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“Qui experimenta i no sap qué esta buscant,
mai podra comprendre el que troba”

Claude Bernard

“Mai he conegut ningu tan ignorant
que no es pugui aprendre res d’ell”
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I - INTRODUCTION

Cancer is currently one of the biggest worldwide public health challenges and a major
cause of mortality, accounting for more than 14 million new cases per year and more than 8
million related deaths (1). Despite all the recent data and progresses obtained due to cancer
research, the rate of death associated to metastasis still stands as it was two decades ago, at
90% (2, 3).

1. Cancer: General Hallmarks

Cancer is a multistep disease driven by an interconnected myriad of cellular events.
Tumor cells undergo a multistep process that triggers its ability to invade and, later on,
metastasize. The basics of these mechanisms are mainly shared among different types of solid
tumors (4) and they resemble the embryonic development and tissue repair processes (5, 6).
However, despite the wide variety of cancer types and the diversity of molecular mechanisms
that can be potentially deregulated in every single cancer cell, Hanahan and Weinberg have
identified eight specific traits that are common to all tumor cells, which are: cell death
resistance, sustained proliferative signaling, evasion of growth suppressors, metastasis and
invasion activation, replicative immortality, angiogenesis induction, cellular metabolism
deregulation and avoiding immune destruction (7, 8). They also included two consequential
traits that allow the acquisition of all the previously defined hallmarks, thus enabling malignant
cell transformation (tumor-promoting inflammation and genomic instability), making a total of
ten hallmarks common to all (or widely most) types of cancer (8) (Figure 1). In collaboration
with Dr. B. Gyorffy, we have recently established guidelines for the assessment of cancer
hallmarks (9).

The sequence of cellular events that drive cancer metastasis begins with the
detachment of epithelial cells and an initial local invasion, followed by an intravasation into
close lymphatic vessels, which allows the cellular transit through body lymphatic system or
hematological circulation, leading to an extravasation and settling in a distant organ (10). The
most relevant molecular facts that take place during this so-called metastasis cascade have
been largely described in literature (3, 6, 11, 12).

The main processes that primary tumors undergo are the following: a) Disruption of
basement membrane (BM): BM is an organized matrix of glycoproteins and proteoglycans that

enfolds epithelial and endothelial cells. Its proteolytic disruption enables tumor cells to initiate
invasion and metastasis (13). b) Poteolysis and remodelation of extracellular matrix (ECM): The

degradation of the extracellular matrix that surrounds a specific tumor is essential for cancer
cells to invade and intravasate in lymphatic or blood vessels (14). ¢) Apoptosis resistance and

survival: Tumor cells become resistant to the apoptosis induced by loss of cell-to-cell and cell-
ECM contacts (15). In this sense, it is also critical that a proportion of the ECM is maintained,
since it helps tumor cells to survive by preventing the entrance in apoptotic programs (4, 6). d)
Proliferation: Once ECM is completely or partially degraded, the cancer cells in a primary
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tumor face a new microenvironment, in absence of contact with other epithelial cells and the
ECM (11). In this context, they require proliferation signals from the surrounding stroma,
mainly secreted by cancer associated fibroblasts (CAFs) (16). e) Inmune escape: Invading cells
of some cancers develop an intrinsic mechanism to escape from the tight control of the
immune system, which has been designated as “immune escape” (17). f) Loss of cell-to-cell

contacts: During the invasive and metastatic processes, tumor cells modify their adhesion
preferences. Epithelial cells, previously attached to their neighbors, interact with stromal cells
such as endothelial cells or fibroblasts. The cell adhesion molecules (CAMs) involved in this
process can be classified in three main families (integrins, immunoglobulins and cadherins)
(18). g) Migration and motility: Epithelial cancer cells need to disseminate in order to reach

either lymphatic or hematological circulation and distant organs where settle. A collective cell
movement constitutes an effective strategy in their dissemination through the organism (6).

Figure 1 — The Hallmarks of Cancer. The figure displays the eight hallmarks of cancer proposed
by Hanahan and Weinberg in 2000 and 2011, as well as the enabling characteristics. Taken
with permission from (8).

Many of these outcomes occur in the context of the so-called epithelial-to-mesenchymal
transition (EMT), a molecular, phenotypic and functional reprograming of cancer cells, that
endows them with a more aggressive and invasive phenotype (19-22). Of note, cells
undergoing EMT are capable of entering into blood circulation, whereas lymphatic metastases
still retain epithelial features (23, 24). Remarkably, EMT not only influences the metastatic
capacity of epithelial cancers, but it also occurs during dissemination of non-epithelial tumors
(25).
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2. Epithelial-to-mesenchymal transition (EMT)

The EMT is a critical mechanism, shared by cells from distinct epithelial tumors, through
which invading cells lose their intercellular junctions and cell-to-cell contacts, as well as their
apico-basal polarity, in order to acquire a more motile and mesenchymal phenotype (21, 25,
26). EMT was firstly described in the context of embryonic development (26), but its role in
tumor progression and invasiveness has been now unveiled and broadly investigated. During
the EMT, cells lose the expression of epithelial markers like E-cadherin, occludins and
cytokeratins; apico-basal polarity markers (Crumbs3, PATJ, HUGL2) and tight cell junctions
(claudin-7, JAM1) and acquire the expression of mesenchymal markers such as vimentin or N-
cadherin (20, 22, 27, 28). In fact, EMT is reversible, and the opposite process (mesenchymal-to-
epithelial transition, MET) involves the recovery of epithelial hallmarks (20, 27). Moreover,
intermediate states between epithelial and mesenchymal phenotypes have been also
described in mediation of organ fibrosis and dissemination of tumor cells (22, 29) (Figure 2).

E-cadherin is involved in the maintenance of adherens junctions between epithelial cells
(26, 30), thereby acting as a tumor suppressor (18). Although it can be regulated by epigenetic
and post-translational mechanisms, its most relevant regulation is at transcriptional level (30,
31). In fact, upon E-cadherin loss, B-catenin is released from the epithelial adhesions and is
translocated into the nucleus where it activates the expression of EMT-inducing factors (19).
Therefore, it is considered a tumor suppressor and its loss is associated to a poorer outcome
(18, 30).

Several transcription factors have been described to repress E-cadherin, although not all
of them regulate its expression by direct binding. The transcription factors that trigger EMT
initiation mainly through binding to the E-cadherin gene promoter — so-called EMT-inducing
transcription factors (EMT-TFs) (20, 21, 32, 33) — are grouped in distinct families: two families
of zinc finger proteins (ZEB and Snail) and the Twist family of basic/helix-loop-helix (bHLH)
factors (25). Beyond these families, other proteins such as Goosecoid, HMGA2, E2-2A, E2-2B or
E47 (also called TCF3) repress E-cadherin transcription as well, through direct binding to its
promoter (20, 34-36). The EMT-TFs have acquired more relevance, since their classical
functions as promoters of cell motility and tumor invasive capacity have been expanded and
different roles in the regulation of other cancer hallmarks have been reported (21, 37). In fact,
they are considered independent prognostic factors for tumor aggressiveness, recurrence and
poor patient survival (21). Thus, EMT-TFs have gained importance as potential therapeutic
targets in cancer treatment.
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Figure 2 - Epithelial-to-Mesenchymal Transition (EMT). The illustration shows epithelial cells
progressively undergoing EMT transformation. The common markers used to define each state are
specified. Intermediate phenotypes display both epithelial and mesenchymal features and express a
mixture of markers from both states. Adapted with permission from (25).

The regulation of EMT-TFs expression depends on the activation of several cellular
signaling pathways. For instance, TGFB, Wnt, Notch, hypoxia, Ras-MPAK, growth factors (such
as EGF or VEGF) and NFkP signaling routes induce EMT-TFs (26, 38). The secreted factors
involved in activating these cascades are commonly released by stromal cells during
developmental and disease processes. The relevance of each single pathway depends on tissue
and cell context (19).

The Twist family is comprised of two members, Twistl and Twist2, which bind to DNA
through a bHLH domain. Binding of Twist proteins to regulatory regions of target genes can
result either into activation (N-cadherin) (39) or repression (E-cadherin) (32). Several other
transcription factors and co-factors (i.e. Runx2, NFkB or p300/CAF) cooperate with Twist
proteins in the regulation of gene expression. For instance, Twistl binds to PRC1 and PRC2
polycomb repressor complexes at the E-cadherin promoter (40). In addition, Twist factors are
upregulated during tumor progression, compared to its levels in benign neoplasia or healthy
organs. It was demonstrated that knocking down Twistl in breast cancer cells impairs
metastasis in a xenograft model, whereas it does not affect the formation of a primary tumor
(41). Some studies have shown that the joint expression of Twist and Snail in distinct types of
cancer can involve an additive negative effect on patient survival (42, 43), suggesting that
despite displaying separate roles in cancer progression, they can collaborate in enhancing
tumor aggressiveness.

