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Abstract  

The energy industry is facing substantial challenges that require the fostering of 
innovation. In this paper we analyse the main drivers of R&D investment and obstacles 
to innovation in this industry. We examine, firstly, whether the stated R&D objectives 
pursued by firms play a role in their R&D effort. Secondly, we analyse the effects of 
financial, knowledge and market barriers on the innovation outcomes of the firms. The 
data is taken from the Technological Innovation Panel (PITEC) for Spanish firms for 
the period 2004-2010. We use a structural model with three equations corresponding to 
the decision to carry out R&D or not, the R&D effort, and the production of 
innovations. The results of the econometric estimations show, first, that R&D intensity 
is positively related to process innovation. Second, the main barriers that hamper 
innovation in the energy industry are related to market factors while financial and 
knowledge obstacles are not significant. 
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1. INTRODUCTION 

 

The energy sector is facing major challenges in most of its activities and segments. The 

main challenges are related to the mitigation of climate change, to increasing efficiency 

and to guaranteeing energy security. Many recent reports and papers (Anadon et al. 

2011; Nakicenovic and Nordhaus, 2011; OECD, 2011; Anadon, 2012; IEA, 2012) have 

stressed that fostering innovation is crucial to meeting these challenges. Nevertheless, 

the level of R&D investment and innovation in the energy industry remains quite low 

(GEA, 2012).  

 

Many papers have analysed the determinants of R&D and the barriers that firms face in 

the manufacturing sector (Griffith et al., 2006; Savignac, 2008; Cohen, 2010). In 

addition some recent papers have examined the effects of the liberalisation and 

restructuring of the electricity markets on R&D investments (Jamasb and Pollit, 2008; 

Sanyal and Cohen, 2009; Salies, 2010; Kim et al., 2012).  

 

The lack of data on R&D activities in the energy industry has made the determinants of 

R&D and innovative behaviour in this sector difficult to analyse (Jamasb and Pollit, 

2008; European Commission, 2009a; Anadon et al., 2011; Gallagher et al., 2012). 

Therefore very few papers have examined R&D drivers for the energy industry (Salies, 

2010; Kim et al., 2012; Sterlacchini, 2012) and, to our knowledge, the effect of the 

whole set of obstacles to innovation in the energy industry has not been empirically 

analysed.  

 

The main objective of this paper is to analyse the forces that drive R&D and the barriers 

that firms face in innovating in the energy industry. First, the analysis distinguishes 

between, on the one hand, those factors influencing the decision about whether to do 

R&D or not, and on the other, those that affect the relative amount of resources devoted 

to R&D. Second, the effects of financial barriers and other potential obstacles to 

innovation connected with knowledge and market factors are examined. In particular, 

we analyse whether the existence of dominant incumbents is affecting innovation.  

 

The empirical analysis is carried out using information provided by the Spanish 

Technological Innovation Panel (PITEC) for the period from 2004 to 2010. This period 
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is characterised by a competitive situation after the main changes in the regulation of the 

energy industry and the liberalisation process it underwent in the late nineties. In 

addition, in this period, all the energy firms in Spain were privately-owned. The law 

liberalising the electricity sector was passed in 1997 and there have been no state-owned 

energy firms in Spain since 1998.  

 

The identification of the R&D drivers and the factors that hamper innovation in the 

energy industry has significant policy implications that are important for the design of 

adequate instruments that can incentivize R&D investment in this sector. 

 

After this introduction, the paper is organized as follows. The next section provides a 

brief discussion of the main characteristics of R&D and innovation activities in the 

energy industry and reviews the empirical literature. The third section describes the 

database, presents the specification of the model and explains the variables used. The 

fourth section presents the econometric estimation and discusses the estimation results. 

The paper ends with a concluding section. 

 

 

2. R&D AND INNOVATION IN THE ENERGY INDUSTRY 

 

The empirical literature on R&D and innovation in the energy industry has been 

fundamentally oriented towards explaining how the liberalisation process has influenced 

R&D projects (Dooley, 1998; Markard and Truffer, 2006; Jamasb and Pollit, 2008; 

Sanyal and Cohen, 2009; Salies, 2010; Kim et al., 2012; Sterlacchini, 2012; Sanyal and 

Ghosh, 2013). The empirical study of the drivers, and more specifically the obstacles to 

investment in R&D and innovation in a market situation, has received less attention and 

there are fewer studies (Salies, 2010; Kim et al., 2012; Sterlacchini, 2012). 

 

Among drivers, the empirical studies on economics of innovation (Cohen, 2010) have 

extensively analysed the effects of the size of firms and shown that it is a barrier to 

entry for deciding whether to invest in R&D. In the energy sector this barrier is more 

evident because the structure of the market is still highly concentrated. This can be 

explained by the high fixed costs of nuclear, thermal and large-scale hydro-electric 

technologies, even though a sustained reduction in the indices of concentration in the 
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generation market can be seen with the entrance of generating plants for renewable 

energy and an increase in competition in the retail market with the entrance of new 

suppliers. The literature shows that the size of the energy companies affects taking a 

decision to invest in R&D and the objective of the project. The empirical studies 

conclude that size positively influences the decision to perform R&D (Sanyal, 2007; 

Jamasb and Pollit, 2008; Sanyal and Cohen, 2009; Salies, 2010; Salies and Nesta, 2010; 

Kim et al., 2012). 

 

The main barriers considered in the literature on economics of innovation are cost, 

knowledge and market factors. The first of these, financial constraints, is related to 

characteristics of innovation projects such as the high degree of uncertainty or the 

existence of information asymmetries. These market failures may explain the existence 

of financial barriers and particularly difficulties in obtaining external funding (Hall, 

2002). Other factors, more related with a systemic view of innovation, such as the lack 

of qualified personnel, or a market dominated by established enterprises, may also 

hamper innovation activity (OECD, 2005; D’Este et al., 2012; Blanchard et al., 2013). 

The specific characteristics of R&D activities in the energy industry such as the large 

scale of the projects or incumbent inertia with the dominance of existing technologies 

(Anadon et al., 2011; OECD, 2011) may explain the influence of specific factors on the 

decision to innovate or on the expected results of innovation activities. 

 

The empirical analyses of R&D and innovation in the energy industry have mainly 

analysed the costs barriers. The empirical results show that firms are not financially 

constrained as their access to liquidity does not intervene in their R&D and innovation 

investment decisions (Salies, 2010). Jalivand and Kim (2012) observe that investment in 

innovation and R&D is not considered by utilities to be a strategic investment, and was 

not even before the liberalisation process, in contrast to companies in the technology 

intensive sector. On the other hand there is a notable extensive commitment to capital 

expenditures investment. Slack resources have been invested in specific assets - 

generation technologies and network - in improvements in the efficiency of operating 

technologies and in increases in productivity. From the results obtained it can be 

inferred that there is a trade-off between investment in specific assets and investment in 

R&D and that firms evaluate the opportunity cost of investment in R&D. In spite of the 

financial tension that can be found in the work of Jalivand and Kim (2012), recent 
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studies do not obtain significant results when attempting to explain the possible effects 

of financial constraints on R&D (Salies, 2010; Sterlacchini, 2012). 

