense because we would lose money, we can buy the good directly in the spot
market at lower price SN . Reciprocally, if SN ≥ K and we execute the put option,
we would also lose money, we are selling a good on a price lower than the price the
market fixes.

3.3.1 Pricing and hedge

Let’s consider G a FN -measurable non-negative random variable that represents
the payoff of an option.

Definition 36.

• To price an option with payoff G is to determine the price at n = 0 of the
right to receive the random quantity G at time n = N .

• To hedge an option with payoff G is to establish and investment strategy for
the seller to cover his or her obligation to give G at n = N to the buyer.

Remark 37. The completeness of the market guarantees the existence of a self-
financing and admissible strategy ϕ that generates G in the sense that Ṽ (ϕ) is a
martingale with ṼN(ϕ) = G and V0 = E∗(G̃), so E∗(G̃) can be a fair price for G.
This expectation E∗ is the expectation respect P∗ where P∗ is the unique probability

10
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measure under which the discounted prices of financial assets are martingales. This
probability exists and is unique as a result of ”Theorem 32 (Second Fundamental
Theorem of Finance)”.

Moreover, ϕ is a possible hedging strategy and:

Vn(ϕ) =
S0
n

AN

E∗(G|Fn)

is the price of the portfolio in each time n.

Remark 38. It is important to notice that the computation of the option price only
requires the knowledge of P∗and not P. This means that is not necessary to know the
real probability, is enough to consider the measurable space (Ω,F) equipped with the
filtration (Fn) as the set of all possible states and the evolution of the information
over time.

Note that P is subjective and depends on your perspectives about the market. What
this theory is saying is that the price of G is independent from the point of reference
of the observer.

Definition 39. According to the theory described below:

• The fair price of an European call is C0 := E∗( (SN−K)+

AN
).

• The fair price of an European put is P0 := E∗( (K−SN )+

AN
).

Proposition 40 (Call-Put Parity). Lets consider the sequence of prices Sn. If C
is the price of an European call on Sn with fair price K with expiration date N and
P the price of the European put with the same data. If r is constant:

C0 − P0 = S0 −K(1 + r)−N .

Proof. [2]: ”Introduction to Stochastic Calculus Applied to Finance 2nd Edition,
D.Lamberton and B.Lapeyre: pag.28”. �

11
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4 Cox-Ross-Rubinstein model

Now, we will see a discrete financial model to study the assessment and hedge of
Euorpean options in a small period of time.

The Cox-Ross-Rubinstein model give us the tools for the assessment and hedge of
European options in a certain period of time T = {0, 1, ..., N}.

This model was developed by Cox, Ross and Rubinstein about 1980. [1]

4.1 CRR model formalism

The Cox-Ross-Rubinstein model considers only two assets:

1. One risky asset whose price is Sn where 0 ≤ n ≤ N .

2. One riskless asset whose return is r > 0 over one period of time and its value
is An = (1 + r)n.

Between two consecutive periods, the price changes by a factor that is either 1 + u
(upwards) or 1+d (downwards) with−1 < d < u. So Sn ∈ {Sn−1(1 + d), Sn−1(1 + u)}.
We suppose that S0 is constant and T := {0, 1, ..., N}.

We define the random variables {Tn, n ∈ T} such that:

Tn :=
Sn

Sn−1

With this notation, we also can write:

Sn = S0

n∏
i=1

Ti, n ∈ T.

So, we can consider the following market model:

(Ω,F,F ,P)

where:

1. Ω = {1 + d, 1 + u}N .

2. F = {Fn, n ∈ T} with Fn := σ {S0, T1, ..., TN} = σ {S0, S1, ..., SN}, in partic-
ular F0 = {∅,Ω}.

3. F := FN .

4. P is a probability over Ω such that:

P(T1 = x1, ..., TN = xN) > 0, ∀(x1, ..., xN) ∈ Ω.

12
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4.2 Viability and completeness of the CRR model

We begin by the following characterization of viability in the CRR model:

Proposition 41. S̃ is P-martingale if and only if E[Tn|Fn−1] = 1+r for all n ∈ T∗.

Proposition 42. The model CRR is viable if and only if d < r < u.

Proposition 43. We suppose d < r < u. If S̃ is P-martingale, necessarily P = P∗

where P∗ is the risky neutral probability of the proposition before.

Proof. The proof of all this propositions can be found in: [2]: ”Introduction to
Stochastic Calculus Applied to Finance 2nd Edition, D.Lamberton and B.Lapeyre:
pag.28”. �
Corollary 44. Considering the results given in ”Proposition 41, 42 and 43”, we
can conclude that the CRR model is viable and complete.

4.3 Pricing European options in CRR model

In this section, we are going to see how to calculate the value of the European
options.

We consider the model CRR. Lets suppose that P∗ is the only risky neutral proba-
bility such that the prices are martingales.

4.3.1 European call

Continuing with notation given before, Cn is the price of an European call at time
n with strike price K with expiration date N , the payoff is G = (SN −K)+.
The price at time n of the European call is, as we have seen before:

Cn :=
An

AN

E∗(G|Fn).

Using that An = (1 + r)n and AN = (1 + r)N , we have that:

Cn = (1 + r)−(N−n)E∗((SN −K)+|Fn).

Also, in the CRR model SN = Sn

∏N
i=n+1 Ti, so:

Cn =
An

AN

E∗[(Sn

N∏
i=n+1

Ti −K)+|Fn] =: c(n, Sn).

Changing Sn for x and considering that S̃n are Fn-martingales:

c(n, x) = (1 + r)−(N−n)E∗[(x
N∏

i=n+1

Ti −K)+].

In CRR, Ti = (1 + u) or Ti = (1 + d). So we can suppose that we have:

13
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• j ∈ N such that T1 = ... = Tj = (1 + u).

• N − n− j ∈ N such that TN−n−1 = ... = TN−n−j = (1 + d).

So:

c(n, x) =(1 + r)−(N−n)

N−n∑
j=0

(x(1 + d)N−n−j(1 + u)j −K)+

(
N − n

j

)
(
u− r

u− d
)N−n−j(

r − d

u− d
)j

=(1 + r)−(N−n)

N−n∑
j=j∗(x)

x(1 + d)N−n−j(1 + u)j
(
N − n

j

)
(
u− r

u− d
)N−n−j(

r − d

u− d
)j

−(1 + r)−(N−n)

N−n∑
j=j∗(x)

K

(
N − n

j

)
(
u− r

u− d
)N−n−j(

r − d

u− d
)j

where:
j ∗ (x) := inf

{
j : x(1 + d)N−n−j(1 + u)j > K

}
= inf

{
j : j >

log(K
x
)−(N−n)log(1+d)

log( 1+u
1+d

)

}
.

We see that:
(u− r)(1 + d)

(u− d)(1 + r)
+

(r − d)(1 + u)

(u− d)(1 + r)
= 1.

So, considering p∗ := r−d
u−d

, we can define:

p̃ =
p∗(1 + u)

1 + r
=

(r − d)(1 + u)

(u− d)(1 + r)
.

We can rewrite:

c(n, x) = x

N−n∑
j=j∗(x)

(
N − n

j

)
p̃j(1−p̃)N−n−j− K

(1 + r)N−n

N∑
j=j∗(x)

(
N − n

j

)
(p∗)j(1−p∗)N−n−j.

Normally n = 0, so:

C0 = S0

N∑
j=j∗(x)

(
N

j

)
p̃j(1− p̃)N−j − K

(1 + r)N

N∑
j=j∗(x)

(
N

j

)
(p∗)j(1− p∗)N−j.

Finally we can write:

C0 = S0P(Bin(N, p̃) ≥ j∗(x))− K

(1 + r)N
P(Bin(N, p∗) ≥ j∗(x)).

14
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4.3.2 European put

Considering the call-put parity:

P0 = C0 − S0 +
K

(1 + r)N
.

So, we have that:

P0 =
K

(1 + r)N
P(Bin(N, p∗) ≤ j∗(x)− 1)− S0P(Bin(N, p̃) ≤ j∗(x)− 1).

4.4 Hedging European options in CRR model

To find the strategy hedge ϕ we impose:

ϕ0
n(1 + r)n + ϕnSn = c(n, Sn).

So, we have the system:{
ϕ0
n(1 + r)n + ϕn(1 + d)Sn−1 = c(n, (1 + d)Sn−1).

ϕ0
n(1 + r)n + ϕn(1 + u)Sn−1 = c(n, (1 + u)Sn−1).

Solving the system we get ϕn = ∆n(n, Sn−1) where:

∆(n, x) =
c(n, (1 + u)x)− c(n, (1 + d)x)

x(u− d)
.

Using the property of self-financing:

ϕ0
n = C0 +

n−1∑
l=1

ϕl(S̃l − S̃l−1)− ϕnS̃n−1 = Ṽn−1(ϕ)− ϕnS̃n−1.

which is obviously Fn−1-measurable. We notice that ∆n(n, Sn−1) is the quantity of
risky assets that the seller of the option has on his portfolio at time n. We can also
write:

∆n(n, Sn−1) =
Cu

n − Cd
n

Su
n − Sd

n

.

Where Cu is the value of the option at time n in the worst scenario and the same
for the others. This strategy is called delta-neutral.

15
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5 Single-step binomial model

We begin by examining the simplest possible setting from a CRR model.

5.1 Single-step binomial model formalism

We take time as discrete and reduced to just two time instants, the present and the
future: T = {0, 1}.

