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Abstract

Latent Dirichlet Allocation (LDA) are a suite of algorithms that are often used
for topic modeling. We study the statistical model behind LDA and review how
tensor methods can be used for learning LDA, as well as implement a variation of
an already existing method. Next, we present an innovative algorithm for temporal
topic modeling and provide a new dataset for learning topic models over time. Last,
we create a visualization for the word-topic probabilities.
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1 Introduction

Project summary

Topic modeling are a suite of algorithms that allow for discovering the abstract
topics that occur in a collection of documents or corpus.

In topic modeling, a document is viewed as a bag of words, which is a repre-
sentation that disregards grammar and even word order but keeps multiplicity (it
consists of an enumeration of the words in a document and the number of times
they appear in the text).

One of the state-of-the-art methods for learning a topic modeling problem is using
Latent Dirichlet Allocation (LDA). LDA provides a Bayesian statistical approach
to model the words in a corpus which is usually solved using efficient approximate
inference techniques based on variational methods. LDA is usually used for docu-
ment classification although it can alse be used for other applications such as image
classification and even in the field of bioinformatics for gene function prediction.

During the recent years tensor methods have become popular for solving many
machine learning problems. Particularly, tensor methods can be used to learn the
parameters for a LDA model using a method of moments.

In this project we aim to review how tensor methods can be used for learning
LDA. We then present a new Bayesian approach for learning many tensor decompo-
sitions simultaneously with correlated parameters where we assume that the eigen-
vectors of the different tensors follow a Gaussian distribution. One of its particular
applications is very similar to an already successful method for collaborative filter-
ing with a time component. We derive an algorithm for using this method to learn
topic models over time.

Moreover, we provide an interactive representation of the word-topic matrix
learned by LDA, which, created using D3, allows us to explore the convergence
of tensor methods for learning LDA. We also observe a lack of opensource datasets
for temporal topic modeling, reason why we provide a new bag of words dataset
derived from an existing corpus of State of the Union addresses.

Structure of the report

The body of this report is structured in 5 chapters preceded by a first chapter which
presents some basic notions on tensors as well as some practical facts, such as the
notation and terminology we use during the report.

One chapter is dedicated to introducing the Latent Dirichlet Allocation model
and another chapter explains how it can be learned using tensor methods. Then,
another chapter is used to describe a new algorithm for tensor decomposition with
correlated parameters. Finally, two chapters are dedicated to provide a new dataset
for temporal topic modeling and an innovative visualization method for the word-
topic probability matrix, respectively.
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2 Notation, terminology and an introduction to

tensors

A tensor is a multidimensional array T ∈ RI1×···×In . Working with tensors often
requires the use of some expressions that may not be familiar to all the readers.
In order to make this report more amenable, we will try to use lowercase letters to
denote vectors, uppercase letters to denote matrices and caligraphic letters (like T
orM) to denote tensors of order strictly greater than 2. Unfortunately, sometimes
we will omit this convention in order to follow some other notation that is used in
most of the publications or to make the text more understandable.

When dealing with probabilities, we will use ∝ to denote proportion: we say
that a ∝ b if and only if a = αb for some α ∈ R − {0}. We will use ⊗ to denote
the tensor product, which is also refered as Kronecker product when working with
matrices and as outer product when when dealing with vectors. We may also use
⊗n to denote the tensor product of n equal tensors. For example. if v ∈ Rk is a
vector, we will have ⊗3v = v ⊗ v ⊗ v.

We will also denote [k] := {1, . . . , k} and, given a matrix A, we will use A> to
denote its transpose.

2.1 Some products

Outer product

The outer product u⊗v is equivalent to a matrix multiplication uv>, provided that
u is represented as a m × 1 column vector and v as a n × 1 column vector (which
makes v> a row vector).

For instance, if m = 4 and n = 3, then

u⊗ v = uv> =


u1

u2

u3

u4

 [v1 v2 v3

]
=


u1v1 u1v2 u1v3

u2v1 u2v2 u2v3

u3v1 u3v2 u3v3

u4v1 u4v2 u4v3

 .
Or in index notation:

(uv>)ij = uivj

Kronecker product

If A is a m× n matrix and B is a p× q matrix, then the Kronecker product A⊗B
is the mp× nq block matrix:
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A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB


more explicitly:

A⊗B =



a11b11 a11b12 · · · a11b1q · · · · · · a1nb11 a1nb12 · · · a1nb1q

a11b21 a11b22 · · · a11b2q · · · · · · a1nb21 a1nb22 · · · a1nb2q
...

...
. . .

...
...

...
. . .

...
a11bp1 a11bp2 · · · a11bpq · · · · · · a1nbp1 a1nbp2 · · · a1nbpq

...
...

...
. . .

...
...

...
...

...
...

. . .
...

...
...

am1b11 am1b12 · · · am1b1q · · · · · · amnb11 amnb12 · · · amnb1q

am1b21 am1b22 · · · am1b2q · · · · · · amnb21 amnb22 · · · amnb2q
...

...
. . .

...
...

...
. . .

...
am1bp1 am1bp2 · · · am1bpq · · · · · · amnbp1 amnbp2 · · · amnbpq


More compactly, we have

(A⊗B)p(r−1)+v,q(s−1)+w = arsbvw

Tensor product

The tensor product can be understood as a generalization of the outer product or
the Kronecker product to all kind of tensors. Given a tensor A of order q with
dimensions (i1, ..., iq), and a tensor B of order r with dimensions (j1, ..., jr), their
outer product C is of order q + r with dimensions (k1, ..., kq+r) which are the i
dimensions followed by the j dimensions. It is denoted in coordinate-free notation
using ⊗ and components are defined index notation by:

C = A⊗ B, Cij = AiBj

Similarly, for higher order tensors:

T = A⊗ B ⊗ C, Tijk = AiBjCk

As an example, given three vectors u ∈ Rn1 , v ∈ Rn2 , w ∈ Rn3 , we can calculate
the tensor product u⊗v⊗w ∈ Rn1×n2×n3 as the tensor T such that its entry (i, j, k)
is Ti,j,k = uivjwk.

Dot product

During the report we will also use the dot product and its generalization to higher
order tensors. Given two vectors u, v ∈ Rn, their dot product is defined as 〈u, v〉 =∑n

i=1 uivi. Note that this is a specific case of the inner product.
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Given two tensors A,B ∈ Rn1×···×nk , we will denote

〈A,B〉 :=

n1∑
i1=1

· · ·
nk∑
ik=1

Ai1,...,ikBi1,...,ik =

n1,...,nk∑
i1,...,ik=1

Ai1,...,ikBi1,...,ik

This last expression can be seen as the inner product of the two vectors obtained
by vectorizing the tensors A and B:

〈A,B〉 = 〈vec(A), vec(B)〉

Hadamard product

In mathematics, the Hadamard product (also known as the Schur product or the
entrywise product) is a binary operation that takes two matrices of the same di-
mensions, and produces another matrix where each element (i, j) is the product of
elements (i, j) of the original two matrices.

We will extend the idea of the Hadamard product for matrices to a more general
product for tensors. Given two tensors A,B ∈ Rn1×···×nk , we will denote A ◦ B the
tensor such that its entry (i1, . . . , ik) is

(A ◦ B)i1,...,ik := Ai1,...,ikBi1,...,ik

2.2 An introduction to tensors

A tensor is a multidimensional array. More formally, an N -way or Nth-order tensor
is an element of the tensor product of N vector spaces, each of which has its own
coordinate system. We can say that an Nth-order tensor is a tensor of order N and
that the order of a tensor is its number of dimensions.

We ofter refer to 1st-order tensors as vectors and 2nd-order tensors as matrices,
and tensors of order 3 or more are refered as higher-order tensors.

Definition 2.1 (Cubical tensor). A tensor T ∈ RI1×···×In is a cubical tensor if
I1 = · · · = In.

Definition 2.2 (Symmetric tensor). A cubical tensor T ∈ RI1×···×In is a symmet-
ric tensor (or supersymmetric tensor) if its elements remain constant under any
permutation of the indices.

Equivalently, if the elements of the tensor T ∈ RI1×···×In are defined as Ti1...in =
xi1...in , we will say the tensor T is symmetric if for any permutation σ the equality
xi1...in = xσ(i1)...σ(in) is satisfied.

Definition 2.3 (Rank one tensor). A tensor T ∈ RI1×···×In is a rank one tensor if
it can be written as the outer product of n vectors, i.e.,

T = v1 ⊗ · · · ⊗ vn

where ⊗ denotes the outer product or tensor product.
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Definition 2.4 (Rank of a tensor). We say a tensor T ∈ RI1×···×In has rank k if
k is the minimum number such that there exists rank-one tensors that generate T
as their sum, or equivalently, if k is the minimum number such that there exists
rank-one tensors M1, . . . ,Mk such that

T =
k∑
i=1

Mi

.

It can easily be verified that the given definition of tensor rank is equivalent
to the typical definitions of matrix rank we all know, but the properties of the
tensor rank can be confusing for the non initiated reader. For example, the rank
of a real-valued tensor may actually be different over the two fields R and C (see
(TENBERGE, 1991) for an example and proof).

Another major difference between matrix and tensor rank is that, in general,
there is no straighforward algorithm to determine the rank of a given tensor, and
this problem is in general NP-hard.

CP Decomposition

In multilinear algebra, the tensor rank decomposition may be regarded as a gen-
eralization of the matrix Singular Value Decomposition (SVD) to tensors. It was
introduced in 1927 and later rediscovered several times, reason why it is usually
referred as CANDECOMP-PARAFAC (CP) decomposition.

Definition 2.5. Given a tensor T ∈ RI1×···×In we define a CP decomposition of T
as

T =
k∑
i=1

Mi

where k is a natural number and {Mi}ki=1 are rank-one tensors. When the number
k is minimal in the above expression k is called the rank of the tensor.

For example, given a third order tensor T ∈ RI1×I2×I3 , a CP decomposition of T
would have the following form:

T =
k∑
i=1

ai ⊗ bi ⊗ ci

where ai ∈ RI1 , bi ∈ RI2 and ci ∈ RI3 ∀i ∈ {1, . . . , k}.
The specific tensor structure considered in this work is the symmetric orthogonal

decomposition. This decomposition expresses a tensor as a linear combination of
rank-1 tensors, which are the tensor product of a vector, and that form an orthogonal
basis. An important property of tensors with such decompositions is that they have
eigenvectors corresponding to these basis vectors (Anandkumar et al., 2014). This
is why given an orthogonal decomposition of a symmetric tensor, T =

∑k
n=1⊗mvn,

we will denote the vectors vn as the eigenvectors of T .
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3 Topic modeling and Latent Dirichlet Allocation

Topic modeling are a suite of algorithms that allow for discovering the abstract
topics that occur in a collection of documents.

In topic modeling, a document is viewed as a bag of words, which is a repre-
sentation that disregards grammar and even word order but keeps multiplicity (it
consists of an enumeration of the words in a document and the number of times
they appear in the text).

In general, for each document, a latent variable h = (h1, . . . , hk) represents the
proportion of k topics in a given document, and given h the words are considered
independent and exchangeable. Given l documents and assuming that d is the size
of the vocabulary (i.e., the number of different words), the vectors x1, . . . , xl ∈ Rd

are used to represent the words on each document. The independence of the words
given the topics implies that E[xi|h] = µh and Pr (xi|hj) = µj, ∀j ∈ [k], where
µ := [µ1, . . . , µk] ∈ Rd×k is the word-topic matrix, whose entry i, j contains the
probability of the word i belonging to the j topic.

3.1 Latent Dirichlet Allocation

One of the most famous topic models is Latent Dirichlet Allocation, well known as
LDA and presented in (Blei et al., 2003). LDA is a three-level hierarchical Bayesian
model based on the idea that documents are represented as random mixtures over
latent topics, where each topics is characterized by a (multinomial) distribution over
words.