 

The technological mix of energy generation influences R&D and innovation (Markard 

and Truffer, 2006; Salies, 2010; Anadon, 2012; Sterlacchini, 2012). The entry of new 

agents with low carbon emission technologies has meant a change in the composition 

and the dimension of R&D. The prevalent technology, widely dominated by the 

incumbent firms, can encourage or impede innovative projects in alternative 

technologies. In the case of hydro-electric energy it is shown that it appears to be 

associated with innovation and R&D in renewable energy while nuclear and fossil 

energies act as a barrier to the entry of radical innovations in renewable energies 

(Markard and Truffer, 2006; Salies, 2010). In other words, the technological mix is a 

barrier to entry when the incumbent firms concentrate their portfolio in nuclear and 

fossil energies. Faced with this, energy policy focused on the fostering of renewable 

energies implements support mechanisms designed to compensate for production costs 

in a precompetitive phase. This policy has an asymetric effect on R&D and innovation, 

encouraging projects related to new technologies as opposed to projects in the fossil and 

nuclear energy source sectors. (Salies and Nesta, 2010). These sectors concentrate their 

R&D on the development and registration of patents for R&D projects carried out in 

previous periods and they focus on applications and on the introduction of innovations 

in their existing assets (Jamasb and Pollit, 2008; Salies and Nesta, 2010). 

 

The literature distinguishes between two types of objective and R&D and innovation 

project. The first type, most frequently carried out by firms, is targeted at immediate 

applications and short-term returns. These projects seek to improve the efficiency of the 

industrial process through incremental innovation or to enable innovative technological 

complementarities that in turn may demand new organisational strategies and the 

expansion of markets. R&D in smart grids, smart metering and wind and solar energies 

brings efficiency, greater profitability and short-term competitive reinforcement. R&D 

in capturing carbon dioxide emitted by thermal power plants also shows the same 

characteristics as it reinforces the competitiveness of a conventional technology. Salies 

(2010) also includes hybrid or electric vehicles in this type of R&D. These innovations 

are incremental and their effectiveness is measured in terms of improvements in profits 

within a foreseeable period. In competitive conditions, utilities orient their R&D 
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projects towards the objective of consolidating their competitive position in relation to 

rival firms (Defeuilly and Furtado, 2000). 

 

In comparison to these projects, other R&D projects require long periods of research 

and they contribute to potentially disruptive innovations directly focused on climate 

change mitigation such as fuel cell batteries, tidal turbine systems, storage, and biomass 

gasification (Salies, 2010). Some of these projects require large amounts of resources, 

scientific knowledge, the transmission of information between the different phases of 

the industrial process and are of a non-commercial nature, even as precompetitive 

technology. They require public policy for their implementation and public-private 

partnerships for their development (Newell, 2010; Henderson and Newell, 2011). 

Hence, in a competitive energy market, public support is crucial for R&D and 

innovation projects focused on climate change mitigation given that they have no 

possibility of being carried out privately. Meeting the challenge of climate change 

mitigation is not incompatible with the encouragement of competition and innovation in 

the utilities and a systemic focus for R&D is required so that public investment in R&D 

draws private investment to the utilities and to end-user technologies (Gallagher at al., 

2012).  

 

 

3. DATA AND MODEL SPECIFICATION 

 

The empirical analysis was carried out using the Spanish Technological Innovation 

Panel (PITEC) for the period from 2004 to 2010. PITEC is the result of collaboration 

between the Spanish National Statistics Institute and the COTEC foundation aimed at 

providing data from the Community Innovation Survey (CIS), which is carried out 

annually following the guidelines of the OECD’s Oslo Manual. The PITEC offers 

comprehensive and detailed information on the characteristics of Spanish firms and 

their innovative activities. While the CIS dataset offers a cross section, the Spanish 

PITEC overcomes this drawback by providing panel data. The dataset provides 

exhaustive information for more than 12,000 firms for the period 2004-2010 and has 

been frequently used to carry out empirical analyses on innovation (Barge-Gil, 2010; De 

Marchi, 2012).  
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Given the structure of the PITEC dataset, our definition of the energy industry includes 

all activities related with the generation, transmission, distribution and retailing of 

energy. PITEC, like the CIS statistics for other European countries, provides a lot of 

aggregated sectoral data. In particular, the data for two divisions of the NACE, namely 

electricity, gas, steam and air conditioning supply (NACE Rev. 2, 35) and Water 

collection, treatment and supply (NACE 36) are aggregated into one sector (energy and 

water). Fortunately, in Spain, all the gas and electricity companies have been privately 

owned since 1998, whereas almost all water companies are state-owned. Hence, using a 

variable for ownership, we were able to remove the state-owned firms from the sample 

of utilities included in PITEC that we believe are in NACE sector 36 (water). In this 

way we are able to restrict the analysis to the activities included in NACE 35 (energy). 

Unfortunately, however, we are not able to identify firms more precisely. 

 

In addition to this filtering process, we excluded firms that meet the three following 

conditions: they have not innovated, they do not perceive any obstacle to innovation and 

state that they do no need to innovate. With this procedure we follow that of recent 

literature on barriers and innovation and we only consider firms that are potential 

innovators, correcting for the potential sample selection bias intrinsic to this type of 

analysis (Savignac, 2008; D’Este et al., 2012; Blanchard et al., 2013, Pellegrino and 

Savona, 2013).  

 

After filtering out these firms, 410 observations are available for energy companies 

forming an unbalanced panel for the period 2004-2010. Although PITEC also provides 

information for the year 2003, these data are incomplete and, in particular, there is no 

information for the year 2003 on obstacles to innovation. Nevertheless, in the 

estimations where we use a lag of an independent variable, we have also used the data 

for 2003 to avoid information loss.  

 

As explained above, the sample includes the gas and electricity firms in all the phases of 

the industrial process. Since no deeper sectoral disaggregation is available, and because 

of confidentiality requirements, it is not possible to include any further distinction 

between the firms. In addition, it would have been interesting to include other industries 

in the analysis of R&D in the energy sector such as, for example, the manufacture of 

electrical equipment (NACE 27). Nevertheless, as for other energy demand industries, 
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there is no information available to differentiate their R&D and innovation into energy 

and non-energy related companies (GEA, 2012, page 1680). 

 

The main characteristics of the firms in the Spanish energy industry (see Table 1 for 

descriptive statistics) show that they are on average quite big, with a mean size of more 

than 600 employees. More than half the energy companies (59.1%) reported performing 

R&D activities and the mean R&D effort (R&D expenditure as a percentage of sales) is 

1.7%. Although process innovation is much more frequent (65.6%) a substantial 

proportion of firms (39%) has also introduced product innovations. These data are 

consistent with recent reports on innovation in the energy industry in Spain (Molero, 

2012; Economics for Energy, 2013) showing that R&D and innovation levels are, 

similarly to those observed in other European countries, low for the size and importance 

of this sector in the Spanish economy. 

 

TABLE 1 

 

The Spanish energy industry has undergone a similar transformation to that in other 

European countries. Liberalisation has involved an increase in the number of firms and 

a reduction in the concentration of the market. When comparing the wholesale market 

position of European countries, Spain is close to the average in terms of the number of 

companies with more than a 5% share of generation capacity and the share of the three 

biggest companies. This is also the case when analysing structural business indicators 

such as the firms’ turnover and gross added value per employee or the proportion of 

personnel costs in production costs (%) or the investment rates (European Commission, 

2009b). In addition, the Spanish electric and gas regulations are totally harmonised with 

the European norm. The process of liberalisation and the transposition of European 

energy directives1 started only one year after the European Directive for the 

                                                           
1 European Union directives lay down certain end results that must be achieved by every Member State. 
National authorities have to adapt their laws (commonly referred to as transposition) to meet these goals, 
but are free to decide how to do so. Directives may concern one or more Member States, or all of them. 
Each directive specifies the date by which the national laws must be adapted - giving national authorities 
room for manoeuvre within the deadlines necessary to take account of differing national situations. If a 
member state fails to pass the required national legislation, or if the national legislation does not 
adequately comply with the requirements of the directive, the European Commission may initiate legal 
action against the member state in the European Court of Justice (See http://ec.europa.eu/eu_law/). 
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liberalisation of the European Energy sector was approved (Directive 96/92/CE). The 

liberalisation of the Spanish electricity sector is based on Law 55/1997 and for the gas 

sector on Law 34/1998. Today, all the transpositions have been completed, and this 

process has been accompanied by the corresponding modification of domestic laws. 