The market only has two possible scenarios: ”up” or ”down”. At time 0 we as-
sume we are given some asset S. The current price S0 > 0 is known while its future
price S1 is not known, but we consider possible future prices and the probability of
attaining them.

So, lets consider the following discrete time financial model:

1. (Ω,F ,P) where:

(a) Ω = {u, d}, u := up, d := down.

(b) F = P(Ω).

(c) P probability that P(u) = p, P(d) = 1− p where p ∈ (0, 1).

2. F := {Fn, n ∈ T}, where F0 := {∅,Ω} and FN := F .

3. T := {0, 1}, 0 := present, 1 := future.

4. S0 := {S0
0 , S

0
1} riskless asset which represent the money market account where

S0
0 > 0 and S0

1 = S0
0(1 + r), for some r > 0.

5. S := {S0, S1} risky asset that S0 is known and S1 =

{
Su = S0(1 + u).

Sd = S0(1 + d).

5.2 Pricing European options in single-step binomial model

Now, we are going to define the initial price of an European option. Imagine we are
a bank and we have to sell an option to a consumer with strike price ”K” and the
option to win a payoff ”G”. Which is the fair price we have to ask for?

As we have seen before, we are mainly working with ”European call” and ”Eu-
ropean put”.

16
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The payoff at time 1 of the European call with strike price K is defined as:

C1 =

{
S1 −K if S1 > K

0 otherwise

= (S1 −K)+

The payoff at time 1 of the European put with strike price K is defined as:

P1 =

{
K − S1 if S1 < K

0 otherwise

= (K − S1)
+

So, the problem consists on finding rational prices C0 and P0.

To avoid trivial cases, we assume that the strike price K satisfies:

S0(1 + d) ≤ K ≤ S0(1 + u).

Remark 45. If maxwSn(w) < K the payoff of a call is (Sn −K)+ = 0. The same
if maxwSn(w) > K the payoff of a put is (K − Sn)

+ = 0.

5.2.1 Pricing using risky neutral measure

As we are in a CRR model, we know that exists an unique risky neutral measure
P∗ under which the prices are martingales.

If we denote E∗ the expectation respect this probability, we have that:

E∗(
S1

1 + r
) = S0.

We also know that the variable:

T1 :=
S1

S0

has Bernoulli law with p∗ parameter over the set 1 + u, 1 + d.

So, by the definition of a discrete variable with Bernoulli law:

S0(1 + r) = p∗S0(1 + u) + (1− p∗)S0(1 + d).

Where, operating we get:

p∗ =
r − d

u− d

1− p∗ =
u− r

u− d

17
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Finally, using that prices are martingales and the theory we have seen about CRR
European option pricing, for the call option its pricing is:

C0 =
1

1 + r
E∗(C1) =

1

1 + r
(p∗(S0(1 + u)−K)+ + (1− p∗)(S0(1 + d)−K)+).

For the put option:

P0 =
1

1 + r
E∗(P1) =

1

1 + r
(p∗(K − S0(1 + u))+ + (1− p∗)(K − S0(1 + d))+).

5.2.2 Pricing using non arbitrage principle

Firstly, we are going to do the pricing for a call option.

Lets consider a portfolio D composed by ∆ units of risky asset and −1 units of
the call option. So, at time 0:

D0 := ∆S0 − C0.

And, at time 1:
D1 := ∆S1 − C1.

Remark 46. Note that ∆ > 0 means that we take a large position in assets, which
means we buy.

If our portfolio has −1 in a call option, means that we take a short position in
this call option, so we sell.

We are looking for a portfolio that values the same in both cases at time 1. So we
impose:

∆S0(1 + u)− Cu = ∆S0(1 + d)− Cd.

Operating we get:

∆ =
Cu − Cd

S0(u− d)
.

Replacing ∆ in D1:

D1 = ∆S0(1 + u)− Cu =
(Cu − Cd)

u− d
(1 + u)− Cu =

(1 + d)Cu − (1 + u)Cd

u− d
.

So, our portfolio worth:

D0 =
Cu − Cd

u− d
− C0

and

D1 =
(1 + d)Cu − (1 + u)Cd

u− d

18
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in any scenario.

Using that our market is viable, the no arbitrage principle says that

D0(1 + r) = D1.

Effectively, if D0(1+r) > D1, we can borrow D0 money, sell the call option, deposit
C0 and buy ∆ goods.

At expiration, we sell ∆S1, pay C1 and return the money borrowed D0(1 + r).
Totally, we have:

∆S1 − C1 − (1 + r)D0 = D1 − (1 + r)D0 > 0.

We have an arbitrage, contradiction with the viability of the market.

If we suppose D0(1 + r) < D1, we borrow ∆ goods, we sell this goods and de-
posit ∆S0. Moreover, we buy a call C0. We deposit D0 left in the bank. At
expiration, we have (∆S0 − C0)(1 + r). We buy ∆ goods with price S1, we return
the money borrowed, and execute the call, getting C1. Finally we have:

(∆S0 − C0)(1 + r)−∆S1 + C1 = D0(1 + r)−D1 > 0.

Another time, we have an arbitrage, contradiction with the viability of the market.

So, we impose D0(1 + r) = D1 and we get:

Cu − Cd

u− d
− C0 =

(1 + d)Cu − (1 + u)Cd

u− d
.

And, isolating C0:

C0 =
(r − d)Cu + (u− r)Cd

(1 + r)(u− d)
=

pCu + (1− p)Cd

1 + r
.

For the European put, using the same argument:

P0 =
(r − d)P u + (u− r)P d

(1 + r)(u− d)
=

pP u + (1− p)P d

1 + r
.
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5.3 Hedging European options in single-step binomial model

In both cases, we build a portfolio (x, y) where x represents the amount of risky
asset we have and y represents the amount of riskless asset. So, its initial value is:

V0 = xS0 + yS0
0 .

The final value is: {
V u
1 = xS0(1 + u) + yS0

0(1 + r).

V d
1 = xS0(1 + d) + yS0

0(1 + r).

Its discounted value: {
Ṽ0 = V0.

Ṽ1 = V1(1 + r)−1 = xS̃1 + yS0
0 .

We also suppose that:

• The market is frictionless: we do not impose any restrictions on the numbers
”x” and ”y”, so unlimited short-selling is allowed.

• The assets are assumed to be arbitrarily divisible, meaning that x,y can take
arbitrary real values.

• Any bound to x,y is imposed, assuming unlimited liquidity in the market.

• There are no transaction costs involved in trading, the same stock price applies
to long (buy x > 0) and short (shell x < 0).

• Risk-free investment (y > 0) and borrowing (y < 0), both use the interest
rate ”r”.

In this case, as we only have one period of time, ”x” and ”y” are constants
(F0−measurable).
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5.3.1 Hedging using risky neutral measure

Considering the pricing under the risk neutral measure, the problem of hedging
consists of looking for a strategy (x,y) that satisfy:

xS1 + y(1 + r) = C1.

Considering the two possible scenarios:{
xS0(1 + u) + y(1 + r) = Cu.

xS0(1 + d) + y(1 + r) = Cd.

Solving the system, we get:{
x = ∆1 =

Cu−Cd

Su
0−Sd

0
= Cu−Cd

S0(u−d)
.

y = Cd−xS0(1+d)
(1+r)

.

So, our trading strategy consist on borrowing ”y” money to bank, with ”y” money
plus the money we win selling the option C0, we buy ”x” goods in the market
at price S0. At expiration, our portfolio worth Cu if the market goes ”up”, and
Cd if the market goes ”down”. In both cases, we can face the payment of the option.

For the put option, the method is the same but with a little difference, ”x” will be
negative so we have to sell ”x” options at price S0 and ”y” will be positive meaning
that we have to deposit ”y” money to the bank.

5.3.2 Hedging using non arbitrage principle

Another way to hedge the European options using the non arbitrage principle of
the CRR model is the following one.

Considering the pricing under non arbitrage principle, the strategy consist on: We
sell the option, so we obtain C0 money. We borrow ∆S0 − C0 and with all this
money we buy ∆ goods.

At expiration, with the market goes ”up” we have:

∆S0(1 + u)− Cu.

If the market goes ”down”, we have:

∆S0(1 + d)− Cd.

In both cases, with the value of our portfolio, we can return C0(1+ r) money to the
bank.

For the put option, the strategy is similar but our ∆ will be negative, so we have
to sell ∆ goods and invest ∆S0 + P0.
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6 Two-step binomial model

6.1 Two-step binomial model formalism

Here we only take time to be 0, T, 2T , we simplify the notation by just specifying
the number of a step, ignoring its length.

The model is similar to the one-step model but with 1 more period of time.
So we have the following discrete-time financial model:

1. (Ω,F ,P) where:

(a) Ω = {uu, ud, du, dd}, u := up, d := down.

(b) F = P(Ω).

(c) P probability that P(uu) = p2, P(ud) = P(du) = p(1−p), P(dd) = (1−p)2

where p ∈ (0, 1).

2. F := {Fn, n ∈ T}, where F0 := {∅,Ω} and FN := F .

3. T := {0, 1, 2}.

4. S0 := {S0
0 , S

0
1 , S

0
2} riskless asset which represent the money market account

where S0
0 > 0 and S0

n = S0
0(1 + r)n, for some r > 0.

5. S := {S0, S1, S2} risky asset that S0 is known and:

S1 =

{
Su = S0(1 + u).

