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Abstract. Particle diffusion in crowded media was studied through Monte Carlo 

simulations in 3D obstructed lattices. Three particular aspects affecting the diffusion, 

not extensively treated in three-dimensional geometry, were analysed: the relative 

particle-obstacle size, the relative particle-obstacle mobility and the way of having the 

obstacles distributed in the simulation space (randomly or uniformly). The results are 

interpreted in terms of the parameters that characterize the time dependence of the 

diffusion coefficient: the anomalous diffusion exponent (a), the crossover time from 

anomalous to normal diffusion regimes (τ) and the long time diffusion coefficient 

(D*). Simulation results indicate that there is a more anomalous diffusion (smaller a) 

and lower long time diffusion coefficient (D*) when obstacle concentration increases, 

and that, for a given total excluded volume and immobile obstacles, the anomalous 

diffusion effect is less important for bigger size obstacles. However, for the case of 

mobile obstacles, this size effect is inverted yielding values that are in qualitatively 

good agreement with in vitro experiments of protein diffusion in crowded media. 

These results underline that the pattern of the spatial partitioning of the obstacle-

excluded volume is a factor to be considered together with the value of the excluded 

volume itself. 
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1 Introduction 

The interior of the living cell is highly concentrated and structured with molecules 

having different shapes and sizes, up to 40% of its total mass being represented by 

macromolecules1-3. The high concentration of macromolecules in intracellular 

environments results into non-specific interactions (macromolecular crowding), 

which have a great influence on the kinetics and thermodynamics of possible 

reactions that occur in these systems, e.g. diffusion processes and reaction kinetics3-15.  

Diffusion is a basic transport mechanism that is presented in a wide range of complex 

systems including living cells and it has strong connections with a lot of phenomena 

of crucial importance for sustaining life. However, macromolecular crowding has 

been shown to alter molecular diffusion both quantitatively and qualitatively3,5,12-14. 

Quantitatively, macromolecular crowding reduces the diffusion coefficient as 

compared to aqueous solutions and, qualitatively, diffusional motion can change to 

anomalous diffusion, what means a time dependent diffusion. 

A great deal of information about motion of molecules in living cells has been 

obtained from intracellular measurements using different experimental techniques13,16-

35 and from simulations14,36-53. Experimental data are usually obtained by fluorescence 

recovery after photobleaching (FRAP) and fluorescence correlation spectroscopy 

(FCS) techniques. In order to give only a few examples, FRAP experiments have 

revealed anomalous diffusion of dextrans17-18,23, of proteins in cytoplasm19,21-22,25,33 

and of proteins in dextrans35.  FCS experiments have also shown anomalous diffusion 

of nanoparticles with different sizes in agarose gel26, of dextrans in HeLa cell 

cytoplasm28, of proteins in three-dimensional crowded media27,31, of Alexa488 light-

emitting particles in extracellular matrices32, respective of the inert gold nanoparticles 

in the cytoplasm and nucleoplasm under various stress conditions34.  
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However, there is not still a complete explanation of transport processes in 

living systems and simulation methods can be useful to help understanding them. 

Most of the published simulation studies concerning diffusion processes in biological 

systems are developed for two-dimensional media (2D). These simulations, and in 

particular the extensive work of Saxton14,36-37,39-41,51 have shown that, in crowded 

media, diffusion presents two behaviours: it is anomalous (time dependent diffusion 

coefficient) for short times and normal (constant diffusion coefficient) for long-times. 

With respect to the diffusion coefficient value, it has been shown that: it diminishes 

when the concentration of obstacles increases41,51, it is dependent on the relative 

mobility of tracers and obstacles39-41,52, and it also depends on the size of tracers and 

obstacles36-37,50. In addition, the results show that in a uniform distribution of the 

obstacles the diffusion coefficient is greater than in a random distribution50. However, 

for a correct interpretation of these results, it has to be considered that in 2D crowded 

media the anomalous diffusion is due to two factors: the low dimensionality of the 

system and the molecular crowding. Thus, the assessment of the real importance of 

the crowding in the diffusion phenomena requires a systematic analysis of diffusion in 

three-dimensional media (3D), where the topological space restrictions are not 

present. 

Although the literature concerning 3D simulation studies on diffusion 

processes in biological systems is less extensive, there are several works that must be 

emphasized.  For example, Netz and Dorfmuller42 performed a Monte Carlo study of 

the diffusion of hard spheres in a restricted geometry, which give us insights into the 

factors that lead to anomalous diffusion, showing that the influence of tracer size is 

complementary to the influence of obstacle concentration on the diffusion processes. 

In another Monte Carlo simulation in 3D crowded media, Olveczki and Verkman43 
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have shown that anomalous diffusion of solutes in organelles is strongly dependent on 

organelle structure. Lipkow and his coworkers46 have developed a computational 

program, Smoldyn, for studying cellular molecular processes taking into account both 

the spatial location of proteins (and their complexes) and their diffusive motion. This 

program has shown results in good agreement with experimental data for diffusion of 

signaling protein CheYp through the cell. The analysis by Brownian simulation of 

single-molecule trajectories followed by a Monte Carlo simulation of nonreactive 

fluorophore, developed by Dix et al.47, revealed anomalous subdiffusion for 

fluorescently labeled molecules in 3D complex media. Echeveria and his coworkers48 

have used a mesoscopic algorithm to simulate the diffusion and reactions of small 

particles in a 3D medium with obstacles. They analyse how the diffusion coefficient 

value diminishes with the total excluded volume. More recently, Saxton has shown 

that diffusion is anomalous for all times if particles diffuse in a suitable hierarchy of 

binding sites and are not in thermal equilibrium with traps14. 