Unbundling imposes the absolute separation of ownership of the TSO (Transmission 

System Operator) from the rest of the operators, enforces TPA (third party access) to 

networks, and establishes competition criteria between all the participants (with 

separation of activities) both in wholesale and retail markets. The liberalisation process 

has reduced concentration in the sector to levels below the EU-27 average and only the 

transport and distribution networks maintain regulated returns, as the European norm 

establishes. 

 

The model used for the estimation of the determinants of investment in R&D by energy 

companies is based on the structural model proposed by Crepon et al. (1998). This 

model, known as CDM, has been used in numerous empirical analyses (see, among 

others, Griffith et al., 2006, Hall et al., 2009; 2013). The literature on the economics of 

innovation and on industrial organisation has emphasized that there are considerable 

differences in innovative activity between industries and the importance of studying 

innovation determinants for specific sectors (Becheikh et al., 2006; Cohen, 2010). 

Together with the studies that specifically analyse R&D in the energy industry (Sanyal 

and Cohen, 2009; Salies, 2010; Kim et al., 2012), other papers have analysed R&D in 

other specific industries (see, among others, Cumming and Macintosh, 2000) and, when 

possible, have carried out the estimations separately for each industry (Doraszelski and 

Jaumandreu, 2013). In addition, with the use of a CDM framework, some analyses 

(Segarra, 2010) have emphasized the heterogeneity between sectors and carried out the 

estimations separately for manufactures and services and by discriminating according to 

the level of technology. 

 

In this paper, we use the CDM framework to analyse R&D and innovation determinants 

specifically in the energy industry. We use the first three equations that model business 

decisions relating to R&D and the innovations produced as a result of this investment. 

The first equation concerns the firm's dichotomous decision to spend on R&D or not 
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while the second corresponds to the intensity of the total R&D effort or R&D 

investment function. Finally, the third equation corresponds to the innovation function. 

This equation consists of a set of binary innovation outcomes. We consider total 

innovation but we also separately specify one equation for product innovation and 

another for process innovation as in Griffitth et al. (2006) and Hall et al. (2009). 

Formally: 

 

��� = �1	�		
��� + � + ���� > 00	�		
��� + � + ���� < 0 (1) 

�&��� = �	���� + �� + ����	�		��� = 10	�		��� = 0  (2) 

����� = ��&�*�� + ���� + ��� (3) 

 

Equations (1) and (2), that are estimated jointly, model the decision to spend on R&D or 

not and the R&D effort according to a set of explanatory variables -(Zit) and (Xit) 

respectively- which are detailed below. Previous empirical analyses modelling R&D 

spending in utilities have also considered research expenditure decisions to be a two-

step process (Sanyal and Cohen, 2009). Although there is no general consensus in the 

literature on how to measure either decision it is considered that the selection equation 

(1) is a strategic one, longer term, to be or not an innovative company, while the second 

(2) is more focused on the short term, on setting annual or multi-annual budgets to be 

spent on R&D (Artés, 2009). The innovation equation (3) is specified in terms of the 

latent R&D intensity as in the original CDM model and subsequent works (Griffitth et 

al. 2006; Hall et al. 2009; 2013). In this equation, other firm characteristics that affect 

product and process innovation are also included. 

 

In the selection equation (1), Dit takes the value 1 if the firm has or reports positive 

R&D expenditures. Nevertheless, as Salies (2010) points out, when a firm does not 

report R&D expenditures it is difficult to know what these zeros represent, whether an 

endogenous decision or a randomly missing process. Although it is necessary to be 

cautious, we consider, like Sanyal and Cohen (2009), that they represent decisions not 

to perform any R&D. In our panel data, R&D exhibits a high degree of persistence and 
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changes of status from performing R&D to not performing or vice-versa are almost 

always permanent.  

 

In both equations (1) and (2) size, age and public funds are explanatory variables. First, 

firm size is a key variable in any analysis of the determinants of investment in R&D or 

innovation in general (Cohen, 2010). The expected sign of this variable is positive, 

since according to the literature for the sector, larger companies are most likely to invest 

in R&D (Jamasb and Pollitt, 2008; Sanyal and Cohen, 2009; Salies, 2010), despite the 

competitive pressures that market liberalisation has introduced and that would largely 

relax the Shumpeterian hypotheses. Second, including age in the models of 

determinants of R&D is relatively recent, although the literature has emphasized the 

importance of new entrants for innovation and economic growth (Baumol et al., 2007). 

The reason for its omission was the lack of information about age in innovation surveys, 

which however PITEC does offer.  

 

Third, numerous studies have examined the effects of subsidies on the R&D decisions 

of firms and, in particular, on the possible additionality of public support to private 

R&D (David et al., 2000). Some papers (Callejón and García-Quevedo, 2005) show that 

the sectoral reaction to R&D subsidies is not uniform and that while in some cases a 

significant additional effect occurs, in others the effect is very limited. The variable 

public funds is included in both equations according to the framework proposed by 

Griffith et al. (2006) and in the same way as recent papers using the CDM approach 

(Hall et al., 2009; 2013). Nevertheless this variable presents endogeneity problems, 

particularly when it is included in the selection equation, because obtaining public 

support is related with prior R&D and innovation performance. To avoid, at least 

partially, these problems we have carried out the estimation with a lag of the variable 

public funds in this equation, following a common procedure in the literature (see, 

among others, García-Quevedo et al., 2014). In addition, as explained in the robustness 

section, we have also carried out the estimation dropping this variable out for the 

selection equation. 

 

In the intensity equation (2), we have also considered foreign capital, cooperation with 

other firms and institutions and particularly the variables related to the objectives of 

innovation. Firms may engage in innovation and devote resources to R&D for a number 
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of different reasons. With the inclusion of these variables we are able to examine the 

relationship between the different forces that drive innovation activity and R&D 

intensity.  

 

In Technological Innovation Surveys and also in the Spanish version of the CIS, 

innovative firms are asked to report the relevance and the degree of importance of 

innovation objectives. Specifically, objectives oriented to product innovation 

(expansion of the range of goods and services, greater market share) and to process 

innovation (to increase production capacity, reduction of costs per unit of output) are 

considered. There are also other innovation objectives considered in the survey that may 

become relevant in the energy sector. These are R&D projects aimed at reducing the 

environmental impact of the activity and also R&D projects designed to meet 

environmental, health and safety regulations. In the estimation of equation (2) each of 

these objectives is measured by a dummy variable indicating whether the firm considers 

each specific factor to be of high importance.  

 

In the third equation we consider total innovation, process or product, but we also 

distinguish, as pointed out above, between the two different innovation outcomes. In all 

three cases, the innovation outcome is measured with a dummy variable2. In these 

estimations we include the potential obstacles to innovation in the vector of explanatory 

variables (Wit) with the purpose of examining what type of barriers that may hamper 

innovation are relevant for the energy industry.  