The family of Snail EMT-TFs is constituted by three members: Snaill (or Snail), Snail2
(Slug) and Snail3 (Smuc). In this family, the domains that bind DNA regions in target genes
promoters correspond to zinc-finger clusters, which are located at the C-terminal end of the
protein (44-46). Snail proteins are considered the key factors in the initiation of EMT process,
that drives the initial steps of tumor invasion and metastasis, since they repress not only E-
cadherin transcription but also other epithelial markers like desmoplakin, claudins, occludins,
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Mucin-1 and cytokeratins (36). In parallel to this loss of epithelial hallmarks, Snail factors also
promote the acquisition of mesenchymal properties by the activation of genes that mediate
cell migration (36, 47, 48). In the regulation of some genes, the action of a unique factor is not
sufficient. For instance, in order to repress the vitamin D receptor, a good-prognostic marker in
colorectal carcinoma (CRC), the cooperation between Snaill and Snail2 is required (49, 50).

However, the importance of EMT in driving cancer metastasis has been recently
questioned (51, 52). In a mouse model for spontaneous breast carcinomas, it was described
that EMT is dispensable for the appearance of lung metastasis. Conversely, it highlighted the
relevance of EMT in promoting chemotherapy resistance, enabling cell survival in already
constituted metastasis (51). In parallel, another study reported that the inhibition of EMT-TFs
Snaill and Twist1 caused no alteration in the metastatic capacity of pancreatic carcinoma cells
(52). Nevertheless, these studies have not ruled out the role of other EMT-TFs, including the
ZEB family, in metastasis.

3. ZEB family of EMT-TFs

The ZEB family in mammalians is constituted by two members: ZEB1 (also known as
O0EF1) and ZEB2 (SIP1) (37). Regarding their structural organization, ZEB proteins comprise
diverse independent domains that mediate the binding to DNA regions and to other cofactors,
which cooperate in their repression and activation functions, but that are unable to bind DNA
directly. Both ZEB1 and ZEB2 present two zinc finger clusters (ZFC), located at each protein
end: N-terminal ZFC and C-terminal ZFC. These domains bind to regulatory regions of target
genes containing the 5’-CANNT(G) DNA-binding sequence (where N states for either C or G
nucleotide), which have been defined as ZEB boxes (E-box and E-box-like DNA sequences) (53-
55) (Figure 3).

ZEB proteins mediate TGFB signaling through cooperation with activated Smad
transcription factors (56, 57). This binding is feasible due to the presence of a Smad Interacting
Domain (SID), located between the N-terminal ZFC and the so-called homeodomain (HD).
Other cofactors can bind to the N-terminal domain, depending on the cellular context and the
genes targeted (Figure 3), such as p300 and p/CAF histone acetyltransferases (27), which
cooperate in transcriptional activation. This same region can interact with other cofactors
involved in chromatin reorganization. ZEB1 binds as well one of the members of the SWI/SNF
remodeling complex, BRG1 (58), whereas ZEB2 binds NuRD (59) (Figure 3). Both BRG1 and
NuRD function as transcriptional corepressors.

Another important region for the binding of cofactors is placed between the HD and the
C-terminal end. This region contains several motifs for the association with C-terminal Binding
Proteins 1 and 2 (CtBP1 and CtBP2) cofactors and is referred to as CtBP Interacting Domain
(CID). Moreover, ZEB1 can also interact through the C-terminal domain with transcription
factor TCF4, effector of Wnt signaling and the Hippo signaling coactivator YAP1 (60, 61). In the
specific case of YAP1 protein, it can also associate to the N-terminal ZFC (61) (Figure 3).
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Due to the complex structure and diversity of available domains, combined with the
variety of cofactors, ZEB proteins can either act as transcriptional repressors or activators,
depending on the associated cofactors (27, 37). Their role as transcriptional repressors occurs
via competition and displacement of other activating factors (62), or by direct binding to an E-
box DNA sequence, which is the most common mechanism (63, 64). The transcriptional
cofactors bound to ZEB proteins are recruited in a promoter-specific manner. Even though, the
specific identity of the concrete corepressors or coactivators that are involved in
transcriptional regulation has been only investigated for a few genes.

Figure 3 — Structure of ZEB transcription factors. Schematic diagrams of the structure of ZEB
proteins and the most relevant cofactors involved in their activity as transcriptional regulators.
Coactivators are depicted in green, whereas corepressors are shown in red. Other transcription
factors are labeled in blue. Nt-ZFC: N-terminal Zinc Finger Cluster; SID: Smad-Interacting Domain;
Mid-ZF: Middle Zinc Finger; HD: homeodomain; CID. CtBP-Interacting Domain; Ct-ZFC: C-terminal
Zinc Finger Cluster. Adapted with permission from (37).

In contrast, the activity of ZEB factors as transcriptional inducers involves the interaction
with coactivating proteins. The most common are the histone deacetylases p300 and p/CAF,
whose binding to ZEB factors triggers a synergistic effect when TGFB signaling is
simultaneously activated and Smad proteins are also recruited (56, 57). A clear example of this
cooperation is the Vitamin D Receptor gene, directly induced by ZEB1 (65). This cooperative
effect also occurs in the case of Wnt signaling, where ZEB1 is converted into an activator upon
binding to TCF4 (60).

The ZEB family of transcription factors, especially ZEB1, presents the strongest inverse
correlation with E-cadherin expression among the three families described (66). This fact can
be partially explained by the induction that both Snail and Twist proteins exert on ZEB factors
(67). Snaill induces ZEB1 through either direct transcriptional or post-transcriptional
mechanisms (68). Even more, Snaill stabilizes Twist1 protein levels, which also binds to ZEB1
promoter and enhances its expression. High throughput gene profile approaches indicate that
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Snaill and Twistl function upstream of ZEB1 (69). Oppositely, ZEB1 acts upstream of other
EMT-TFs and induces their expression, mainly that of Twistl (70). The expression and
functional coincidence of the EMT-TFs families suggests that the specificity and role of each
EMT-TF may be restricted to spatial and temporal levels during tumor progression (21). As an
example, ZEB2 functions as a tumor suppressor in melanoma cells, oppositely to the tumor-
promoting role of its homologue ZEB1 (71).

Since ZEB transcriptional activities can be modulated indirectly, the interplay between
them and the miR-200 family of microRNAs constitutes a relevant mechanism (72). This family
of non-coding microRNAs, that abolishes the mesenchymal phenotype and is key in
maintaining the epithelial features of cells, is transcriptionally repressed by ZEB factors (73).
Thus, the targets of the miR-200 family are indirectly activated by ZEB1 and ZEB2, since their
post-transcriptional repressors are inhibited. Conversely, the mRNA transcripts of ZEB1 and
ZEB2 are both inhibited by miR-200 family microRNAs. Moreover, ZEB factors are involved in
other regulatory loops with microRNAs, such as miR-183, miR-203 or miR-205 (21, 74, 75).

Over the last decade, a considerable amount of data has demonstrated that ZEB1 and
ZEB2 participate in other processes of cancer development, beyond the induction of EMT. In
fact, ZEB proteins are driving tumor progression by being involved in some of the cancer
hallmarks proposed by Hanahan and Weinberg (7, 8):

e Acquisition and maintenance of stemness properties: ZEB1 confers stemness to cancer

cells through the repression of several microRNAs that target regulators of stemness
(such as BMI1, KLF4 or SOX2) (74, 76). Moreover, it has been defined as one of the
signature genes that determine the stem-like subtype of CRCs (77). In a model of
pancreatic cancer, the acquisition of a mesenchymal phenotype and stemness
properties mediated by ZEB1 precedes the formation of a primary tumor (78).
However, in prostate cancer models, the expression of ZEB1 appears to be
independent of the tumor-initiating properties exerted by stem cells (79).

e Resistance to apoptosis: ZEB1 represses the transcription of pro-apoptotic cell cycle

regulators, such as TAp73, impairing cell cycle arrest (80). In addition, it activates the
expression of anti-apoptotic genes such as MCL1 or BCL2, and represses pro-apoptotic
ones like PUMA, NOXA or BAX (81). Instead, ZEB2 exerts a cell cycle-independent role,
promoting survival through the PARP and pro-caspase 3 cleavage inhibition (82).

e Angiogenesis promotion: ZEB1 and ZEB2 are commonly found overexpressed by

endothelial cells in the tumor stroma. ZEB2 has been directly involved in mediating
angiogenesis (83). Moreover, ZEB1 upregulates vascular endothelial growth factor
(VEGF), promoting angiogenesis (84).

e Chemotherapy and radiotherapy resistance: It has been widely reported that EMT is

potentiated by resistance to DNA-damaging drugs. Likewise, ZEB1 confers resistance to
treatment in several types of tumors, such as pancreatic or colorectal, as well as in
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mantle cell lymphoma. In parallel, the presence of ZEB2 decreases the sensitivity of
bladder cancer and squamous carcinomas to treatment (21, 37, 74, 81, 82).

e Cellular senescence inhibition: ZEB1 represses some senescence-associated genes (85).
For example, it inhibits CDKN1A, CDKN2A and CDKN2B genes (encoding for p21, pl16
and pl5 proteins, respectively), effectors of TGFB pathway that are involved in

senescence response (56, 86, 87). Moreover, earlier evidence showed that mouse
embryo fibroblasts (MEFs) derived from either heterozygous or homozygous deletion
of ZEB1 undergo senescence earlier than wild-type MEFs, which display a normal
proliferation rate (87). Interestingly, its counterpart ZEB2 has an opposite role, since it
represses TERT and induces senescence (88).