Apart from the considerations of these simulation results, there are other 

factors that must also be considered. Dix and Verkman13 after an exhaustive analysis 

of literature, conclude that the role of molecular crowding is not so important to 

determine the anomalous diffusion and that the slowing of diffusion in cells is really 

less marked than it is generally assumed. Another point of view is expressed by the 

review of Zhou, Rivas and Minton12. They affirm that, within living cells fast 

associations are under diffusion control and slow associations are under reaction 

control. Also, macromolecular crowding usually decelerates fast associations and 

accelerates slow ones. From their point of view, biological fluids are more complex 

than systems usually considered in simulation due to the nonspecific interactions and 

it is necessary to obtain well-defined model systems for further theoretical 

investigations. Moreover, from several experimental works, it is well known that the 
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anomalous diffusion emerges on cytoplasmatic macromolecules and it depends on the 

size and conformation of the tracer particle and on the total protein concentration of 

the solution28. There are even experimental studies that show anomalous protein 

diffusion in in vitro, with the anomalous diffusion exponent decreasing continuously 

with increasing obstacle concentration and molecular weight31,35. 

The aim of the present study is to perform a series of Monte Carlo simulations 

of small particle diffusion in 3D obstructed lattices in order to assess the real effect of 

macromolecular crowding on the diffusion without the interference of the low 

dimensionality restrictions that appear in two-dimensional systems. We have focused 

on three particular aspects that were not extensively treated in previous studies. We 

have quantified the effect of the obstacle size, their relative mobility and the manner 

the obstacles are distributed (at random or uniformly). Although the role of these 

factors has been previously analysed in 2D media36-37,39,40,52, a systematic three-

dimensional study that quantifies their importance without the influence of the low 

dimensionality restrictions  was lacking. Moreover, a new contribution of this work is 

the study of how diffusion is affected by the different ways of partitioning a same 

obstacle-excluded volume: from a great quantity of small size particles to a small 

quantity of great size particles. In fact, the pattern of the spatial distribution of the 

volume excluded by obstacles is an additional aspect to be considered together with 

the value of the excluded volume itself. 

The paper is organized as follows: methods, results and discussion, and 

conclusions. “Methods” section contains three subsections: a theoretical background 

on the mathematical concepts of anomalous diffusion, a subsection presenting the 

simulation algorithm and another subsection presenting how we obtain the values of  

the investigated parameters for the quantitative analysis.  The “Results and 

discussion” section is also divided into three subsections emphasizing the effects of 
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obstacle concentration and sizes, of the manner they are distributed and of their 

mobility.  The main outcomes of the study are summarized in the “Conclusions” 

section. 

 

2  Methods 

2A. Theoretical background 

A diffusion process taken by a solute in dilute solutions can be described with the 

well-known Einstein-Smoluchowski equation:  

        (1) 

where d is the topological dimension of the medium where the process is embedded 

and D is the solute diffusion coefficient54-56. In crowded media, typically in in vivo 

and in a great number of in vitro processes, the existence of different macromolecular 

species, proteins, nucleic acids, organelles, etc., hinders the diffusion process. In these 

cases, eqn (1) must be generalized to deal with a more complex process, known as 

anomalous diffusion16,31,55-56 which can be described by: 

         (2) 

where a is defined as the anomalous diffusion exponent (0 < a < 1 is the case of 

subdiffusion and a > 1 holds for the case of superdiffusion) and G is a generalized 

transport coefficient, also known as anomalous diffusion coefficient, of units 

[length2/timea] which value depends on the degree of crowding in the medium. This 

definition allows us to introduce a generalized time-dependent diffusion coefficient 

function,  as: 

        (3) 
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where  represents the excluded volume given by the different macromolecular 

species present in the solution and determines its degree of crowding. Then, eqn (2) 

can be written as: 

         (4) 

 In order to work with dimensionless magnitudes it is usual to introduce some 

characteristic length unit, , which is related to the mean free path of the solute and it 

can be associated to the unit length of the simulation lattice, and some characteristic 

time unit, , which is the jump time and it can be associated to the unit time of the 

simulation process. Therefore, eqn (4) becomes: 

          (5) 

where,  and  are the dimensionless length and the dimensionless time, 

respectively, , is the dimensionless time-dependent diffusion coefficient 

function, and  is the diffusion coefficient of the solute in solution without 

crowding. This  value is related to the units of length and time by the Eisntein-

Smoluchowski eqn (1) as . 

 From, now, in order to simplify the notation, we drop the tilde in ,  and . 

Then, eqn (5) is now written as 

          (6) 

which is the dimensionless form of eqn (4). It must be taken into account that the 2d 

factor only appears in the dimensioned form of the generalized Einstein-

Smoluchowski diffusion equation. 
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 Experimental and theoretical data14,23,25,27-28,31,39-41 reveal that, in crowded 

media, there is a succession of diffusion behaviours that can be identified with the 

three distinct regions observed in the log(<r2>/t) versus log(t) plots: 

i) For really short times log(<r2>/t) is almost time independent reflecting that the 

diffusion process is not yet affected by macromolecular crowding. We define this 

initial value as 

         (7) 

and the dimensionless value of  is in accordance with the value  for 

the case without crowding. 

ii) Anomalous diffusion corresponds to an intermediate region where, according to 

eqn (3), log(<r2>/t) linearly decreases with a slope a-1. 

iii) For long-times, log(<r2>/t) tends to be constant again, reflecting a normal 

diffusion in a homogeneous dense medium with a diffusion coefficient (D*) lower 

than that corresponding to a dilute solution 

         (8) 

and the dimensionless value of  is in accordance with the value  for 

the case without crowding. The shifting from the anomalous diffusion regime to the 

normal one is characterized by the crossover time, τ. 
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 The characteristic parameters of the log(<r2>/t) versus log(t) curves: 

anomalous diffusion exponent, a, limiting diffusion coefficient, D*, and crossover 

time, τ, have been considered in our quantitative analysis of diffusion.  