 

We control also for the size of the firms and we consider whether the firms belong to a 

group because this may help them to overcome financial barriers more easily in 

comparison to an independent firm. In addition we include, similarly to Griffitth et al. 

(2006), Hall et al. (2009; 2013), the predicted value for R&D effort estimated from 

equation (2) that proxy the latent R&D intensity. By using this value (R&D*it), as 

explained later, we instrument the R&D effort and take care of possible endogeneity 

problems. Although in the innovation equation we distinguish between product and 

process innovation, we use the same R&D values for both equations. The PITEC 

                                                           
2 The Community Innovation Survey only asks the firms whether they have introduced a new or 
significantly improved good or service or implemented a new or significantly improved production 
process, distribution method or supporting activity, but not the number of product or process innovations.  
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database, as is common in the different Community Innovation Surveys, does not 

separate R&D expenditures according to their orientation towards product or process 

innovation. 

 

All the firms, innovative or not, are asked in the Spanish Innovation Survey, as in most 

technological innovation surveys, to report the relevance and the degree of importance 

of some specific factors that have hampered innovation activities or influenced a 

decision not to innovate (OECD, 2005). In the estimations we have considered the 

following factors: cost, knowledge, market dominated by established firms and 

uncertain demand3. Each of these barriers is measured by a dummy variable indicating 

whether the firm considers the specific factor to be of high importance. 

 

In addition to the explanatory variables, in the equations we take into account time-

invariant and unobservable specific firm characteristics and time effects in order to 

control for possible shocks arising from changes in the volatile economic cycle covered 

in the analysis as well as regulatory changes that have occurred in the sector that may 

have had an effect on the R&D and innovation behaviour of energy companies. 

 

 

4. ESTIMATION, RESULTS AND DISCUSSION 

 

Most of the empirical work on the estimation of the impact of innovation on 

productivity has relied on the CDM model explained schematically in the previous 

section. This model is essentially a recursive system in which a first block explains both 

the probability of doing R&D and the intensity of the R&D undertaken; and a second 

block analyses the probability of being innovative, and the extent of product and/or 

                                                           
3
 Another factor considered in the literature, that may constrain innovation activities is government 

regulations. In some countries, like the United Kingdom, this information is in the CIS questionnaire. 
Spain uses, for the section on factors hampering innovation, the harmonised CIS survey questionnaire, 
and like other countries (e.g., France, Germany and Italy) the factors related to national or European 
regulation are not in the questionnaire. In consequence this information is not available in PITEC. 
Although it would have been interesting to include regulation factors in the estimations, it does not seem 
to have been for the period of analysis a barrier of great importance for Spanish firms. A report for Spain 
(Economics for Energy, 2013) that analyses innovation in the energy sector does not include regulation 
among the main factors or barriers hampering innovation. 
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process innovation. Finally, a third block (not estimated in this paper), uses innovation 

output and other explanatory variables to estimate a productivity equation. 

 

Generally, the model is static and unidirectional (productivity does not affect R&D or 

innovation) and it is estimated using cross-section data. These characteristics reflect the 

limitations of the innovation surveys in the majority of countries, where a new sample is 

drawn for each wave, hindering the possibility of any panel data analysis. This model 

deals with the endogeneity of R&D in the innovation equation and the possible selection 

bias of the R&D performers. In the original model, all equations were estimated jointly 

by asymptotic least squares, but most subsequent studies have relied on a sequential 

estimation procedure, where the predicted value of the endogenous variable in the 

outcome equation enters as an explanatory variable in the following block (equation 3). 

In this respect, Musolesi and Huiban (2010) show that differences in the results derived 

from sequential instrumental variable estimation and maximum likelihood estimation 

are not important. Hence, the results are rather more robust in the estimation method if 

endogeneity and selection bias are taken into account (Mohnen and Hall, 2013). 

 

However, as explained in the previous section, we do have a panel of firms. In this case, 

efficiency gains in the estimation are expected since it is possible to take into account 

differences between firms that may be related to variables not included in the empirical 

model. Generally speaking, not controlling for these frequently unobserved factors can 

lead to biased estimates. A standard solution to this problem is the estimation of fixed or 

random effects models for panel data, and this is the approach we use in the estimation. 

 

The main challenge in estimating the CDM model arises from the characteristics of the 

first block, mainly due to the possible selection bias of R&D performers. Until very 

recently, the estimation of sample selection models with panel data was restricted to 

static or partially dynamic frameworks or relied on semiparametric estimators (Arellano 

and Honoré, 2001; Gayle and Viauroux, 2007). However, Raymond et al. (2007; 2010) 

have proposed a full parametric random-effects dynamic panel data sample selection 

estimator in order to overcome the main difficulties that arise in such a setting, namely 

the presence of unobserved individual effects and the treatment of initial conditions. 

Unfortunately, the small sample of energy firms included in the PITEC and used in this 

paper prevents a full dynamic consideration of the model. In a static framework, the 
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initial conditions problem is not an issue and we will not tackle it here. Fortunately, the 

model is flexible enough to contain several different specifications (with or without 

dynamics or sample selection), yet allows for a more efficient joint estimation of 

parameters. 

 

4.1 Estimation procedure 

 

In order to estimate the first block of the CDM model efficiently the proposed 

econometric procedure was estimated by Maximum Likelihood thus overcoming the 

two main difficulties referred previously, the presence of individual effects and the 

consideration of the initial conditions in a dynamic setting. The method proposes the 

use of random effects, since fixed effects in this case are subject to many shortcomings, 

especially when the panel consists of a large number of individuals (firms) and a small 

number of time observations. For instance, a conditional maximum likelihood estimator 

could be used to solve the inconsistency problem inherent in estimating a potentially 

large number of dummy variables for individual effects by maximum likelihood when 

the number of periods is small. However, this is restrictive in the sense that it is 

normally not possible to concentrate the likelihood with regard to the individual effects. 

Moreover, even if it were possible, it would work only under the assumption of the 

strict exogeneity of the explanatory variables, ruling out the use of lagged dependent 

variables as explanatory variables (Neyman and Scott, 1948). 

 

More specifically, the first block of the CDM model outlined in the previous section 

consists of equations (1) and (2). Equation (1) is the selection equation that determines 

whether individual i is included in the sample on which the estimation of the equation of 

interest (equation 2) is based, in period t. It is a function of strictly exogenous 

explanatory variables (���), time-invariant unobserved individual effects (�), and other 

time-variant unobserved variables ( ���). The vector 
! captures the effects of the 

explanatory variables on the current selection process, and is to be estimated. The 

equation of interest depends on strictly exogenous explanatory variables ("��), time-

invariant unobserved individual effects (��), and other time-variant unobserved 

variables ( ���), and is observed only when ��� is positive. The vector �! captures the 

effects of explanatory variables on current outcome, and is to be estimated as well. In 

this case, since a fully parametric approach has been designed for the estimation of this 
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first block of the CDM model, there is no need for exclusion restrictions in the vector of 

strictly exogenous explanatory variables, making it possible that ��� and "�� are the 

same, totally different or that they have common explanatory variables. 

 

For the purpose of estimation, the individual effects are assumed, in every period, to be 

linear with regard to the strictly exogenous explanatory variables: 

 

� = #$% + #�%��$ + &�!%�� + '�� 
�� = #$( + #�(�&��$ + &�!("� + '�� 

 

where ��! = )���! , … , ��,! -, "�! = )"��! , … , "�,! -, #$%, #�%, &�!%, #$(, #�(,  &�!( are to be 

estimated, and '�� and '�� are independent of )��$, ��- and )�&��$, "�- respectively. 