LDA assumes that, for each document, the topics h are drawn independently
from a Dirichlet distribution with concentration parameter α = [α1, . . . , αk]. The
Dirichlet concentration (mixing) parameter is defined as α0 :=

∑k
i=1 αi, and allows

to specify the extent of overlap among the topics by controlling for sparsity in topic
density function. The special case α0 = 0 is the single topic model whereas a larger
α0 results in more topics, making them be more overlapped.

The following generative process for each document W = [w1 . . . wN ], where wi
represents a word, in a corpus D, is proposed:

1. Choose θ ∼ Dirichlet(α)

2. For each word wi ∈ W :

(i) Choose a topic zi ∼Multinomial(θ)

(ii) Choose a word wi from p(wi|zi, β), a multinomial probability conditioned
on the topic zi

where θ is a document-specific distribution over the available topics, zi is the topic
for word wi, and α and β are hyperparameters for symmetric Dirichlet distributions
from which the multinomial probability distributions are drawn.
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The success of the model depends on several simplifying assumptions. First, the
dimensionality k of the Dirichlet distribution (and thus the dimensionality of the
topic variable z) is assumed to be known and fixed. Second, the word probabilities
are represented by a fixed matrix β ∈ RV×k such that βij = p(wi|zj), which we want
to estimate, and that we call the word-topic matrix. Also, even though the initial
model claims that the number of words Nd for each document is sampled from a
Poisson distribution, this hypothesis is normally ignored and it is assumed that the
length of each document is fixed.

Given the parameters α and β, the joint distribution of a topic mixture θ, a set
of N topics z and a set of N words w is given by:

p (θ, z, w|α, β) = p(θ|α)
N∏
n=1

p(zn|θ)p(wn|zn, β) (1)

A representation of LDA as a probabilistical graphical model is given in Figure 1.
The three hierarchical levels correspond to the corpus, document and word variables.
α and β are corpus-level variables, what means they are sampled once on each
corpus. The variables θ are document-level variables, sampled once per document,
and zi and wi are word-level variabels and are sampled once for each word in each
document.

Note that LDA is a clear example of latent variable model, where we observe the
words W and we want to recover the variables α, θ, z and β. We give a review of
latent variable models in Appendix A.

It is also important to mention that LDA assumes that the words in the document
are exchangeable, what is equivalent to saying that it is a bag of words model.

Recall that n random variables x1, . . . , xn are exchangeable if their joint prob-
ability distribution is invariant to permutations of the indices. A consequence of
De Finetti’s theorem is that such exchangeable models can be viewed as mixture
models in which there is a latent variable h such that x1, . . . , xn are conditionally
independent and identically distributed given h, with identical distributions at all
the nodes.

wzθα

β

D N

Figure 1: Graphical model representation of LDA. Note that w (in purple) is the
only observed variable, while all the other variables are latent variables and are not
initially observed. The boxes are “plates” representing replicates. The outer plate
represents documents, while the inner plate represents the repeated choice of topics
and words within a document.
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3.2 Inference and parameter estimation

The key inferential problem that needs to be solved in order to use LDA is that of
computing the posterior distribution of the hidden variables given a document:

p(θ, z|w, α, β) =
p(θ, z, w|α, β)

p(w|α, β)
(2)

First of all, we want to analize the expression in the numerator. Examining the
graphical model in Figure 1 we can see the correlations between the variables and
obtain the following equality:

p(θ, z, w|α, β) = p(w|z, β)p(z|θ)p(θ|α) (3)

As p(w|z, β) represents the probability of observing the document determined
by the words w conditional on the topic of each word, which is determined by z, we
can express p(w|z, β) =

∏N
n=1 βwn,zn , where N represents the number of words in

the document and β is the matrix that contains the probability of each word given
each topic (the word-topic matrix).

Next, since zi ∼ Multinomial(θ), we have that p(zi|θ) = θj, being j the topic
that has been sampled from zi ∼ Multinomial(θ). Last, since θ ∼ Dirichlet(α),
p(θ|α) is determined by the Dirichlet probability density function:

p(θ|α) =
Γ
(∑k

i=1 αi

)
∏k

i=1 Γ (αi)

k∏
i=1

θαi−1
i

where Γ denotes the Gamma function.

Bringing this all together and using Equation (3) the following expression is
obtained:

p(θ, z, w|α, β) =

Γ
(∑k

i=1 αi

)
∏k

i=1 Γ (αi)

k∏
i=1

θαi−1
i

 N∏
n=1

βwn,znθzn (4)

where θzn represents the component of θ chosen by zn.

Using the encoding such that zn,i = 1 iff the nth word belongs to the ith topic
and it is 0 otherwise, and wn,j = 1 iff the nth word of the document is the jth word
of the vocabulary and it is 0 otherwise, it follows:

p(θ, z, w|α, β) =

Γ
(∑k

i=1 αi

)
∏k

i=1 Γ (αi)

k∏
i=1

θαi−1
i

 N∏
n=1

k∏
i=1

V∏
j=1

(θiβj,i)
wn,jzn,i (5)

where V denotes the number of words in the vocabulary and k is the number of
topics. The denominator in Equation (2) is obtained by marginalizing over θ and
z:

8



zθ

γ φ

D
N

Figure 2: Graphical model representation of the variational distribution used to
approximate the posterior in LDA.

p(w|α, β) =
Γ
(∑k

i=1 αi

)
∏k

i=1 Γ (αi)

∫ ( k∏
i=1

θαi−1
i

)(
N∏
n=1

k∑
i=1

V∏
j=1

(θiβj,i)
wn,j

)
dθ (6)

Unfortunately, this distribution is intractable to compute in general due to the
coupling between θ and β, as seen in (Dickey, 1983). Despite exact inference not
being possible for the problem, a wide variety of approximate inference have been
derived, such as Gibbs Sampling or, originally, variational inference.

In the following two sections we will go through the original LDA inference
procedure described in (Blei et al., 2003). Note that we just aim to give a review
of the method and further details can be found in the previous paper.

3.2.1 Variational inference

The idea of variational inference is to use a simpler and convex distribution that ob-
tains an adjustable lower bound on the log-likelihood of the actual distribution. The
original graphical model is modified by dropping the problematic edges and nodes,
what removes the coupling between θ and β that makes the inference intractable,
and leads to the model represented in Figure 2. The new variational distribution is

q(θ, z|γ, φ) = q(θ|γ)
k∏

n=1

q(zi|φi) (7)

In particular, we want to determine the values of γ and φ. This can be done
by finding a tight lower-bound on the log-likelihood, what results in solving the
following optimization problem:

(γ∗, φ∗) = argmin
(γ,φ)

D (q(θ, z|γ, φ)||p(θ, z|w, α, β) (8)

which is a minimization of the Kullback-Leibler (KL) divergence between the
variational distribution and the actual posterior distribution. This optimization
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problem can be solved using a fixed point iteration method. In particular, comput-
ing the derivatives of the KL divergence and setting them equal to zero leads to the
following pair of update equations:

φn,i ∝ βwn,iexp{Eq [log(θi)|γ]}

γi = αi +
k∑

n=1

φn,i
(9)

where Eq [log(θi)|γ] = Ψ (γi) − Ψ
(∑k

j=1 γj

)
and Ψ is the first derivative of the

log Γ function, which can be approximated numerically using Taylor series.

It is important to note that we have omitted the dependence of the variational
distribution on w. As the optimization problem defined in Equation (8) is done
with a fixed w, the optimization parameters are, indeed, functions of w, (γ∗, φ∗) =
(γ∗(w), φ∗(w)).

3.2.2 Parameter estimation

In the previous section we have assumed that α and β were fixed parameters, but
we did not calculate them. To approximate the parameters α and β we will assume
we know γ and φ. It is easy to observe the recursive contradiction that this aproach
provides, but it can be solved using an Expectation-Maximization (EM) algorithm
(Dempster et al., 1977) on the variational distribution.

The EM algorithm is a two step iterative algorithm. In our case, every iteration
of the algoritm will be given by the following two steps:

• E-Step: Assume α and β are known and fixed. For each document d in the
corpus, find the variational parameters (γ∗d , φ

∗
d) that solve the optimization

problem defined in Equation (8).

• M-Step: Use the variational parameters found in the E-step to maximize the
lower bound on the log-likelihood of L(α, β) =

∑M
d=1 log p(wd|α, β), where M

is the number of documents.

3.3 LDA for document classification

The key point for document classification is finding an adequate feature space to
represent the documents. The most straightforward approach is to threat individual
words as features, obtaining a very rich but large set of features. However, the curse
of dimensionality (Bellman and Bellman, 1961) will make this choice unsuitable.

In order to reduce the feature space we can use LDA for dimensionality reduction,
assigning a set of real-valued features to each document. Precisely, we can set the
variational parameter γ∗d(w) described in Section 3.2.2 to represent each document

10



d. Once the feature space has been set and the features of each document have been
determined, any classifier such as Support Vector Machines (SVM) can be used to
classify the documents.

This approach with all the details, as well as empirical experiments showing the
great performance of the method, are described in (Blei et al., 2003).

3.4 LDA for collaborative filtering

Collaborative filtering is a method of making automatic predictions (filtering) about
the interests of a user by collecting preferences or taste information from many
users (Wikipedia, 2016). The underlying assumption of the collaborative filtering
approach is that if two users have the same or similar opinions on some issues, they
are more likely to have a similar opinion on a new issue.

In collaborative filtering we first train a model on a fully observed set of users and
we then aim to predict the preferences of an unobserved user. For the unobserved
users, we are normally shown a subset of their preferences and we aim to predict
what the unobserved elements are.

When using LDA for movie preference prediction, users and movies ara analogous
to documents and words in a document. Using previous notation for topic model-
ing, the probability of a held-out movie is given by integrating over the posterior
Dirichlet:

p(w|Wobs) =

∫ ∑
z

p(w|z)p(z|θ)p(θ|Wobs)dθ (10)

where Wobs contains all the observed movies and p(w|Wobs) can be efficiently
computed using variational inference.
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4 Learning LDA using tensor methods

Unsupervised learning for a wide range of latent variable models can be carried
out efficiently via tensor-based techniques with low sample and computational com-
plexities (Anandkumar et al., 2014). Unlike tensor-based methods, other approches
such as expectation maximization (EM) and variational Bayes do not have such
consistency guarantees.

In the topic modeling problem a latent variable θ = (θ1, . . . , θk) is interpreted
as the mixture of topics for a document in a corpus. Given θ, the l ≥ 3 words in
a document can be sampled from a discrete distribution using the Latent Dirichlet
Allocation model as described in Section 3.1. In this process, we sample a sole
topic zn for the nth word from a cathegorical distribution (generalized Bernoulli
distribution) from the mixture of topics θ. Then, we sample the nth word xn from
topic zn using the word-topic matrix, which contains the probability of each word
given the topics.

Let v be the vocabulary size and e1, . . . , ev the standard coordinate basis for Rv,
we represent the l words in our document as l vectors x1, . . . , xl ∈ Rv such that
xm = ei if and only if the mth word in the vocabulary is i. The advantage of this
notation is that it allows us to represent joint probabilities over words using the
cross moments of the vectors x1, . . . , xn. We observe that E[xp ⊗ xq]ij = P (xp =
e1, xq = ej) or, more generally,

E[x1 ⊗ · · · ⊗ xl] =
∑

1≤i1,...,il≤v

P (1stword = i1, . . . , l
thword = il) ei1 ⊗ · · · ⊗ eil (11)

As we have previously assumed that the number of words on each document is at
least three (l ≥ 3), we can now conclude that estimating joint probabilities of three
words xi, xj, xk over all documents is equivalent to estimating their cross moment
E[xi ⊗ xj ⊗ xk].