Sd = S0(1 + d).
S2 =


Suu = S0(1 + u)2.

Sud = Sdu = S0(1 + u)(1 + d).

Sdd = S0(1 + d)2.

6.2 Pricing and hedging European options in two-step bi-
nomial model

6.2.1 Pricing European options

The pricing of European options, as in the one-step model, the basis is the ”No Ar-
bitrage Principle” or the ”Risky Neutral Measure”. The idea is to move backwards
in time, compute the prices f1, where f is a put or a call, in the case ”up” and
the case ”down”, and repeat the same process as in one-step model getting the fair
price f0.

6.2.2 Hedging European options

The strategy to hedge, consist on to build a portfolio (x, y) where x represents the
amount of risky asset we have and y represents the amount of riskless asset.
So, its initial value is:

V0 = x1S0 + y1S
0
1 .
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At time 1:
V1 = x1S1 + y1S

0
1 .

At time 2:
V2 = x2S2 + y2S

0
2 .

With the self-financing condition:

V1 = x2S1 + y2S
0
2 .

We will see an example to illustrate the pricing and the hedging in the two-step
binomial model.

Example 47. Lets suppose that we have a risky asset which worth 48e now. We
know that in the following two quarters, its price can increase or decrease a 10%.
Our riskless asset has an interest rate of 5% annual. So, our tree of prices is:

S1 =

{
Su = 48(1 + 0.1) = 52.8e

Sd = 48(1− 0.1) = 43.2e

S2 =


Suu = 48(1 + 0.1)2 = 58.08e

Sud = Sdu = 48(1 + 0.1)(1− 0.1) = 47.52e

Sdd = 48(1− 0.01)2 = 38.88e

If our interest rate is 5% annual ⇒ r = 0.05
4

= 0.0125 quarterly.

Let’s suppose that we have a call option with strike price 42e. The risk neutral
measure law says that the probability for the price goes up is p = r−d

u−d
= 0.5625 and

the probability for the price goes down is 1− p = 0.4375.

We know that:

C2 =


Cuu = (58.08− 42) = 16.08e

Cud = Cdu = (47.52− 42) = 5.52e

Cdd = 0e

So, let’s compute the fair price of the option using the risky neutral measure:{
Cu = pCuu+(1−p)Cud

1+r
= 9.045+2.415

1.0125
= 11.32

Cd = pCdu+(1−p)Cdd

1+r
= 3.105

1.0125
= 3.06

Finally:

C0 =
pCu + (1− p)Cd

1 + r
=

6.3675 + 1.3431

1.0125
= 7.61

So, the fair price of the option is 7.61e.

Let’s see how to construct the hedging strategy.
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Firstly, we are looking for ”x” and ”y” such that:

x1S1 + y1(1 + r) = C1.

Remind that we have compute before C1:

C1 =

{
Cu = 11.32e

Cd = 3.06e

Considering the two possible scenarios, our portfolio has to value:{
x1S0(1 + u) + y1(1 + r) = Cu.

x1S0(1 + d) + y1(1 + r) = Cd.

Solving the system we get:{
x1 = ∆1 =

Cu−Cd

S0(u−d)
= 11.32−3.07

48·0.2 = 0.86

y1 =
Cd−xS0(1+d)

1+r
= 3.06−43.2·0.86

1.0125
= −33.67

So, our trading strategy consist on buying 0.86 goods. We need 0.86·48 = 41.28e.
Considering that we have won 7.61e selling the call, we need 41.28−7.61 = 33.67e,
so we borrow 33.67e to the bank.

At time 1, in both cases, our portfolio will value:{
0.86 · S0(1 + u)− 33.67(1 + r) = 0.86 · 52.8− 33.67 · 1.0125 = 11.32

0.86 · S0(1 + d)− 33.67(1 + r) = 0.86 · 43.2− 33.67 · 1.0125 = 3.06

The next step is to build a portfolio that has to value:

x2S2 + y2(1 + r) = C2.

Now, we have to consider two situations:

• If the market is ”up”, S1 = S0(1 + u) = 52.8e:
The portfolio we are looking for has to value:{

x2S1(1 + u) + y2(1 + r) = Cuu

x2S1(1 + d) + y2(1 + r) = Cud

We compute a new delta:

∆u =
Cuu − Cud

Su(u− d)
=

16.08− 5.52

52.8 · 0.2
= 1.

So, we change from to have 0.86 goods to 1 units of goods, so we need to buy
1− 0.86 = 0.14 new ones. The price we have to pay for is 0.14 · 52.8 = 7.39e
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(remember that Su = 52.8). So we borrow 7.39e to the bank in addition to
the 33.67e we have borrowed before.

In this case, our portfolio in the possible cases values:

1·Suu
0 −33.67(1+r)2−7.39(1+r) = 1·58.08−33.67(1.0125)2−7.39(1.0125) = 16.08

1·Sud
0 −33.67(1+r)2−7.39(1+r) = 1·47.52−33.67(1.0125)2−7.39(1.0125) = 5.527

Facing our obligation to pay, Cuu = 16.08e in the ”up” case and Cud = 5.52e
in the ”down” case, to the owner of the call option.

• If the market is ”down”, S1 = S0(1 + d) = 43.2e:

Our portfolio has to value:{
x2S1(1 + u) + y2(1 + r) = Cuu.

x2S1(1 + d) + y2(1 + r) = Cud.

Our delta values:

∆d =
Cuu − Cud

Sd(u− d)
=

5.52− 0

43.2 · 0.2
= 0.64

As we can see, our new delta is higher than the delta at time 1, 0.64 <
0.86, it means that we have to sell 0.86 − 0.64 = 0.22 goods at price Sd, so
we earn 0.22 · 43.2 = 9.5e that we return to the bank (we continue owing
(33.67− 9.5) · 1.0125 to the bank). So our portfolio, in both cases at time 2,
will value:{

0.64 · Sdu
0 − 24.6(1 + r) = 0.64 · 47.52− 24.6 · 1.0125 = 5.52

0.64 · Sdd
0 − 24.6(1 + r) = 0.64 · 38.88− 24.6 · 1.0125 = 0

So, we can pay, Cdu = 5.52e in the ”up” case and Cdd = 0e in the ”down”
case, to the owner of the call option.
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7 Supermartingales, submartingales and optimal

stopping

Before to start the study of American options we need to introduce some basic no-
tions, differents with the ones needed in the European options case, to understand
how the American options works.

The basic properties about probability and martingales has been defined in sec-
tion ”Basic Notions”, so it is not needed to be defined again.

7.1 Supermartingales and submartingales

Definition 48. A process M is a supermartingale if M is an adapted and integrable
process and

E[Mn|Fn−1] ≤ Mn−1, q.s, ∀n ∈ T∗.

A process M is a submartingale if M is an adapted and integrable process and

E[Mn|Fn−1] ≥ Mn−1, q.s, ∀n ∈ T∗.

Proposition 49.
If M is a martingale, E(Mn) = E(M0),∀n ∈ T.

If M is a supermartingale, E(Mn) ≤ E(Mn−1),∀n ∈ T.

If M is a submartingale, E(Mn) ≥ E(Mn−1),∀n ∈ T.

Proof. We notice that if M is a martingale:

E(Mn) = E(E[Mn+1|Fn]) = E(Mn+1).

The first equality is because of the definition of martingale and the second due to
the conditioned expectation properties.
In the case of M is a supermartingale or a submartingale, the proof is the same but
with inequalities. �

Example 50. (Supermartingale and submartingale)

• Example 1: Given (Mn) a Fn-martingale. Lets consider the sequence Yn :=
|Mn|, n ≥ 0. Because of the monotonicity of the conditional expectation:

E(Yn|Fn−1) = E(|Mn||Fn−1) ≥ |E(Mn|Fn−1)| = |Mn−1| = Yn−1.

So, Y is a submartingale.

• Example 2: Given (Zn)0≤n≤N an adapted sequence to (Fn)0≤n≤N with finite
expectation. We define X:
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– XN = ZN .

– Xn = max(Zn,E(Xn+1|Fn), 0 ≤ n ≤ N − 1.

By the definition:
E(Xn+1|Fn) ≤ Xn.

So, X is a (Fn)-supermartingale.

Proposition 51. If H is a bounded predictable and positive process and M is a
supermartingale (resp. submartingale), the transformation of M for H is a super-
martingale (resp. submartingale).

Proof. Lets consider Y the transformation of M , we have that:

E[Yn+1 − Yn|Fn] = Hn+1E[Mn+1 −Mn|Fn].

If H is positive then E[Mn+1 −Mn|Fn] preserves the character of supermartingale
or submartingale. �

Theorem 52 (Doob Descomposition). Any supermartingale U admits the following
unique decomposition, called Doob’s decomposition:

Un = Mn − An

Where M is a martingale and A is a predictable and increasing process null at the
origin.

Proof. Given U, we define:

M0 := U0, A0 = 0

An := An−1 + Un−1 − E[Un|Fn−1]

and:
Mn := Mn−1 + Un − E[Un|Fn−1].

Then we have:

Mn − An = Mn−1 + Un − E[Un|Fn−1]− (An−1 + Un−1 − E[Un|Fn−1])

= Mn−1 + Un − An−1 − Un−1.

The process M is a martingale because:

E[Mn −Mn−1|Fn−1] = E[Un − E[Un|Fn−1]|Fn−1] = 0.