2B.  Simulation algorithm 

Diffusion in 3D obstructed media was modeled as a random walk process in which 

the randomly distributed diffusing particles, called tracers (T), move in a 

100x100x100 cubic lattice with cyclic boundary conditions and containing randomly 

distributed obstacles (O) such as their density is under the percolation threshold. It has 

been checked that the simulation results are not dependent on the lattice size. Several 

test simulations performed for 50x50x50, 100x100x100 and 200x200x200 systems 

yielded the same results (simulations not shown here). 

 We consider only excluded volume interactions (hard-sphere repulsions), so 

any site in the lattice may not be occupied by two particles at the same time. Our 

approach is based on the experimental results obtained by Kao and coworkers38 and 

Wachsmuth and coworkers25, which have shown that probe collisions with 

intracellular components were the principal diffusive barriers that slowed the 

translational diffusion of small solutes.  

Each tracer occupies a single site in the lattice. In contrast, to account for the 

usual greater size of the crowding molecules and to analyse the effect of the paticle-

obstacle relative size in the diffusion, four different sizes have been considered for 

obstacles (see Fig. 1): 1 site, 27 sites (a 3x3x3 site cube), 81 sites (a cube of 5x5x5 

sites where the sites at the edges and near the vertex have been removed to obtain a 

quasi spherical shape) and 179 sites (a 7x7x7 site cube with the edge and vertex sites 

removed). We use the notation 5x5x5 R and 7x7x7 R (where R stands for rounded) to 

refer to the last two sizes. As every obstacle occupies many sites within the lattice, in 

our calculations we distinguish the density of sites occupied by obstacles, [O]sites from 
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the concentration of obstacle particles, [O]. We will refer to the density of sites 

occupied by obstacles, [O]sites, as the excluded volume due to the obstacle presence 

(f). Four values for the obstacle excluded volume have been considered: 0.1, 0.2, 0.3 

and 0.4. We must underline that because of the mutual spatial exclusion among 

tracers, the total excluded volume of the system is the sum of f plus the volume 

occupied by the tracers. However, as the tracer excluded volume is the same in all the 

performed simulations (0.01) and smaller than the obstacle one, all the study will we 

referred to the obstacle excluded volume, f. 

In the present study, the following situations have been considered: 

i) tracers ([T]=0.01) in lattices with randomly distributed immobile obstacles 

with different site density occupancy: f = 0, 0.1, 0.2, 0.3 and 0.4. We have 

chosen these densities in agreement with experimental data concerning to the 

range of macromolecular crowding agents in cytoplasm, 

1,2. These simulations were carried out for the four obstacle 

sizes shown in Fig. 1. 

ii) tracers ([T]=0.01) in lattices with mobile obstacles. The mobility is controlled 

by a probability factor M that determines whether an obstacle is allowed to 

move after being randomly selected. The following M values were considered: 

0.25, 0.5, 0.75 and 1. This series of simulations were done for the obstacle size 

and obstacle excluded volume values considered in the i) calculations. 

iii) tracers ([T]=0.01) in lattices with uniformly distributed immobile obstacles. In 

this case the obstacles form a cubic regular lattice with a constant separation 

between every pair of nearest-neighbours. The obtained results are compared 

with those given by the simulations with a random distribution of obstacles. 

To make the comparison reliable the space between two nearest-neighbour 

obstacles in the uniform distribution and the size of the simulation lattice is 
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defined for each case so that the obstacle site density is the same for both, 

uniform and random, obstacle distribution models. The considered uniform 

distributions are presented in Table 1. 

 

At every time step a random number is used to choose a particle to move (a 

tracer or an obstacle, if mobile). For a tracer, the destination site is randomly chosen 

among the 6 nearest-neighbours of the origin site. If the proposed site is empty the 

considered particle moves to it, otherwise it remains in its initial position and another 

particle is randomly chosen to move. For a big size obstacle, the central site is 

proposed to move one position in one of the six spatial directions, randomly chosen. 

The obstacle displacement is done if the new sites to be occupied are empty. For each 

Monte Carlo time step this sequence is repeated Ntot times (Ntot is the total number of 

mobile particles within the lattice) in order to assure that statistically each molecule 

moves once in the time step. Every simulation run lasted 10000 time steps and every 

run was repeated from 100 to 400 times with a different initial particle disposition. 

For each case, the mean squared displacements are averaged along these repetitions. 

This algorithm was implemented in a fortran program.  

 

2C. Characteristic parameters of the diffusion process 

The time dependence of the diffusion coefficient is analysed, according to eqn (3), 

with the log(<r2>/t) versus log(t) curves obtained from the computer simulations. 

From each curve the three characteristic parameters of the diffusion are extracted: the 

anomalous diffusion exponent (a), the crossover time (τ) and the long-time diffusion 

coefficient (D*). In Fig. 2 it is shown how these parameters are obtained.  

