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Abstract: The high concentration of macromolecules (i.e., macromolecular crowding) in cellular
environments leads to large quantitative effects on the dynamic and equilibrium biological properties.
These effects have been experimentally studied using inert macromolecules to mimic a realistic
cellular medium. In this paper, two different experimental in vitro systems of diffusing proteins which
use dextran macromolecules as obstacles are computationally analyzed. A new model for dextran
macromolecules based on effective radii accounting for macromolecular compression induced by
crowding is proposed. The obtained results for the diffusion coefficient and the anomalous diffusion
exponent exhibit good qualitative and generally good quantitative agreement with experiments.
Volume fraction and hydrodynamic interactions are found to be crucial to describe the diffusion
coefficient decrease in crowded media. However, no significant influence of the hydrodynamic
interactions in the anomalous diffusion exponent is found.

Keywords: macromolecular crowding; Brownian dynamics; dextran modelling; macromolecule
diffusion; hydrodynamic interactions

1. Introduction

The study of reaction and diffusion processes in biological media has been a challenging topic of
recent research. Although single macromolecules are present in low concentrations, there is a high total
concentration of macromolecules (such as proteins, polysaccharides, etc.) in cellular environments.
In this context, macromolecular crowding can be defined as “macromolecular cosolutes that are nominally
inert with respect to the reaction of interest” [1]. In general, cell cytosol presents an occupied volume
fraction of 20%–30%, which means an approximate macromolecule concentration of 200–300 g/L.
Moreover, macromolecular crowding is also relevant outside the cells [2] (e.g., blood plasma has a
non-negligible 80 g/L protein concentration).

Since in vitro experiments are usually carried out at low concentrations (1–10 g/L), alternative
approaches are necessary in order to evaluate the effect of macromolecular crowding in the
thermodynamic and kinetic properties of the system. At the experimental level, high concentrations of
crowding agents (usually dextran or ficoll macromolecules), which are considered to interact only by
means of steric non-specific interactions, have been used to mimic the in vivo environment (usually
called in vivo-like media) [3,4]. The experimental studies of macromolecule diffusion are mainly based
on two experimental techniques: Fluorescence Correlation Spectroscopy (FCS) [5] and Fluorescence
Recovery After Photobleaching (FRAP) [6,7].
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FCS relies on the detection and temporal analysis of the fluorescence signal emitted from a small
confocal detection volume. In these studies, fluorescent markers are specifically bound to the tracer
molecule allowing a wide range of possible tracers (e.g., proteins, polymers, metal-complexes, etc.).
The fluctuations in fluorescence intensity in a small region of the sample are recorded and used to
calculate the temporal auto-correlation function, which allows determining the diffusion coefficient
and the anomalous diffusion exponent of the tracer.

On the other hand, in FRAP, a small volume of the sample is lighted with a laser beam. As a result,
the molecules in the lighted region become bleached and no fluorescence is exhibited. The diffusion
coefficient and the anomalous diffusion exponent of the fluorescent molecule can be estimated by
means of the velocity of fluorescence recovery in the bleached region.

In addition, computational studies have been performed in order to understand the effect of
macromolecular crowding [8]. These studies use different approaches such as on-lattice Monte Carlo
simulations [9] or off-lattice Brownian Dynamics (BD) simulations [10,11]. Recently, macromolecular
crowding effect on diffusion has been modelled by means of atomistic models of cytoplasm using
Molecular Dynamics [12].

Macromolecular crowding is crucial to describe macromolecular diffusion in biological media.
Under these conditions, the well-known Einstein–Smoluchowski equation is no longer valid and three
different difusion regimes are observed, as shown in Figure 1 [9,13]. At short times, the particles of the
system have not collided yet and the diffusion coefficient (Dshort) remains constant. Generally, Dshort

is not equal to the dilute solution diffusion coefficient because the motion of the particles is slowed
down due to Hydrodynamic Interactions (HI) with the other particles. As a result of the inter-particle
collisions, the diffusion coefficient decays until it reaches a new stationary state at long times (Dlong).
In the intermediate regime, also known as anomalous regime, the mean square displacement of the
particles (< r2 >) becomes non linear over time and can be expressed as:

< r2 >= (2d)Γtα. (1)

This is formally equivalent to having a diffusion coefficient that is not constant over time [14]:

D(t) =
Γtα−1

2d
, (2)

where α is the so-called anomalous diffusion exponent, d is the topological dimension of the system
and Γ is a generalized transport coefficient (also known as anomalous diffusion coefficient).