The process A is predictable and null all the origin. Furthermore:

An − An−1 = Un−1 − E[Un|Fn−1] ≥ 0

due to U is a supermartingale. Let’s see if its unique.

We suppose that:
Mn − An = M ′

n − A′
n, ∀n ∈ T.
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Then:
Mn −M ′

n = An − A′
n, ∀n ∈ T.

As we know, Mn −M ′
n is a martingale and An − A′

n is a predictible process, so we
have:

An−1 − A′
n−1 =Mn−1 −M ′

n−1

=E[Mn −M ′
n|Fn−1]

=E[An − A′
n|Fn−1]

=An − A′
n.

So, ∀n ∈ T:
An − A′

n = A0 − A′
0 = 0.

Therefore, A is unique so M is unique. �

Definition 53. A sequence Yn of random variables is the Snell envelope of the
sequence Zn for n = 1, ..., N adapted to Fn if:{

YN = ZN .

Yn−1 = max {Zn−1,E(Yn|Fn−1)} ,∀n ≤ N − 1.

Remark 54. As Yn−1 is Fn−1-measurable and Yn−1 ≥ E(Yn|Fn−1) so the Snell
envelope is a supermartingale.

Theorem 55. The Snell envelop Y of Z is the smallest supermartingale dominating
Z.

Proof. By definition, U is a supermartingale that satisfies Un ≥ Zn, ∀n ∈ T.

If V is another supermartingale such that Vn ≥ Zn, ∀n ∈ T, its enough to prove
that Vn ≥ Un, ∀n ∈ T.

We will use inverse induction:

• For N is immediate.

• Assume that for n we have Vn ≥ Un. Lets see if its true for n− 1:

As V is a supermartingale, using the induction hypothesis we have:

Vn−1 ≥ E[Vn|Fn−1] ≥ E[Un|Fn−1].

So:
Vn−1 ≥ max{Zn−1, E[Un|Fn−1]} = Un−1.

�
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7.2 Stopping times

Definition 56. A stopping time is a random variable:

τ : ω ∈ Ω −→ τ(ω) ∈ T ∪ {∞} .

that for all n ∈ T:
{τ ≤ n} ∈ Fn.

Remark 57. Note that {τ = n} ∈ Fn, ∀n ∈ T if and only if {τ ≤ n} ∈ Fn, ∀n ∈ T.

This is an immediate consequence of the facts:

{τ = n} = {τ ≤ n} − {τ ≤ n− 1}.

And

{τ ≤ n} =
n∪

j=0

{τ = j}.

Proposition 58. If S and T are stopping times:

1. S ∨ T and S ∧ T are stopping times.

2. The class:
FT := {A ∈ F : A ∩ {T ≤ n} ∈ Fn,∀n ∈ T}

is a σ-algebra.

3. If S ≤ T ⇒ FS ⊆ FT .

4. If X is an adapted process, the variable XT is FT -measurable.

Proof.

1. We know that:
{S ∨ T ≤ t} = {S ≤ t} ∩ {T ≤ t}.

And:
{S ∧ T ≤ t} = {S ≤ t} ∪ {T ≤ t}.

So, S ∨ T and S ∧ T are stopping times.

2. Let’s prove that FT is a σ-algebra:

• Ω ∈ FT because Ω ∩ {T ≤ n} = {T ≤ n} ∈ Fn.

• If A ∈ FT , A
c also, because:

Ac ∩ {T ≤ n} = ((A ∩ {T ≤ n}) ∪ {T > n})c ∈ Fn.

• If {Ak, k ≥ 1} is a sequence of elements of FT its union also because:

(∪∞
k=1Ak) ∩ {T ≤ n} = ∪∞

k=1(Ak ∩ {T ≤ n}).
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3. If A ∈ FS, as S ≤ T q.s. we have:

A ∩ {T ≤ n} = A ∩ {S ≤ n} ∩ {T ≤ n} ∈ Fn.

because A∩{S ≤ n} ∈ Fn due to A ∈ FS and {T ≤ n} ∈ Fn (T is a stopping
time).

4. If B is a borelian of R we can write:

{XT ∈ B} ∩ {T ≤ n} = ∪n
j=0{Xj ∈ B, T = j} ∈ Fn

because {Xj ∈ B, T = j} ∈ Fj,∀j ≤ n.

�
Definition 59. For any sequence of random variables Xn and any stopping time
τ , the stopped process Xτ

n is:

Xτ
n(ω) := Xτ(w)∧n(ω).

More explicitly:

Xτ
n(ω) =

{
Xn(ω), if τ(w) ≥ n.

Xτ (ω), if τ(w) ≤ n.

Proposition 60. If X is an adapted process and τ a stopping time, Xτ is also an
adapted process. Moreover, if X is a martingale, supermartingale or submartingale
and τ a stopping time, Xτ is also a martingale, supermartingale or submartingale.

Proof. The fact that Xτ is adapted, is immediate.

On other hand, we can write:

Xτ
n = X0 +

n∑
j=1

11{j≤τ}(Xj −Xj−1).

Note that:
{j ≤ τ} = {τ < j}c = {τ ≤ j − 1}c

and {τ ≤ j − 1}c is F{j−1}-measurable.

So being 11{j≤τ} predictable, Xτ is the transformation of a martingale if X is a
martingale.

In the case of a supermartingale we have:

E[Xτ
n|Fn−1] = Xτ

n−1 + E[11{n≤τ}(Xn −Xn−1)|Fn−1]
= Xτ

n−1 + 11{n≤τ}E[Xn −Xn−1|Fn−1] ≤ Xτ
n−1

because, by the definition of a supermartingale:

E[Xn −Xn−1|Fn−1] ≤ 0.

For the case of a submartingale, the thinking is the same. �
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Theorem 61. (Doob theorem)

• If X is a martingale respect a filtration F := {Fn, n ≥ 0}, S and T two stop-
ping times that S ≤ T ≤ c, c ∈ N then E(XT |FS) = XS q.s.

• If X is a submartingale, so E(XT |TS) ≥ XS.

• If X is a supermartingale, so E(XT |TS) ≤ XS.

Proof. Firstly, we recall that T is bounded, so |XT | ≤
∑c

n=0 |Xn| has finite expec-
tation.

The same happens with XS.

We have to see that ∀A ∈ FS we have:

E(XS11A) = E(XT11A) ⇐⇒ E[(XT −XS)11A] = 0

We define Hn := 11{S≤n≤T}∩A It is a bounded, positive and previsible process be-
cause:

{S ≤ n ≤ T} ∩ A = {S ≤ n} ∩ {T ≥ n} ∩ A
= {S ≤ n− 1} ∩ ({T ≤ n− 1})c ∩ A.

In addition {S ≤ n−1}∩({T ≤ n−1})c∩A ∈ Fn−1 because {S ≤ n−1}∩A ∈ Fn−1

and ({T ≤ n− 1})c ∈ Fn−1.

So, we define:

Wn := X0 +
n∑

i=1

11{{S≤i≤T}∩A}(Xi −Xi−1).

Wn is a martingale, supermartingale or submartingale depending on what X is.

We can rewrite this expression in this form:

X0 +
n∑

i=1

11{{S≤i≤T}∩A}(Xi −Xi−1) = X0 +
T∧n∑

i=S+1

11A(Xi −Xi−1)

= X0 + 11A(XT∧n −XS∧n),

If X is a martingale ⇒ X0 + 11A(XT∧n −XS∧n) also is, so:

E(X0 + 11A(XT∧n −XS∧n)) = E(X0).

Then:
E(11A(XT −XS)) = 0,∀n ≥ 0.

Choosing n > c, we have T ∧ n = T and S ∧ n = S so:

E(11A(XT −XS)) = 0.
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If X is a submartingale, analogously, ∀n:

E(X0 + 11A(XT∧n −XS∧n)) ≥ E(X0).

And:
E(11A(XT −XS)) ≥ 0.

If X is a supermartingale, we have ∀n:

E(X0 + 11A(XT∧n −XS∧n)) ≤ E(X0).

And:
E(11A(XT −XS)) ≤ 0.

�
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8 American options

8.1 Introduction

As we have seen before, an European option confers the right to a random payoff
G at an expired time N .

American options allow the holder to exercise the corresponding right Z at any
time n ≤ N .

We will work in a general discrete time model (see definition 13) with finitely many
trading dates, where we assume that we are given a finite probability space (Ω,F ,P)
where, as usual, Ω is taken in the form {u, d}N , equipped with a filtration of fields
Fn generated by some prices Sn (risky asset) representing the underlying security
and P is the probability to get ”u” or ”d”. We also denote by P∗ the unique prob-
ability under which the discounted assets prices are martingales. As we are in a
binomial model, we also have a riskless asset S0 which represents an account in a
bank.

The payoff depends on the values of Sn for all n up to the moment of exercise, so
a representation of the payoff similar to the European case is not possible in general.

We need stopping times to describe optimal exercise of the option because at each
time n we have to face the choice between exercising immediately and postponing
this till later.

Definition 62. We shall define the American option as a non-negative sequence
Zn adapted to a filtration Fn, where Zn is the immediate profit made by exercising
the option at time n.

• In the case of an American call on the stock Sn with strike price K, Zn =
(Sn −K)+.

• In the case of an American put on the stock Sn with strike price K, Zn =
(K − Sn)

+.

We will see how to price and hedge American options and which is the optimal
time of exercising throughout a binomial model example and finally the results that
show us how to proceed in a general case.
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8.2 Pricing American Options

First consider a binomial model and assume that the option holder’s choice of ex-
ercise date is made in order to maximize the amount received. At each time she
faces the choice between exercising immediately and postponing the execution later.