  We notice in Fig. 2 that for an unobstructed lattice (f =0, homogenous media) 

the plot is a horizontal line, indicating that diffusion coefficient is constant. The 
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log(<r2>/t) value is not exactly zero because there is a small autocrowding effect due 

to the hard sphere tracer repulsions. In contrast, the curves corresponding to the 

obstructed lattices (f = 0.3 and 0.4) present two characteristic regions. There is a 

region with a linear decreasing of log(<r2>/t), which corresponds to an anomalous 

diffusion behaviour, followed by a region with a smaller constant diffusion coefficient 

(D*) characteristic of normal diffusion. It should be noticed that, as it was reported in 

other studies17,36-41, the initial region of normal diffusion (when the diffusing particles 

are not still affected by the crowding obstacles) is not observed in the present on-

lattice simulations. The plot starts at a position, D0’(f), lower than D0(f) (the initial 

normal diffusion coefficient given by eqn (7) not observed in the simulation), which 

value depends on the discretization of the lattice, the obstacle size and the excluded 

volume, and immediately decreases to reach the linear anomalous diffusion region.  

According to eqn (3), the value of the anomalous diffusion exponent is 

calculated from the slope of the linear time decreasing region of the log(<r2>/t) versus 

log(t) plot. The long-time diffusion coefficient is the long-time asymptotic limit of the 

plot. Finally, as it is illustrated in Fig. 2, the crossover time is given by the 

intersection of the linear fitting of the anomalous diffusion region and the horizontal 

line corresponding to the limiting diffusion coefficient of the normal diffusion 

region41. 

The crossover length, defined as , is another characteristic 

parameter of the diffusion process that has been analysed. Its value represents the 

minimum displacement distance from which the diffusion becomes again normal. It is 

related with the characteristic length of the obstacle distribution. Tracer displacements 

greater than this characteristic length see the obstacle distribution structure as a 

homogeneous medium. 
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The <r2> versus t plots have also been analysed. According to eqn (6), for the 

normal diffusion region this plot is a straight line with a slope proportional to its 

corresponding normal diffusion coefficient. As, in the simulations, the crossover time 

from the anomalous to the normal diffusion regions occurs very early, most of the plot 

corresponds to the straight line of this final normal diffusion region (Fig. 3). The 

initial normal diffusion and the anomalous diffusion regions occupy a very short 

interval. This is the reason why a linear fitting in these plots usually yields the value 

of the limiting diffusion coefficient (D*). We have used these plots to confirm the 

value of the limiting diffusion coefficient (D*) obtained from Fig. 2. As it will be 

discussed below, Fig. 3 also shows that for a fixed obstacle excluded volume the 

slope of the <r2> versus t plot changes with the size of the obstacles.  

 

3. Results and discussion  

 

i) Effect of obstacle density and size  

In a first series of simulations, two different aspects of the crowding effect on 

diffusion have been analysed: the effect of the obstacle excluded volume (density of 

sites occupied by obstacles) and, for a fixed value of the obstacle excluded volume, 

the effect of the spatial distribution of the occupied sites (different obstacle sizes). 

This second aspect gives a new insight into the excluded volume analysis, since, 

usually, studies on crowding effects on diffusion consider variations of particle-

obstacle relative size without keeping the total excluded volume at a fixed value. 

 Fig. 4a shows the dependence of the anomalous diffusion exponent on 

obstacle excluded volume for obstacles having different sizes. There it can be seen 

that for a given obstacle size the anomalous diffusion exponent decreases when the 

obstacle excluded volume (the number of obstacle particles in this case) increases. 

That is, for a greater excluded volume there is a stronger obstruction of the diffusion 
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process causing a marked decreasing of the diffusion coefficient with the time. This 

conclusion is qualitatively similar to that of Monte Carlo simulations of tracer 

diffusion in 2D crowded media41,49-50,52. It should be noted that the anomalous 

diffusion exponent values obtained in the present simulations fall within the 0.9-1 

interval, whereas, in 2D, it attains smaller values (0.7 in ref. 40) because the low 

dimensionality restrictions to diffusion are added to the obstruction caused by the 

crowding. Higher values were obtained in experimental studies on 3D diffusion in 

agarose gels26. On the other hand, FCS experiments on streptavidin protein diffusion 

in dextrans solutions31 and FRAP measurements of alpha-chymotrypsin diffusion also 

in dextrans35 yielded lower anomalous diffusion exponent values (until 0.75). We 

think that in order to reproduce these low a values, the Monte Carlo simulation model 

needs to consider additional aspects of the real system such as hydrodynamic and/or 

intermolecular interactions. 

 An important result that can be observed in Fig. 4a is that for a given value of 

the obstacle excluded volume (f) the smallest anomalous diffusion exponent 

corresponds to the case where the obstacles have the smallest size. This means that a 

given total excluded volume, due to obstacles, produces a higher crowding when it is 

divided into a greater number of smaller pieces (small size obstacles). In contrast, 

smaller crowding effect is observed when the same excluded volume is divided into a 

smaller quantity of bigger pieces (big size obstacles). In that case the tracers find 

greater empty spaces to move without colliding with an obstacle and there are fewer 

barriers to diffusion. These results confirm that not only the value of the total 

excluded volume but also its spatial distribution pattern in the simulation lattice 

determines the diffusion process. 

 Fig. 4b shows the diffusion coefficient values for the long-time normal 

diffusion obtained from the computer simulations. D*, defined by eqn (8), is 
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expressed in terms of the <r2>/t  relation, according to the relative diffusion coefficient 

Df given by eqns (3)-(6). Our calculations give, in fact, a D* value of 0.995 for f =0 

because of the autocrowding due to the tracer hard sphere repulsions. In Fig. 4b it can 

be seen that for a given obstacle size the smaller D* values are attained at higher 

obstacle densities. The plot shows that, for the considered excluded volume interval, 

this variation is almost linear. These results confirm that the increase of the excluded 

volume reduces the tracer diffusion. On the other hand, if one considers a given 

obstacle excluded volume (f), the long-time diffusion coefficient value is smaller 

when the excluded volume due to obstacles is divided into a greater number of 

smaller obstacle particles. This fact is in accordance with the more obstructive effect 

of a more partitioned crowding. The comparison of Fig. 4a and 4b shows that the 

values of long-time diffusion coefficient, D*, are correlated with those of the 

anomalous diffusion exponent, a. The greater the slope of the anomalous diffusion 

region is, a smaller long-time diffusion coefficient is attained. 