The effect of HI is also a key factor in macromolecular dynamics [15]. These interactions emerge
from the fact that the motion of different particles becomes correlated by means of solvent interactions.
Since in BD the solvent is not explicitly included in the simulations, HI need to be included in the
algorithm in an effective way. In general, two different approaches have been used to take into account
the HI: those which rely on calculating the diffusion tensor [16] using the Rotne–Prager–Yamakaya
(RPY) method [17,18], and those which benefit from the Tokuyama model [19–21].

The RPY method assumes a far-field approximation involving pairs of equal sized particles.
The calculation of the diffusion tensor and its factorization is a computationally expensive procedure
as it scales with the number of particles N as N3. Several approximations can be implemented in order to
speed up the results of BD simulations [22]. These procedures are mainly based on avoiding the Cholesky
decomposition of the diffusion tensor since it is the bottleneck of the simulation [23,24]. Recently,
several efforts have been made to improve the RPY approach such as generalization to different-sized
particles [25] or inclusion of many-body and near-field HI by means of the Durlofsky–Brady–Bossis
method [26,27]. Moreover, several studies have shown that the inclusion of the short ranged HI or
lubrication forces are crucial for describing macromolecular diffusion in crowded media since long
ranged HI become screened [28,29].
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Figure 1. Time evolution of the diffusion coefficient obtained in a system with volume fraction of
φ = 0.17. The red line is the result of averaging 400 BD simulations of a tracer particle diffusing among
68 obstacles with radius 4.9 and 1.2 nm respectively. The simulation time is 250 ns and the length of the
simulation box is 18 nm.

Unlike the RPY approach, the Tokuyama model is a mean-field approximation for equal-sized
soft core spheres that mimic the self-diffusion of biomolecules in solution. This model provides a
better description of short range HI than the conventional RPY diffusion tensor. This procedure has
started to be used in BD simulations in crowded media [30,31] because it is computationally cheaper
than the RPY approach since it allows for introducing the HI contributions without calculating the
diffusion tensor.

In the present paper, macromolecule diffusion in crowded media is studied by using BD
simulations. Two different experimental systems have been modelled using a new dextran model
involving an effective radius which allows accounting for their steric compression in crowded media.
The HI are included using the Tokuyama model and their role in diffusion is discussed. Finally,
the effect of non-specific interactions, obstacle size and HI on the diffusion coefficient and the
anomalous diffusion exponent is analyzed.

2. Methodology and System Parametrization

2.1. BD Simulations with HI

The large amount of solvent molecules in the macromolecule solution makes all-atom Molecular
Dynamics simulations computationally very expensive. In this context, Langevin equation [32]
provides a suitable procedure since the solvent is implicitly included by adding a stochastic force in
the classic Newton equations of motion which accounts for the collisions of the Brownian particles
with the solvent. In BD time scales, it is more convenient to apply the over-damped limit [33] for which
the equation of motion reads [34]:

r(t + ∆t) = r(t)− D∆t
kBT
∇V(r, t) +

√
2D∆tξ(t), (3)

where ξ is a vector of 3N Gaussian random numbers with zero mean and unit variance.
Since we wish to model highly concentrated macromolecular solutions, we have chosen a

coarse-grained approach where each macromolecule is modelled as a single sphere using a proper
effective radius. In order to avoid overlapping, a harmonic pairwise repulsion is applied which acts
when the distance between two macromolecules is smaller than the sum of their radii:

Vij(ri, rj) =

{
1
2 k(dij − Rij)

2, dij < Rij,

0, dij ≥ Rij,
(4)
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where Rij is the sum of the radius of the interacting particles i and j, dij is the distance between i and j
particles and k is a parameter accounting for the stiffness of the potential [35]. The cubic simulation
box is used as outlined in Figure 2. The length of the simulation box is adapted to the dextran size,
which is taken as 18 nm, 38 nm and 77 nm for D5, D50 and D400 dextran molecules, respectively
(see the Table in Section 3). This allowed the number of particles to range between 50 and 200 for
all the dextran sizes. Periodic Boundary Conditions (PBC) are applied in all directions. The Mean
Square Displacement of the particles is calculated after a thermalisation time of 10 ns to avoid the
effect of unrealistic particle overlapping due to the random initial configuration. All the performed
simulations are 1000 ns long with a time step of 0.1 ns. The system temperature is 298.15 K. For each
studied system, a minimum of 400 different BD realizations are averaged over. Dlong values have been
calculated by fitting the Einstein–Smoluchowski equation to the simulated mean square displacement
(< r2 >) in the long-time regime.