4. Role of Senescence during Cancer Progression

During the process of epithelial cells transformation into malignant and tumorigenic
cells, they need to overcome several processes that trigger programmed cell death or growth
arrest. In fact, both cell death resistance and maintained proliferation are included among the
reported hallmarks of cancer (7). Remarkably, ZEB factors are involved in growth arrest
impairment (81, 82). Cellular senescence, described as an irreversible arrest of cell cycle,
constitutes a barrier that cells need to skip in order to fulfill oncogenic transformation (89-91).
Thus, senescence is considered a tumor suppressive mechanism and mouse models that are
unable to trigger senescence response present higher tumor formation (92, 93).

The main tumor suppressors (i.e. p53, p21, p16 or pRb) mount a senescence response
upon receiving oncogenic stimuli, promoting an irreversible arrest of proliferation (94). Indeed,
the establishment of senescence involves the activation of several cellular processes, such as
chromatin modifications, DNA damage response and induction of autophagy (90). These
events include the release of several cytokines, growth factors and proteases with
inflammatory properties, that has been termed as the Senescence-Associated Secretory
Phenotype (SASP) (91). This phenotype provides beneficial effects, such as tissue repair and
regeneration, but some of its components promote chronic inflammation and activate a
paracrine proliferation signaling, among other deleterious features (91, 93).

Despite being originated by distinct molecular processes, senescent cells share some
common characteristics (Figure 4A) such as a larger size (even doubling basal size) and flat
morphology (90, 91). Moreover, they use to accumulate lysosomal vacuoles, with an increase
of senescence-associated lysosomal B-galactosidase activity (SA-B-gal), which can be used as a
specific marker of senescent cells (95) (Figure 4B). In addition, the secretory phenotype that
cells release during senescence acquisition implies the overexpression of several genes that
can be used as biomarkers for this phenotype (96). These biomarkers include: cell cycle genes
(e.g. CDKN2A, CDKN1A), chromatin remodeling proteins (HIRA, ASFla, PML, HP1y, macroH2A1)
and secreted proteins (IL1-A, IL-6, IL-8, MMP1, MMP3, TGFB1) (90, 96).
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Among these markers, there are some genes that are responsible for remodeling the
structure of chromatin, which is a typical trait of senescent cells (97). This remodeling involves
a more condensed structure, that causes transcriptional activity silencing (98). In fact, referring
to senescent cells, the regions of the genome that include those genes related to proliferation
induction, are relocated to areas of transcriptional repression, defined as senescence-
associated heterochromatin foci (SAHF) (97). The promyelocytic leukemia (PML) nuclear
bodies mediate the assembly of SAHF by recruiting heterochromatin proteins in early
senescence. The formation of these SAHF supports the cell cycle exit (99). Among the distinct
SAHF markers, the macroH2A1 histone (encoded by H2AFY gene), recalls a special interest,
since it renders a key role in gene silencing (100).

Figure 4 — Main features of cellular senescence. (A) Scheme of cell population undergoing
senescence. The main morphological, biochemical and chromatin modifications are listed. (B)
Example of SA-8-gal staining in cancer cells. Taken with permission from (101).

5. Importance of EMT and ZEB proteins in colorectal cancer

Colorectal cancer (CRC) ranks third among all types of malignancies in Western countries
and approximately 1.5 million of new cases are annually diagnosed (102, 103). It is also the
fourth cause of cancer-related death worldwide, accounting for almost 700,000 deaths every
year. Particularly, metastatic colorectal cancer supposes a 5-year mortality rate over 90%
(104). The factors that involve an increased risk of CRC appearance are diverse and present
distinct origin. Some of the factors are modifiable and refer to behavioral individual matters.
Instead, others depend on the existence of a genetic predisposition (103, 105).

The spontaneous CRC (including the ones associated to a previous familial history)
accounts for 90-95% of all diagnosed CRCs. However, around 5% of CRCs have a genetic
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hereditary cause. Among them, the most common is the Lynch syndrome, which accounts for a
3-5% of all CRC new cases. These patients have an increased risk of developing diverse types of
cancer, but with the highest probability for colorectal affectation (106, 107). The familial
adenomatous polyposis (FAP) is the second most frequent genetic syndrome involving
appearance of a CRC. In this specific syndrome, the affected patients spontaneously develop
hundreds of colorectal adenomas and an early age intervention is required (108, 109).

5.1 Molecular pathogenesis of spontaneous CRC

One of the most prevalent mutations that occur in more than 70% of CRC cases is in the
APC gene. This alteration occurs as an early event in the multistep process previously
described (103, 110) and is commonly driven by a biallelic inactivation of this gene (Figure 5),
which in wild-type condition plays a key tumor suppressor role. The mutation and subsequent
loss of function of APC triggers the activation of Wnt signaling pathway (111, 112), which will
be discussed in the following section. After this initial step, the colonic crypts can suffer a slight
dysplasia, leading to the appearance of an early adenomatous lesion (also called aberrant crypt
foci, ACF) that can evolve into a larger adenoma in case of acquisition of new mutations or
phosphorylation in the small GTPase protein KRAS (113-115). At this stage of the adenoma-
carcinoma progression, the mutation of BRAF occurs at much lower frequency (Figure 5).
Remarkably, KRAS mutations confer resistance to anti-epidermal growth factor therapy and
associate to worse prognosis.

Figure 5 — Molecular pathogenesis of CRC adenoma-carcinoma progression. Simplified model of
the transition from early adenoma lesions to late colorectal carcinoma, aligned with most
common genetic alterations driving each step. Model adapted with permission from (114).
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Later, an intermediate adenoma can suffer further promoting genetic alterations, such
as the deletion of a fragment of chromosome 18, that includes the SMAD4 gene, whose loss is
associated to poor patient outcome (116). The definitive triggering hit of the progression from
late adenoma into colorectal carcinoma is the alteration of the tumor suppressor TP53 gene,
associated to weak therapeutic response (117). These genetic losses are a clear reflection of
chromosome instability (CIN). CIN may appear at the initiation of CRC, although it acquires
more relevance in later stages (118). It must be also noted the relevant role of microsatellite
instability (MSI), that commonly occurs at late adenoma stages (114) (Figure 5).

5.2 Histological and molecular classifications of CRCs

Classification of CRCs depends on distinct histological and pathological criteria (119-
121). The mainly used stages are invasion depth (T), affectation of lymph nodes (N) and
presence of distant metastasis (M). Thus, the CRC classification is named as TNM (Tumor,
Nodes and Metastasis) staging system (120). Stage 0 corresponds to an early adenoma step
and further stages range from | to IV, where stages | and Il include increasing grades of
invasion depth. Stage Il is assigned to patients with affected lymph nodes. Finally, stage IV is
assigned to distant metastasis cases (103, 121). This classical CRC staging criteria provides
worthy information and data on prognosis, but fails at predicting therapeutic response. Thus,
the convenience of using this classification has become a matter of debate in the last decade
(122, 123). In order to improve the prognostic capacity and the ability to determine patient’s
outcome, several groups have proposed new CRC classification systems, based on gene
expression profiles (77, 124, 125).

The firstly proposed molecular CRC subtype classifications were published by De Sousa
et al. and Sadanandam et al. (77, 125). The study from De Sousa et al. assigns the poorest
survival prognosis to a specific subtype characterized by poorly differentiated cells and
upregulation of EMT-associated genes (125). This poor-prognosis group is related to a specific
type of precursor lesions, known as sessile serrated adenomas, where an aberrant TGFB
signaling promotes the induction of ZEB1 (126). In parallel, Sadanandam et al. reported that
the so-called “stem-like” subtype correlated with the worst disease-free survival. Remarkably,
this subtype accounts for the strongest Wnt signaling and its gene signature contains ZEB1 as
the biomarker for CRC diagnosis and classification (77).