In Fig. 4c the crossover time, t, values obtained for these situations are also 

collected. There it can be seen that for a given obstacle excluded volume (f), the 

crossover time from anomalous to normal diffusion occurs later for big obstacle 

particles and earlier for small ones. In contrast to small size obstacles, for big ones 

there are a smaller number of obstacle particles and thus a greater mean distance 

between them. As a consequence, the diffusing particles need more time steps to 

perform displacements greater than the characteristic length of the obstacle 

distribution. For small size obstacles the time needed to “see” the obstacle distribution 

as a homogeneous system is shorter.  The crossover time differences between small 

and big size obstacles are progressively reduced as the obstacle excluded volume 

increases.  
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Fig. 4c also shows, for each obstacle size, the dependence of the crossover 

time value on the obstacle excluded volume. It can be seen that there are different 

behaviours. For the small size obstacles the crossover time increases with the obstacle 

concentration, whereas for the biggest ones the crossover time diminishes. For a 

single site obstacle, when increasing the number of particles, the mean distance 

among obstacles diminishes and the characteristic length of the obstacle distribution 

can be estimated to be shorter. Thus, it could be expected that the normal diffusion 

regime is reached at shorter time intervals. However, as simultaneously the 

obstruction to diffusion is greater, there is a delay in the time when the diffusing 

particles see the obstacles as a homogeneous distribution. The final position of the 

crossover time is a consequence of the competition of these two factors. In systems 

with small obstacles the reduction of the diffusion prevails over the reduction of the 

mean distance among obstacles. Our results are similar to those given by Saxton for 

point obstacles in 2D diffusion40.  On the other hand, for big size obstacles the 

balance is the reverse, as the increase in the obstacle density needs a smaller 

increment of obstacle particles the obstruction to diffusion is less relevant than the 

reduction of the mean distance among obstacles.  

The calculation of the crossover length, , shown in Fig. 4d, 

confirms this different behaviour. For each obstacle size there is an almost linear 

dependence of the crossover length on the obstacle size and excluded volume. As 

mentioned before, this parameter can be interpreted as the minimum displacement 

length for the tracer to see the obstacle distribution as a homogeneous medium. The 

density of occupied sites around an average empty site of the simulation lattice (Fig.  

5) indicates that the r* values are situated in the region where this function becomes 

constant.  
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From these results we should notice the distinct behaviour of the 1-site 

obstacles. For the anomalous diffusion exponent and the long-time diffusion 

coefficient these obstacles give a markedly smaller values that can be interpreted in 

terms of  its relative smaller size. On the other hand, 1-site obstacles are the only ones 

that increase the crossover time and length parameter values with the excluded 

volume. This behaviour, which was also observed in the Saxton simulations of 2D 

diffusion40, is related with the greater proportion of obstacle clusters that present the 

smaller size obstacles.  

As a complementary study, the values of the initial (t®0) diffusion 

coefficient, D0’(f), obtained in  the different simulations were analysed (Table 2). The 

results indicate that the D0’(f) value depends on the obstacle size and excluded 

volume and is similar to the value given by 1 minus the probability that a tracer, in a 

single jump, reaches an occupied site. As this probability is computed assuming that 

all obstacles are separated among them, it value gives an upper limit estimation for 

the initial D0’(f). 

Although these simulation results are coherent and in agreement with 2D 

simulations36-41,44-47, there are experimental 3D studies31,35 that show a reverse result 

for the limiting diffusion coefficient and the anomalous diffusion exponent values. 

Whereas our simulations, performed with randomly distributed immobile obstacles, 

indicate that, for a given excluded volume, the small size obstacles are more 

obstructive to diffusion and yield a smaller value for D* than the big size ones, the 

experiments, performed in in vitro with mobile obstacles, show an opposite ordination 

of a and D* values indicating that, in reality, the small size obstacles are the less 

obstructive to diffusion. This different behaviour can be attributed to the obstacle 

mobility that has not been considered in these simulations. In fact, in a real solution, 

the crowding molecules can move and, consequently this fact may change their 
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crowding effect on diffusion. In the next section we explore how these results may 

change when obstacles are allowed to move.  

 

 

 

ii) Effect of obstacle mobility 

In the simulation model the degree of mobility of an obstacle is defined by the 

probability factor M, which determines whether an obstacle is tried to move after 

being randomly selected. The values 0, 0.25, 0.5, 0.75 and 1 have been considered. In 

fact, M represents the relative jump probability of obstacles with respect to tracers 

and gives an indication of their approximate relative diffusion coefficient. It should be 

noted that M is not the exact relative diffusion coefficient because this parameter can 

only be determined from the particle displacements observed during the simulation. 

The effect of obstacle mobility on tracer diffusion can be observed in Fig. 6 

where the log(<r2>/t) versus log(t) curves for the case of obstacles having a size of 81 

sites (5x5x5 R) have been plotted. These curves show that increasing the obstacle 

mobility reduces the obstruction effect to diffusion. For a greater mobility (M=1) the 

reduction of the diffusion coefficient with time is slower (greater a), the anomalous 

diffusion region is shortened (smaller t) and the diffusion coefficient, D*, for the 

long-time normal diffusion is greater. The more obstructive effect to diffusion is 

obtained for fixed obstacles. Similar plots are obtained for the other obstacle sizes.  