The sum of money given by the payoff can be seen at each time in each scenario,
being a known function of the current stock price.

Valuing the alternative poses a problem and depends on assumptions about the
future behavior of the stock. This makes it natural to seek to solve the pricing
problem by means of backwards induction, while taking into account, at each node
of the binomial tree, the additional choice of whether to exercise or not. The method
is best illustrated through an example.

8.2.1 Example case

According to an example found in [5] ”Marek Capinski and Ekkehard Kopp (2012):
Discrete Models of Financial Markets.Cambridge.”, let’s consider a concrete ex-
ample of a single-stock model in a 5-step binomial tree. Let’s assume we have a
risk-free return r = 5%, an underlying security with initial price S0 = 100, the two
possible price movements are u = 15% and d = −10%, so the tree of prices is the
next one:

n
0 1 2 3 4 5

201.14
174.90

152.09 157.41
132.25 136.88

115.00 119.03 123.19
100.00 103.50 107.12

90.00 93.15 96.41
81.00 83.84

72.90 75.45
65.61

59.05

Consider a put option with expiry date N = 5, exercise price K = 100 and payoff
Zn = (K − Sn)

+. Since the American option can be exercised at any time before
to the expiry, it is necessary to compute the immediate payoff of the option Zn at
each node of the tree. The results are:
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n
0 1 2 3 4 5

0.00
0.00

0.00 0.00
0.00 0.00

0.00 0.00 0.00
0.00 0.00 0.00

10.00 6.94 3.59
19.00 16.17

27.10 24.55
34.39

40.95

Pricing will be performed in a similar way as for European claims, starting from
the expiry time and moving backwards. The value of the American put at time n
is denoted by Pn so:

P5 = Z5 =⇒ P̃5 = Z̃5

At time n = 4 the holder has a choice between exercising and waiting till the final
moment. The decision about ”waiting” now depends on the value of the European
option with exercise date one step from now. This can easily be computed by using
the non-risky neutral measure probability seen before. Recall that, in European
Options Q = (q, 1 − q) where q = r−d

u−d
= 0.05−(−0.10)

0.15−(−0.10)
= 0.6. At each node at time

n = 4, we compute the discounted expected value of the payoff available after one
further step, E∗(P5|F4) following the formula that we have seen in the subsection
”5.2.1 Pricing using risky neutral measure”. We obtain the following numbers:

n
4 5

0.0
0.0

0.0
0.0

0.0
1.37

3.59
11.39

24.55
29.63

40.95

The value of the put at time 4 is the following random variable:

1

1 + r
EQ(Z5|F4) =

1

1 + r
EQ(P5|F4).
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Therefore, taking the benefit of an immediate exercise, if profitable:

P4 = max{Z4,
1

1 + r
EQ(P5|F4)} ⇔ P̃4 = max{Z̃4,EQ(P̃5|F4)}.

As we see:

• At node (4,1): E∗(P5|F4) = 0.00 = Z4 = 0.00 =⇒ P4 = 0.

• At node (4,2): E∗(P5|F4) = 0.00 = Z4 = 0.00 =⇒ P4 = 0.

• At node (4,3): E∗(P5|F4) = 1.37 > Z4 = 0.00 =⇒ P4 = 1.37.

• At node (4,4): E∗(P5|F4) = 11.39 < Z4 = 16.17 =⇒ P4 = 16.17.

• At node (4,5): E∗(P5|F4) = 29.63 < Z4 = 34.39 =⇒ P4 = 34.39.

So in the nodes (4,4) and (4,5) at time n = 4 it is better to exercise immediately
rather than wait and the value of the option are the corresponding payoffs. In the
others nodes, waiting is the best option. For the nodes (4,1) and (4,2) the immedi-
ate payoff is 0 and for the node (4,3), E∗(P5|F4) > Z4.

Finally, at time n = 4 we have the following values for P4 and P5:

P4 P5

0.0
0.0

0.0
0.0

0.0
1.37

3.59
16.17

24.55
34.39

40.95

Applying the same argument in the rest of steps:

P̃5 = Z̃5.

P̃n−1 = max{Z̃n−1,EQ(P̃n|Fn−1)},∀n ≤ 4.

36



CHAPTER 8 AMERICAN OPTIONS AMERICAN OPTIONS

At time n = 0, we obtain the final table:

n
0 1 2 3 4 5

0.0
0.0

0.0 0.0
0.0 0.0

1.23 0.52 0.0
4.51 2.94 1.37

10.00 6.94 3.59
19.00 16.17

27.10 24.55
34.39

40.95

Where the current price at time 0 is P̃0 = 4.51

Remark 63. Note that for time n = 0, (1 + r)0 = 1 so P0 = P̃0.

8.2.2 General case

In general, if we consider an American put with strike K (for the American call is
the same, its only needed to change the payoff), its payoff at n is Zn = (K − Sn)

+,
where Zn is an Fn-measurable random variable.

Let’s suppose that we are in a viable and complete market.

Denote by Un the price of this option at n. Denote by Z̃ and Ũ the corresponding
discounted processes.

At time N , the fair price is UN = ZN . At time N − 1, the price UN−1 has to
cover the payoff at N − 1 and the current value of the call option at N , so it has to
satisfy:

UN−1 = max{ZN−1,
1

1 + r
E[UN |FN−1]} = max{ZN−1, S

0
N−1E[ŨN |FN−1]}.

So, thinking backward, for any n ∈ T∗:

Un−1 = max{Zn−1, S
0
n−1E[Ũn|Fn−1]}.

Equivalently:
Ũn−1 = max{Z̃n−1, E[Ũn|Fn−1]}.

So, Ũ is the Snell envelope of Z̃.

Remark 64. Note that in the European case we have: Ũn−1 = E[Ũn|Fn−1],∀n ∈ T∗.
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Clearly Ũ is a supermartingale, so it admits the Doob decomposition:

Ũn = M̃n − Ãn

where M̃ is a martingale and Ã is a predictable and increasing process null at the
origin.

Lets consider a contingent claim M̃N . The completeness of the market implies
that it exists an unique admissible and self-financing strategy ϕ such that:

ṼN(ϕ) = M̃N .

Where Ṽ and M̃ are martingales, so:

Ṽn(ϕ) = M̃n, ∀n ∈ T.

Therefore:
Ũn = Ṽn(ϕ)− Ãn ≤ Ṽn(ϕ)

and
Un = Vn(ϕ)− An ≤ Vn(ϕ)

with
An := S0

nÃn.

So, with V0(ϕ) the writer of the option is able to generate the quantity Vn(ϕ) at
any n ∈ T∗ and:

Vn(ϕ) ≥ Un ≥ Zn.

So, the price of the American option can be:

V0(ϕ) = E[Ṽ0(ϕ)] = E[M̃0].
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8.3 Hedging American Options

8.3.1 Example case

In our example, lets suppose that we have written and sold the American put cash-
ing the price, 4.51e.

To make our hedge strategy we have to construct a replicating strategy which is
based on taking a position in the underlying and completing the portfolio with a
position in the money market account.

• Time n = 0:

Our position in the stock, as in the European Options case, is determined
by:

∆0 =
Pu − Pd

Su − Sd

=
1.23− 10

115− 90
= −0.35

As the number is negative, it means short-selling the stock.

The money market position is:

4.51 + 0.35 · 100 = 39.58e.

We invest this amount in risk free for one period.

• Time n = 1:

Consider the case where the stock has gone down, Sd = 90e. There are
two cases: the holder of the option either exercises or not.

– Suppose the option is exercised:

We own the payoff 10 and we have to repurchase the fraction of the
stock to close the short position. The stock is cheap so we only have to
pay 0.35 · 90 = 31.5e.

The risk-free investment exactly covers this cost since r = 5% and:

−10− 0.35 · 90 = −41.56 = −39.58 · (1.05)

– Suppose the option is not exercised:

We compute a new delta:

∆1 =
2.94− 19

103.50− 81
= −0.71

This means that we have to increase our short position by short-selling
additional 0.71− 0.35 = 0.36 shares, which will generate some money to
be added to our risk-free investment:

0.36 · 90 + 39.58 · (1 + 0.05) = 74.23e
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However, we don’t need all this money for further hedging since the value
of waiting is:

1

1.05
(0.6 · 2.94 + 0.4 · 19) = 8.92e

So, for replication such a value of our strategy is needed.

Therefore to cover our liabilities: Short position worth −0.71 · 90 =
−64.4e and the option −8.92e, so we need 73.15e that we could con-
sume from our risk-free investment 74.23− 73.15 = 1.08e.
This means that our strategy would is not only self-financing, is also
super-financing with means that we are superhedging strictly.

• Time n = 2:

Let’s suppose that the option is exercised:

– Stock is up to Sdu = 103.50e:

We pay 2.94e for the option and we have to buy back 0.71 units of
a share and cash our savings:

−2.94− 0.71 · 103.50 + 74.23 · (1.05) = 1.135

– Stock is down to Sdd = 81e:

We pay 19 as the exercise pay-off. We buy back 0.71 of a share and
we clear our money market account:

−19− 0.71 · 81 + 74.23 · (1 + 0.05) = 1.135

In each case as a result of the sup-optimal policy of the option holder
(the option should have been exercised at time n = 1) we win an extra
money 1.08e from the previous step increased by the risk-free return.