In a summary of these previous works, recent studies have connected the data from all
publications and grouped the different subtypes of CRC in four consensus subtypes,
characterized by specific cancer hallmarks. (127, 128). Once again, the mesenchymal subtype
provides a worse overall and relapse-free survival than the other subtypes. This group of
tumors displays high expression of ZEB factors (127). As a global conclusion from these new
molecular CRC classification systems, CRC subtypes with an increased expression of
mesenchymal phenotype markers (especially ZEB1) and active Wnt signaling present a poor
overall and relapse-free survival. Thus, the following sections of this Introduction chapter will
focus on the role of Wnt pathway in CRC and its connection with ZEB proteins.
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6. Wnt signaling pathway and its role in CRC progression

The Wnt signaling pathway is involved in regulating several physiological processes
during embryonic development, as well as in adult tissue homeostasis. The effects triggered by
this molecular cascade include stimulation of cellular proliferation through mitosis activation,
overcome of cellular growth arrest and death and cellular commitment towards specific
differentiation. In fact, Wnt signaling is involved in development and intestinal crypts
proliferation (129). However, an aberrant deregulation of the pathway leads to the
appearance of diverse pathologies, particularly cancer. Once again, as in the case of EMT
process, cancer arises from the aberrant deregulation of a developmental pathway (130-133).
The participation of Wnt ligands and B-catenin is key in the so-called canonical pathway. Even
though, other potential signaling cascades coexist with it and have been described as non-
canonical pathways (134).

In homeostatic conditions, mammalian cells keep the cytoplasmic B-catenin at low levels
through a B-catenin degradation complex containing glycogen synthase kinase-3p (GSK-3B),
Axin2 and APC proteins, that drives B-catenin to proteasomal degradation after being
phosphorylated and ubiquitylated (132, 135) (Figure 6). When Wnt proteins are secreted to
the extracellular medium, they bind to surface receptor complexes. These complexes are
commonly constituted by a member of Frizzled (Fz) receptors and another member of the low-
density-lipoprotein (LDL)-related receptor protein (LRP) receptors families. In general, the LRP
receptors that interact with Wnt proteins are LRP5 and LRP6 (131, 133, 135). These receptors
promote the intracellular signaling transduction (Figure 6).

Firstly, the Dishevelled (Dsh) protein is recruited to the Fz receptor, promoting the joint
recruitment of Axin2 to the membrane receptor complex, through its interaction with LRP 5/6.
Once both proteins have been recruited to the membrane, the function of the B-catenin
destruction complex is impaired and the ability to degrade cytoplasmic B-catenin is lost. In
consequence, the remaining cytoplasmic pool of B-catenin accumulates and translocates to
the nucleus (132, 135). Finally, nuclear B-catenin physically interacts with the constitutive
transcription factors lymphoid enhancer-binding factor / T cell-specific transcription factor
(LEF/TCF) and modulates the transcription of Wnt target genes (132) (Figure 6).

The LEF/TCF factors are commonly associated to transducin-like enhancer protein (TLE,
also named Groucho) in the nucleus, which represses transcription by recruiting histone
deacetylases (HDACs) (137, 138). The nuclear translocated B-catenin displaces TLE from the
TCF/LEF factors and recruits other transcription factors such as BCL9 or histone
acetyltransferase p300 (135), promoting a transcriptional switch that converts LEF/TCF factors
into activators (Figure 6). The induction of Wnt target genes promotes the activation of Wnt
signaling cellular programs, such as proliferation, survival or cell fate determination. It must be
also noted that some Wnt signaling activators or antagonists are included in the group of
activated targets, providing an autonomous feedback control loop on the pathway (131, 132).
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Importantly, the activation of Wnt signaling cascade inhibits the induction of cellular
senescence, allowing tumor cells to continue proliferating (135). For instance, Wntl and Wnt2,
prevent the appearance of a senescent phenotype in epithelial cells and in fibroblasts,
respectively (139, 140). Additionally, some Wnt receptors have been implicated in senescence
repression. Specifically, a role for Fz7 receptor in impairing apoptosis and growth arrest has
been reported in CRC (141).

Figure 6 — Activation of canonical Wnt signaling. The illustration shows the transduction of
Whnt signaling. Left panel shows degradation of cytoplasmic 8-catenin in absence of ligand. In
right panel, binding of Wnt ligands to the receptor triggers Wnt signaling. Non-degraded 6-
catenin translocates to the nucleus, activating Wnt targets. Taken with permission from (136).

In addition to the Wnt secreted proteins, other proteins can transduce Wnt signaling
(131). For instance, leucine-rich repeat containing G-protein coupled receptors 4 and 5
(LGR4/5) have been identified to bind R-Spondin proteins at cell membrane (142, 143). These
receptors are implicated in the Wnt signaling transduction, and are highly expressed in the
proliferative stem cells of small intestine and colon, providing renewal of epithelial intestinal
colon cells (129).

Several families of secreted proteins can act as Wnt antagonists and play a relevant role
in pursuing a fine-tuned regulation of Wnt signaling, which is critical in the appropriate
regulation of developmental events and prevention of pathologies. Some of the antagonists
are transmembrane proteins (Shisa, Waifl, APCDD1 and Tikil), while the others belong to
families of secreted proteins. A total of 6 families have been reported up to date: secreted
Frizzled-related proteins (sFRPs), Dickkopf proteins (DKKs), Wnt-inhibitory factor 1 (WIF-1),
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Wise/SOST, Cereberus and insulin-like growth-factor binding protein 4 (IGFBP-4) (130, 131,
144). Some studies have reported a tumor suppressor role for WIF-1 and IGFBP-4 in
osteosarcoma and prostate cancer, respectively (145, 146). However, the most deeply studied
families and whose physiological role is best described are the sFRP and DKK ones.

The human family of sFRPs is composed of five members, sFRP1-5, all of them sharing an
amino-terminal cysteine-rich domain (CRD), that exhibits high similarity with a specific region
of the Fz receptors (147). Since Wnt proteins can recognize this domain and bind to Fz
receptors, they can also interact with sFRP proteins. In this case, they are sequestered by
sFRPs and become unable to trigger the Wnt pathway (144, 148). As expected for Wnt
signaling antagonists, a tumor suppressor role has been reported for the sFRP family in a
repertoire of carcinomas, where its expression is commonly downregulated (131).

The four members of the DKK family (DKK1-DKK4) harbor two distinct CRDs, at the
amino-terminal and carboxy-terminal regions. The proteins of DKK family impair Wnt signaling
cascade by high-affinity binding to the LRP5/6 receptors through the N-terminal CRD. This
interaction was firstly reported for DKK1 and DKK2, although it is also shared by other family
members (149, 150). The carboxy-terminal CRD motif of DKK1 and DKK2, but not DKK3 (151),
binds to Kremen receptors. This interaction enhances the capacity of DKK1 to repress the
transduction of Wnt signaling (Figure 7), being functional in developmental processes (152).

Figure 7 — Inhibition of canonical Wnt signaling by Wnt-antagonist DKK1. (A) Binding of DKK1
to LRP5/6 receptor impairs the assembly of Fz-LRP5/6 complex. (B) Simultaneous interaction of
DKK1 with both Kremen and LRP5/6 surface receptors triggers the endocytosis of LRP5/6, thus
preventing Wnt signaling transduction. Taken with permission from (131).

Consequently, regarding the potential interaction with cell surface receptors, DKK
proteins mainly block the Wnt pathway by preventing the association of Wnt secreted proteins
to the LRP5/6 receptors. In addition, they dissociate the Fz-LRP complexes that trigger Wnt
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signal transduction (150) (Figure 7A). In the case of coexpression of Kremen receptors and
particularly referring to DKK1, its joint interaction with LRP5/6 and Kremen promotes
endocytosis of both receptors, which are eliminated from the membrane (144, 151) (Figure
7B). Interestingly, the expression of DKK1 is itself activated by B-catenin/TCF complex,
conforming a pathway regulatory feedback loop (153, 154).

Among a variety of roles, DKK proteins play key functions in cell differentiation control
during embryonic development and bone formation (131). In cancer field, DKK family
members are inactivated by epigenetic silencing in some specific types of cancer, such as CRC
(144, 155). DKK1 has also been reported to mediate chemotherapy-induced apoptosis (156)
and programmed cell death (157). Likewise, DKK2 and DKK3 decrease cell viability and
proliferation (144, 158).