Figure 2. Snapshot of one of the performed dynamics. A protein (in red) diffuses among dextran
molecules (in yellow) which act as crowding agents.

HI are included in the BD equation of motion using the Tokuyama model [19]. In this approach,
a Fokker–Planck equation for the single-particle distribution function is proposed which is coupled
with the Navier–Stokes equation. This equation is analytically solved at short times considering a
stationary configuration of equal-sized Brownian particles. Correlation effects and direct interactions
are neglected. As a result, the diffusion coefficient of the particle at short times (Dshort) is found to be a
function of the volume fraction φ, which has been calculated using [5,36–38]

φ =
4π(R3

T + NOR3
O)

3L3 , (5)

where RT is the radius of the tracer protein, and RO is the radius of the dextran obstacles, NO is the
number of dextran obstacles and L is the side of the simulation box. Following the Tokuyama approach,
the short time diffusion coefficient is related to the volume fraction by the equation

Dshort(φ) =
D0

[1 + H(φ)]
, (6)

where D0 is the diffusion coefficient at dilute solution and H(φ) is the contribution due to the HI valid
in the short-time regime. H(φ) is given by

H(φ) =
2b2

1− b
− c

1 + 2c
− bc(2 + c)

(1 + c)(1− b + c)
, (7)

where b =
√

9
8 φ and c = 11

16 φ. Recently, Tokuyama et al. [20] have obtained good agreement for the

diffusion coefficient at long times (Dlong) between Equation (6) and Molecular Dynamics with explicit
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solvent. It is also worth mentioning that Tokuyama [21] has proposed an analytical expression of the
Dlong in terms of the volume fraction:

Dlong(φ) =
Dshort(φ)[

1 + κ
Dshort(φ)

D0

(
φ

φc

)(
1− φ

φc

)−2] , (8)

where κ and φc are parameters settled to κ = 2.0 and φc = 1.09. In this work, simulations with and
without HI are compared. In the simulations without HI, the diffusion coefficient D in Equation (3)
corresponds to the diffusion coefficient in dilute solution D0. HI are included by means of the
Tokuyama method [20] replacing D in Equation (3) by Dshort calculated using Equations (6) and (7).

Tokuyama equations for Dshort and Dlong are derived assuming equal-sized spheres. Since our
systems contain two different-sized particles, the tracer protein and the dextran obstacles, the use of
Equations (6) and (7) for Dshort involves an approximation. Dlong, however, is calculated using direct
simulated mean square displacements at long times, so that the difference size effect is included in a
straightforward way via the inter-particle maximum approach Rij in Equation (4). The resulting Dlong

values are then compared to those predicted by Equation (8) in Section 2.3.

2.2. Effect of the Interaction Potential

The effect of the interaction potential stiffness (Equation (4)) has been also analysed to ensure
that the selected constant (k = 50, 000 J·mol−1·nm−2) was enough to prevent particles to overlap.
With this aim, preliminary computations were performed which are shown in Figure 3. No significant
difference was observed between the three proposed values for k (k = 1 × 105, k = 5 × 104 and
k = 2.5× 104 J·mol−1·nm−2), which means that the potential was rigid enough to avoid overlapping.

(a) (b)

Figure 3. Decrease of the normalised diffusion coefficient at long times (Dlong) with the volume
fraction at three different values of the stiffness constant k of the interaction potential. BD simulation
perfomed: (a) without HI; (b) with HI using the Tokuyama model. The results show that the potential
is rigid enough to avoid overlapping. Continuous lines are only to guide the lecturer.