Thanks to the vector encoding we can now compute the conditional expectation
of a word xi given its topic zi = j:

E[xi|zi = j] =
v∑

m=1

P (mth word = i|zi = j) em = βj (12)

where βj is the vector of word probabilities for topic j or, equivalently, the column
j of the word-topic matrix β.

Now, due to exchangeability of the words and De Finetti’s theorem, we recall
that the words are conditionally independent given the topic, what leads to:

E[xp1 ⊗ · · · ⊗ xpr |z = j] = E[xp1|zp1 = j]⊗ · · · ⊗E[xpr |zpj = j] = βj ⊗ · · · ⊗ βj (13)

This calculations lead to the following theorem:

Theorem 4.1. (Anandkumar et al., 2012) If

m1 :=E[x1]

M2 :=E[x1 ⊗ x2]

M3 :=E[x1 ⊗ x2 ⊗ x3]
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then

m1 =
k∑
i=1

αi
α0

βi

M2 =
k∑
i=1

αi
α0

βi ⊗ βi

M3 =
k∑
i=1

αi
α0

βi ⊗ βi ⊗ βi

where we denote the third order moment using the calligraphic letter M3 to
emphasize that it is a tensor.

Now, as shown in (Anandkumar et al., 2014), we can estimate the topics β by
computing a certain symmetric and orthogonal tensor decomposition. Precisely,
we need to estimate the second and third order tensors M2 and M3, for which we
will give the empirical forms in Lemma 4.1. Moreover, due to exchangeability, all
previous calculations for pairs or triples of words in a document can be used to form
the empirical second and third order moments that estimate the matrix M2 and the
tensor M3, respectively.

4.1 Recovering the model

We now describe how the moments in Theorem 4.1 can be reduced to an orthogonal
form. Denote wi := αi

α0
so that we have

m1 =
k∑
i=1

wi βi

M2 =
k∑
i=1

wi βi ⊗ βi

M3 =
k∑
i=1

wi βi ⊗ βi ⊗ βi

We start by imposing that the word-topic matrix β has linearly independent
columns and that the scalars w1, w2, . . . , wk > 0 are strictly positive. Note that
the first condition is a very mild assumption since β ∈ Rv×k is the word-topic
matrix (and, in general, v >> k) and that the second one will always be true since
αi > 0 for i ∈ {0, . . . , k} following the definition of the Dirichlet distribution. This
conditions imply that the second order moment M2 is positive semidefinite and has
rank k.

Now, letW ∈ Rv×k be a linear transformation such thatM2(W,W ) = W>M2W =
Id, where here Id is the k × k identity matrix (it is said that W whitens M2). In
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particular, the previous conditions imply that M2 is positive definite and normal,
what let us conclude that its SVD decomposition M2 = UΣV > is equivalent to
its eigenvalue decomposition. We may for concreteness take W := UkΣ

−1
k , where

Uk ∈ Rv×k contains only the top singular vectors and Σk ∈ Rk×k contains only the
top singular values.

Let β̃i :=
√
wiW

>βi. These vectors are orthonormal, as it can be seen using the
following equalities:

M2(W,W ) =
k∑
i=1

W> (
√
wiβi) (

√
wiβi)

>
W =

k∑
i=1

β̃iβ̃i
>

= Id (14)

Now, define the whitened third order tensor M3 ∈ Rk×k×k so that

M3 =
k∑
i=1

⊗3
(
W>βi

)
=

k∑
i=1

1
√
wi
⊗3 β̃i (15)

Theorem 4.3 in (Anandkumar et al., 2014) proves that the set of robust eigen-
values and eigenvectors of M3 are { 1√

wi
}ki=1 and {β̃i}ki=1, respectively, and that if(

W>)† is the Moore-Penrose pseudoinverse of W> and v and λ are a robust eigen-

vector and eigenvalue of M3, respectively, then λ
(
W>)† v = βi for some i ∈ [k].

4.2 Tensor forms for the empirical moments

Let ct := (c1,t, . . . , cv,t) ∈ Rv denote the frequency vector for the tth document,
and let n be the number of documents and v de vocabulary size. The vector ct
counts the number of occurrences of each word in a document, and the property of
exchangeability makes the order of the words irrelevant. Hence, if l is the number of
words in a document t and ci the number of occurrences of word i in the document
t, it follows that

∑v
i=1 ci,t = l.

Calculating the empirical order moment can be computationally very expensive.
In practice, one should use all of the words in a document for efficient estimation
of the moments. One way to do this is to average over all

(
l
3

)
· 3! ordered triples of

words in a document of length l. This method, presented in (Anandkumar et al.,
2014), leads to the following lemma:

Lemma 4.1. The first three order empirical moments are given by
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m̂1 :=
1

n

n∑
t=1

ct

M̂2 :=
α0 + 1

n

n∑
t=1

(ct ⊗ ct − diag (ct))− α0m1 ⊗m1

M̂3 :=
(α0 + 1)(α0 + 2)

2n

n∑
t=1

[
ct ⊗ ct ⊗ ct −

d∑
i=1

d∑
j=1

ci,tcj,t(ei ⊗ ei ⊗ ej)

−
d∑
i=1

d∑
j=1

ci,tcj,t(ei ⊗ ej ⊗ ei)−
d∑
i=1

d∑
j=1

ci,tcj,t(ei ⊗ ej ⊗ ej) + 2
d∑
i=1

ci,t(ei ⊗ ei ⊗ ei)

]

− α0(α0 + 1)

2n

n∑
t=1

(
d∑
i=1

ci,t(ei ⊗ ei ⊗m1) +
d∑
i=1

ci,t(ei ⊗m1 ⊗ ei)

+
d∑
i=1

ci,t(m1 ⊗ ei ⊗ ei)

)
+ α2

0m1 ⊗m1 ⊗m1.

(16)

Recall that the parameters α and β that are used in the first three moments of
a LDA topic model (Theorem 4.1) can be recovered under a weak non-degeneracy
assumption. We will employ the same tensor decomposition techniques used in
(Huang et al., 2015) to learn the parameters.

4.3 Dimensionality reduction and whitening

One of the main difficulties to learn the model consists of working with such a large
amount of data. In the case of the third order moment, M̂3, this has a size of order
O(v3) where v is the size of the word vocabulary. In this regard, a whitening step

is performed as presented in Section 4.1, in which M̂3 is transformed to another
tensor that is orthogonal in expectation.

This whitening step leads also to dimensionality reduction, since it implicitly
reduces the tensor M̂3 of size O(v3) to a new tensor of size O(k3), where k is the
number of hidden topics, which we can assume to be much less than the size of the
word vocabulary.

A whitening matrix W ∈ Rv×k that satisfies W>M̂2W = Id is defined with
the idea that if the bilinear projection of the second order moment onto W is the
identity matrix, then a trilinear projection of the third order moment onto W would
result in an orthogonal tensor.

First of all a k-truncated Singular Value Decomposition (SVD) for the second

order moment M̂2 is computed, M̂2 = UM̂2,k
ΣM̂2,k

U>
M̂2,k

, where UM̂2,k
and M̂2,k

contain only the first k singular vectors and singular values of M̂2, respectively.
Then, the whitening matrix is computed
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W = UM̂2,k
ΣM̂2,k

(17)

and used to calculate the whitened data

yx := W>cx ∈ Rk (18)

where cx is the word frequency vector for document x. Using the whitened
samples instead of all the frequency vectors, a whitened third order tensor can be
calculated using the expression in Lemma 4.1 and replacing each ct by yx. From
now on, we will refer to this whitened empirical third order moment as T .

Note, however, that performing this whitening step can be computationally very
expensive. If carried out naively, it will involve performing a SVD decomposition of
the empirical second order moment, a matrix M̂2 ∈ Rv×v where v is the vocabulary
size of the corpus, which is normally many tens of thousands. As calculating a SVD
decomposition of M̂2 has, in general, O(v3) complexity, this computation will be a

difficult problem to tackle. Moreover, storing M̂2 ∈ Rv×v will also be a challenging
aspect to solve.

A way to efficiently compute the whitening matrix W is to use thin random
projections of the data to estimate a thin version of M̂2 and to take advantage of
the fact that we only need to calculate a truncated SVD decomposition of M̂2 (we
don’t need to calculate the full SVD decomposition), as explained in (Huang et al.,
2015).

4.4 From variational inference to tensor methods

In Section 3.2, we provided an overview of how variational methods can be used
for learning LDA. The key problem we need to solve in order to recover the model
is that of recovering the parameters α and β. Recall that the word-topic matrix, β,
is such that βij = P (wordi|topicj), and gives the probability of each word on each
of the topics.

When using variational inference, we recover α and β using an Expectation-
Maximization algorithm, what allows us to simultaneously recover the variational
parameters for each of the documents d, (γ∗d , φ

∗
d).

Using tensor methods we can first recover the parameters α and β by using a
method of moments, what determines the LDA model and discovers the topics of a
corpus. Then, we can use a variation of the EM algorithm described in Section 3.2
to estimate the variational parameters (γd, φd) for each document. Specifically, we
can run the same EM algorithm skipping the M-step, as we assume we already
know the parameters α and β. This approach will let us compute a feature set for
each document, γd, which can be used for document classification as described in
Section 3.3.
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4.5 Learning using third order moments

The implementation of an algorithm to learn the parameters of a LDA model using
tensor decomposition and up to third-order moments is described in (Huang et al.,
2015). Stochastic gradient descent (Kushner and Yin, 2003) is used to solve the
optimization problem.

The process to learn the parameters for a single LDA model consists of:

1. Estimate the second order empirical moment M̂2

2. Perform pre-processing using the second-order moment M̂2

3. Compute the empirical third order moment using whitened data

4. Perform tensor decomposition using stochastic gradient descent on the whitened
third order empirical tensor

5. Apply post processing to obtain the word-topic matrix and the Dirichlet pa-
rameters

Stochastic Tensor Gradient Descent

We want now to estimate the empirical third order tensor T obtained using whitened
data, and our goal is to find its CP decomposition:

Definition 4.1. Our optimization problem is given by

argmin
vj ,j∈[k]

∥∥∥∥∥ 1

nX

∑
x∈X

Tx −
k∑
j=1

⊗3vj

∥∥∥∥∥
2

F

+ θ

∥∥∥∥∥
k∑
j=1

⊗3vi

∥∥∥∥∥
2

F

(19)

where vi are the unknown components to be estimated, and θ > 0 is some fixed
parameter.

In order to encourage orthogonality between the eigenvectors of the third order

tensors the extra term θ
∥∥∥∑k

j=1⊗3vi

∥∥∥2

F
is added, where the fixed parameter θ > 0

weighs its relevance. This is motivated in (Huang et al., 2015) and we provide an
explanation for it later.

Define the matrix of the empirical eigenvectors of T , V := [v1| . . . |vk].