If the option is not exercised, we compute a new delta and follow the same
argument as in time 1.

The next times, we follow the same argument.

8.3.2 General case

In the general case, as we have seen before when we were pricing American Options,
as we are in a complete and viable market, considering the Snell envelope under P∗,
Ũ of the sequence (Z̃n), where Z̃n is the discounted payoff of the American option,
and considering the Doob decomposition of this sequence which is martingale, the
completeness of the market implies that it exists an unique admissible and self-
financing strategy ϕ and a portfolio V such that:

Vn(ϕ) ≥ Un ≥ Zn.
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Clearly, the writer of the option can hedge himself perfectly: once he receives the
premium U0 = V0(ϕ), he can generate a wealth equal to Vn(ϕ) at time n which is
bigger than Un and Zn.

Remark 65. The strategy ϕ in each period is the same followed in subsection ”5.3.1
Hedging using risky neutral measure”.
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8.4 Optimal exercise

Another question related with American options, is to know what is the best mo-
ment to exercise the option.

8.4.1 Example case

Going back to our numerical example, suppose we bought the American put for
P0 = 4.51e. The problem we are facing at all times is the decision whether to
exercise the option or not.

Consider the strategy of exercising at the earliest possible time when the option
price is equal to the available payoff.

Of course, we do not exercise at time 0 since the payoff is 0. Let Bu (resp. Bd) be
the set of all paths beginning with a u (resp. d) movement, and similarly define
Buu, Bud, Bdu, Bdd and so on:

• Suppose the stock goes down in the first step, that is, consider ω ∈ Bd. We
exercise the option at time 1, cashing 10e, which as we saw, is higher than
the expected profit from waiting. At node (2,2): E∗(P2|F1) = 7.23 < 10.

• Suppose the stock goes up in the first step, so let ω ∈ Bu Here we distinguish
three cases:

– If ω ∈ Buddd we exercise at time 4, obtaining 16.17e.

– If ω = uuddd, ω = ududd, ω = uddud we exercise at time 5 receiving
3.59e.

– For other paths we do not exercise the option at all and receive zero. In
other words we exercise at time 5 where the payoff is zero.

We have defined a random variable assigning to each ω the time when we exercise
the option:

τ1(ω) =


1, if ω ∈ Bd

4, if ω ∈ Buddd

5, otherwise

We can define a natural modification, related to the early exercise, of the process
of the option values. These values fluctuate with time when we observe them along
various scenarios. For example, if ω = udddu we have the sequence:

P (n, ω) = (4.51, 1.23, 2.94, 6.94, 16.17, 3.59).

In such a scenario our strategy tells us to exercise at time 4. Imagine that we keep
the money we have cashed, so the sequence is modified to become:

P (n, ω) = (4.51, 1.23, 2.94, 6.94, 16.17).
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For this particular, τ(ω) = 4, and we left the sequence unchanged for n ≤ 4,
replacing the subsequent values by the value at time 4, so for n ≥ 4 we have
P (n, ω) = P (τ(ω), ω).

Since the sum of money generated by such strategies can be random (in our special
strategy the decision and the outcome depend on ω), their comparison is difficult.
Random variables are functions and functions are rarely comparable. For this rea-
son we need to associate a single number with each exercising strategy.

A natural candidate as optimality criterion is to maximize the mathematical ex-
pectation of the payoff obtained at the exercise time. If the moment at which we
exercise is denoted by τ , the money received in a particular scenario ω is the payoff
G(τ(ω)). These sums of money emerge at different time instants, so for economic
reasons we should discount them to make them comparable.

To find the expected value of all discounted payments, note that we receive 10e for
ω ∈ Bd, 16.17e for ω ∈ Buddd and 3.59e for ω = uuddd, ω = ududd or ω = uddud
so that:

(1− q)
10

1 + r
+ q(1− q)3

16.17

(1 + r)4
+ 3q2(1− q)3

3.59

(1 + r)5
= 4.51

which, remarkably is the money we paid for the option.

Remark 66. Analyzing the optimal strategy in our leading example, path by path,
we can see that before we exercise, the prices follow a martingale scheme since in the
Snell envelope, the maximum of the two is the discounted martingale expectation.
After we exercise (i.e stop), the sequence becomes constant and so it is obviously a
martingale

8.4.2 General case

For the buyer of the option, there is no point in exercising at time n when Un > Zn

because he would trade an asset worth Un (the option) for an amount Zn (by exer-
cising the option) so he would loose money.

On other hand, considering the Doob decomposition of Un. Lets define:

υ0 := inf {n ≥ 0 : Un = Zn} .

because at that time, selling the option provides the holder with a wealth Uυmax =
Vυmax(ϕ) and, following the strategy ϕ from that time, he creates a portfolio whose
value is strictly bigger than the option’s at times υmax + 1, υmax + 2, .., N.

So, let’s consider a second option, τ ≤ υmax, which allows us to say that U τ is
a martingale.

As a result, optimal dates of exercise are optimal stopping times for the sequence
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Z̃n under probability P∗.

From the writer’s point of view, if he hedges himself using the strategy ϕ as defined
in section ”8.3 Hedging American Options”, and if the buyer exercises at a non-
optimal time τ , then Uτ > Zτ or Aτ > 0.
In both cases, the writer makes a profit Vτ (ϕ) − Zτ = Uτ + Aτ − Zτ > 0 which is
positive.

Let’s see how calculate this optimal stopping time.

The following proposition relates stopping times with the Snell envelope.

Proposition 67. Let U be the Snell envelope of a sequence Z. Lets define:

υ0 := inf {n ≥ 0 : Un = Zn} .

Then υ0 is a stopping time and Uυ0 is a martingale.

Proof.

1. We have by definition UN = ZN , so υ0 ≤ N .

The set υ0 = 0 = U0 = Z0 ∈ F0, because U and Z are adapted processes.

So, for k ≥ 1 we have:

{υ0 = k} = {U0 > Z0} ∩ ... ∩ {Uk−1 > Zk−1} ∩ {Uk = Zk} ∈ Fk.

Therefore, υ0 is a stopping time.

2. Now, we want to see that Uυ0 is a martingale and not only a supermartingale
as we know.

We can write:

Uυ0
n = U0 +

n∑
j=1

11{υ0≥j}∆Uj.

Then:
Uυ0
n − Uυ0

n−1 = 11{υ0≥n}(Un − Un−1)

If υ0 ≥ n necessarily Un−1 > Zn−1 and so Un−1 = E[Un|Fn−1].

Then:
Uυ0
n − Uυ0

n−1 = 11{υ0≥n}(Un − E[Un|Fn−1]).

Finally:
E[Uυ0

n − Uυ0
n−1|Fn−1] = 11{υ0≥n} · 0 = 0

because υ0 ≥ n is Fn−1-measurable.
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�

Corollary 68.
U0 = E[Zυ0 |F0] = supτE[Zτ |F0]

Proof. The sequence Uυ0 is a martingale and so:

U0 = E[Uυ0
N |F0] = E[Uυ0 |F0] = E[Zυ0 |F0].

On the other hand, for any stopping time τ , U τ is a supermartingale and:

U0 ≥ E[U τ
N |F0] = E[Uτ |F0] = E[Zτ |F0].

�

Remark 69. If τNn is the set of stopping times taking values in n, n+ 1, ..., N and
υn = inf{j ≤ n : Uj = Zj} ∈ τNn we have:

Un = E[Zυn |Fn] = sup{τ∈τNn }E[Zτ |Fn].

Definition 70. A stopping time υ is optimal respect to an adapted sequence Z if:

E[Zυ|F0] = supτE[Zn|F0].

Remark 71. υ0 is optimal with respect any adapted sequence.

Theorem 72. The following two statements are equivalent:

1. υ is optimal for Z.

2. Zυ = Uυ and Uυ is a martingale.

Proof.

1. If υ is optimal, we have:

E[Zυ] = supτE[Zτ ].

In particular, choosing τ = υ0 we have E[Zυ] ≥ E[Zυ0 ] = U0.

On the other hand:
E[Zυ] ≤ E[Uυ] ≤ U0.

because U and Uυ are supermartingales.

So:
E[Zυ] ≤ Uυ

0 = U0.

Since Zυ ≤ Uυ, we have Zυ = Uυ.
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To see that Uυ is a martingale, note that from the fact that Uυ is a su-
permartingale and the results we have just seen;

U0 ≥ E[Uυ
n ] ≥ E[Uυ

N ] = E[Uυ] = U0.

So:
E[Uυ

n ] = E[E[Uυ|Fn]].

On the other hand:
Uυ
n ≥ E[Uυ

N |Fn] = E[Uυ|Fn].

So:
Uυ
n = E[Uυ|Fn].

This is a martingale.

2. Assume that Zυ = Uυ and Uυ is a martingale.

Being Uυ a martingale, we have:

U0 = E[Uυ
n ] = E[Uυ] = E[Zυ].

But, if τ is any stopping time, U τ is a supermartingale and:

U0 ≥ E[U τ
N ] = E[Uτ ] ≥ E[Zτ ].

So, υ is optimal.

�

Finally, we relate the concept of optimal stopping time with the increasing and
predictable process related with Doob’s decomposition of the Snell supermartingale.

Proposition 73. The stopping time υ∗ defined as υ∗ = N if AN = 0 and:

υ∗ = inf {n : An+1 ̸= 0}

if AN ̸= 0, is the greater optimal stopping time associated to Z.