As in experimental systems the mobility of crowding molecules is inversely 

proportional to their size, we have analysed the obstacle obstructive effect to diffusion 

by assigning a different mobility factor M to each obstacle size. To obtain a 

qualitative indication of the different size-mobility effect, a value of  M=0 have been 

given to the 179-site obstacles, M=0.25 for the 81-site ones, M=0.75 for obstacles 

having 27 sites, and the maximum mobility (M=1) for the single site obstacles. The 
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diffusion characteristic parameters obtained from the simulation curves are shown in 

Fig. 7. As the mobility reduces the obstructive effect of obstacles, the differences 

among the diffusion parameter values are smaller. However, in comparison to what 

happens with immobile obstacles, some significant changes are observed.  

The obstacle mobility increases the value of the anomalous diffusion 

exponent, a, that is, the reduction rate of the diffusion coefficient with time is smaller. 

Moreover, as a result of the different obstacle mobilities we observe that, for each 

obstacle excluded volume, the anomalous diffusion exponent is greater for the small 

size obstacles and smaller for the big ones (Fig. 7a). Due to their greater mobility, the 

smaller obstacles produce a lesser obstruction to tracer diffusion. This new ordering 

of a values with respect to obstacle size is the reverse of what is observed in 

immobile obstacles (Fig. 4a) and coincides with  experimental measurements31,35. The 

qualitative agreement with these experiments indicates that obstacle mobility must be 

taken into account in the interpretation of diffusion processes. 

The limiting diffusion coefficient, D* (Fig. 7b), shows a similar behaviour. 

First, the obstacle mobility increases the D* values as a consequence of a smaller 

obstruction to tracer diffusion. Second, due to the different obstacle mobilities, the 

ordering of D* values with respect to obstacle size is also the reverse of the ordering 

for immobile obstacles (Fig. 4b). Now, despite that the D* value differences are 

small, for a given obstacle excluded volume, the larger obstacles have a smaller 

diffusion coefficient. Only the case of single site obstacles shows a particular 

behaviour. In spite of its mobility (M=1), the greater obstructive effect of this highly 

partitioned excluded volume yields diffusion coefficient values smaller than the other 

obstacles. 

Another effect of the obstacle mobility is the reduction of the crossover time 

(Fig. 7c), that is, the final regime of normal diffusion is reached earlier. The 



 20 

comparison of Fig. 7c with Fig. 4c (immobile obstacles), shows that the obstacles 

with a greater mobility: 1x1x1 (M=1) and 3x3x3 (M=0.75), present a marked 

reduction of the crossover time and show a value that is constant for all the obstacle 

excluded volumes. It can be interpreted that the obstacle mobility tends to 

homogenize the system reducing the transition time to the final normal diffusion. For 

the obstacles with smaller mobility (M=0.25) the change is in the same direction but 

the reduction of t is less acute (Fig. 7c). 

A similar situation is observed for the crossover length parameter (Fig. 7d). 

The obstacles with a greater mobility have smaller crossover length values than when 

they are immobile, being these values almost independent of the total obstacle 

excluded volume. As the crossover length is related to the characteristic length of the 

obstacle distribution, this results means that in the case of mobile obstacles this 

characteristic length is independent of the obstacle excluded volume and it depends 

only on the obstacle size.  

 

iii) Random versus uniform distribution of obstacles  

Cellular environment also presents regions with high spatial organization, such as 

microtubules. In order to model small particle diffusion within these regions we have 

performed simulations with uniformly distributed obstacles forming a cubic lattice 

with a small separation (1, 2 or 3 sites) between nearest-neighbours (Table 1).  

Fig. 8 shows the log(<r2>/t) versus log(t) curves obtained in these conditions 

for the 81-site obstacles (5x5x5 R). The curves are compared with those obtained 

from diffusion in lattices with immobile randomly distributed obstacles. In both 

models two obstacle excluded volumes have been considered: f=0.236 and f=0.375.         

 We notice that, for a given obstacle density, the time decreasing of the 

diffusion coefficient is more accentuated when the immobile obstacles are randomly 
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distributed. Similarly, for the random obstacle distribution the anomalous diffusion 

region is longer than for the uniform distribution and the crossover from anomalous 

diffusion to normal one takes place at a later time. In addition, the constant diffusion 

coefficient for long times is, for the uniform distribution of obstacles, always higher 

than for the random distribution. These results indicate that, for a fixed obstacle 

excluded volume, the uniform distribution of obstacles is lesser obstructive to small 

particle diffusion than their random distribution. The channels between obstacles of 

the uniform distribution give to the diffusing particles a continuum empty space 

where to move without obstructions. On the other hand, the random distribution 

produces a greater partitioning of the free space obstructing the communication 

between empty local volumes. A similar behaviour was observed in previous 

calculations of single particle diffusion in 2D crowded media49-50. 

 The effect of the spatial (random versus uniform) distribution of immobile 

obstacles on the tracer diffusion is analysed in Fig. 9 in terms of the 4 characteristic 

parameters of diffusion. For each obstacle size, 2 or 3 obstacle excluded volumes 

have been considered (Table 1). For the uniform distribution the highest f value 

corresponds to a distribution in which the nearest-neighbour obstacles are separated 

by 1 empty site and the second f value corresponds to a separation of 2 empty sites. 

The third f value considered in the case of 3x3x3 sites obstacles corresponds to a 

separation of 3 empty sites between nearest-neighbour obstacles. To make the 

comparisons more reliable, the simulations with randomly distributed obstacles have 

been done at the same excluded volume values as in the uniform distributions. 