2.3. Effect of Long Range Hydrodynamic Interactions

The effect of the HI in macromolecular diffusion in crowded media has been evaluated by selecting
a simple system of equal sized spheres at different volume fractions. We have performed calculations
comparing the conventional RPY tensor [17,18] and Tokuyama method [19–21].
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Long range HI experience a slow decay with inter-particle distances, a well-known effect in
electrostatic interactions. This fact could lead to size-dependent results and to unphysical non-definite
positive diffusion tensors [39]. Therefore, in principle, procedures like Ewald sums [40] should be
implemented. In order to avoid this problem, we performed simulations at different system sizes.
We found that for N > 50, the finite size box effect becomes rather small [41]. It was also checked
that the diffusion tensor was always definite positive at every time step. This agrees with previous
studies [28,29] indicating that long range HI become considerably screened at high volume fractions.

The obtained values for Dlong without HI, with HI described by RPY diffusion tensor, and with
HI using the Tokuyama method are shown in Figure 4. We can observe that the simulations without
HI and with HI using the RPY diffusion tensor provide almost identical Dlong values. This fact
supports previously reported results [28,29] highlighting the long range HI screening in crowded
media. Conversely, significant differences arise in implementing the Tokuyama method, which account
for short range HI (usually called lubrication forces). A marked decay of the diffusion coefficient is
observed, in agreement with the relevance of lubrication forces reported in previous works. It is also
important to highlight the almost perfect agreement, for a system of equal-sized particles, between the
Tokuyama Dlong analytical prediction (Equation (8)) and BD simulations using the Tokuyama model,
as Tokuyama previously reported [20].

Figure 4. Comparison of the diffusion coefficient calculated using BD without HI (red triangles), BD
with HI using the conventional RPY diffusion tensor (blue squares), BD with HI using the Tokuyama
model (cyan circles) and Tokuyama analytical expression (Equation (8), orange discontinuous line).
The results show the important role of short range HI (lubrication forces) in the diffusion reduction of
the diffusion coefficient, while the effect of the of long range HI is very low. It is also worth noting the
good agreement between the Tokuyama analytical prediction of Dlong and the BD simulation with HI
using Tokuyama model for Dshort. The lines are to guide the lecturer.

2.4. Effect of the Difference in Size between Tracer and Obstacles

Tokuyama analytical expressions were derived assuming the same size for all of the particles.
However, in our experimental systems, the tracer particle (a protein) and the obstacles (dextran
macromolecules) present different sizes. In order to check the accuracy of the Tokuyama prediction for
Dlong, we have performed simulations that implement the difference in size by a suitable modification
of the minimum inter-particle distance Rij in the interaction potential (Equation (4)). The Tokuyama
effective diffusion coefficient Dshort is still used to describe the short range HI forces since, to our
knowledge, no expression for Dshort is available yet for different sized particles.

Dlong resulting from BD simulations and the ones calculated using the Tokuyama analytical
expression (Equation (8)) versus volume fraction are depicted in Figure 5. It can be observed that
when the tracer (with radius R = 2.33 nm) and obstacle (R = 2.9 nm) present similar sizes, very
good agreement between Tokuyama equations and simulations is found, as shown in Figure 5a.
In contrast, if the tracer particle is far bigger (R = 4.90 nm) than the obstacles (R = 1.2 nm), important
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differences arise. As shown in Figure 5b, Dlong values predicted using the Tokuyama analytic method
clearly overestimate the ones obtained by BD computations, with differences up to 60% between both
approaches. In conclusion, Tokuyama analytic equations provide a reliable prediction for Dlong only
for systems of similarly-sized spheres so that BD computations are unavoidable otherwise.

(a)

(b)

Figure 5. Comparison between the normalized Dlong obtained using Tokuyama analytic equations
(Equations (6)–(8)) and the ones resulting from BD simulations at different volume fractions. In (a),
the tracer particle (with radius R = 2.33 nm) and the obstacles (R = 2.9 nm) present a similar size.
Dlong values obtained by Tokuyama method (orange circles) and the ones obtained by BD simulations
(red squares) clearly agree. In contrast, in (b), the tracer particle (R = 4.90 nm) is far bigger than the
obstacles (R = 1.2 nm). In this case, the Tokuyama method (blue circles) clearly overestimates Dlong

values obtained by BD simulations (cyan squares).