Proof.

1. Lets see that υ∗ is a stopping time:

Indeed, for any k ∈ T:

{υ∗ = k} = {A1 = 0, ..., Ak = 0, Ak+1 ̸= 0} ∈ Fk.

because A is predictable.
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2. Lets see that υ∗ is optimal:

Indeed, Un = Mn − An and by definition, Aj = 0 for j ≤ υ∗.

Therefore, Uυ∗
= Mυ∗

and so Uυ∗
is a martingale.

On other hand:

Uυ∗ =
N−1∑
j=0

11{υ∗=j}Uj + 11{υ∗=N}UN

=
N−1∑
j=0

11{υ∗=j}max {Zj, E[Uj+1|Fj]}+ 11{υ∗=N}ZN .

But if υ∗ = j, Aj+1 ̸= 0 and therefore:

E[Uj+1|Fj] = E[Mj+1 − Aj+1|Fj] = Mj − Aj+1 < Mj = Uj

so Uj = Zj. In general:
Uυ∗ = Zυ∗

and by the ”Theorem 72”, we conclude that υ∗ is optimal.

3. Let’s see that υ∗ is the greater optimal stopping, that is for any optimal stop-
ping time υ, we have υ ≤ υ∗.

Assume that P(υ > υ∗) > 0. Then:

E[Uυ] = E[Mυ]− E[Aυ] = E[M0]− E[Aυ] = E[U0]− E[Aυ] < E[U0].

Because, E[Aυ] > 0. This is contradictory with the fact that Uυ has to be a
martingale by the ”Theorem 72”.

�

Corollary 74. Being υ∗ optimal, we have Uυ∗ = Zυ∗ and so υ0 ≤ υ∗.
It means that any optimal stopping time υ will satisfy υ ≤ υ∗ by the previous
proposition and υ ≥ υ0 by the definition of υ0.

Remark 75. The time υ0 indicate to us the first moment we can exercise in spite
of not losing money if we wait. The time υ∗ says to us the last moment to exercise
without loosing money. In the situations in where the owner of the option win the
same executing than waiting, υ0 = υ∗.
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8.5 American and European Options

Consider an American option with intrinsic value {Zn, n ∈ T} and the corresponding
European option with payoff ZN . Denote by Un and un the corresponding price
processes. We have the following proposition:

Proposition 76.

1. Un ≥ un, ∀n ∈ T.

2. If un ≥ Zn, ∀n ∈ T ⇒ un = Un ∀n ∈ T.

Proof.

1. The sequence Ũ is a supermartingale. So:

Ũn ≥ E[ŨN |Fn] = E[Z̃N |Fn] = ũn.

2. The hypothesis un ≥ Zn means ũn = E[Z̃N |Fn] and so ũ is a martingale and
in particular a supermartingale such that ũn ≥ Z̃n. Therefore, necessarily
ũn ≥ Ũn because Ũ is the minimal supermartingale above Z. From (1) we
proof the result that un = Un, ∀n ∈ T.

�
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9 American Options in the CRR

9.1 Pricing American Options in the CRR model

Assume the CRR model given in section ”Cox-Ross-Rubinstein Model” under the
unique risk neutral measure.

• For the call price, following the same notation as before:

ũn = (1 + r)−NE[(SN −K)+|Fn]

≥ E[S̃N −K(1 + r)−N |Fn]

= S̃n −K(1 + r)−N .

So:
un ≥ Sn −K(1 + r)n−N ≥ Sn −K.

On the other hand, un ≥ 0, ∀n ∈ T.

Therefore, un ≥ (Sn − K)+ = Zn and by the previous proposition we have
un = Un, ∀n ∈ T.

This means that the price of the American and European call is the same.

• For the put option, the price is not the same.

If we consider Zn := (K − Sn)
+, we have UN = ZN = (K − SN)

+ and

Un := max

{
Zn,

1

1 + r
E[Un+1|Fn]

}
Proposition 77. We can write:

Un = P (n, Sn)

where:
P (N, x) := (K − x)+

and:

P (n, x) := max

{
(K − x)+,

1

1 + r
f(n+ 1, x(1 + u)

}
with:

f(n+ 1, x) := (1− p)P (n+ 1, x(1 + d)) + pP (n+ 1, x(1 + u)).
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Proof. We will proof the proposition by induction:

• For n = N is clear.

• Assume the formula for P (n, x) is valid for n+ 1, n+ 2, ..., N.

Let’s see if it is true for n. We have:

Un = max
{
(K − Sn)

+, 1
1+r

E[P (n+ 1, Sn+1)|Fn

}
= max

{
(K − x)+, 1

1+r
E[P (n+ 1, xTn+1)]

}
(Sn)

= max
{
(K − x)+, 1

1+r
f(n+ 1, x)

}
(Sn)

= P (n, Sn).

�

Remark 78. Note that U0 = P (0, S0) is the initial price of the put option.
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10 Pricing American Options in C ++

In this section, according to [4]:”Maciej J. Capiński and Tomasz Zastawniak (2012):
Numerical Methods in Finance with C++. Cambridge.” we will see a programme
in C++ that prices and determine the optimal stopping of American options.

We will compute and store the price of an American option not only at time 0,
also for each time step n and node i in the binomial tree. In addition, we will
compute the early exercise policy for an American option. The time steps n and
nodes i at which the option should be exercised and characterized by the condition:

H(n, i) = h(S(n, i)) > 0.

Where:

• h(S(n, i)) is the payoff of the holder of the option at time step ”n” and node
”i” of the binomial tree. Where S(n, i) = S(0)(1 + U)i(1 +D)n−i.

• H(n, i) is the price of the American option at time step ”n” and node ”i”.
Note that this prices can be computed by backward induction on n:

– At expiry date N:
H(N, i) = h(S(N, i))

for each node i = 0, 1, ..., N

– If H(n + 1, i) is already known at each node i = 0, 1, ..., n + 1 for some
n = 0, ..., N − 1 then:

H(n, i) = max(
qH(n+ 1, i+ 1) + (1− q)H(n+ 1, i)

1 +R
, h(S(n, i)))

for each node i = 0, 1, ..., n. In particular, H(0) is the price of the Amer-
ican option at time 0. Also note that the discounted price process
(1 + R)−nH(n, i) is the Snell envelope of the discounted payoff process
(1 +R)−nh(S(n, i)).

So, we are going to encode this information as data of type bool, taking just two
possible values, 0 if the option should not be exercised at a given node or 1 other-
wise, depending on whether the above condition is violated or not.

The binomial tree has the structure:

...
i=3

i=2 ...
i=1 i=2

i=0 i=1 ...
i=0 i=1

i=0 ...
i=0

...
n=0 n=1 n=2 n=3 ...
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The ”main” program is composed by 4 programmes that have differents functions:

• BinModel:

– Ask for S0, U, D and R. Check that the values of S0, U, D and R are
corrects and check that there is no arbitrage opportunity.

– Compute the risk neutral measure and the stock price at node (n,i).

• BinLattince:

– Creates a vector of vectors which provides the option price at each time
n in node i (typename double).

– It also creates a vector of vectors which provides if the option has to be
executed at each time n in node i (typename bool).

• EurAmOptions:

– Ask for an European and American option.

– Prices the European Option using PriceByCRR and prices the Ameri-
canOption using PriceBySnell.

– Creates the PriceTree which has the price of the option in each time n
and node i and creates the StoppingTree saying which time is optimal to
exercise.

• MainPut:

– Compute the prices and the optimal exercise of an American Put at each
time n and node i.
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10.1 BinModel

10.1.1 Code

BinModel.h

#ifndef BinModel h
#define BinModel h

class BinModel
{

private:

double s0;

double U;

double D;

double R;

public:

double RiskNeutProb(); // Computing riskneutral probability

double S(int n, int i); // Computing the stock price at node n,i

int GetInputData(); // Displaying and checking model data

double GetR();

};

#endif
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BinModel.cpp

#include ”BinModel.h”
#include <iostream>
#include <cmath>
using namespace std;

double BinModel::RiskNeutProb()
{

return (R-D)/(U-D);
}

double BinModel::S(int n, int i)
{

return S0*pow(1+U,i)*pow(1+D,n-i);
}

int BinModel::GetInputData()
{

// Entering data

cout << ”Enter S0: ”; cin >> S0;

cout << ”Enter U: ”; cin >> U;

cout << ”Enter D: ”; cin >> D;

cout << endl;

// Making sure that 0<S0, -1<D<U, -1<R

if (S0 <= 0.0 || U <= -1.0 || D <= -1.0 || U <= D || R <=-1..0)

{
cout << ”Illegal data ranges” << endl;

cout << ”Terminating program” << endl;

return 1;

}
// Checking for arbitrage

if (R >= U || R <= D)

{
cout << ”Arbitrage exists” << endl;

cout << ”Terminating program” << endl;

return 1;

}
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cout << ”Input data checked ” << endl;

cout << There is no arbitrage” << endl << endl;

return 0;

}

double BinModel::GetR()
{

return R;
}

10.1.2 Explanation

• class BinModel: Tells the compiler than a class named ”BinModel” is to be
defined.

• private S0, U, D, R: These variables will live together inside the class. They
will be inaccessible on their own outside this class. Instead, main() and others
parts of the program will only be able to access them via this class.

• public RiskNeutProb(), S(n,i), GetInputData(), GetR(): These variables will
be accessible outside the class. We shall see calls to these functions made
from other parts of the program.