6.1 Whnt signaling in CRC

Genetic APC alterations were initially found in FAP patients, where both alleles are
inactive (111, 159). Apart from genetic APC alterations, other mutations in the Wnt pathway
components can provoke the accumulation of cytoplasmic B-catenin and, in consequence, the
uncontrolled induction of Wnt targets. For instance, Axin2, another member of the destruction
complex, is mutated in one allele in some unusual CRC cases with intact APC (160). The mutant
form of Axin2 adopts a dominant-negative function, turning into a B-catenin stabilizing factor
(161). Interestingly, B-catenin itself can suffer point mutations in the specific motifs that bind
to GSK3pB, preventing its proteasomal degradation (162). Any of these mutations imposes
aberrant Wnt transduction and initiates colon cells malignant transformation (163). The APC
multiple intestinal neoplasia (APCmin) mouse model resembles FAP syndrome and has been
used as an animal model for FAP. This murine model triggers the formation of up to 100
adenomas in the small intestine, rather than in the colon, reducing the lifespan of APCmin
mice to an average of 150 days due to intestinal occlusion (164).

Whnt activity does not remain constant throughout the distinct CRC areas. For instance,
central areas of the tumor present an epithelial phenotype and lack of nuclear B-catenin,
which is confined to the membrane and the cytoplasm. Conversely, dedifferentiated CRC cells
at the invasive front display mesenchymal features, which correlate with an increased nuclear
B-catenin (165). Of note, the microenvironment surrounding tumor cells plays a relevant role
in the profile of Wnt activation across the colorectal carcinoma tissue, since it contributes to
the modulation of intracellular B-catenin localization (165). At the nucleus, B-catenin
associates to TCF4, the most prominently expressed TCF factor in intestinal cells (166). The
complex triggers a genetic program that drives proliferation of progenitor cells (167). Even
though, some of the TCF4/B-catenin targets, such as the Ephrin B (EPHB) family genes, are only
expressed during the initial steps of colon cancer, and decrease during CRC progression (168).

The pattern of expression of Wnt target genes in CRC reflects a gradient of Wnt activity
between the differentiated tissue and the invasive front (165). The targets that are
differentially expressed in tumor central areas are required for the tumor formation process
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itself and include CCND1 (cyclin D1), ETS2, MYC or CLDN1 (claudin 1). Instead, the expression
of invasion-related Wnt-target genes is turned off in tumor center and is only activated at
invading cells. Genes such as PLAU (uPA), PLAUR (uPAR), LAMC2, MMP7, TNC or ENPP2 are
included in this second group and promote CRC cells invasion and metastasis (169).

6.2 Wnt-mediated activation of ZEB1 in CRC

Among the distinct EMT-TFs, ZEB1 recalls the highest relevance in the regulation of the
equilibrium between both epithelial and mesenchymal states in CRC. In the central regions of
primary colon tumors, ZEB1 displays a low expression, but it is induced at cells located at the
interface between tumor tissue and microenvironment (i.e. invasive front), promoting the
mesenchymal phenotype that confers invasive properties (170) (Figure 8A). Conversely, ZEB1
expression needs to be downregulated in tumor metastasizing cells, that require an epithelial
switch and a redifferentiation in order to settle and grow (28, 170). The induced expression of
ZEB1 at tumor front of CRCs promotes several features that are involved in malignant tumor
progression. Importantly, its homologous counterpart ZEB2 has been also detected at CRC
tumor front and determines poor survival (171).

Figure 8 — ZEB1 is induced by Wnt signaling pathway at CRC invasive front. (A) Detection of
ZEB1 at nucleus of invasive front cells in CRC. Image taken with permission from (170). (B) ZEB1
is coexpressed with nuclear 6-catenin at invading CRC cells. Coexpression of ZEB1 (stained in
green) and B-catenin (in red) is depicted in yellow. Image taken with permission from (172).

The studies carried out in our research group during my period as an MSc student
identified a connection between the roles of ZEB1 and the Wnt signaling pathway in CRC (172).
In fact, in the FAP model of genetically inherited CRC, nuclear translocated B-catenin strongly
correlates with ZEB1 (Figure 8B). Since a homogeneous activation of Wnt signaling can be
observed in these type of patients (173), there is a clear correlation between Wnt activity and
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ZEB1 among epithelial CRC cells. This correlation was corroborated in spontaneous CRC
samples, as well as in the APCmin murine model. The nuclear translocation of f-catenin, driven
by mutant APC, is inversely associated to epithelial E-cadherin expression, reinforcing the
connection between Wnt and a ZEB1-triggered EMT (172).

In addition, the B-catenin/TCF4 transcriptional complex is able to induce the expression
of ZEB1 by direct binding to its promoter (172). These findings placed ZEB1 as a novel target
for Wnt signaling in CRC, as well as an effector of the distinct processes that it regulates in
malignant transformation (28, 74, 170). In order to invade and disseminate to proximal or
distant organs, CRC cells need to disrupt and remodel both the BM and the peritumoral
stroma. Both processes are also mediated by some Wnt effectors (169).

7. Initial stages of CRC progression through BM and stroma

During the early stages of CRC progression, malignant cells need to overcome the
extracellular surrounding barriers. The disruption of the basement membrane (BM) and the
remodeling of the tumor microenvironment are key parts of this process (169, 170).

7.1 BM disruption

Epithelial tissues are mostly surrounded by an extracellular protein matrix that acts as a
barrier between the epithelial cells and the connective neighbor tissue (174). Interestingly,
both the epithelial tissue and surrounding stromal cells cooperate in the synthesis of BM
components: type IV collagen, proteoglycans and members of the laminins family (175). The
main role of this structure is to confer mechanical support to epithelial tissues (174, 176).

The family of laminins plays a pivotal role in maintaining BM structure. Specifically,
laminin-5, which is built up of the a3, 3 and y2 chains, presents anchoring functions in the BM
of several epithelial tissues (177, 178). Diverse studies have shown a correlation between the
expression of laminin-5 and tumor cells invasive ability. Particularly, the y2 chain of laminin-5
(LAMC2) activates migratory properties of malignant cells (179). LAMC2 is a specific marker of
invasiveness (180, 181). It promotes the dissociation of a set of poorly differentiated
carcinoma cells from the neoplastic tissue, generating an invasive cellular entity defined as CRC
budding (180, 182). This structure, despite losing the epithelial markers, still retains LAMC2.

In close connection with the role of laminins family, matrix metalloproteinases (MMPs),
exert a prominent role in early steps of cancer invasion and metastatic processes, such as
disruption of BM. MMPs share a zinc-dependent endopeptidase activity, that allows them to
collectively degrade BM and extracellular matrix components (14, 183, 184). The membrane-
type MMPs (a subgroup with 6 members, MT1-6 MMPs) are expressed at the surface
membrane of producer cells and are responsible for the proteolytic activity in pericellular
space and affect anchoring and adherence functions of epithelial cells (14, 185).
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Figure 9 — LAMC2 and MT1-MMP stimulate migration at CRC invading front. Schematic model
of MT1-MMP dependent cleavage of LAMC2. Cleavage can occur through direct or indirect
(involving MIMP2) mechanisms. Adapted with permission from (186).

MT1-MMP has been localized at tumor front of CRCs, coordinating pro-invasive activity
of tumor cells (187). It exerts a proteolytic cleavage on laminin family member LAMC2, which
stimulates migration of CRC cells (186, 187). This cleavage either occurs through a direct
mechanism, by which MT1-MMP degrades laminin-5 at anchoring BM or through an indirect
process involving the activation of pro-MMP2 (186, 188). Thus, co-expression of MT1-MMP
and LAMC2 at invasive front of CRCs stimulates cell migration and metastasis (187) (Figure 9).

Both LAMC2 and MT1-MMP belong to the Wnt signaling target genes set involved in
triggering CRC invasiveness (169). Regarding LAMC2, it correlates with nuclear accumulation of
B-catenin at CRC invading cells. Moreover, B-catenin/TCF4 complex can directly bind to its
promoter region and induce its transcription (179). Therefore, LAMC2 is considered a Wnt
target in CRC cells (166, 179). In parallel, MT1-MMP has been also identified as an effector of
Whnt signaling, through a direct regulation at promoter level by B-catenin/TCF4 (189). At the
same time, it is strongly induced at invasive front of CRCs (184, 189).