2.5. Dextran Model

Here, we assume that each macromolecule is a single sphere. In similar coarse-grained models [12,31],
the radius of the particles is calculated using their dilute solution diffusion coefficient via the
Stokes–Einstein equation. In these approaches, the dilute solution diffusion coefficient is estimated
using HYDROPRO software (Version 10) [42]. HYDROPRO needs as input the atomic coordinates of
the macromolecule, which is usually obtained from crystallographic data or NMR spectra. HYDROPRO
uses this atomistic structure to compute its hydrodynamic properties such as the diffusion coefficient
in dilute solution. Unfortunately, this information is not available for dextran macromolecules yet.

However, experimental hydrodynamic radius (RH) obtained using quasi-elastic light scattering [43],
and radius of gyration (RG) obtained from capillary viscometry [44] are available. We have fitted RH

and RG versus molecular weight data to the power law:

Rx = K ·Mγ
w, (9)

where Rx can be either RG or RH. K and γ are the best fitted parameters reported in Table 1.
Unexpectedly, we have found that these experimental radii lead to high volume fractions at
experimental concentrations (50–300 g/L). This behaviour increases dramatically with dextran
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size, resulting in unphysical volume fractions larger than one for the biggest sizes. This can be
explained taking into account the very complex branched structure of dextran macromolecules [45,46].
As dextran macromolecular size increases, the molecular structure becomes more branched. Moreover,
the structure of dextran is flexible allowing steric compression in concentrated solution.

Table 1. Best fitted parameters of power law (9) to the experimental radius of gyration and the
hydrodynamic radius versus molecular weight.

RG RH Rc Reff

K (nm·Da−γ) 0.018 ± 0.001 0.043 ± 0.002 0.063 0.045
γ 0.544 ± 0.005 0.445 ± 0.004 1

3 0.387

An alternative to calculating the volume fraction at high dextran concentrations is the use of an
average dextran specific volume (ν = 0.625 cm3/g) [47]. Considering the dextran molecules as compact
spheres with a radius Rc:

Rc =
3

√
3ν

4πNA
M

1
3
W = K ·Mγ

w, (10)

where NA is the Avogadro number, γ = 1
3 and K = 3

√
3ν

4πNA
= 0.063 nm ·Da−

1
3 . However,

previous studies using Equation (10) showed bad agreement with the experimental diffusion
coefficients [5–7] obtained using FRAP and FCS. More specifically, the obtained results exhibit a
slower decay of the diffusion coefficient with dextran concentration than that experimentally observed.
This was caused by the neglect of solvatation effects resulting in volume fractions that were too low.

In summary, a suitable effective radius (Reff) lying in between the hydrodynamic and the compact
radius is necessary for dextran macromolecules at high concentration. Such an effective radius has
been determined by performing BD simulations scanning the physically meaningful values for K
and γ parameters. In these simulations, K ranged from 0.043 to 0.063 nm·Da−γ while γ ranged from
1
3 to 0.445. Among the performed calculations, the best agreement between experimental [5–7] and
computed Dlong was obtained with γ = 0.387 and K = 0.045 nm·Da−γ.

It is also worth noting that the chosen parameters for Reff are closer to those of Rc than to those
of RH (Figure 6). This means that steric compression is crucial to properly describe dextran size in
crowded media. Moreover, the large difference between RH and Rc at high dextran molecular weight
reveals the importance of the steric compression as dextran size increases.

Figure 6. Radius of gyration (RG, red circles) taken from [44] and hydrodynamic radius (RH, green
triangles) taken from [43] versus molecular weight. The fittings corresponding to the power law
(Equation (9)) are represented with red and green lines. The compact radius (Rc, blue) and the effective
radius (Reff, purple line) versus molecular weight are also depicted. The effective radius for the chosen
dextran obstacles (purple squares) in our computations is also plotted. The lines are plotted only to
guide the lecturer.
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3. Results and Discussion