Fig. 9a and 9b confirm that in all cases the uniform distribution is less 

obstructive to diffusion. The smaller size obstacles (1x1x1 and 3x3x3) show a greater 

change in the a and D* parameter when the distribution changes from random to 

uniform, and this change becomes more important at higher excluded volumes. The 
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parameter value differences are smaller for the bigger obstacles (5x5x5 R and 7x7x7 

R). It should be noted that the results for uniformly distributed obstacles approaches 

the results found for mobile obstacles (Fig. 6) because the obstacle mobility tends to 

homogenize the obstacle distribution. 

A particular result for the a values is observed in the uniform distributions. 

For the smaller obstacles the value of a increases with the excluded volume, that is, 

when the separation between two nearest-neighbours changes from 2 to 1. Whereas 

for the bigger obstacles a decreases. This result could be related with the fact that 

smaller size obstacles that have a cubic shape and the bigger ones have a quasi-

spherical shape.  

In Fig. 9c and 9d, it can be seen that the uniform distribution of obstacles 

yields smaller crossover time and crossover length values than the random 

distribution. As the uniform distributions are less obstructive to diffusion, tracers 

reach earlier to the final normal diffusion regime. It should be noted that when the 

obstacle separation is 1 the crossover length tends to a value that is the equatorial 

distance from a site situated in front the obstacle and the site situated behind, that is, 

the obstacle diameter plus 1. It should be noticed that the r* values for mobile 

obstacles are greater (tend to the obstacle diameter plus 2) than in the uniform 

obstacle distributions. The reason is that in the second case all the obstacles 

(immobile) are separated from the others, whereas in the first case clusters of 

obstacles may be formed yielding a bigger average obstacle size. 

 

4. Conclusions 

The ability to simulate diffusion in complex media is an essential first step for 

understanding small particle dynamics in living cells. Although there is a lot of 

information published in literature about diffusion in crowded 2D media, there is a 
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shortage of systematic studies concerning three-dimensional crowding. 3D studies are 

particularly interesting because they allow to asses the real importance of the 

crowding in diffusion without the influence of the low-dimensional restrictions. 

The diffusion process in these media is well described by the log(<r2>/t) 

versus log(t) curves. They show that the diffusion coefficient changes with time 

during a period of anomalous diffusion until it reaches a long-time constant value that 

corresponds to a normal diffusion in a denser homogeneous medium. Our simulations 

reveal how these curves are affected by the density, size, mobility and spatial 

distribution of obstacles. Parameters such as the anomalous diffusion exponent (that 

indicates the degree of this time dependence), the diffusion coefficient for long-time 

normal diffusion, and the crossover time from the anomalous diffusion regime to 

normal one are used to characterize the crowding effect on diffusion.  

Our simulation results indicate that increasing the obstacle site density increases 

the importance of the anomalous diffusion by increasing the reduction rate of the 

diffusion coefficient with time (smaller a value) and reducing the diffusion 

coefficient (D*) corresponding the long-time normal diffusion. We have also found 

that the dependence of the crossover time on the obstacle density shows a different 

behaviour depending on the size of the obstacles (that is, the particle-obstacle relative 

size). In contrast to what happens with small size obstacles and in accordance with 

what it is observed in 2D simulations40, for big obstacles the crossover time decreases 

with the obstacle density. These differences are a consequence of the different spatial 

pattern distribution of the excluded volume shown for each obstacle size.  

A new contribution of the present work is the analysis of the spatial 

distribution pattern of the excluded volume due to obstacles and how this pattern 

affects the particle diffusion. Our results show that for a fixed density of sites 

occupied by obstacles, the effect on diffusion is different depending on how this 
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obstacle-excluded volume is partitioned. When a same total obstacle site density is 

distributed in a great number of small size obstacles the anomalous diffusion 

behaviour is more enhanced (faster decrease of the diffusion coefficient, smaller 

crossover time and smaller long-time diffusion coefficient) than when this excluded 

volume is partitioned into a small number of big size obstacles. This effect can be 

understood taking into account that the first case implies a great number of local 

volumes with empty sites separated by a great number of obstacles that makes more 

difficult the free displacements of the diffusing particles. On the contrary, in a pattern 

with big size obstacles the free space is divided into a smaller number of big size 

empty zones separated by a small number of diffusional barriers. Our results confirm 

that the spatial distribution pattern of the excluded volume plays an important role in 

the anomalous diffusion processes. In the estimation of the diffusion coefficient in 

crowded media it is not enough to take into account only the total excluded volume, 

its spatial distribution pattern must also be considered. 

Our results confirm that when the obstacles are mobile its obstructive effect is 

diminished. We found that in increasing the value of the mobility factor, the 

anomalous exponent increases and the crossover time diminishes. In consequence, the 

importance of the anomalous diffusion regime is reduced. 

Another important observation is that a uniform distribution of obstacles is 

less obstructive to diffusion in comparison to a random distribution of immobile 

obstacles being its results similar to those of mobile obstacle distributions. The 

structural organization of the system presenting elements such as “channels” gives to 

the diffusing particles a continuum path of empty sites to move. With the uniform 

distributions the rate reduction of the diffusion coefficient is smaller, the crossover 

time to normal diffusion appears earlier and the limiting diffusion coefficient is higher 
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than with a random distribution. An example of such a system is the cell cytoplasm 

which contains microtubules were small particles diffuse.  
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Table 1  Lattice sizes, obstacle sizes and obstacle excluded volume (f) considered in 

the simulations of tracer diffusion in lattices with uniformly distributed obstacles. For 

each uniform distribution the separation between two nearest-neighbour obstacles is 

also given.  