Lemma 4.2. The optimization problem given in Definition 4.1 is equivalent to min-
imizing a loss function L(V ) := 1

nx

∑
x∈X Lx(v), where Lx(V ) is the loss function

evaluated at a document x that belongs to a set of documents X, and is given by

Lx(V ) := (1 + θ)

∥∥∥∥∥
k∑
j=1

⊗3vj

∥∥∥∥∥
2

F

− 2

〈
k∑
j=1

⊗3vj, Tx

〉
(20)
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Proof. We have∥∥∥∥∥ 1

nx

∑
x∈X

Tx −
k∑
j=1

⊗3vj

∥∥∥∥∥
2

F

+ θ

∥∥∥∥∥
k∑
j=1

⊗3vi

∥∥∥∥∥
2

F

=

=

∥∥∥∥∥ 1

nx

∑
x∈X

Tx

∥∥∥∥∥
2

F

− 2

〈
1

nx

∑
x∈X

Tx,
k∑
j=1

⊗3vj

〉
+

∥∥∥∥∥
k∑
j=1

⊗3vj

∥∥∥∥∥
2

F

+ θ

∥∥∥∥∥
k∑
j=1

⊗3vi

∥∥∥∥∥
2

F

= (1 + θ)

∥∥∥∥∥
k∑
j=1

⊗3vi

∥∥∥∥∥
2

F

− 2

〈
1

nx

∑
x∈X

Tx,
k∑
j=1

⊗3vj

〉
+

∥∥∥∥∥ 1

nx

∑
x∈X

Tx

∥∥∥∥∥
2

F

(21)

Now, since
∥∥∑

x∈X Tx
∥∥2

F
is a constant, the equation to optimize in Definition 4.1

becomes

(1 + θ)

∥∥∥∥∥
k∑
j=1

⊗3vi

∥∥∥∥∥
2

F

− 2

〈
1

nx

∑
x∈X

Tx,
k∑
j=1

⊗3vj

〉
=

(1 + θ)

∥∥∥∥∥
k∑
j=1

⊗3vi

∥∥∥∥∥
2

F

− 2
∑
x∈X

〈
1

nx
Tx,

k∑
j=1

⊗3vj

〉
=

∑
x∈X

 1

nx
(1 + θ)

∥∥∥∥∥
k∑
j=1

⊗3vi

∥∥∥∥∥
2

F

− 2

〈
1

nx
Tx,

k∑
j=1

⊗3vj

〉 =

1

nx

∑
x∈X

(1 + θ)

∥∥∥∥∥
k∑
j=1

⊗3vi

∥∥∥∥∥
2

F

− 2

〈
Tx,

k∑
j=1

⊗3vj

〉 =
1

nx

∑
x∈X

Lx(V )

(22)

�

We recall that we use 〈A,B〉 to denote the sum of the entries of the elementwise
product of A and B.

Lemma 4.3. The partial derivatives of Lx(V ) are:

∂Lx(V )

∂vj
= 6

[
(1 + θ)

k∑
p=1

〈vp, vj〉2 vp −
k∑
i=1

(
v>j Tx,(:,:,i)vj

)
⊗ ei

]
(23)

Proof. For each of the two terms in the sum, we will do the calculations element-
wise. Note that in order to reduce the complexity of the notation, and as all the
sums are finite, we will omit some superscripts in this proof. Also, we will use
the convention that Tx,(:,:,t) denotes the matrix whose element in the position i, j
is Tx,(i,j,t), the element in the position i, j, t of Tx, and that vi,m denotes the mth

element of the vector vi, which is also the ith column of the matrix V .
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We first have:∥∥∥∥∥
k∑
j=1

⊗3vj

∥∥∥∥∥
2

F

=
∑
i,j,r

(∑
p

vp,ivp,jvp,r

)2

=

(∑
p

v3
p,t

)2

+ 3
∑
i 6=t

(∑
p

vp,iv
2
p,t

)2

+ 3
∑
i,j 6=t

(∑
p

vp,ivp,jvp,t

)2

+
∑
i,j,r 6=t

(∑
p

vp,ivp,jvp,r

)2
(24)

what let us compute its derivatives:

∂

∂vk,t

∥∥∥∥∥
k∑
j=1

⊗3vj

∥∥∥∥∥
2

F

 = 6

[
v2
k,t

(∑
p

v3
p,t

)
+ 2

∑
i 6=t

vk,ivk,t

(∑
p

vp,iv
2
p,t

)

+
∑
i,j 6=t

vk,ivk,j

(∑
p

vp,ivp,jvp,t

)]
= 6

∑
i,j

vk,ivk,j

(∑
p

vp,ivp,jvp,t

)

= 6
∑
p,i,j

vk,ivk,jvp,ivp,jvp,t = 6
∑
p

vp,t

(∑
j

vp,jvk,j

)(∑
i

vp,ivk,i

)
= 6

∑
p

〈vp, vk〉2 vp,t

(25)

For the second term of the sum, we get a similar expression:

〈∑
i∈[k]

⊗3vi, T x
〉
t

=
∑
i,j,r

(
Tx,(i,j,r)

∑
p

vp,ivp,jvp,r

)
= Tx,(t,t,t)

∑
p

v3
p,t

+ 3
∑
i 6=t

(
Tx,(i,t,t)

∑
p

vp,iv
2
p,t

)
+ 3

∑
i,j 6=t

(
Tx,(i,j,t)

∑
p

vp,ivp,jvp,r

)

+
∑
i,j,r 6=t

(
Tx,(i,j,r)

∑
p

vp,ivp,jvp,r

)
(26)

which let us, again, compute the derivative:

∂

∂vk,t

〈∑
i∈[k]

⊗3vi, Tx

〉 =

= 3

[
Tx,(t,t,t)v2

k,t + 2
∑
i 6=t

Tx,(i,t,t)vk,ivk,t +
∑
i,j 6=t

Tx,(i,j,t)vk,ivk,j

]
= 3

∑
i,j

vk,iTx,(i,j,t)vk,j = 3v>k Tx,(:,:,t)vk

(27)
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Last, using the linearity of the derivatives, we obtain:

∂Lx(V )

∂vk,t
= 6

[
(1 + θ)

∑
p

〈vp, vk〉2 vp,t − v>k Tx,(:,:,t)vk

]
(28)

We note that the derivative of the first term can be calculated for all the entries
of the vector vk at the same time, what leads to a more general formula:

∂Lx(V )

∂vk
= 6

[
(1 + θ)

∑
p

〈vp, vk〉2 vp −
∑
i

(
v>k Tx(:, :, i)vk

)
⊗ ei

]
(29)

�

Now, using the derivative of the optimization function we get the iterative update
for the stochastic gradient descent:

ṽi,(n+1) ← ṽi,(n) − αn
∂Lx(V )

∂vi

∣∣∣∣
Ṽ(n)

, ∀i ∈ [k] (30)

where αn is the learning rate at the nth iteration, the derivatives are calculated
for each document x ∈ X, ṽi,(n) contains the learnt eigenvector i at iteration n and

Ṽn :=
[
ṽ1,(n) . . . ṽk,(n)

]
.

Note that the first term of the derivatives is determined by the dot product be-
tween pairs of eigenvectors, weighted by 6(1+θ), and will reduce its norm when the

eigenvectors are orthogonal, what justifies the regularization term θ
∥∥∥∑k

j=1⊗3vi

∥∥∥2

F
in Definition 4.1.

Remark 4.1. Using the linearity of the derivatives we obtain

1

nx

∑
x∈X

∂Lx(V )

∂vi
=
∂
(

1
nx

∑
x∈X Lx(V )

)
∂vi

=
∂L(V )

∂vi
(31)

What let us conclude that we can use our stochastic approach, which calculates
the derivatives for each document x, to calculate the full derivatives too. While
using the full derivatives may give us faster convergence, they may be too expensive
to calculate when dealing with large datasets. In this regard, we may be interested in
using an stochastic approach where on each iteration we choose in which datapoint
or datapoints (document or documents) we evaluate the derivatives depending on
a random distribution. The approach is the following:

1. Choose N , the number of documents to evaluate the derivatives

2. Sample XN ∼ U(k), where U(K) represents a discrete uniform distribution
with N different possible outputs and XN is a set containing the chosen N
documents where we will calculate the derivatives.
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3. Calculate the derivatives 1
|XN |

∑
x∈XN

∂Lx(V )
∂vi

on the N randomly chosen data-
points using Lemma 4.3.

4. Update the eigenvectors using Equation (30) and the calculated derivatives

Note that even when we can easily calculate the derivatives using all the data-
points we may be interested in using a stochatic gradient descent approach instead
of a gradient descent with the full derivatives. This is because the randomness
we add on the derivatives when we use stochastic gradient descent can help our
eigenvectors escape from saddle points, which have null gradient, or even from local
minima that are far away from the best solution.

Indeed, further analysis of stochastic gradient descent for tensor reconstruction
can be found in (Ge et al., 2015), where it is proved that stochastic gradient descent
will avoid saddle points in optimization problems like ours and will converge to a
local minimum in a polynomial number of iterations with respect to the number
of topics k. Note also that our problem doesn’t have a unique global minimum,
since the topics are exchangeable and any permutation of them is an equally good
solution.

4.6 Post-processing

Finally we do an inverse process to the one carried out in the whitening step.
First, we compute the eigenvalues Λ := [λ1, λ2, . . . , λk] as the norm of the estimated
eigenvectors: λi = ‖ṽi‖3, i ∈ {1, . . . , k}.

Then, we make an inverse process to the one carried out in Equation (18) on the
whitening step to recover an estimation of the word-topic matrix

β̂ = W>†V (32)

where W>† denotes the Monroe pseudo inverse of the transpose of the whitening
matrix W .

Last, we obtain the Dirichlet distribution parameters

α̂i = γ2λ−2
i , ∀i ∈ [k]. (33)

where γ2 is chosen such that we have a normalization
∑

i∈[k] α̂i :=
∑

i∈[k]
αi

α0
= 1.

4.7 Implementation

We provide a modification of Furong Huang’s C++ code for learning LDA using ten-
sor methods https://github.com/FurongHuang/TensorDecomposition4TopicModeling
The main difference is that in our code we use stochastic gradient descent, as de-

scribed in the previous sections of this report, instead of alternating least squares,
as described in (Anandkumar et al., 2014) for calculating an orthogonal CP decom-
position of the whitened empirical third order moment of the LDA model.
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The code uses the Eigen1library to implement linear algebra structures and op-
erations (specially useful to deal with sparse matrices and vectors). While making
the modification of the code may seem simple and straightforward, it has been very
time consuming due to the lack of explicative comments on the code, which consists
of more than 2000 lines of C++ code splited in many different files. Debugging has
also been a tedious task as compiling the code lasts around 30 seconds.

The code can be devided in the following sections:

1. Read the corpus in bag-of-words format

2. Estimate the secod order moment

3. Perform dimensionality reduction and whitening

4. Compute the whitened third order empirical moment and get a CP decompo-
sition of it

5. Post-processing: use the estimated rank one components (or eigenvectors)
and the eigenvalues to recover the LDA model (Dirichlet parameter α and
word-topic matrix β).

6. Perform variational inference on a testing dataset using the learnt LDA model

It is also worth mentioning that the inference section of the code is a modified
version of the lda-c code in https://github.com/blei-lab/lda-c which implements the
variational inference algorithm described in Section 3.2 and originally presented in
(Blei et al., 2003).

4.7.1 Code release

Our code is released on https://github.com/ourii/Tensor LDA STGD

In our published version we have also modified the code to easily accept as input
many corpus and learn many LDA models in the same run of the program. This
provides the basics for the implementation of Algorithm 1, presented in subsequent
pages of this report.

4.7.2 Computing the gradients

Computing the derivatives in Lemma 4.3 can be computationally expensive if carried
out naively. This is why we suggest an implementation that uses mainly vectorized
and matrix operations, what will perform significantly faster in many programming
languages such as Matlab, R or when using the Eigen library in C++.

We recall we want to compute the following derivatives:

1eigen.tuxfamily.org
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∂Lx(V )

∂vj
= 6

[
(1 + θ)

∑
p

〈vp, vj〉2 vp −
∑
i

(
v>j Tx(:, :, i)vj

)
⊗ ei

]
(34)

We first aim to calculate
∑

p 〈vp, vj〉
2 vp simultaneously for all the vectors vj,

j ∈ [k]. Denote V = [v1| . . . |vk]. This calculation can be efficiently carried out in
the following way:[∑

p

〈vp, v1〉2 vp | . . . |
∑
p

〈vp, vk〉2 vk

]
= V

(
V >V ◦ V >V

)
(35)

As for the second term in Lemma 4.3,
∑

i

(
v>k Tx,(:,:,i)vk

)
⊗ ei, it can be calculated

row by row. Its ith row is the column-wise sum of the matrix
(
T >(:,:,i)V

)
◦ V , where

we recall that ◦ is used to denote the entry-wise product, as described in Section 2.1.