In connection with the modulation of BM components, it had been previously reported
that ZEB1 modulates the levels of collagen IV a2 chain and laminin-5 a3 chain (170). Since
ZEB1 is a downstream effector of B-catenin/TCF4 complex, it was also investigated whether
ZEB1 could be partially mediating the regulation of Wnt transcriptional spectrum. In fact, it
was reported that ZEB1 itself induces both MT1-MMP and LAMC2 in APC mutant cells. Even
more, in the case of LAMC2, it was described a direct association of ZEB1 to its transcriptional
region, in cooperation with TCF4 factor (60). Moreover, both proteins co-express with ZEB1 at
the invasive front of APC-mutated CRCs (172).
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7.2 Remodeling of the peritumoral stroma

Once the BM is disrupted, cancer cells need to migrate across the extracellular matrix
(ECM) seeking for nearby lymphatic vessels where they can intravasate (14). The process
commonly involves the distinct proteolytic systems that operate in the stromal matrix (190,
191), which can be imposed by the migrating malignant cells. However, the stromal cells
cooperate with tumor cells in the production of several proteases that coordinately remodel
the peritumoral matrix, by modifying epithelial adhesions (190-193). The main roles of
peritumoral proteases in the promotion of cancer progression are migration, invasion,
angiogenesis and supporting metastasis through enabling cell intravasation (191). Plasminogen
Activation System (PAS) is one of the main protease cascades involved in these processes. The
PAS has been reported to have a relevant function in both physiological and pathological
events mediated by ECM remodeling. For instance, it regulates tissue regeneration and wound
healing (194, 195), apart from promoting tumor progression and invasion (194, 196) (Figure
10). The PAS includes three main components: urokinase-type plasminogen activator (uPA),
the uPA receptor (UPAR) and the plasminogen activator inhibitors (PAI-1 and PAI-2) (194, 195).
An elevated expression of PAS members correlates with poor prognosis in cancer (192, 197).

uPA is a serine protease that is secreted as a latent pro-form (pro-uPA), due to post-
translational glycosylation (198). Several proteases (trypsin, kallikrein or cathepsin-B and —L) at
the ECM are capable of converting pro-uPA in the active uPA protease (195, 199). Instead,
other enzymes such as elastase and thrombin cleave uPA in a different pattern, yielding the
secretion of an inactive amino terminal fragment (ATF). Both the active uPA and ATF proteins
are able to bind uPAR (198).

Plasminogen is initially presented as a single chain inactive peptide, which is converted
into the active protease plasmin by the action of plasminogen activators, mainly by uPA. In
turn, plasmin degrades components of the extracellular matrix (194, 200). The activation of
plasminogen is accelerated due to the existence of a positive feedback loop by which plasmin
is capable of cleaving inactive pro-uPA into its active form (201). In fact, plasmin plays a central
role in remodeling peritumoral tissue, by enhancing the BM and ECM disruption, thus
supporting migration of tumor cells (195, 202). In addition, it can convert latent MMPs into
active metalloproteinases, strengthening ECM degradation (195). The PA inhibitors (PAI-1 and
PAI-2) belong to the serpins family. Among them, PAI-1 is much more effective as an inhibitor
of UPA, since it reacts faster than PAI-2 and a lower amount of protein is sufficient to inhibit
the plasminogen activator function (203). Despite being an inhibitor of uPA, an elevated
expression of PAI-1 has been associated to a worse survival in some cancers (204, 205).
Likewise, a pro-angiogenic role has been reported for PAI-1 (206).

Additionally, PAI-1 can block cells migration by binding to Vitronectin (Vn). Nevertheless,
the joint expression of uPA results in the formation of uPA/PAI-1 complexes, lowering the
affinity of PAI-1 for Vn. In this context, PAI-1 association to uPA allows cellular migration
through the ECM (207). In summary, apart from its antitumoral effects, PAI-1 has been
reported to display several unexpected pro-tumoral roles, generating some controversy about
its function in tumor progression in diverse types of cancer. Therefore, tumor progression
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requires a tight expression of both uPA and PAI-1, in order to achieve the optimal migration
and invasion capacities. In order to migrate appropriately, tumor cells need sufficient stromal
cells for their traction. In consequence, an excessive expression of uPA can involve an
excessive proteolytic activity at the ECM and impair malignant cells migration. For this reason,
uPA proteolytic function can even be a drawback for tumor progression and needs to be
modulated by PAI-1 (205). Thus, in order to achieve an optimal migration and invasion through
the ECM, cancer cells require a finely tuned equilibrium between the levels of both PAS
members (200, 205).

Figure 10 — Role of Plasminogen Activation System (PAS) in cancer invasion. The illustration
shows a model of PAS members’ role at the interface between cell surface and ECM.
Plasminogen is converted into plasmin by uPA, enhancing tumor cells invasive ability. PAI-1 and
PAI-2 inhibit the function of plasminogen activators. Image taken with permission from (208).

Expression of both uPA and PAI-1 are found to be elevated in CRC patients’ samples
(209, 210). Furthermore, increased expression of PAI-1 is associated to metastasis, whereas it
has been reported that uPA is inactivated in liver metastasis, allowing settling and progression
of secondary tumor (211, 212). In addition, uPA is associated with higher aggressiveness in
colorectal tumors, and is considered a marker of poor prognosis, as well as a potential
therapeutic target in this specific cancer (195, 213).

At the invasive front of CRCs, as well as in other carcinomas, uPA and PAI-1 are induced
both in tumor and in stromal cells, correlating with an adverse clinical outcome (209, 212). In
fact, the elimination of uPA in either tumor or stromal cells impairs tumor growth and
diminishes metastasis incidence in mouse models (214). The signaling pathways that can
activate both genes are mainly well defined. uPA has been identified as a direct target of the B-
catenin/TCF4 transcriptional complex. Therefore, it is induced under the effect of an aberrant
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Whnt signaling (215). However, it can also be induced by other pathways involved in cancer
progression, such as the Notch cascade (216). In the case of PAI-1, it can be modulated by

several upstream signaling cascades, like TGF-B, p53, hypoxia or insulin-like growth factors
(IGFs) (217).
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Il - GENERAL AIM OF THE THESIS

The general aim of this Thesis is to characterize new potential mechanisms by which
ZEB1 regulates the oncogenic transformation and tumor progression in colorectal carcinoma
beyond the induction of EMT.

SPECIFIC AIMS:

1. Describe the role of the transcription factor ZEB1 in the regulation of initial stages of
CRC cells invasion, such as the remodeling of the ECM in the tumor microenvironment.

2. ldentify new targets of ZEB1 at tumor front of CRCs and, in particular, define the
specific modulation of Wnt-mediated signaling, as well as examine the in vivo
relevance of any newly identified target.

3. Identify new cancer cell hallmarks regulated by ZEB1 that enhance its role in
promoting CRC tumor progression.
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Il - RESULTS

The results obtained in this Thesis have resulted in the following published original
articles:

1- Sanchez-Till6 E*, de Barrios O*, Siles L, Amendola PG, Darling DS, Cuatrecasas M,
Castells A, Postigo A. ZEB1 promotes invasiveness of colorectal carcinoma cells through

the opposing regulation of uPA and PAI-1. Clin Cancer Res, 2013. 19(5):1071-82 (*
equal contribution as first author).

2- de Barrios O, Gyorffy B, Fernandez-Aceiiero MJ, Sanchez-Till6 E, Sanchez-Moral L, Siles
L, Esteve-Arenys A, Roué G, Casal JI, Darling DS, Castells A, Postigo A. ZEB1-induced
tumorigenesis requires senescence inhibition through activation of a new ZEB1-DKK1-
mutant p53-Mdm2-CtBP pathway to repress macroH2A1. Gut, 2016. Article in press.
doi:10.1136/gutjnl-2015-310838.

39



Results #1 Clinical Cancer Research, 2013. 19(5):1071-82
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cells through the opposing regulation of uPA and PAI-1
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3 Dept. of Oral Health and Center for Genetics and Molecular Medicine, University of Louisville, KY 40202
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* These authors contributed equally to the work
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SUPPLEMENTARY MATERIALS AND
METHODS

Cell culture

Cells were cultured in Dulbecco’s modified
Eagle medium (DMEM) (Lonza) or RPMI
(Lonza) supplemented with 10% FCS (Sigma).
L-cells stably carrying an expression vector for
mouse Wnt3a (L-Wnt3a cells) or its
corresponding empty vector (L-Ctl cells) were
cultured in the presence 0.4 mg/ml of geneticin
(G418 disulfate, Fisher Scientific). Conditioned
media from L-Ctl and L-Wnt3a cells was
collected in the absence of geneticin and, where
so denoted, added to cells during 48 h. Where
indicated, cells were treated with Leptomycin-B
(LMB) (Sigma, 10 ng/ml, 30 min), recombinant
human Wnt3a (R&D Systems, 100 ng/ml for 24
h in the case of HCT116 cells or 48 h in SW480
cells) or amiloride (Sigma, 100 uM, 24 h).