The scalars #�% and #�( capture the dependence of the individual effects on the initial 

conditions. The vectors ) ���,  ���-′ and )'��, '��-′ are assumed to be independent of 

each other, and independently and identically distributed over time and across 

individuals following a normal distribution with mean zero and covariance matrices 

 

Ω0102 = 3 401� 5010240140250102401402 402� 6      and     Ω7172 = 3 471� 5717247147257172471472 472�
6 

 

respectively. The parameters of the covariance matrices are also to be estimated. Hence, 

the likelihood function of individual i, starting from t=1 and conditional on the 

regressors and the initial conditions, is written as 

 

8� = ∬ ∏ 8��)��� , �&���|��$, �� , �&��$, "�, '��, '��-<)'��, '��-='��='��,�>�?
@?   (4) 

 

where ∏ 8��)��� , �&���|��$, ��, �&��$, "�, '��, '��-,�>�  and <)'��, '��- denote the likelihood 

function of individual i conditional on the individual effects, and the bivariate normal 

density function of )'��, '��- respectively. With some transformations (please refer to 

Raymond et al., 2007 for details), the double integral in equation (4) can be 

approximated by a "two-step" Gauss-Hermite quadrature so that the random effects 

individual likelihood function of the model becomes a function of the weights and 

abscissas of the first and second step of the numerical approximation of the likelihood 

function. Hence, the product over i of the resultant approximate likelihood function can 
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be maximised using standard numerical procedures to obtain the desired estimates of 

the parameters of the model (see Raymond et al. 2007 and 2010 for technical details 

about the procedure). 

 

To summarize, the proposed model assumes that the individual effects are, in every 

period, linear with regard to the strictly exogenous explanatory variables. Hence, the 

likelihood function of a given individual starting at the initial period and conditional on 

the regressors is a function of the likelihood function of that individual conditional on 

the individual effects and a bivariate normal density function of cross-equation 

individual effects. Hence, the individual effects are "integrated-out" with respect to their 

joint normal distribution. The resulting likelihood function covers a wide range of 

likelihood functions of panel data models the estimation of which can be done by 

simply making restriction assumptions on the parameters of the panel data sample 

selection model just described and can be tested using standard likelihood ratio or Wald 

tests. 

 

In our case, equations (1) and (2) –the first block of the CDM model where we analyse 

the drivers of R&D (characteristics of the firms and reasons to engage in innovation)-, 

are jointly estimated using this relatively novel estimator to control for selection bias 

and unobserved heterogeneity. In these estimations we include the main characteristics 

such as size (in logs), age, public support, cooperation and foreign capital that, 

according to the literature, are related to the decision to do R&D and to the effort. We 

also include the variables that capture the reasons to innovate or objectives (oriented 

towards product innovation or process innovation, or reducing environmental impact, or 

comply with regulations).  

 

The third equation, the second block of the CDM model, where we examine the effect 

of the different obstacles to innovation, was estimated using a random effects probit 

model defined as follows: 

 

�����∗ = ��&���∗ + ���� + B�� 

����� = �1	�		�����∗ > 00	CDℎFGH�IF  
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where �����∗  is the unobservable variable, ����� is the observed outcome, �&���∗  is the 

predicted value of the outcome equation (2), J�� is the observed vector of exogenous 

characteristics which influence �����∗ , � and � are parameters to be estimated. 

Furthermore, we can decompose the error term into two parts: 

 

B�� = �� +  �� 
 

here the �′I denote individual specific unobservable effects, assuming that �� ~ 

N)0, 4K�- and  �� is the iid N(0,1) random error. From this specification we know that 

 

L'G)B��- = 1 + 4K� 

 

The common error component �� means that, within individuals, the B�� will be 

correlated by a magnitude 

 

5 = 4K�1 + 4K� 

 

Since the realizations of ����� are correlated, the common �� mean that the Ti 

observations on individual i are distributed according to a T-variate normal distribution, 

making the likelihood function extremely complicated. However, Butler and Moffitt 

(1982) showed that, because the dependence in the B�� is completely due to the common 

variation in the ��′I, we can eliminate the higher order integrals by conditioning on the 

��, and integrate them out of the likelihood. Using this approach we only have to 

evaluate one-dimensional integrals, again by means of the Gauss-Hermite quadrature 

approximation. 

 

In this specification, and in order to avoid some potential endogeneity problems, the 

vector of exogenous characteristics includes the predicted value for the firms’ R&D 

effort taken from the previous estimations. We also include the size of the firms and the 

barriers that may hamper innovation. We consider factors related to costs, knowledge 

and market. 

 

4.2 Results and discussion 
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With the estimation of the R&D equation with sample selection we examine the effects 

of the explanatory variables on the decision to engage or not in R&D and on the relative 

amount of R&D expenditure. The results (Table 2) show, first, that size has opposed 

effects. It is more likely that bigger energy firms engage in R&D activities but once 

they carry out R&D activities, smaller companies devote more resources to R&D (in 

relative terms). Empirical analyses of electric utilities have shown that there is a positive 

and significant effect of the size of the firms on R&D expenditure (Jamasb and Pollit, 

2008). In particular, the econometric estimations that have taken into account the 

existence of sample selection (Sanyal and Cohen, 2009; Salies, 2010, Kim et al., 2012) 

have always found a positive and significant relationship between size and the decision 

to engage in R&D. Although it is necessary to be cautious with the comparisons 

because of the differences in the samples, our results point in the same direction, 

showing that there is a critical mass for obtaining profits from R&D investments in the 

energy industry. However, the results on the elasticity of R&D expenditure with respect 

to size vary significantly in the empirical analyses from values greater than 1 to values 

less than 1, or even not significant (Sterlacchini, 2102). In this respect, our results lead 

us to reject the Schumpeterian hypothesis and to favour evidence on the advantage of 

small firms in R&D intensity in the energy industry. Among the possible explanations 

for this result could be the significant reduction in the size of electric utilities after the 

vertical unbundling and horizontal splitting resulting from liberalisation, which 

significantly changed the structure of the industry (Jamasb and Pollit, 2008; Salies, 

2010) 

 

Second, younger firms engage more than older firms in the decision to perform R&D 

and they are also more likely to devote more resources to R&D activities. Competition 

has implied more firms in the industry, either because of unbundling or new entrants, 

and younger firms are among the more intense R&D performers. Third, having received 

public support to carry out R&D projects in the previous period (t-1) has a positive 

influence both on the decision to perform R&D and on its intensity. 

 

Finally, the energy firms that claim that process innovation is of great importance are 

also those that devote greater resources to technological activities. The other innovation 
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objectives have no impact on R&D intensity, with the exception of norms and 

regulations on environment, health and safety.  

 

These results are consistent with several studies discussed in section 2. In a liberalised 

energy market, competition forces firms to seek wider margins by means of enhanced 

productive efficiency, thus embracing process innovations. Research investment is 

oriented towards short-term objectives and focuses on applied R&D with the aim of 

increasing efficiency and profit margins (Defeuilley and Furtado, 2000; Jamasb and 

Pollit, 2008; Salies, 2010). 