Note that we base our gradients on theoretical calculations. However, the deriva-
tives are the key point of a gradient descent method (otherwise we would be con-
verging to the minimum of another optimization function). Hence, not only do we
want to make sure we are not making any mistake in the calculation of the deriva-
tives, but also that our implementations are correct and our C++ functions are
accurate.

A common approach for this problem is to make a numerical verification of the
gradient by using the definition of derivative. Theoretically, we know that the value
of the symmetric derivatives is the following:[

∂Lx(V )

∂vk

]
m

= lim
h→0

Lx (V +H(m, k, h))− Lx (V −H(m, k, h))

2h
(36)

where H(m, k, h) is a matrix such that

H(m, k, h)ij =

{
Vij + h if (i, j) = (m, k)
Vij if (i, j) 6= (m, k)

(37)

Note that we have prefered to use the symmetric derivatives, and approximate
the derivatives using centered differences instead of the ordinary derivatives, because
this method has the same computational cost but it can be proved using Taylor’s
formula that the result is much more accurate (the error is O(h2) instead of O(h)
for twice twice differentiable functions).

In practise, most of the times we can get a good estimation of the gradients
by computing the derivatives element-wise following Equation (36) and taking h
sufficiently small (for example, h ≈ 10−4). While this approach is numerically vul-
nerable and may lead to bad estimations depending on the function Lx, it provides
a fast and easy way for verifying the derivatives and their implementation. It is
also easy to improve its accuracy by estimating the derivatives using higher order
methods.
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It is importat to remark that two reasons make numerical methods for calculat-
ing the derivatives not preferable when the gradients can be calculated and have
a closed form. First, computing the derivatives numerically may lead to bad esti-
mations in some cases (depending on the function for which we are calculating the
derivatives). Second, the computational cost of computing the derivatives numeri-
cally is, in general, much greater than that of calculating them using a closed form.
Indeed, the error in the estimations can only be reduced using higher order methods
which require more evaluations of the optimization function and are slower.

We have implemented numerical verification for the gradients of the optimization
function in Lemma 4.2 to verify that the derivatives in Lemma 4.3 and our posterior
implementation are correct.

4.7.3 Results

We run our code on the New York Times bag of words dataset (Lichman, 2013).
As in (Huang et al., 2015), we set the fixed parameters to be α0 = 1 and θ = 1.
We run the code with 50 topics (k = 50). The top words (those that have a higher
probability on each topic according to the estimated word-topic matrix) for the 4
topics that we find more significative are represented in Table 1. Note that we have
labeled each of the presented topics, but this was not part of the outcome of the
algorithm, as LDA is, in general, an unsupervised method.

We also wanted to evaluate the extra time needed to compute the gradients using
first order numerical methods compared to using the exact derivatives (recall that
both methods are explained in Section 4.7.2).

A graphical presentation of the results, plotted in R by means of the library
ggplot2 2, can be found in Figure 3. It let us conclude that while learning our
third order structures can be done efficiently using exact methods to calculate the
derivatives, this becomes an unattainable problem if we use numerical methods
instead. Note also that we are only using a very simple first order method to
estimate the derivatives, but getting more robust results using higher order methods
would require to evaluate the loss function at more points and would slow down the
method significantly.

2http://ggplot2.org/
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”business” ”sport” ”Israel” ”War on terror”
million game company zzz bush
percent team palestinian tonight

company newspaper newspaper official
question zzz boston globe women attack

file player drug team
slugged season zzz israel palestinian
shares play zzz killed season
com school zzz mandatory kill newspaper
spot spot premature military
web zzz held guard terrorist

billion tax zzz los angeles daily new question
site games book zzz israel

official zzz bush school zzz afghanistan
onlytest coach send file
money www leader zzz taliban

companies com percent fall
government home race zzz diane
zzz al gore cut zzz united states zzz israeli

quarter won student zzz united states
sales percent military show
stock win war onlytest

business point released zzz u s
www run zzz israeli bin
fund tonight zzz yasser arafat laden

zzz xxx file earlier war

Table 1: Top words of some of the recovered topics learning LDA using tensor
methods and stochastic gradient descent.
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Figure 3: Time required to compute the derivatives on each step of the stochastic
gradient descent, using 10 documents on each iteration
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5 A tensor decomposition with correlated param-

eters

Assume we are given n tensors T (t) ∈ Rd1×···×dl , t ∈ [n], of some order l and that
each tensor T (t) has an approximate CP decomposition of rank k, namely,

T (t) =
k∑
j=1

λ
(t)
j a

(t)
1j ⊗ · · · ⊗ a

(t)
lj +N (t), (38)

for some a
(t)
ij ∈ Rdi , λ

(t)
j ∈ R and N (t) a noise tensor which we assume to be

sufficiently small. To refer to the vectors {{a(t)
ij }kj=1}li=1 we will use the matrices

A
(t)
i =

[
a

(t)
i1 . . . a

(t)
ik

]
∈ Rdi×k ∀i ∈ [l] and define λ(t) = (λ

(t)
1 , . . . , λ

(t)
k )> ∈ Rk.

In principal, one can estimate {λ(t), {A(t)
i }li=1}nt=1 by decomposing each of the

tensors T (t) separately. However, such an approach will not take advantage of the
structure in the underlying dynamics of the parameters. For example, a natural as-
sumption in many applications is that the parameters λ(t), A

(t)
i evolve smoothly over

time. Here, we incorporate such a belief into our estimation of {λ(t), {A(t)
i }li=1}nt=1

by introducing a Gaussian process prior over the parameters.

We now develop a Bayesian probabilistic model to approach the described prob-
lem. First, each entry of the noise tensor N (t) is taken to be independent and
identically distributed (i.i.d) with a normal distribution, N (0, σ2

N).

Denote a
(·)
ij ∈ Rdi×n the matrix with column t being a

(t)
ij and similarly for λ(·) ∈

Rk×n. We assume that the prior over the parameters of the tensors T (t) is given by

λ(·) ∼MN (yλ, Uλ, Vλ) Uλ ∈ Rk×k, Vλ ∈ Rn×n

a
(·)
ij ∼MN

(
y

(·)
ij , Uaij , Vaij

)
j ∈ [k], Uaij ∈ Rdi×di , Vaij ∈ Rn×n (39)

whereMN (M,U, V ) is the matrix normal distribution3, which we analyse more
thoroughly in Appendix B. This approach using Gaussian processes allows us to
model the correlation between the elements on each random matrix a

(·)
ij using kernels

or some other estimators for the covariance matrices {Uλ, Vλ, {Uaij , Vaij}
l,k
i,j=1}.

Note that our approach is powerful in the sense that it doesn’t impose any
restrictions on the dimension where the correlation is applied being discrete, unlike
other methods like discrete Markov chains, which would provide simplier statistical
models.

3 The probability function for the random matrix X (n × p) that follows the matrix normal
distribution MNn,p (M,U,V) has the form:

p (X |M,U,V) =
exp

(
− 1

2 tr
[
V−1(X−M)TU−1(X−M)

])
(2π)np/2|V|n/2|U|p/2

where tr denotes trace, | · | denotes the determinant and M is n× p, U is n× n and V is p× p.
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Assuming that each entry in the noise tensor N (t) ∈ Rd1×···×dl is normally dis-
tributed, N

(t)
i1,...,il

∼ N (0, σ2
N), we can express each element T (t)

i1,...,il
as a product of

l + 1 k-dimensional vectors:

T (t)
i1,...,il

≈ < λ(t), a
(t)
1,:,i1

, . . . , a
(t)
l,:,il

>=:
k∑
j=1

λ
(t)
j a

(t)
1,j,i1
· · · a(t)

l,j,il
(40)

where a
(t)
i,:,j = (a

(t)
i,1,j, . . . , a

(t)
i,k,j)

> ∈ Rk, a
(t)
i,j,r is the rth element of the vector

a
(t)
i,j ∈ Rdi and ≈ is used to express the randomness added by N (0, σ2

N). Note that

we can think of each a
(·)
i as a tensor in Rk×di×n ∀i ∈ [l], where we use a colon (:) on

one dimension to denote that we keep all the elements on that mode.

Equivalently, we may consider

T (t)
i1,...,il

|λ(t), {a(t)
ij }

l,k
i,j=1 ∼ N

(
< λ(t), a

(t)
1,:,i1

, . . . , a
(t)
l,:,il

>, σ2
N

)
(41)

to express that we can recover a noisy version of the tensor T (t) given {λ(t), {a(t)
ij }

l,k
i,j=1}

or, what is the same, we can get an estimation of each element T (t)
i1,...,il

given

{λ(t), {a(t)
ij }

l,k
i,j=1}.

We now define the composite tensor of order l + 1,

T =
n∑
t=1

T (t) ⊗ et (42)

Our final goal is to recover the rank one components that estimate the tensors
T (t), ∀t ∈ [n].

5.1 Statistical approach for recovering the tensor

We now aim to compute the posterior distribution of the above model, p(Θ|X),
where Θ represents all the parameters of the model and X the observed evidence
(the tensor). We first use Bayes rule to get p(Θ|X) = p(X|Θ)p(Θ)

p(X)
∝ p(X|Θ)p(Θ) =

Likelyhood × Prior, where ∝ denotes proportionality. Our goal is to maximize
the posterior distribution and, as the logarithm is a continuous and monotonically
increasing function, we can equivalently maximize log(p(Θ|X)) ∝ log(Likelyhood)+
log(Prior). Under the above model, the log posterior distribution of the data T is
given by
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log p
(
λ(·), {a(·)

ij }
l,k
i,j=1|T

)
∝ log p

(
T |λ(·), {a(·)

ij }
l,k
i,j=1

)
︸ ︷︷ ︸

(A1)

+ log p
(
λ(·), {a(·)

ij }
l,k
i,j=1

)
︸ ︷︷ ︸

(A2)

= −
n∑
t=1

d1,...,dl∑
i1,...,il=1

(
T (t)
i1,...,il

− < λ(t), a
(t)
1,:,i1

, . . . , a
(t)
l,:,il

>
)2

2σ2
N

− n(d1 + · · ·+ dl) log(σ2
N)

2

− 1

2
tr

[
V −1
λ

(
λ(·) − y(·)

λ

)>
U−1
λ

(
λ(·) − y(·)

λ

)]
− n

2
log|Uλ| −

k

2
log|Vλ|

−
l∑

i=1

k∑
j=1

(
1

2
tr

[
V −1
aij

(
a

(·)
ij − y

(·)
ij

)>
U−1
aij

(
a

(·)
ij − y

(·)
ij

)]
− n

2
log|Uaij | −

di
2
log|Vaij |

)
+const

(43)

where

(A1) = log p
(
T |λ(·), {a(·)

ij }
l,k
i,j=1

)
= log p

(
n∑
t=1

T (t) ⊗ et|λ(t), {a(t)
ij }

l,k
i,j=1

)

= log (
n∏
t=1

d1,...,dl∏
i1,...,il=1

p
(
T (t)
i1,...,il

|λ(t), {a(t)
ij }

l,k
i,j=1

))
=

n∑
t=1

d1,...,dl∑
i1,...,il=1

log p
(
T (t)
i1,...,il

|λ(t), {a(t)
ij }

l,k
i,j=1

)

= −
n∑
t=1

d1,...,dl∑
i1,...,il=1

(
T (t)
i1,...,il

− < λ(t), a
(t)
1,:,i1

, . . . , a
(t)
l,:,il

>
)2

2σ2
N

− n(d1 + · · ·+ dl) log(σ2
N)

2
+ const1

(A2) = log p
(
λ(·), {a(·)

ij }
l,k
i,j=1}

)
= log p

(
λ(·))+

l∑
i=1

k∑
j=1

log p
(
a

(·)
ij

)
= −1

2
tr

[
V −1
λ

(
λ(·) − y(·)

λ

)>
U−1
λ

(
λ(·) − y(·)

λ

)]
− n

2
log|Uλ| −

k

2
log|Vλ|

−
l∑

i=1

k∑
j=1

(
1

2
tr

[
V −1
aij

(
a

(·)
ij − y

(·)
ij

)>
U−1
aij

(
a

(·)
ij − y

(·)
ij

)]
+
n

2
log|Uaij |+

di
2
log|Vaij |

)
+const2

and λ(·), a
(·)
ij are independent for all i 6= j.