Cell transfections

Cells were transfected with plasmids and siRNA
oligonucleotides using Lipofectamine 2000 (Life
Technologies) or, when exclusively transfected
with siRNA oligonucleotides, using
Lipofectamine RNAIMAX (Life Technologies)
as described in (1). After 48 h (by default, or at
the time indicated in specific experiments), cells
were processed for protein, mRNA or
transcriptional analyses. SW480 cells were also
stably infected with lentiviral particles encoding
shRNAs (see below) followed by selection in
puromycin (10 pg/ml)-containing media as
described below. In some experiments, the
resulting pooled stables were subsequently
stably transfected with pCl-neo (CMV empty
expression vector) (Promega Corp.) or pCl-neo-
uPA (with the ¢cDNA encoding human uPA)
followed by selection in geneticin (0.7 mg/ml)-
containing media.

54

Antibodies

Antibodies used in this article originated as
follows: ZEB1 [H-102, E-20, and E-20-X from
Santa Cruz Biotechnology (SCBT) and Zfhep as
in (2)], uPA (3689/HD-UK1 from American
Diagnostica and H-140 from SCBT), PAI-1 (H-
135 from SCBT), p-catenin (Ab6302 from
Abcam, C2206 from Sigma), and a-tubulin (B5-
1-2 from Sigma). Secondary antibodies were
obtained from Jackson ImmunoResearch (JIR),
namely, horseradish  peroxidase = (HRP)-
conjugated donkey antimouse IgG, HRP-
conjugated  goat-anti-rabbit  IgG, Donkey
Dylight™ 488-anti-rabbit IgG, Donkey Cy3™
anti-goat IgG, Donkey Dy-light ™ 649 anti-
mouse IgG, and Donkey Rho RedX ™ anti-
mouse IgG. For blocking in immunostaining and
as control for ChIP assays, normal donkey Ig G
(JIR) or normal goat IgG (JIR, 5-8 mgmL of
IgG in normal serum), respectively, were used.

Plasmids

ZEB1 and ZEBl,nr expression vectors have
been previously described (1). Other expression
vectors were obtained from the following
researchers: (-catenin from J. Woodgett (Mount
Sinai Hospital, Canada), uPA from GR
Nemerow and S Huang (The Scripps Research
Institute, La Jolla, CA) (3), CMV-p300-
VPI6AD from D Livingston (Dana Farber
Cancer Institute, Boston, MA). Firefly luciferase
reporters for the promoters tested here originated
as follows: -1.94 kb of the human uPA from A
Varro (University of Liverpool, Liverpool, UK)
(4), -0.8 and -3.4 kb of human PAI-1 promoter
from DE Vaughan (North Western University,
Chicago) (5). pCl-neo was purchased from
Promega, CMV-f-galactosidase from Clontech,
and pBluescript SK from Stratagene-Agilent.



siRNAs and shRNAs

siRNAs were ordered from Invitrogen or
Integrated DNA Technologies (IDT) using
sequences reported elsewhere: two different
siRNAs against human ZEBI1 [siZEB1 as
described in (6) (5’-UGAUCAGCCUCAAUC
UGCA-3") and si2ZEB1 as in (7) (5’-AACUG
AACCUGUGGAUUA-3")] and f-catenin (8).
As negative control, we used a scramble control
siRNA (5’-GGUUACGAACUAAGC UAUA-
3’) as well as (in Western blot/qRT-PCR
studies) a siIRNA against firefly luciferase as
described in (9). Lentiviral particles encoding
shRNAs against human ZEB1, and whose target
sequences are different from those in silZEBI
and si2ZEBI1, consisted of a pool of three
shRNAs (referred as shZEB1) (5’-GAAGCAG
GAUGUACAGUAA-3’, 5’-GGCGAUAGAUG
GUAAUGUA-3’, 5-CCAGAACAGUGUUUA
UUCU-3") were purchased from SCBT (sc-
38643-V). Lentiviral particles for a control
shRNA (also different from the siRNA control)
were also obtained from SCBT (sc-108080-V).

Western Blot assays

Western blot assays were performed as
previously described (1). Briefly, cells were
lysed in RIPA buffer (150 mM NaCl, 1% NP40,
0.5% SDS, 50 mM Tris pH 8, 2 mM EDTA plus
protease inhibitors) and loaded onto 8% or 12%
polyacrylamide gels. Gels were then transferred
to a PVDF membrane (Immobilon-P, Millipore).
Following blocking for nonspecific antibody
binding with 5% nonfat milk, membranes were
incubated with the corresponding primary and
HRP-conjugated secondary antibodies before the
reaction was developed using Pierce’s ECL
Western Blotting Substrate or SuperSignal West
Pico Chemiluminescent Substrate (Pierce-
Thermo Fisher Scientific). Western blots shown
in the article are representative of at least three
independent experiments.
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RNA Extraction and Quantitative Real-Time
PCR

Total RNA extracted with Trizol reagent (MRC
Inc.) followed by RNAse free DNAse I
treatment (Promega) or SV Total RNA Isolation
System (Promega) was used to synthesize cDNA
with random hexamers/ oligodT with a reverse
transcription kit (GoScript, Promega or iScript™™
Reverse Transcription, BioRad) according to
manufacturer’s instructions. mRNA levels were
determined by quantitative real-time PCR (qRT-
PCR) at 60°C using either SYBR Green/ROX
(GoTag, Promega) or SYBR®Green (Biorad)
and oligonucleotide primer sequences previously
described in the literature: human ZEB1 (10),
human E-cadherin (11), human uPA (12),
human PAI-1 (13), human GAPDH (14), human
B-actin (15), mouse uPA (16), mouse Id2 (17),
mouse f-actin (18) or mouse GAPDH (19).
Relative mRNA levels were determined by
Opticon Monitor 3.1.32 software (BioRad) by
ACt method normalizing values of genes under
study to housekeeping GAPDH as reference
gene. qRT-PCR data shown in the study are the

average of at least three independent
experiments performed in triplicate.

Site directed mutagenesis

Identification of ZEBI1 consensus binding

sequences was conducted using MacVector
software. ZEB1 consensus binding sites at
positions —1624 bp and —1480 bp in the human
uPA promoter were mutated to sequences
known to not bind ZEB1 using the QuickChange
Lightning site-directed mutagenesis kit (Agilent)
as per manufacturer’s instructions.
Complementary mutant primers to opposite
strands of the target DNA were purchased from
IDT. For the ZEB1 binding site at —1624 bp of
human uPA promoter, the upper strand
oligonucleotide sequence used is 5-TCTCCA
GAAGACAGTGGGTCTATTGCCTCCCAAA

AGCTGAAAGGC-3". For the ZEBI1 binding
site at —1480 bp of the human uPA promoter, the



upper strand oligonucleotide sequence used is
5’-GCCTTCCTTCTGTCACTCTCTAATGGA

CCCAGACCCAAGGTCCAG-3". For the ZEBI
binding site at =230 bp of human uPA promoter,
the upper strand oligonucleotide sequence used
is 5-CACTGGGGCAGGCCCCCGGCCTATT
GCATGGGAGGAAGCACGGAG-3’. All three
mutations were confirmed by sequencing with
BigDye® Direct Cycle Sequencing Kit (Life
Technologies-Applied Biosystems) with the
followigng primers: 5-TGGGAGTTTCGGGG
TAAGTCCTC-3" 5’ -TAACTTGTACTTTCCC
CAGCAGGC-3’, and 5’-GGTCTGAGGCAGT
CTTAGGCAAGTTGG-3’, respectively.

Transcriptional Assays

In transcriptional experiments, cells were
transfected with firefly luciferase reporter
vectors and equal molar amounts of either
cDNA-containing or reference control empty
expression vectors. As internal control for
transfection efficiency, all points included
cotransfection with 0.5 pg pCMV-f-gal. Total
DNA was brought to the same amount by adding
promoterless pBluescript SK vector. Firefly
luciferase activity was assessed with a
Luciferase Assay System kit (Promega Corp.),
whereas [(3-galactosidase was determined with
Luminiscent [-galactosidase Detection Kit 11
(Clontech). Relative luciferase activity values
(RLU) throughout the article are expressed as
the mean of duplicate and are representative of
at least four independent experiments.