 

TABLE 2 

 

The estimations for the innovation equation (Table 3) show, as expected, that the main 

control variables –size and the estimated R&D intensity resulting from the estimated 

parameters of the model in Table 2– have positive and highly significant effects on the 

probability of introducing innovations. The results for the energy industry also show 

that financial and knowledge obstacles are not important barriers hampering innovation, 

in contrast to the analyses carried out for firms in general (Mohnen et al., 2008; 

Savignac, 2008; Blanchard et al., 2013). While empirical evidence has stressed that 

firms face financial obstacles to innovation activities (Hall, 2002; Popp and Newell, 

2012; Blanchard et al., 2013), our results suggest, along the same lines as Salies (2010) 

in his analysis of European electric utilities, that firms in the energy industry seem not 

to be subject to financial constraints in carrying out their innovative projects even after 

the liberalisation reforms4. 

 

TABLE 3 

 

Firms in the energy sector that perceive that the market is dominated by established 

firms have a lower probability of introducing innovations. The estimations show that the 

                                                           
4
 To measure financial constraints and to find the proper indicators at a firm level to carry out empirical 

research is not free of limitations (Czarnitzki and Hottenrott, 2010; Salies, 2010). In this paper we adopt a 
direct approach based on the firms' own assessments from the information provided in the CIS in the 
same way as the rest of the potential barriers (knowledge, market) used in the empirical analysis. In any 
case this is the only information regarding financial constraints provided by the PITEC. Obtaining other 
indicators, such as cash flow or dividends, would require merging PITEC with other databases which 
would be considerably difficult because of anonymity requirements. 
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parameter is negative and significant, confirming the dominance of existing 

technologies and the incumbent inertia of the energy system. Despite the current 

competitive situation, our results show that incumbents in the industry are hampering 

innovative alternative technology projects. These results suggest that the technology 

mix of the country may be an entry barrier when incumbent firms concentrate their 

portfolio on traditional energy technologies. Even if liberalisation has brought about 

more competition and this in turn has transformed the structure of the energy sector by 

altering the number and average size of participating firms by renewing the technologies 

for generation as well as introducing increased rivalry in retail, the main barriers 

hindering innovation in the sector are related to the perception of incumbent dominance 

in the energy market. 

 

For the other market obstacle, the uncertainty of the demand, the parameter is 

significant and positive. Nevertheless, this only holds for product and not for process 

innovation. Therefore there is a positive relationship between the firms that state that 

demand uncertainty is a significant obstacle and the most innovative firms, in terms of 

new products, showing that although they face this obstacle, it does not hamper their 

innovation activities. These kinds of innovation are mainly related to the liberalisation 

process and increasing competition in the retail energy markets, where suppliers are 

offering more innovative goods, and particularly services, to consumers. In liberalised 

markets, characterised by the existence of greater uncertainties than in monopoly 

conditions, new players have entered. The supplier companies, with more freedom to 

design products and prices, are developing a variety of new, more customer oriented, 

energy services (Markard and Truffer, 2006). Competition in the residential electricity 

markets tends to be initiated by a few smaller players who offer innovation and over 

time incumbent firms, that show quite considerable initial resistance, also deliver more 

innovative services to customers (Littlechild, 2006; Markard and Truffer, 2006).  

 

4.3 Robustness checks 

 

Overall, the results presented in the last subsection suggest that it is more likely that 

larger firms engage in R&D activities, although smaller firms devote proportionally 

more resources to it. In addition, younger firms tend to be more active in and also 

allocate more resources to technological activities than older firms; public support is 
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important in explaining engagement and R&D intensity, which in turn are strongly 

correlated with energy firms' efforts towards introducing process innovations.  

 

Several issues can be affecting the results. As discussed in section 3, the introduction of 

the variable public funds into the selection equation –even its lagged value- raises some 

endogeneity concerns given the fact that to obtain public support for R&D projects, 

firms must have carried out prior R&D activities. In order to avoid this issue, we have 

re-estimated the model without public funds in the selection equation. Table 4 shows 

the results of this specification where it can be seen that the main insights remain 

unchanged from our baseline model presented in the previous sub-section. Hence, the 

endogeneity of public support is not conditioning the main results. It is important to 

note that this new econometric specification also provides similar results for the 

innovation equation (panel b in table 4). When equation 3 is re-estimated using the 

results in the upper panel of table 4, all the results remain qualitatively unchanged: size 

and R&D effort are important determinants of the probability of innovation. Energy 

firms do not face financial or knowledge barriers but on the other hand they are 

confronted with significant market barriers. 

 

TABLE 4 

 

An additional concern regarding the results of the baseline model is related to the effects 

of barriers to innovation on the firms' entire decision making process regarding R&D 

activities. The perception of obstacles –especially financial obstacles– might well affect 

the decision to invest in R&D. Moreover, accepting that this is a long-term, structural 

decision, it surely affects the amount of resources that firms devote to R&D 

investments. In order to take this into account, we estimate a variant of our baseline 

model including costs barriers in the intensity equation (specification a) in table 5). The 

results for both stages of the CDM model remain qualitatively identical to those of the 

baseline model. Acknowledging, as before, a potential endogeneity issue regarding the 

introduction of public funds, we re-estimate a variant of our first robustness check but 

conserve the financial barriers variable (specification b) in table 5). Again, with minor 

changes vis-à-vis the baseline specification, the most relevant results remain unaltered, 

especially those referring to the innovation equation. With all the specifications tried so 

far, neither financial nor knowledge barriers are relevant constraints to innovation for 
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energy firms. On the other hand, the perception that the market is dominated by 

incumbents significantly reduces the probability of introducing innovations in the 

energy industry. 

 

TABLE 5 

 

For the estimations of the innovation equation, we have performed additional robustness 

checks to take into account some discussions in the literature on R&D and innovation. 

Firstly, R&D investments may require some time to have an effect on innovation in 

processes and products. Therefore, we switched the predicted R&D effort from the first 

block, which considered a contemporaneous correlation between R&D effort and 

innovation outcomes, to the corresponding lagged value (t-1). In this case, the results –

shown in table 6- are consistent with the previous ones. Secondly, in order to account 

for possible systematic correlations between decisions to perform product and process 

innovations (Martínez-Ros and Labeaga, 2009) we estimate a bivariate probit model 

with binary equations for each outcome. In this case, the only possibility of carrying out 

the estimations is to use pooled data. Hence we are not able to control for individual 

effects in these estimations. The results from our first estimation are also confirmed and 

show the relevance of market obstacles to innovation and the differences regarding 

process or product innovation (table 7). The estimate for the cross equation correlation 

is positive, indicating complementarities between the two decisions.  

 

TABLES 6 and 7 

 

5. CONCLUSIONS  

 

There is a broad consensus on the desirability of the energy industry devoting more 

resources to R&D and innovation. To meet the challenge related to climate change will 

require a significant increase in energy innovation. The objective of this paper is to 

improve our understanding of the reasons behind R&D investment and innovation in the 

energy sector. Putting together two strands of the literature on the determinants of 

innovation, we have analysed the influence of the characteristics of the firms and the 

objectives of innovation on R&D decisions and effort and, particularly, what barriers 

are hampering innovation in this sector.  
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The econometric analysis has been carried using panel data for the period 2004-2010 

and the main conclusions from the estimations regarding R&D drivers and obstacles to 

innovation in the energy industry are as follows. Firstly, our joint estimations for the 

decision to spend on R&D or not and the R&D effort show, as does the literature, that 

small size is a barrier to entry for R&D in the energy sector. Nevertheless, there is no 

positive relationship between size and R&D intensity. Once they carry out R&D, 

smaller companies make a greater effort in R&D, measured in relative terms with 

respect to sales. Secondly, younger firms are more likely to perform R&D and to make 

a greater R&D effort. Thirdly, R&D intensity is particularly related to innovation 

objectives oriented to process innovation likely to increase efficiency through a 

reduction of costs or to an increase in production capacity.  