Note that we have strongly used the normality described in Equation (41) and in
the Gaussian priors defined in Equation (39). Now, under a fixed value of σ2

N , maxi-

mizing the log-posterior with respect to {λ(·), {a(·)
ij }

l,k
i,j=1} is equivalent to minimizing

the following sum:
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n∑
t=1

d1,...,dl∑
i1,...,il=1

(
T (t)
i1,...,il

− < λ(t), a
(t)
1,:,i1

, . . . , a
(t)
l,:,il

>
)2

σ2
N

+ tr

[
V −1
λ

(
λ(·) − y(·)

λ

)>
U−1
λ

(
λ(·) − y(·)

λ

)]
+ n log|Uλ|+ k log|Vλ|

+
l∑

i=1

k∑
j=1

(
tr

[
V −1
aij

(
a

(·)
ij − y

(·)
ij

)>
U−1
aij

(
a

(·)
ij − y

(·)
ij

)]
+ n log|Uaij |+ di log|Vaij |

)
(44)

or, equivalently, the following expression

ρ

∥∥∥∥∥T −
n∑
t=1

(
k∑
j=1

λ
(t)
j a

(t)
1,j,: ⊗ · · · ⊗ a

(t)
l,j,:

)
⊗ et

∥∥∥∥∥
2

F

+ tr

[
V −1
λ

(
λ(·) − y(·)

λ

)>
U−1
λ

(
λ(·) − y(·)

λ

)]

+
l∑

i=1

k∑
j=1

(
tr

[
V −1
aij

(
a

(·)
ij − y

(·)
ij

)>
U−1
aij

(
a

(·)
ij − y

(·)
ij

)]
+ n log|Uaij |+ di log|Vaij |

)
+ n log|Uλ|+ k log|Vλ|

(45)

where ρ = 1
σ2
N

and ‖·‖F represents the Frobenius norm4.

Corollari 5.1. The optimization problem obtained in Definition 4.1 is a particular
case of the above model. Specifically, it is the case for n = 1, where the recoverd
tensor is symmetric and the priors are deterministic instead of following a random
process. A regularization term has also been appended.

5.2 Discussion of the model

We have described a Bayesian approach for recovering a tensor with some cor-
relations given by a Gaussian process. What we have described as a correlated

4Given A ∈ Rm×n the Frobenius (or Hilbert-Schmidt) norm can be defined in various ways:

‖A‖F :=

√√√√ m∑
i=1

n∑
j=1

|aij |2 =
√

trace(A∗A) =

√√√√min{m,n}∑
i=1

σ2
i

where A∗ denotes the conjugate transpose of A, σi are the singular values of A, and the trace
function is used.

In the case of T ∈ Rd1×···×dr , the definition of the Frobenius norm can be easily extended to

‖T ‖F :=

√√√√ d1∑
i1=1

· · ·
dr∑

ir=1

|Ti1,...,ir |2
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component can be understood as a temporal component but it can also be used to
represent, for example, different clusters of nodes in a graph.

It is important to remark that we have imposed the correlation to rely on all
the tensors T (t) and not only on a specific subset of them, an assumption that is
not normally used for time, where only past events are used to model the future.
However, we believe this simplification might still work well in many applications
and it can easily be extended to model time in a more precise way.

We can also observe that while our approach may suit a large number of methods,
it presents both computational and storage limitations. Storing a high dimensional
tensor can present a memory challange, but also making any kind of calculations
with it can be computationally expensive.

Note that another difficulty may lay in calculating the inverse of the kernels
Vλ, Uλ, Vaij and Uaij , as calculating the inverse of a matrix is, in general, a compu-
tationally expensive problem (cubical complexity) which can be unpractical when
dealing with high dimensionalities. On the other hand, it is relevant to mention that
in most of the applications it would suffice to calculate the inverse of the kernels
only once.

5.3 Applications

5.3.1 Temporal topic modeling

We have seen in Section 4 how tensor methods can be used to learn Latent Dirichlet
Allocation (LDA). We now face the problem of learning topic models along a time
component and we aim to provide a new algorithm for this problem using the
statistical framework derived in Section 5.1.

Much research has been done on how to learn topic models over time. Most
of the methods make variations of the sucessful Latent Dirichlet Allocation model
and adapt it to add a time component. Some methods such as the ones presented
in (Blei and Lafferty, 2006) and (Wang et al., 2012) assume some of the hyper
parameters of a similar to LDA model follow a Gaussian process. Other relevant
references are (Wang and McCallum, 2006), (Hong et al., 2011) and (Dubey et al.,
2013).

We assume that we have a corpus with a temporal component and we want to
find the most significant topics at each time (for example, newspaper articles for
which we want to get the most significant topics for each year). We may just learn
independent LDA models at each time, but this approach wouldn’t take advantage
of the existing data from other years. Indeed, it makes sense to assume that the
information provided by close-by years may help find more significant topics.
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Temporal LDA using a Gaussian prior

We start by making the assumption that topic models recovered using LDA which
belong to close-by times will have correlated third order moments, reason why we
design an algorithm for learning topic models by assuming that the whitened third
order moment at a time t, the tensor T (t), has a Gaussian correlation with the
whitened third order moment at another time m 6= t, T (m).

In particular, we approach the problem by focusing on a specific case of the
model described in Section 5.1. Given data from n different times, we aim to learn
a reduced and whitened version T =

∑n
t=1 T (t) ⊗ en of the composite third order

moment tensor of the LDA model, M̂ =
∑n

t=1 M̂3

(t)
⊗ et, where M̂3

(t)
is the

empirical third order moment provided in Lemma 4.1 and is calculated using only
documents that belong to time t.

We will base our approach on the hypothesis that the eigenvectors of each T (t)

follow a Gaussian process:

T (t) =
k∑
j=1

v
(t)
j ⊗ v

(t)
j ⊗ v

(t)
j +N (t), (46)

where
v

(·)
j ∼MN

(
y

(·)
j , Id,K

)
j ∈ [k], K ∈ Rn×n (47)

and the tth column of v
(·)
j , v

(t)
j ∈ Rk, forms one of the k rank-one components (or

eigenvectors) that estimate the whitened third order moment at time t, T (t) =∑k
j=1 v

(t)
j ⊗ v

(t)
j ⊗ v

(t)
j +N (t), y

(·)
j is the expected value of v

(·)
j and N (t) is some Gaus-

sian noise.

The matrix K ∈ Rk×k can be calculated as a kernel matrix that depends on the
time component. Many kernel functions have been derived and finding the most
appropriate one for each problem is, in general, a difficult problem. While many
of them may be suitable for approaching time series, we suggest a Radial Basis
Function Kernel (RFBF kernel) as a starting point. For more information about
kernels see (Rasmussen and Williams, 2005).

The RBF kernel on two samples x and x′, represented as feature vectors in

some input space, is defined as K(x,x′) = exp
(
− ||x−x

′||2
2σ2

K

)
where ||x − x′||2 may

be recognized as the squared Euclidean distance between the two feature vectors
and σK is a free parameter. In our case, we first define the number of times we
want to learn, n. Then, using constant vectors wi = [i . . . i]> ∈ Rn, we define
our kernel matrix K ∈ Rn×n as the matrix which element in the position (i, j) is

Kij = exp
(
− ||wi−w′j ||2

2σ2
K

)
.

Note that this kernel gives more correlation to LDA models that are close in
time, and this correlation decreases exponentially as the time difference increases.
We can use this model to model the correlation between the data that belong to
different times.
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The model

Our new approach could be understood as trying to reproduce a multiple LDA
model where the Dirichlet priors are correlated between them. A valid graphical
model for this approach, assuming only two times were given, t1 and t2, could be
the one given in Figure 4.

Unfortunately, we can’t derive a statistical model for recovering the parameters
of n LDA models using tensor methods and a Gaussian prior for the Dirichlet priors
due to the whitening step to reduce dimensionality.

A true statistical model for recovering the composite whitened tensor T could be
designed by imposing that the Gaussian prior is on the word-topic matrix instead
that on the eigenvectors of the whitened tensors T (t).

In this case, looking at Section 4.6 we can see that instead of adding a Gaussian
normalization to our optimization function (from the assumption that the eigen-
vectors of the whitened tensors follow a Gaussian process) we would have to add a
normalization for a different distribution.

More precisely, from Equation (32) we obtain that W (t)>β(t) = V (t), where W (t)

is the whitening matrix at time t and V (t) ∈ Rk×k is the matrix whose ith column is
the ith eigenvector of the whitened third order moment T (t). This means we would

have to calculate the distribution of the random matrices V
(·)
i := v

(·)
i =

(
W

(·)
i

)>
β

(·)
i .

Even if we assume that β
(·)
i is normally distributed,

(
W

(·)
i

)>
β

(·)
i is the product of

two non-independent random variables that seems unapproachable.

We shall remember that W (t) = U
(t)
M2,k

Σ
(t)
M2,k

, with U
(t)
M2,k

and Σ
(t)
M2,k

the matrix
whose columns are the first k singular vectors and singular values of the second order
moment M

(t)
2 , respectively. Hence, as β

(t)
i are the eigenvectors of the third order

order moment M(t)
3 (recall Theorem 4.1),

(
W

(·)
i

)>
and β

(t)
i are not independent.

Learning topic models over time

We now use Equation (45) to define our optimization problem to learn topic models
over time.

Definition 5.1. Our optimization problem is given by

argmin
v
(·)
j , j∈1:[k]

ρ

∥∥∥∥∥
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(
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)
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∥∥∥∥∥
2

F

+ 3
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j=1

tr

[
K−1

(
v

(·)
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(·)
j

)> (
v

(·)
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(·)
j

)]
+ θ
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∥∥∥∥∥
k∑
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⊗3v
(t)
i

∥∥∥∥∥
2

F

(48)

where v
(·)
i are the unknown components to be estimated, and ρ, θ > 0 are some

fixed parameters. As for the matrices y
(·)
j , they are theoretically the expectation of
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Figure 4: Graphical model representation of a multitime LDA with correlated
Dirichlet priors for only two times t1 and t2.

the matrices v
(·)
j , reason why we will solve the problem by using a two step iterative

algorithm where y
(t)
j will always be approximated by the mean of the estimated

neighbooring points of v
(t)
j at the previous iteration,

v
(t−1)
j +v

(t+1)
j

2
if t 6= 1, n, and v

(2)
j

or v
(n−1)
j if t = 1 or t = n, respectively. The algorithm will first calculate {v(·)

j }kj=1

by reconstructing each of the tensors without any Gaussian correlation, and will
follow as described above.

In order to encourage orthogonality between the eigenvectors of the three-order
tensors on each time t ∈ [n] and similarly to Definition 4.1, we add the extra term

θ
∑n

t=1

∥∥∥∑k
j=1⊗3v

(t)
i

∥∥∥2

F
, where the parameter θ > 0 is a weight.

Define V (·) :=
∑n

t=1 V
(t) ⊗ ei, where V (t) =

[
v

(t)
1 | . . . |v

(t)
k

]
.