Two different experimental systems have been selected and computationally modeled in the
present work. The first one is the FCS study of Streptavidin protein (RH = 4.90 nm) diffusion
at different concentrations of six distinct dextran macromolecules performed by Banks et al. [5].
The second one uses FRAP to record α-Chymiotrypsin protein (RH = 2.33 nm) diffusion [6,7] at
different concentrations of three different-sized dextran macromolecules acting as crowding agents.
We have chosen the dextran molecules D5, D50 and D400 as obstacles since they have been used in
both experimental studies, allowing better comparison between them. The characteristic parameters
of the used dextran macromolecules are shown in Table 2. In FCS, the fluorescence fluctuations of
a sample of tracer proteins are associated with the tracer auto-correlation function [5]. This allows
for experimentally measuring the anomalous exponent α and a characteristic residence time τD. τD is
defined as the time which the tracer particle needs to traverse the characteristic length of the detection
volume. A similar approach is followed in the analysis of the fluorescence recovery measured by
FRAP [6,7]. α and τD are used to calculate the effective diffusion coefficient (Deff) at a time equal
to τD. The experimentally found τD, around 1–3 ms [5,6], is much longer than the computational
times at which Dlong is calculated. As a consequence, the computed values of Dlong should reasonably
correspond to the experimentally obtained Deff.

Table 2. Characteristic parameters of the dextran molecules chosen as obstacles. MW: averaged
molecular mass in weight; RG: radius of gyration [5–7]; RH: hydrodynamic radius [43]; Rc: compact
spheres radius; Reff: the chosen effective radius. They have been obtained using power law (9) with
the parameters shown in Table 1.

Dextran MW (kDa) RG(nm) RH (nm) Rc (nm) Reff (nm)

D5 5.2 1.7 1.9 1.1 1.2
D50 48.6 5.8 5.2 2.3 2.9
D400 409.8 17 13.5 4.7 6.7

3.1. Long Time Diffusion Coefficient

As mentioned above, diffusion in crowded media has three different temporal regimes over time
(Figure 1). In order to compare computations and experiments, it is necessary to calculate the diffusion
coefficient in the long time regime (Dlong). In the selected experimental systems, the diffusion of a
tracer protein is studied at different concentrations of three different-sized dextran macromolecules
(D5, D50 and D400), which act as inert obstacles. Two different approaches have been applied in the
simulations. In the first one, the HI are not considered and thus only a pairwise repulsive harmonic
potential is acting. In the second one, HI are taken into account using the Tokuyama method.

Figures 7 and 8 show the effect of macromolecular crowding in the diffusion of Streptavidin and
α-Chymiotrypsin, respectively. Dlong is normalized using the diffusion coefficient at infinite dilution
(D0) of the particle. The simulations including HI using the Tokuyama model exhibit, in general, better
qualitative and quantitative agreement with the experimental data for all the dextran sizes studied.
As a consequence, the inclusion of HI is crucial to describe the reduction of Dlong experimentally
observed. This is in concordance with the importance of the short range HI in crowded media
previously reported in the literature [29]. It is also worth mentioning that Dlong always decays
as obstacle concentration increases, as a result of the increase of particle collisions, which hinder
protein diffusion.
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(a) (b)

(c)

Figure 7. Decay of Dlong corresponding to Streptavidin protein versus dextran concentration.
Three different sizes of dextran obstacles: (a) D5; (b) D50; and (c) D400 have been used. The obtained
results including the HI with Tokuyama model exhibit better agreement in general with the
experimental data showing the relevance of HI in the Dlong values in crowded media. The lines
are only for guiding the lecturer.

(a) (b)

(c)

Figure 8. α-Chymiotrypsin protein Dlong decay with dextran concentration. Three different sizes of
dextran obstacles: D5 (a); D50 (b); and D400 (c) have been used. The obtained results including HI
with Tokuyama model exhibit in general better agreement with the experimental data showing the
relevance of HI in the Dlong values in crowded media. Continuous lines are only to guide the lecturer.

BD simulations show a clear effect of the tracer particle size, which is different in both systems.
Streptavidin shows a faster decay with dextran concentration than α-Chymiotrypsin. This is logical
since Streptavidin (with R = 4.9 nm) is quite larger than α-Chymiotrypsin (R = 2.33 nm). As a result,
the loss of mobility due to an increase in the number of collisions of Streptavidin is larger than in
the case of α-Chymiotrypsin. On the other hand, BD simulations show a small contribution of the
dextran size in Dlong for the same dextran concentration. This is probably due to the limitations of
Tokuyama approach, which assumes equal sizes for the particles in the derivation of the equations.
As a consequence, Tokuyama equations only account for the dependence on the volume fraction, but
not on the obstacle size. This is the case of α-Chymiotrypsin, but not that of Streptavidin, for which
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Dlong clearly decays faster as the obstacle size increases. This fact points out the interest of future
extensions of the Tokuyama approach to systems of different-sized particles.