 

The estimations of the innovation equation provide the main conclusions of the paper 

regarding the obstacles to innovation. Firstly, our results show that the main barrier 

hampering innovation activities in the energy industry is the market dominance of 

established firms. Secondly, the estimations for product innovations show that although 

the most innovative firms state that they are facing an uncertain demand for innovative 

goods and particularly services, this obstacle is not hampering their innovative 

activities. Thirdly, and in contrast to the results in the literature for other industries, 

financial constraints are not a significant obstacle to innovation in the energy industry.  

 

The analysis of R&D drivers and obstacles to innovation was carried out for the energy 

industry. However, other industries such as component suppliers, the machinery 

industry and transport equipment also play an important role in energy innovation. To 

include these sectors in the analysis would require further research and enough 

information to be able to differentiate their R&D and innovative activities related with 

energy from those not related to this sector. In the analysis carried out it should be also 

taken into account that the available information does not allow differentiation between 

the firms that perform their activity in the absolutely liberalised segments of the energy 

market from those in segments where some regulation exists. To distinguish between 

these types of firm would allow an analysis of whether there are some differences in 

their R&D and innovative behaviour. An additional limitation is that the sample 
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includes all the gas and electricity energy firms operating at all the phases of the 

industrial process without it being possible to distinguish between them.  

 

Finally, the results have some policy implications regarding how to increase R&D 

efforts and innovation in the energy sector. The general rationale for policy support to 

R&D and innovation is the existence of market failures. Together with this justification 

for policy action, our results show there are important barriers particular to the energy 

industry related to the dominance of established firms in the market and existing 

technologies that hamper innovation efforts significantly.  
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Table 1. Descriptive statistics 
Variable Description N Mean Std. Dev. Min Max 

R&D decision 
Dummy = 1 if the firm has 
performed technological 
activities 

410 0.591 0.492 0 1 

R&D effort* R&D expenditure over sales 410 1.7 6.8 0 54.3 

Size* Number of employees 410 611 1121 1 7900 

Age 
Years the firm has been 
operating in the market 

327 31.0 33.2 0 110 

Public funds 
Dummy = 1 if the firm 
received an R&D subsidy 

410 0.419 0.494 0 1 

Foreign capital 
Dummy = 1 if the firm is 
partially owned by foreign 
investors 

410 0.160 0.367 0 1 

Cooperation 
Dummy = 1 if the firm 
cooperates in innovation 

334 0.574 0.495 0 1 

Group 
Dummy = 1 if the firm 
belongs to a group of firms 

410 0.654 0.476 0 1 

Objective: Product 
Dummy = 1 if the firm 
considers the objective of 
high importance 

334 0.189 0.392 0 1 

Objective: Process 
Dummy = 1 if the firm 
considers the objective of 
high importance  

334 0.204 0.403 0 1 

Objective: Environment 
Dummy = 1 if the firm 
considers the objective of 
high importance  

334 0.380 0.486 0 1 

Objective: Norms 
Dummy = 1 if the firm 
considers the objective of 
high importance  

334 0.308 0.463 0 1 

Total innovation 
Dummy = 1 if the firm has 
performed either product or 
process innovation 

410 0.739 0.440 0 1 

Process innovation 
Dummy = 1 if the firm has 
performed process 
innovation 

410 0.656 0.476 0 1 

Product innovation 
Dummy = 1 if the firm has 
performed product 
innovation 

410 0.390 0.488 0 1 

Cost barriers 
Dummy = 1 if the firm 
considers the barrier to be of 
high importance  

410 0.066 0.248 0 1 

Knowledge barriers 
Dummy = 1 if the firm 
considers the barrier to be of 
high importance  

410 0.005 0.070 0 1 

Market: Incumbents 
Dummy = 1 if the firm 
considers the barrier to be of 
high importance  

410 0.095 0.294 0 1 

Market: Demand  
uncertainty 

Dummy = 1 if the firm 
considers cost barriers to be 
of high importance  

410 0.090 0.287 0 1 

* In the regressions these continuous variables have been transformed in logarithms.  
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Table 2. R&D equation (decision and intensity) 
 R&D R&D 
 Intensity Decision 
   
Size -0.869*** 0.295*** 
 (0.0627) (0.0921) 
Age -0.00751*** -0.00760* 
 (0.00239) (0.00457) 
Public funds (t-1) 0.399** 1.200*** 
 (0.183) (0.233) 
Foreign capital 0.598*** 0.495 
 (0.207) (0.318) 
Cooperation 0.181  
 (0.210)  
Objectives:   
     Product innovation -0.384  
 (0.242)  
     Process innovation 1.536***  
 (0.243)  
     Environmental impact -0.223  
 (0.176)  
     Norms and regulations 0.384**  
 (0.192)  
Constant 3.174*** -1.617*** 
 (0.459) (0.611) 
   
Observations 240 410 

Tests of sample selection and individual effects: 
 57172 0.265 (0.170) 

5M1M2 0.592** (0.259) 
471 -0.0800 (0.142) 
472 0.357*** (0.0886) 
402 0.0535 (0.0615) 

   
Note: All regressions include time dummies to control for year-specific effects and firm individual effects. 
Standard errors in parentheses and *** indicate significant at 1%, ** indicate significant at 5% and * 
indicate significant at 10%. 
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Table 3. Innovation equation 
 Innovation: 
 Total Process Product 
    
Size 0.487*** 0.542*** 0.218* 
 (0.138) (0.146) (0.121) 
Predicted R&D effort 1.336*** 1.497*** 0.395* 
 (0.294) (0.319) (0.218) 
Group 0.541 0.372 0.392 
 (0.386) (0.426) (0.410) 
    
Barriers:    
Cost -0.0599 0.0380 -0.311 
 (0.466) (0.479) (0.422) 
Knowledge -1.234 -0.331 0.994 
 (1.835) (1.875) (1.362) 
Market:    

Incumbents -1.522*** -1.217** -0.813 
 (0.535) (0.562) (0.535) 

Demand uncertainty 1.239** 0.394 1.275*** 
 (0.598) (0.573) (0.440) 
    
Constant -2.397*** -3.296*** -2.487*** 
 (0.705) (0.803) (0.697) 
    5 0.805* 1.067*** 1.061*** 
 (0.450) (0.410) (0.359) 

Log-likelihood -172.7 -203.4 -253.5 
chi2 37.34 36.92 22.60 

Prob(chi2) 0.000367 0.000427 0.0467 
    

Observations 410 
  
Note: All regressions include time dummies to control for year-specific effects and firm individual effects. 
Standard errors in parentheses and *** indicate significant at 1%, ** indicate significant at 5% and * 
indicate significant at 10%. 
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Table 4. Robustness check: lag of public funds only in intensity equation 

Stage 1: R&D equation 
R&D R&D 

Intensity Decision 
Size -0.872*** 0.463*** 
 (0.0663) (0.107) 
Age -0.00693*** -0.00466 
 (0.00237) (0.00423) 
Public funds (t-1) 0.243  
 (0.172)  
Foreign capital 0.596*** 0.673** 
 (0.205) (0.307) 
Cooperation 0.0694  
 (0.206)  
Objectives:   
     Product innovation -0.317  
 (0.242)  
     Process innovation 1.482***  
 (0.235)  
     Environmental impact -0.228  
 (0.175)  
     Norms and regulations 0.350*  
 (0.193)  
Constant 3.493*** -2.366*** 
 (0.499) (0.671) 