 
Obstacle size f Obstacle separation Lattice size 

1 site  (1x1x1) 0.037 2 sites 99 x 99 x 99 
0.125 1 site 100 x 100 x 100 

27 sites (3x3x3) 
0.125 3 sites 102 x 102 x 102 
0.216 2 sites 100 x 100 x 100 
0.422 1 site 100 x 100 x 100 

81 sites (5x5x5 R) 0.236 2 sites  105 x 105 x 105 
0.375   1 site 102 x 102 x 102 

179 sites (7x7x7 R)   0.246 2 sites 99 x 99 x 99 
0.350 1 site 104 x 104 x 104 
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Table 2  Upper limit estimation of the initial diffusion coefficient values, D0’(f), 

obtained in all the simulations performed with immobile random distributed obstacles. 

The value of the log-time diffusion coefficient, D*, is also shown.  

 

Obstacle size f 1 – collision probability D0’(f) D*(f) 

1x1x1 

0.1 0.900 0.878 0.834 

0.2 0.800 0.768 0.679 

0.3 0.700 0.661 0.521 
0.4 0.600 0.557 0.362 

3x3x3 

0.1 0.967 0.948 0.898 

0.2 0.934 0.901 0.808 

0.3 0.901 0.847 0.706 
0.4 0.867 0.787 0.605 

5x5x5 R 

0.1 0.969 0.956 0.906 

0.2 0.938 0.916 0.822 
0.3 0.907 0.867 0.732 

0.4 0.876 0.809 0.633 

7x7x7 R 

0.1 0.973 0.962 0.913 
0.2 0.945 0.929 0.833 

0.3 0.918 0.889 0.749 

0.4 0.890 0.840 0.659 
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Captions for figures 

 

Fig. 1  The four  obstacle sizes considered in the MC simulations: a) 1 site, b) 27 sites 

(3x3x3),  c) 81 sites (5x5x5 R) and  d) 179 sites (7x7x7 R). 

 

Fig. 2  log(<r2>/t) versus log(t) curves for diffusion in 3D crowded media with 81-site 

obstacles (5x5x5 R) presenting two different site density occupancies  (f = 0.3, 0.4). 

The curve for the unobstructed medium is also added. The regions corresponding to 

the different diffusion behaviours and the manner to determine the characteristic 

parameters are illustrated.  

 

Fig. 3  Plot of  <r2> vs. time in 4 systems with immobile obstacles randomly 

distributed having a same obstacle excluded volume (0.4) but different obstacle sizes: 

1 site (1x1x1), 27 sites (3x3x3), 81 sites (5x5x5 R) and 179 sites (7x7x7 R). The 

arrow indicates the crossover time position. 

 

Fig. 4  Dependence of a) the anomalous diffusion exponent, a, b) the long-time 

diffusion coefficient, D*, c) the crossover time, t, and d) the crossover length, r*, on 

the obstacle excluded volume for four different obstacle sizes: 1-site obstacles 

(1x1x1), 27-site obstacles (3x3x3), 81-site obstacles (5x5x5 R) and 179-site obstacles 

(7x7x7 R). Error estimations for a and D* values are smaller than ±0.001 and 

±0.00002, respectively. For the crossover time and the crossover length the error 

interval is shown by  the vertical bars. 

 

Fig. 5  Plots showing the obstacle density distribution around an average empty site. 

For each for obstacle size the curves corresponding to the four excluded volumes (0.1, 

0.2, 0.3 and 0.4) are plotted. In every curve the position of the crossover length (r*) is 

marked with a circle. 
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Fig. 6  log(<r2>/t) versus log(t) curves for diffusion in a 3D crowded system with an 

obstacle excluded volume of 0.3, obstacles having a size of 81 sites (5x5x5 R) and 

presenting five different mobilities according to the probability factor M.  

 

Fig. 7  Dependence of a) the anomalous diffusion exponent, a, b) the long-time 

diffusion coefficient, D*, c) the crossover time, t, and d) the crossover length, r*, on 

the obstacle excluded volume for four different size obstacles having different 

mobility: 1-site obstacles (M=1), 27-site obstacles (M=0.75), 81-site obstacles 

(M=0.25) and 179-site obstacles (M=0). Error estimations for a and D* values are 

smaller than ±0.001 and ±0.00002, respectively. For the crossover time and the 

crossover length the error interval is shown by  the vertical bars. 

 

Fig. 8  log(<r2>/t) versus log(t) curves for diffusion in lattices with immobile 

obstacles having 81 sites size (5x5x5 R). For f=0.236 the curves corresponding to the 

random distribution and an uniform distribution with 2 empty sites between nearest-

neighbours are shown. For f=0.375 the curves correspond to the random distribution 

and a uniform distribution with 1 empty site between nearest-neighbours. 

 

Fig. 9  Dependence of a) the anomalous diffusion exponent, a, b) the long-time 

diffusion coefficient, D*, c) the crossover time, t, and d) the crossover length, r*, on 

the obstacle excluded volume for four different size obstacles: 1x1x1 (circles), 3x3x3 

(squares), 5x5x5 R (up triangles) and 7x7x7 R (down triangles). For each obstacle 

size two spatial distributions are considered: uniform (continuous line) and random 

(dotted line). The obstacles in the random distributions are immobile. For the uniform 

distributions the values of the nearest-neighbours separation (sep) are indicated in a) 

and b). 
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Figure 1 
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Figure 2 
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Figure 3 
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Figures 4a and 4b 
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Figures 4c and 4d 
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Figures 5a and 5b 
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Figures 5c and 5d 
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Figure 6 
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Figures 7a and 7b 
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Figures 7c and 7d  
 

 
 

 
 



 45 

 

 

Figure 8 
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Figures 9a and 9b 
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Figures 9c and 9d  

 
 

 
 

 
 