3.2. Anomalous Diffusion Exponent

The anomalous diffusion exponents α for the two studied diffusing proteins are depicted in
Figures 9 and 10. In concordance with the obtained results for Dlong, the α exponent also decays with
dextran concentration. A good quantitative prediction of the experimental data is obtained for both
proteins except for the smallest dextran size.

(a) (b)

(c)

Figure 9. Anomalous diffusion exponent α of Streptavidin versus dextran concentration for three
different sizes of dextran obstacles: (a) D5; (b) D50; and (c) D400. The obtained results exhibit good
quantitative agreement with the experimental data except for the smallest dextran size D5. In general,
no significant influence of HI in the α exponent is obtained. The lines are to guide the lecturer.

(a) (b)

(c)

Figure 10. α-Chymiotrypsin anomalous diffusion exponent α versus dextran concentration for three
different sizes of dextran obstacles: (a) D5; (b) D50; and (c) D400. Computations show good quantitative
agreement with experiments except for the smallest dextran size D5. The small difference between the
results obtained with and without HI reveals HI are not important in the α exponent value. The lines
are only for guiding the lecturer.
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In general, the obtained results with and without HI are very similar indicating that, unlike Dlong,
the α exponent is not significantly influenced by HI. Since the anomalous diffusion exponent is related
to the transition rate between Dshort and Dlong regimes, this means that although HI slow down Dshort

and Dlong, they do not affect the rate of the transition. One possible explanation is that the collision
rate of particles, the driving mechanism of the transition, does not change substantially with the
inclusion of HI in the BD simulations of crowded media. For Streptavidin, it is also observed that
the anomalous exponent decreases with dextran size. However, the non-monotonous dependence of
the anomalous exponent for α-Chymiotrypsin is not clear, given the high experimental error for this
parameter. Probably, more experiments should be necessary in order to fully clarify this point.

4. Conclusions

A Brownian Dynamics computational model for two experimental systems of diffusing proteins
(Streptavidin and α-Chymiotrypsin) in crowded media has been proposed. In both cases, dextran
macromolecules have been used as crowding agents. Dextran macromolecules have been modelized
as spheres with effective radii accounting for macromolecular compression. The obtained long time
diffusion coefficients (Dlong) are, in general, close to the ones experimentally observed. In the analysis
of Dlong, the inclusion of the HI ends up being fundamental to explain the experimental decay. This
means that steric effects and HI are the two main contributions to the decrease of Dlong in crowded
media. However, no significant influence of HI in the anomalous diffusion exponent is detected.
Although the qualitative behaviour is properly modelled using the Tokuyama approach, in some cases,
the obtained results by simulation are still far from the experimental ones. This could be mainly due to
two different reasons.

The first one is that the Tokuyama model assumes equal-sized spheres and our systems are
heterogeneous. Therefore, this method is less accurate when the difference in size between the tracer
protein and obstacles particles increases. A generalization of the Tokuyama model for different spheres
is not available yet and it would be a promising procedure to improve our results.

The second factor that can be responsible for the difference between simulation and experiments
is the procedure used to model dextran molecules. This method does not take into account that
the degree of compression of the dextran macromolecules increases as their concentration increases.
This suggests the possibility to improve the dextran description by changing the harmonic potential
for a new potential able to allow dextran radius to evolve from its hydrodynamic radius to its compact
radius as the concentration increases [48]. This new potential could also account for the entanglement
of the polymer branches, allowing some overlap between the macromolecules. This effect could be
also relevant in the diffusion properties of macromolecules in crowded media.
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Abbreviations

The following abbreviations are used in this manuscript:

BD Brownian Dynamics
FCS Flourescence Correlation Spectroscopy
FRAP Fluorescence Recovery After Photobleaching
HI Hydrodynamic Interactions
RPY Rotne–Prager–Yamakawa
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