Lemma 5.1. The optimization problem given in Definition 5.1 is equivalent to
minimizing a loss function L(V (·)) := 1

nx

∑
x∈X Lx(V

(·)), where Lx(V
(·)) is the loss

function evaluated at the document x, and is given by

Lx(V
(·)) :=(ρ+ θ)

∥∥∥∥∥
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(
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(
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)] (49)
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Proof. We have
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∥∥∥∥∥
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Now, since ρ
∥∥∥∑n

t=1

(∑
x∈X T

(t)
x
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⊗ et
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F
is a constant, the optimization problem

in Definition 5.1 becomes
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Lemma 5.2. The partial derivatives of Lx(V
(·)) are:
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(·))
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(·)
j

=
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t=1

6

(
(1 + θ)

k∑
p=1

〈vp, vj〉2 vp −
k∑
i=1

(
v>j Tx,(:,:,i)vj

)
⊗ ei

)
⊗ et

+ v
(·)
j

(
K−1

)>
+ v

(·)
j K

−1

(52)

Proof. We first calculate the derivative of the first two terms of the sum in Equa-
tion (49). As ∀i, j v

(m)
i is a constant with respect to v

(t)
j ∀m 6= t, it suffices to

calculate the derivative of (ρ+ θ)
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respect to v(t) for each t ∈ [n], which we have already calculated in Lemma 4.3. The
new derivatives are:
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We can calculate the derivative of the last term in Equation (49) by reducing
the problem to one of one dimensional calculus in the following way:
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However, in this case the closed form ∂
∂X

tr
(
XAX>

)
= XA>+XA from (Petersen

and Pedersen, 2012) allows us to find the same result in a faster way:
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Putting together the two terms, we finally obtain:
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Last, using the derivative of the optimization function we get the iterative update
for the stochastic gradient descent

ṽ
(·)
i,(n+1) ← ṽi,(n) − αn

∂Lx(V
(·))

∂v
(·)
i

∣∣∣∣
Ṽ

(·)
(n)

, ∀i ∈ [k] (58)

where αn is the learning rate at the nth iteration, the derivatives are calculated
for each document x and ṽ

(·)
i,(n) contains the learnt eigenvectors i at iteration n.

The final method is summarized in Algorithm 1.

5.3.2 Temporal collaborative filtering

In Section 3.4 we have reviewed how LDA can be used for collaborative filtering.
Now we aim to analyse how our previous model would work for temporal collabo-
rative filtering.

Typical collaborative filtering methods can be categorized in two classes: neigh-
borhood methods and factorization methods. While, in general, factor-based algo-
rithms are considered more effective than those based on neighborhoods, these two
classes are often complementary and the best results might be obtained by blending
them.

Assume we aim to solve the movie recommendation problem (in this section we
will talk about movie recommendations, but we could equivalently be talking about
general items instead). Given a user, and their rating for some movies, we aim to
approximate what rating would give the user to other movies that he or she has not
rated yet but that have already been rated by other users. For each user ai and each
movie bj we observe a rating rij. Each instance of the data is a tuple (ai, bj, rij).
Assuming there are n users and m movies, we can organize this tuples into a sparse
matrix R ∈ Rn×m by using ai and bj as the indexes of R: Rai,bj = rij. From now
one we will denote Rai,bj as Rij.

Probability Matrix Factorization

One of the representative factor-based methods is Probabilistic Matrix Factoriza-
tion (PMF) (Salakhutdinov and Mnih, 2011), which assigns a d-dimensional latent
feature vector for each user and movie, ui ∈ Rd and vj ∈ Rd, respectively, and each
rating as the inner product Rij = u>i vj. As d is chosen to be much lower than the
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Algorithm 1 Overall approach for learning temporal LDA with k topics.

Input: Observed data: document samples on each timestamp t ∈ {1, . . . , n}
Output: Learned latent variable model (word-topic matrix) and Dirichlet hyper-

parameters, for each time t
1: for t in {1, . . . , n} do

2: Compute the empirical second order moment M̂(t)
2

3: Use M̂(t)
2 to calculate the whitened empirical third order tensor T (t)

4: Compute an orthogonal CP decomposition of rank k of T (t),
T (t) ≈

∑k
i=1 ṽ

(t)
i ⊗ ṽ

(t)
i ⊗ ṽ

(t)
i

5: end for
6: Initialize j ← 0
7: Comment: In general, define Ṽ

(·)
(j) as the tensor that approximates

∑k
i=1 V

(t)⊗et
at iteration j. Let ε be some fixed parameter and αj the learning rate at iteration
j

8: Initialize Ṽ
(·)

(0) =
∑k

i=1 ṽ
(·)
i ⊗ ei,

Y
(·)

(0) =
∑k

i=1

[
ṽ

(2)
i

ṽ
(1)
i +ṽ

(3)
i

2
. . .

ṽ
(m−1)
i +ṽ

(m+1)
i

2
. . . ṽ

(t−1)
i

]
⊗ ei

9: while
∥∥∥Ṽ (·)

(j) − Ṽ
(·)

(j−1)

∥∥∥
F
> ε or first iteration do

10: Calculate the derivatives G(j) of the loss function L(Ṽ
(·)

(j) ) where Y
(·)

(j) is used
as the mean of the Gaussian prior

11: Update Ṽ
(·)

(j+1) ← Ṽ
(·)

(j) − αjG(j)

12: Update

Y
(·)

(j+1) =
∑k

i=1

[
ṽ

(2)
i,(j)

ṽ
(1)
i,(j)

+ṽ
(3)
i,(j)

2
. . .

ṽ
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+ṽ
(m+1)
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2
. . . ṽ

(t−1)
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]
⊗ ei,

(each ṽ
(l)
i,(j) is obtained from Ṽ

(·)
(j) )

13: Update j ← j + 1
14: end while
15: for t in {1, . . . , n} do

16: Post-processing: Use Ṽ
(·)

(j+1) to calculate the word-topic matrix β(t) and recover
the Dirichlet hyperparameters

17: end for
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number of movies in the dataset, this method consists of performing a low rank
approximation of the ratings matrix R. It is also equivalent to performing Principal
Component Analysis or SVD decomposition of the matrix R.

Formally, the model is defined by the following conditional distribution:

p(R|U, V, α) =
n∏
i=1

m∏
j=1

[
N
(
Rij|u>i vj, α−1

)]Iij
(59)

where U = [u1| . . . |un] ∈ Rd×n and V = [v1| . . . |vm] ∈ Rd×m, N denotes the
Gaussian distribution, α is the observation precision and Iij is the indicator that
Rij has been observed.

Probability Tensor Factorization

In (Xiong et al., 2010) the idea of PMF is extended to model a time evolving
behavior. Unlike PMF, each entry Rijk of a tensor R is refered with the tuple
(i, j, k), where each of the three dimensions are used to represent users, movies and
time, respectively. Each entry of the third order tensor R is modeled as:

Rijk ≈ 〈ui, vj, wk〉 :=
d∑

m=1

uimvjmwkm (60)

where ui and vj follow the previous notation and wk is the kth column of a
matrix W ∈ Rd×l. Denote U = [u1| . . . |un] ∈ Rd×n and V = [v1| . . . |vm] ∈ Rd×m.
Equivalently, it follows that

R =
d∑

m=1

ūi ⊗ v̄i ⊗ w̄i (61)

where ūi, v̄i and w̄i represent the ith row of the matrices U, V and W , respectively.

If we assume W determines a time component, then each rating does not only
depend on how similar a user’s preferences and an item’s features are, like in PMF,
but also on how much they match with the current temporal trends.

In this case, the randomness for each rating is modeled as

Rijk|U, V,W ∼ N
(
〈ui, vj, wk〉 , α−1

)
(62)

with the assumption of the following prior distributions:

ui ∼ N (0, σ2
UId) i = [n]

vj ∼ N (0, σ2
V Id) j = [m]

wk ∼ N (wk−1, σ
2
W Id) k = [l]

w0 ∼ N (µW , σ
2
0Id)

(63)
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where σ0, σU , σV , σW are some fixed scalars, µ ∈ Rd is given and Id determines
the identity matrix of size d× d.

Finally, the model is recovered by maximizing the log-posterior distribution:

log p(U, V,W,w0|R) ∝ log p(R|U, V,W,w0) + log p(U, V,W,w0) (64)

This model is named Probability Tensor Factorization (PTF) and it can be seen
as a slightly modified case of our previously described tensor decomposition with
correlated parameters. Unlike for topic modeling, PTF will need to learn many
non-symmetrical second order tensors (matrices) assuming there is a Gaussian cor-
relation between them. It is important to note that in this case the correlation
is described by a Brownian motion process, reason why the Gaussian correlation
will only be determined by the previous times. We could have also followed this
approach in the previous sections, as it might adjust better to a temporal approach,
but the overall idea of the previously described algorithm will not change and it can
easily be adapted.

Another difference between PTF and our framework is the random prior of each
rank-one component contained in U and V . While this seems to add a signifi-
cant difference to the model, it will only add some extra regularization terms to
the log-posterior distribution. The only complication arises due to the difficulty
of estimating all the parameters in Equation (63), a problem that instead of be-
ing approached using (stochastic) gradient descent is solved with a fully Bayesian
approach which uses Gibbs Sampling and a Markov Chain Monte Carlo method.
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6 A dataset for temporal topic modeling

All kind of datasets are available online and it is not normally difficult to find one
for any kind of applications. In the case of topic modeling, it’s easy to find an
already preprocessed corpus or even a collection of documents in the bag of words
format.

Unfortunately, this is not the case for temporal topic modeling. Even though
much research has been done on temporal topic modeling, most of the datasets
have been directly adapted from the original corpus and kept private, what leads to
non-comparable results and a large amount of time spent arrenging and formatting
the datasets.

Typical datasets for temporal topic modeling include papers of some specific
conferences or magazines (for example, NIPS papers) or its abstracts, personal
emails of some of the authors of a paper, tweets obtained using the Twitter API
and the transcripts of the State of the Union addresses. We will work with this last
dataset.

A transcript of all the State of the Union addresses from 1790 to 2006 can be
obtained from the project Gutenberg website 5. This dataset is provided as a text
file and the addresses are separated by three stars ”***”. In order to use this dataset
for LDA, we are interested in formatting it as a bag of words, so that the whole
corpus is represented using rows with the format ”x y z” where x is an index
that identifies a document, y is an index that identifies a word of the vocabulary
and z is the number of times that word y appears in document x. Only pairs of x, y
and z where z is not zero are stored.

6.1 Processing the dataset

We use Natural Language Toolkit (NLTK) 6, a powerful Python library for natural
language processing. The first step for processing the text file consists of tokenizing
the words, so that we obtain an array of words that we can work with. This allows
us to filter some unuseful words, characters or numbers that lack any meaning using
regular expressions. After, we split the addresses using the ”***” characters as the
divider between them, downcase all the text and remove stopwords, which are words
that are very used in english and that lack any meaning (articles, prepositions...).

Next, following the work in (Wang and McCallum, 2006), because the topics
discussed on each address are so diverse and in order to improve the robustness
of the discovered topics, we increase the number of documents in the dataset by
splitting each transcript into 3-paragraph “documents”.

The final result is written in bag-of-words format and is stored in a total of 214
text files, one for each address, and two extra files, one containing the vocabulary
(around 22,000 words) and another one which contains the number of documents

5http://www.gutenberg.org/ebooks/5050
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on each address.

6.2 Publication of the dataset

We make our new dataset, as well as the Python and R code used to create it,
publicly available using Github, so that it can be modified and improved in the
future. The project can be found at

https://github.com/ourii/Temporal-State-of-the-Union-dataset

6http://www.nltk.org/
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7 Topic modeling visualization

Representing high dimensional data is in general a difficult problem. Most of the ap-
proaches consist on projecting the data to some low dimensional space or visualizing
only a subsample of the whole set.

Some research has been focusing on understanding human perception about col-
ors, shapes and size, reason why many research groups have been working on the
design of kernels that can assess how distance is perceived by humans between
different objects.

Crowd-sourcing is one of the most popular tools to assess human perception. A
common aproach is to show users pairs of objects and ask them to evaluate the
distance they perceive there is between each pair. Afterwards, the results have to
be evaluated and kernels can be built to represent the perceived distance between
objects of different colors, shapes and size by using different judgement types. Ex-
amples of these kernels, extracted from (Demiralp et al., 2014), are given in Figure 5.