Stage 2: Innovation equation 
Innovation: 

Total Process Product 
Size 0.505*** 0.568*** 0.226* 
 (0.142) (0.150) (0.122) 
Predicted R&D effort 1.334*** 1.512*** 0.412* 
 (0.283) (0.310) (0.212) 
Group 0.531 0.355 0.389 
 (0.390) (0.431) (0.411) 
Barriers:    
Cost -0.0446 0.0547 -0.300 
 (0.469) (0.483) (0.422) 
Knowledge -1.296 -0.390 0.976 
 (1.846) (1.890) (1.364) 
Market:    

Incumbents -1.532*** -1.217** -0.813 
 (0.541) (0.570) (0.537) 

Demand uncertainty 1.286** 0.424 1.291*** 
 (0.609) (0.581) (0.443) 
Constant -2.525*** -3.472*** -2.543*** 

 (0.724) (0.831) (0.706) 
Note: The number of observations is the same as in tables 2 and 3. For brevity, given the similarity of 
results between the robustness checks and the baseline model the coefficients for the test of sample 
selection and individual effects of stage 1 as well as those for goodness of fit of stage 2 are omitted. All 
regressions include time dummies to control for year-specific effects and firm individual effects. Standard 
errors in parentheses and *** indicate significant at 1%, ** indicate significant at 5% and * indicate 
significant at 10%.  
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Table 5. Robustness check: introducing cost barriers into the intensity equation 

Stage 1: R&D equation 
Specification a) Specification b) 

R&D R&D R&D R&D 
Intensity Decision Intensity Decision 

Size -0.870*** 0.294*** -0.791*** 0.481*** 
 (0.0628) (0.0910) (0.0903) (0.100) 
Age -0.00751*** -0.00775* 0.000272 -0.00137 
 (0.00239) (0.00456) (0.00332) (0.00367) 
Public funds (t-1) 0.408** 1.200*** 0.414**  
 (0.184) (0.232) (0.193)  
Foreign capital 0.583*** 0.495 0.537** 0.551** 
 (0.208) (0.318) (0.221) (0.269) 
Cooperation 0.198  0.0937  
 (0.213)  (0.231)  
Cost barriers 0.233  0.611  
 (0.377)  (0.413)  
Objectives:     
     Product innovation -0.395  -0.340  
 (0.242)  (0.256)  
     Process innovation 1.545***  1.408***  
 (0.243)  (0.240)  
     Environmental impact -0.230  -0.221  
 (0.176)  (0.186)  
     Norms and regulations 0.394**  0.494**  
 (0.193)  (0.212)  
Constant 3.160*** -1.606*** 2.847*** -2.457*** 
 (0.462) (0.606) (0.665) (0.601) 

Stage 2: Innovation 
equation 

Specification a) Specification b) 
Innovation: Innovation: 

Total Process Product Total Process Product 
Size 0.487*** 0.543*** 0.217* 0.507*** 0.563*** 0.226* 
 (0.138) (0.146) (0.121) (0.141) (0.148) (0.122) 
Predicted R&D effort 1.339*** 1.503***  0.390* 1.511*** 1.676*** 0.458** 
 (0.296) (0.320) (0.218) (0.307) (0.328) (0.223) 
Group 0.540 0.372 0.393 0.510 0.326 0.392 
 (0.387) (0.427) (0.410) (0.390) (0.427) (0.412) 
Barriers:       
Cost -0.0900 -0.00268 -0.329 -0.111 -0.0412 -0.342 
 (0.470) (0.483) (0.420) (0.480) (0.495) (0.418) 
Knowledge -1.212 -0.289 1.007 -1.406 -0.454 0.985 
 (1.845) (1.884) (1.363) (1.944) (1.967) (1.368) 
Market:       

Incumbents -1.517*** -1.209** -0.811 -1.486*** -1.151** -0.794 
 (0.535) (0.562) (0.535) (0.536) (0.562) (0.537) 

Demand uncertainty 1.232** 0.380 1.270*** 1.295** 0.414 1.287*** 
 (0.599) (0.576) (0.440) (0.611) (0.579) (0.442) 
Constant -2.395*** -

3.296*** 
-

2.480*** 
-2.562*** -3.466*** -2.548*** 

 (0.706) (0.804) (0.697) (0.723) (0.818) (0.705) 
Note: The number of observations is the same as in tables 2 and 3. For brevity, given the similarity of 
results between the robustness checks and the baseline model the coefficients for the test of sample 
selection and individual effects of stage 1 as well as those for goodness of fit of stage 2 are omitted. All 
regressions include time dummies to control for year-specific effects and firm individual effects. Standard 
errors in parentheses and *** indicate significant at 1%, ** indicate significant at 5% and * indicate 
significant at 10%. 
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Table 6. Robustness check for the Innovation equation: lag predicted R&D effort 
 Innovation: 
 Total Process Product 
    
Size 0.386** 0.337** 0.350* 
 (0.171) (0.165) (0.200) 
Lag R&D effort (t-1) 0.570** 0.548* 0.200 
 (0.284) (0.284) (0.330) 
Group 1.257** 0.967 0.288 
 (0.608) (0.603) (0.701) 
    
Barriers:    
Cost -0.513 -0.638 -0.494 
 (0.563) (0.551) (0.568) 
Knowledge 0.0760 0.283 2.963 
 (2.030) (2.000) (1.832) 
Market:    

Incumbents -1.708** -1.448** -1.637** 
 (0.671) (0.682) (0.814) 

Demand uncertainty 0.464 0.314 1.221* 
 (0.696) (0.672) (0.693) 
Constant -0.789 -0.716 -2.313** 
 (0.913) (0.889) (1.078) 
    5 1.078** 1.177** 1.647*** 
 (0.511) (0.468) (0.452) 

Log-likelihood -112.3 -139.8 -179.8 
chi2 21.75 20.59 21.01 

Prob(chi2) 0.0404 0.0567 0.0502 
    

Observations 294 294 294 
    
Note: All regressions include time dummies to control for year-specific effects and firm individual 
effects. Standard errors in parentheses and *** indicate significant at 1%, ** indicate significant at 5% 
and * indicate significant at 10%. 
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Table 7. Robustness for Innovation equation: bivariate probit 
 Innovation: 
 Process Product 
   
Size 0.298*** 0.0728 
 (0.0503) (0.0450) 
R&D effort 1.056*** 0.188 
 (0.259) (0.153) 
Group 0.293* 0.446*** 
 (0.172) (0.164) 
   
Barriers:   
Cost 0.317 -0.0827 
 (0.344) (0.297) 
Knowledge -1.148 -0.442 
 (0.710) (0.803) 
Market:   

Incumbents -0.981*** -0.647** 
 (0.280) (0.257) 

Demand uncertainty 0.0930 0.834*** 
 (0.284) (0.250) 
   
Constant -1.691*** -1.259*** 
 (0.328) (0.315) 
   5 0.236** 
 (0.0964) 
   
Note: Regression include time dummies to control for year-specific effects. Standard errors in parentheses 
and *** indicate significant at 1%, ** indicate significant at 5% and * indicate significant at 10%. In the 
bivariate probit (assuming normality of the error terms) ρ is a correlation parameter that provides 
information about the covariation of the error terms. 
 

 

 

 

 