– RiskNeutProb(): From U, D, R compute the risk-neutral probability.

– S(n,i): Knowing U and D, compute the prices of the stock.

– GetInputData(): Ask for S0, U, D, R and check that 0<S0, -1<D<U
and -1<R.

– GetR(): Ask for R.

• BinModel::Function(): Shows that the function is a member of the ”Bin-
Model” class.
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10.2 BinLattice

10.2.1 Code

BinLattice.h

#ifndef BinLattice h
#define BinLattice h

#include <iostream>
#include <iomanip>
#include <vector>
using name space std;

template<typename Type> class BinLattice
{

private

int N;

vector < vector <Type> > Lattice;

public:

void SetN(int N )

{
N=N ;

Lattice.resize(N+1);

for (int n=0; n<=N; n++) Lattice[n].resize(n+1);

}
void SetNode(int n, int i, Type x)

{Lattice[n][i]=x;}
Type GetNode(int n, int i)

{return Lattice[n][i];}
void Display()

{
cout << setiosflags(ios::fixed)

<< setprecision(3);

for (int n=0; n<=N; n++)

{
for(int i=0; i <=n; i ++)

cout << setw(7) << GetNode(n,i);
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cout << endl;

}
cout << endl;

}
};

#endif

10.2.2 Explanation

The command template <typename Type> specifies that the ”BinLattice”is no
longer a class, it is a classe template with parameter Type.
We do this because to record the stopping policy it would be better to use class for
data of type bool, so instead of duplicate the code, we parametrize the function.

We also notice that we dont need .cpp file, this is because the class template does
not lead itself to separate compilation, a class template can only be compiled after
an object has been declared using the template with a specific data type.

This class template contains:

• Two variables:

– ”N” to store the number of time steps in the binomial tree.

– ”Lattice” a vector of vectors to hold data of type Type.

• The following functions:

– ”SetN()”: Function that takes a parameter of type int, assigns it to
N and sets the size of the Lattice vector to N+1, the number of time
instants n from 0 to N, and then for each n sets the size of the inner
vector Lattice[n] to n+1, the number of nodes at time n.

– ”SetNode()”: To set the value stored at step n, node i.

– ”GetNode()”: To return the value stored at step n, node i.

– ”Display()”: To print the values stored in the binomial tree lattice. The
command cout fixed decimal points.
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10.3 EurAmOptions

10.3.1 Code

EurAmOptions.h

#ifndef EurAmOptions h
#define EurAmOptions h

#include <BinLattice.h>
#include <BinModel.h>

class Option
{

private:

int N; //Steps to expiry

public:

void SetN(int N ){N=N ;}
int GetN(){return N;}
virtual double Payoff(double z)=0;

};

class EurOption: public virtual Option
{

public:

double PriceByCRR(BinModel Model); //Pricing European Option
};

class AmOption: public virtual Option
{

public:

double PriceBySnell(BinModel Model, //Pricing American Option

BinLattice<double> & PriceTree,

BinLattice<bool> & StoppingTree);
};

class Call: public EurOption, public AmOption
{

private:

double K; //Strike price

public:
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void SetK(double K ){K=K ;}
int GetInputData();

double Payoff(double z);
};

class Put: public EurOption, public AmOption
{

private:

double K; //Strike price

public:

void SetK(double K ){K=K ;}
int GetInputData();

double Payoff(double z);
};

#endif
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EurAmOptions.cpp

#include ”EurAmOptions.h”
#include ”BinModel.h”
#include ”BinLattice.h”
#include <iostream>
#include <cmath>
using namespace std;

double EurOption::PriceByCRR(BinModel Model)
{

double q=Model.RiskNeutProb();

int N=GetN();

vector<double> Price(N+1);

for (int i=0; i<=N; i++)

{
Price[i]=Payoff(Model.S(N,i));

}
for (int n=N-1; n>=0; n–)

{
for (int i=0; i<=n; i++)

{
Price[i]=(q*Price[i+1]+(1-q)*Price[i])/(1+Model.GetR());

}
}
return Price[0];

}

double AmOption::PriceBySnell(BinModel Model,

BinLattice<double>& PriceTree,

BinLattice<bool>& StoppingTree)
{

double q=Model.RiskNeutrProb();

int N=GetN();

PriceTree.SetN(N);

double ContVal;

for (int i=0; i<=N; i++)

{
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PriceTree.SetNode(N,i,Payoff(Model.S(N,i));

StoppingTree.SetNode(N,i,1);

}
for (int n=N-1; n>=0; n–)

{
for (int i=0; i<=n; i++)

{
ContVal=(q*PriceTree.GetNode(n+1,i+1)

+(1-q)*PriceTree.GetNode(n+1,i))

/(1+Model.GetR());

PriceTree.SetNode(n,i,Payoff(Model.S(n,i)));

StoppingTree.SetNode(n,i,1);

if (ContVal>PriceTree.GetNode(n,i))

{
PriceTree.SetNode(n,i,ContVal);

StoppingTree.SetNode(n,i,0);

}
else if (PriceTree.GetNode(n,i)==0.0)

{
StoppingTree.SetNode(n,i,0);

}
}

}
return PriceTree.GetNode(0,0);

}

int Call::GetInputData()
{

cout << ”Enter call option data:” << endl;

int N;

cout << ”Enter steps to expiry N: ”; cin >> N;

SetN(N);

cout << ”Enter strike price K: ”; cin >> K;

cout << endl;

return 0;
}
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double Call::Payoff(double z)
{

if (z>K) return z-K;

return 0.0;
}

int Put::GetInputData()
{

cout << ”Enter call option data:” << endl;

int N;

cout << ”Enter steps to expiry N: ”; cin >> N;

SetN(N);

cout << ”Enter strike price K: ”; cin >> K;

cout << endl;

return 0;
}

double Put::Payoff(double z)
{

if (z<K) return K-z;

return 0.0;
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10.3.2 Explanation

• ”Option”: Gets the time to expiry N .Gets information about the option.

• ”EurOption”: Gives the fair price of the option pricing PryceByCRR.

• ”AmOption”: Gives the fair price of the American option pricing by Price-
BySnell. Also computes the PriceTree and the StoppingTree of this option.

• ”Call”: Ask for the strike price of a call option.

• ”Put”: Ask for the strike price of a put option.

• ”EurOption::PriceByCRR”: Price by CRR an European option computing
the price in each time n and node i in the vector Price[i] using the risk
neutral measure method. The fair price will be Price[0].

• ”AmOption::PriceBySnell”: Price by Snell the American option computing
the price in the PriceTree and computes in the same time n and node i the
StoppingTree using the condition that is better to execute, or to wait ContVal
> PriceTree.GetNode(n,i).

• ”Call::GetInputData()”: Gets the option data of a call, the steps to expiry N
and the strike price K.

• ”Call::Payoff()”: Return the payoff of a call.

• ”Put::GetInputData()”: Obtain the information of a put option, the data
time N , the steps to expiry N and the strike price K.

• ”Put::Payoff()”: Return the payoff of a put.
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10.4 MainPut

10.4.1 Code

”Main.cpp”

#include ”BinLattice.h”
#include ”BinModel.h”
#include ”EurAmOptions.h”
#include <iostream>
using namespace std;

int main()
{

BinModel Model;

if (Model.GetINputData()==1) return 1;

Put Option;

Option.GetInputData();

BinLattice<double> PriceTree;

BinLattice<bool> StoppingTree;

Option.PriceBySnell(Model,PriceTree,StoppingTree);

cout << ”American put prices:” << endl << endl;

PriceTree.Display();

cout << ”American put exercise policy:”

<< endl << endl;

StoppingTree.Display();

return 0;
}

10.4.2 Explanation

• ”BinLattice<double> PriceTree;”: Create object PriceTree with the informa-
tion of prices.

• ”BinLattice<bool> StoppingTree;”: Create object StoppingTree with the in-
formation of the stopping times.

• ”PriceTree.Display();”: Display the prices for all nodes.

• ”StoppingTree.Display();”: Display the stopping policy that is 1s for the nodes
where the American option should be exercised and 0s for the others.
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11 Conclusions

After to have done this work, I have discovered an amazing world, the financial
markets. Not only for the topic of this work, also for all the information that I
have seen in the books I used for doing this work. I feel so curious to the way
that mathematics are used in financial markets, in special the probability and the
statistics. So difficult things like the hedging strategy or the optimal exercise of
an American option, are easily explain using maths. So, I am very motivated to
the use of maths in the Economy and I would like to continue studying and getting
knowledge in this area. Also, I would like to continue studying the options not only
in discrete time, also in continuous time in which the possibilities are higher and
more interesting.

Another important point, is the knowledge I have got programming in C++. I
am so satisfied with the informatics I have learn in the degree. Thanks to know
how to program in C, I have not got any problem understanding how C++ works.
The program also shows to me the importance of the computation in this area. All
the mathematics results in Finance, need to be computed to carry out in real life.

I have to say, that the thing I like the less is the fact that all this results, are
supposing a perfect situation of the market. Real life is not as good as we would
like to expect, is more difficult. But for sure, nothing impossible to solve using
maths.

Finally, another important point is the decision to make this research work in En-
glish. I have been able to learn a lot of specific vocabulary about financial markets
that, for sure, will help me on the future a lot.

To sum up, I am very happy of the result of this work and I feel that do the
research work, is one of the better ways to learn and help yourself to decide in
which are apply our degree.
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