Figure 5: Heat plot of the estimated bivariate kernels between objects of different color
and shape.

7.1 Representing topic modeling with parallell coordinates

In the case of topic modeling we are interested in visualizing the word-topic prob-
ability matrix, a matrix that contains the probability of each word given each of
the recovered topics of a corpus. The word-topic matrix is formally defined as
A ∈ RV×H such that Aij = P (xi|hj), where hj is the topic j, xi is the word i, H is
the number of topics and V is the vocabulary size.
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We are interested in a visualization that shows how a LDA model is learned
using tensor methods. Specifically, we focus on a project that is publicly available
on Github7, which performs a similar process than the one described in Section 4
but using alternating least squares instead of stochastic gradient descent. The
algorithm performs learning and inference of topic modeles via method of moments
using tensor decomposition on a single machine. Specifically the code first performs
a pre-processing which implements a whitening transformation for matrix/tensor
orthogonalisation and dimensionality reduction and then runs Alternating Least
Squares (ALS) to reconstruct the whitened third order moment. Our goal is to
represent the recovered topics on each step of the ALS algorithm and evaluate the
convergence.

While an animation seems to be the most logical way to represent each iteration
of the algorithm, each step presents a challenging visualization problem. We choose
parallell coordinates as our visualization method.

In parallell coordinates we aim to represent a set of points that belong to a n-
dimensional space. First, n parallel, equally spaced and vertical lines are drawn.
Each of the lines represents one of the n dimensions, and each data point is repre-
sented as a set of n vertices that are drown on each of the n lines. This vertices,
which represent the coordinates of each point, are joined with the vertices corre-
sponding to the same data point in contiguous dimensions.

In the case of topic modeling, each of the lines (or dimensions) represent one of
the learned topics, and vertices represent the probability of each word conditional
on the topics (each vertex corresponds to the probability of a word given a specific
topic).

We aim to represent the topics found in a dataset of New York Times arti-
cles (Lichman, 2013). This dataset contains approximately 102, 660 distinct words,
300, 000 documents and 100, 000, 000 words in total.

In order to have a clean visualization we choose to run our topic modeling algo-
rithm with 20 topics (the algorithm will detect up to 20 topics in our corpus), and
we choose to represent only 5 of them, which we tag as economy, education, sports,
online social media and crime reports. For each of these 5 topics, represented by
their most common words, we choose its top 10 most probable words, each of them
being a data point of our 20-dimensional space. To facilitate the visualization of
the datapoints we use different colors to represent each topic, and each of the words
is painted with the color of the topic they belong to.

7.2 Implementation

We implement our parallell coordinates visualization on a website designed with
HTML and CSS.

7https://github.com/FurongHuang/TensorDecomposition4TopicModeling
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7.2.1 Running the algorithm on a web browser

We first considered implementing the topic modeling algorithm on the web browser
using JavaScript, but the memory constrains of most web browsers made us discard
this possibility. Indeed, before starting to recode the project into JavaScript, we
tried to compile the C++ code into JavaScript using Emscripten8 but memory
contrains were too tight for our purposes.

Emscripten is a source-to-source compiler which takes LLVM bitcode as input,
generated from the C++ code, and compiles that into JavaScript, which can be run
on the web. Unlike C or C++, JavaScript is an interpreted programming language,
what usually implies lower performance. One of the advantages of Emscripten is
that the generated JavaScript code has always been preprocessed and optimized
before running, what makes it, in general, much more efficient than hand-written
JavaScript code.

In our case, and as expected, JavaScript code generated by Emscripten run slower
than the C++ code (around 10 times slower). However, the main limitation was
found in the amount of memory that web browsers can handle, as it wasn’t enough
to load our training dataset (we were running the code with the same New York
Times bag of words dataset described before).

As a conclusion, it was a good decision to not start recoding some several thou-
sand lines of C++ code into JavaScript, as we would probably have eventually run
into the same barriers we found using Emscripten. Afterwards, we considered two
alternatives: either running an executable file on the browser or just visualizing
some previously generated data. As getting results on the New York Time dataset
was a time consuming process (it easily takes more than 1 minute using OSX on a
Macbook Pro with 2.9 GHz Intel Core i5 and 16 GB 1867 MHz DDR3) we finally
decided to just make the visualization using previously generated data.

7.2.2 Visualization using D3

We proceeded to implement our parallell coordinates visualization using JavaScript.
As it is one most used and powerful libraries for visualization, we decided to use
D3 to represent the parallel coordinates.

D3 9 (Data-Driven Documents) is a JavaScript library for producing dynamic,
interactive data visualizations in web browsers. It makes use of the widely imple-
mented SVG, HTML5, and CSS standards. It is the successor to the earlier Protovis
framework.

In order to represent parallell coordinates we use a library of D3 called Parco-
ords10. This library provides a basic parallell coordinates template that we modified
to satify our needs and represent our data. In our visualization many iteration steps
of the ALS algorithm are represented using a timer function and adding some but-
tons to pause, stop and resume the animation. Some on-hover interactive efects

8https://github.com/kripken/emscripten
9https://d3js.org/

45



that trigger when the mouse is moved to one of the lines or vertices of the plot were
also added.

The final interactive visualization can be found on the following link:

http://newport.eecs.uci.edu/anandkumar/Lab/Lab sub/NewYorkTimes3.html

And its source code has been made publicly available at

https://github.com/ourii/NYTimes visualization demo/tree/master

In Figure 6 we aim to provide overview screenshots of our visualization as well
as of its interactive characteristics and in Figure 7 we provide screenshots of the
representation that aim to show some of its states on a few different number of
iterations (which were activated using the Play, Pause and Stop buttons).

Last, it is worth mentioning that the visualization was cited in the issue #104
of the Data Science Weekly newslatter11.

10https://syntagmatic.github.io/parallel-coordinates/
11http://www.datascienceweekly.org/
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Figure 6: Overview of our visualization for topic modeling.

(a) Screenshot of the topic modeling visualization described in Section 7.2.2.

(b) Words and their corresponding topics are highlighted on hover (when the mouse is placed on
one of the lines of each word).
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Figure 7: Top words found on 5 of the topics detected by LDA using tensor methods.

(a) Random initialization before running ALS.

(b) Word-topic distributions after 1,000 iterations.

(c) Word-topic distributions after 5,000 iterations.

(d) Word-topic distributions after 10,000 iterations.
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8 Conclusions

This report summarizes part of the work done during a stay of 6 months at the
University of California Irvine. We start by reviewing Latent Dirichlet Allocation
(LDA) and explain how tensor methods can be used to learn LDA. Next, we dis-
cuss and implement a variation of an already existing method for learning LDA
using tensor methods, and present a new approach for temporal topic modeling.
Finally, we publish a new dataset for temporal topic modeling as well as present an
innovative visualization for the recovered word-topic probabilities.

Further research could involve an implementation of Algorithm 1, for which
we have already provided a great part of the code in Section 4.7.1. It would be
interesting to test how effective the method is and how strongly the hypothesis of
Gaussian correlation between the eigenvectors is transmitted to the learnt topics.
Note that, to make this experiments, we have already arranged and made publicly
available a dataset for temporal topic modeling, as described in Section 6.

It would also be interesting to make more experiments on the effectiveness of
tensor methods for learning LDA. While some work, such as Table 1, show already
good results in terms of the topics recovered using tensor methods, we believe
greater comparison with the topics found using other methods should be made. A
comparison with variational methods can easily be done using the code from the
LDA-C project: http://www.cs.columbia.edu/∼blei/lda-c/.

We have found that our estimations of the eigenvectors of the whitened third
order tensor have difficulties to reconstruct the original tensor. Precisely, we have
observed that the estimated eigenvectors allow for a good recovery of the tensor
only for k ≤ 3, being k the number of topics. For k > 3, the Frobenius norm
between the recovered tensor and the whitened empirical third order moment is of
the order of many powers of 10 and an inspection of the two tensors doesn’t allow
for the discovery of many similarities. However, the recovered topics keep being
meaningful.

This lack of reconstructing capacity is due to the fact that we try to reconstruct
the tensor using only k eigenvectors, that is to say, we reconstruct a rank-k tensor,
what seems to obviate some of the complexity of the original tensor. This behaviour
is why we believe greater comparison between different methods for learning LDA
should be a next step, although we have seen that tensor methods can undoubtedly
recover significant topics. Indeed, while a rank-k tensor may not be enough to
recover all the complexity of the original empirical whitened third order moment,
it might be enough to summarise the main trends of the corpus and work as a
dimensionality reduction method.

Last, I would like to add some few words to say how difficult it has been to
cover some of the parts of this report. As a totally non initiated to research that
I was, I sometimes found research papers (which are the base of this report) to
be little explanatory and hard to reproduce, and tensor problems usually require a
very meticulous notation that I found difficult to follow at the beginning.
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Appendix A Latent variable models

Researchers in a wide range of disciplines often seek a better understanding of the
relationship of two observed variables by trying to discover whether their relation-
ship can be explained by a third variable. Latent variable models are statatistical
models that try to find an explanation to the relation between the observed variables
using latent or hidden variables.

Let X = [X1 . . . Xn] represent the manifest or observed variables and Y =
[Y1 . . . Yn] denote the latent variables. Normally the number of latent variables is
much lower than that of the manifest variables, and latent variables models can be
interpreted as dimensionality reduction methods.

Latent variables assume that the manifest variables X have a joint probabil-
ity distribution conditional on the latent variables Y . If we assume both X and
Y are continuous random variables and that the density function of Y is g, the
unconditional density of X is given by

f(X) =

∫
p(X|Y )g(Y )dY

where p(X|Y ) is the joint probability distribution of X conditional on Y .

In general, we are interested in estimating the density functions p and g in order
to learn the relationships between our variables. The crucial assumption to make
in order to solve the problem is that of conditional independence, which states
that the observed variables are independent given the values of the latent variables.
Equivalently, we can write:

p(X|Y ) = p1(x1|Y ) · · · pn(Xn|Y )

Note that the property of conditional independence means that the relation be-
tween the manifest variables is due to the latent variables. It is also normally
assumed that we know the distribution of X and Y except some paremeters that
we need to infer.

More information on latent variable models can be found in (Everett, 2013).
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Appendix B The matrix Normal distribution

The matrix normal distribution is a probability distribution that is a generalization
of the multivariate normal distribution to matrix-valued random variables.

The probability density function for a random matrix X (n× p) that follows the
matrix normal distribution MN n,p (M,U,V) has the form:

p (X |M,U,V) =
exp

(
−1

2
tr
[
V−1(X−M)TU−1(X−M)

])
(2π)np/2|V|n/2|U|p/2

where tr denotes trace, | · | denotes the determinant and M is n× p, U is n× n
and V is p× p.

Unlike the multivariate Normal distribution, which produces random vectors, the
matrix Normal distribution draws random matrices that depend on three pareme-
ters: one mean matrix M and two covariance matrices U and V, which are respon-
sible for the covariances within the elements of each column and row of the random
matrices, respectively.

To understand how the matrix Normal distribution works and the role of each of
the two covariance matrices we have made a simulation using R, for which we have
represented the results in Figure 8.
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Figure 8: Heat plot of a 10 × 10 matrix drawn from a Matrix Normal distribution
MN 10,10 (0,A,B) with different covariance matrices A and B which infer correlation in
different directions between the elements of the random matrix. Given a matrix V ∈
R10×10 determined by (V)ij = 1 if i = j ∧ 0.95 otherwise, each of the subplots has
been drawn from the following distributions: Figure 8 (a) MN 10,10 (0, Id,V), Figure 8
(b)MN 10,10 (0,V, Id), Figure 8 (c)MN 10,10 (0,V,V), Figure 8 (d)MN 10,10 (0, Id, Id)
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