Chromatin Immunoprecipitation Assays

Chromatin immunoprecipitation (ChIP) assays
were performed using EpiQuick ChIP kit
(Epigentek) as per manufacturer’s instructions.
Briefly, SW480 cells were incubated during 10
min with 1% formaldehyde solution (Electron
Microscopy) at room temperature followed by
incubation with 125 mM glycine. Lysates were
sonicated as described (20). Antibodies used for
ChIP were as follows: goat anti-ZEB1 (E-20X)
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and normal goat IgG (JIR). DNA fragments
were quantified by qRT-PCR as detailed above.
Identification of DNA binding sequences for
ZEBI1 and design of primers for gqRT-PCR was
conducted using MacVector software. For the
ZEBI binding site at position -1624 bp of the
human uPA promoter, the primers used were as
follows: forward 5’-CAGCAAGCACAGAAGT
CTCTCCAG-3’ and reverse 5’-GAGTGACAG
AAGGAAGGCAGGG-3’. For the ZEBI
binding site at position -1480 bp of the human
uPA promoter, the primers used were as follows:
forward 5’-TTCCTCCTTCCTACCTTCCTGG-
37 and reverse 5’-TTCTGTCACGCCCATCTC
TTTC-3". For the ZEB1 binding site at position -
230 bp of the human uPA promoter the primers
used were as follows: forward 5’-GAAGAAC
TGATTAGAGGACCC-3’ and reverse 5’-ACA
GCGTCTGGACTGAGG-3". For the
amplification of a region of the uPA promoter
with “no consensus binding sites” for ZEBI
(referred as NCBS in Figure 2D, -1376/-1223,)
the following primers were used: forward 5°-TC
CTCCTTCCCACTAAGAGAGC-3’ and reverse
5’-CACACACACACACACGCATC-3’.Primers
used for amplification of a fragment of the
GAPDH promoter are included in the EpiQuick
ChIP kit. In all gRT-PCRs, values shown
represent relative binding in relation to input and
are the average of three independent ChIP
experiments, each in triplicate.

CRC cell migration and invasion assays

6.5 mm diameter/8 wm pore polycarbonate
membrane Transwell™ inserts (Costar, Corning
Inc.) were used directly for migration assays.
For invasion assays, these Transwell inserts
were first coated overnight with a 1/8 dilution of
Matrigel™ matrix (BD Biosciences) in DMEM.
Next, 1 x 10’ cells in 100 ul of DMEM were
added to Matrigel-Transwell inserts that were
then placed on 24-well plates containing 650 ul
of DMEM supplemented with 10% FCS. After
incubation at 37°C during 6 h for migration or
24 h for invasion assays, cells on the upper



surface of inserts were removed by washing with
PBS and a cotton swab. Migration or invasive
cells on the lower side of inserts were detached
by incubation (30 min, 37°C) with Trypsin-
EDTA, collected and counted by staining with
Trypan blue. Results shown are the average of
four independent experiments with triplicates of
each condition, and cells counted thrice.

Immunohistochemistry and
immunofluorescence analysis

Tissue samples were first immunostained by the
horseradish peroxidase and 3, 3-
diaminobenzidine (DAB) method and, where
indicated, processed for mutiple
immunofluorescence analysis. Antigen retrieval
was performed with 10 mM sodium citrate (pH
6.0). Slides for immuno-histochemistry were
then treated with 0.3% H>O, in methanol to
block endogenous peroxidase, whereas slides for
immuno- fluorescence staining were first
incubated for 30 min with 0.1% sodium
borohydride. In either case, slides were next
incubated with a non-specific binding blocking
solution at 37°C (5% donkey normal serum, 4%
BSA and 0.5% Tween 20 in PBS) followed by
the corresponding primary (overnight at 4°C)
and  HRP-conjugated or  fluorochrome-
conjugated secondary (1 h at 37 °C) antibodies.
The immunohistochemistry reaction was
developed with a DAB substrate Kit (Vector
Labs) before slides were counterstained with
hematoxylin  and mounted in  Di-N-
butylPhthalate in Xylene solution (DPX, Sigma).
The number of positively stained tumor cells in
the CRC tissue array was scored by microscopic
analysis at 400X magnification according to the
following scale: 0 (0-10 positively stained cells),
1 (11-20), 2 (21-30), 3 (31-40), 4 (41-50), 5
(over 50). Slides for immunofluorescence were
mounted in Vectashield-DAPI (Vector Labs).
Immunofluorescence was examined in a TCS
SP5 Spectral confocal microscope (Leica) at the
Microscopy Unit of the University of Barcelona,
whose staff is here acknowledged for their
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technical advice. Images were analyzed using
Imagel software applying a median filter of 0.5—
1 pixels. We are also grateful to E Jimenez for
help in assembly of immunohistochemistry
figures.

LEGENDS TO SUPPLEMENTARY
FIGURES

Supplementary Figure S1

(A) Expression of ZEBI1 associates to uPA in
CRC cells. Relative mRNA expression for
ZEBI, E-cadherin and uPA were determined in
SW480 and HCT116 cells by qRT-PCR respect
to GAPDH as reference gene. (B) Stable
knockdown of ZEB1 downregulates uPA
protein. SW480 cells were stably infected with
lentiviral particles encoding shRNAs against
ZEBI1 (shZEBI1) or a control shRNA (shCtl).
Cell lysates were immunoblotted for uPA
(3689/HD-UK1) or ZEB1 (H-102) along -
tubulin (B5-1-2) as loading control. (C) Stable
downregulation of ZEBI upregulates PAI-1
protein. As in (B), but with cell lysates
immunobloted for PAI-1 (H-135). (D) Transient
knockdown of ZEB1 inhibits uPA mRNA
expression in CRC Colo320 cells. Colo320 cells
were transiently transfected with 100 nM of a
siRNA control (siCtl) or two specific siRNAs
for ZEB1 (silZEB1 and si2ZEB1) and relative
mRNA levels for uPA and ZEB1 determined by
qRT-PCR respect to GAPDH. (E) Stable
downregulation of ZEB1 differentially controls
uPA and PAI-1 mRNAs. SW480 cells stably
interfered with a shRNA control (shCtl) or
against ZEB1 (shZEB1) and assessed for mRNA
levels by gRT-PCR as described in
Supplementary Materials and Methods. (F)
Upregulation of endogenous ZEBI following
nuclear translocation of B-catenin increases uPA
and decreases PAI-I1. Increase in ZEB1 mRNA
levels in HCT116 cells in response to treatment
with 10 ng/ml LMB for 30 min resulted in



upregulated levels of uPA mRNA and decrease
of PAI-1 mRNA. Cells were also subjected for
30 min to the same volume amount of the
solvent in which LMB was resuspended (70%
methanol, MeOH). Relative mRNA levels of
uPA, PAI-1 and ZEB1 were determined by qRT-
PCR respect to GAPDH. (G) Upregulation of
endogenous ZEB1 following activation of Wnt
signaling increases uPA and decreases PAI-1.
HTC116 cells were either untreated (Unt) or
exposed during 24 h to 100 ng/ml of
recombinant human Wnt3a. Relative mRNA
levels of uPA, PAI-1 and ZEB1 were
determined by qRT-PCR respect to GAPDH.

Supplementary Figure S2

(A) ZEBI activates uPA transcription in
Colo320 cells. Colo320 cells were transfected
with 0.5 ug of a luciferase reporter containing
1.9 kb of the human uPA promoter along with 1
ug of empty expression vector or the
corresponding equal molar amount of a ZEBI
expression vector. Transcriptional assays were
performed as described in Supplementary
Materials and Methods. (B) p-catenin activates
uPA transcription. As in (A) but using SW480
cells and either 1 ug of an empty expression
vector or equal molar amount of the same vector
carrying P-catenin cDNA. (C) As in (A) but
replacing expression vectors with 200 nM of
siRNA control (siCtl) or a siRNA against -
catenin (sifcat).

Supplementary Figure S3

ZEB1 expression decreases PAI-1 mRNA
stability. SW480 cells stably transfected with a
shRNA control (shCtl) or against ZEBI
(sh1ZEB1) were incubated for the indicated
periods with 10 ug/ml of Actinomycin D (Act
D) before relative mRNA levels of PAI-1 were
analyzed by qRT-PCR respect to GAPDH as
reference gene.

58

Supplementary Figure S4

The uPA inhibitor amiloride blocks ZEBI-
mediated invasiveness. (A) SW480 stable cell
lines described in Figure 4A were tested for their
ability to invade through a Matrigel matrix
during 24 h in the presence of either 100 uM of
amiloride or equal volume of its solvent
(DMSO). Invasion assays were performed as
described in Materials and Methods. A t-test for
significance of means difference was used. (B)
Amiloride reduces uPA expression in SW480
cells. SW480 cells were treated for 24 h with
either 100 uM of amiloride or equal volume of
DMSO. Cells lysates were assessed by Western
blot for expression of ZEB1 (H-102) and uPA
(3689/HD-UKT) proteins using a-tubulin (B5-1-
2) as loading control.

Supplementary Figure S5

(A) Expression of ZEB1 in the developing
intestine. As in Figure 5A, immuno-
histochemistry for ZEB1 (Zthep Ab) in the
intestine of ZEBI wild type (+/+) and null (-/-)
E18.5 mouse embryos. (B) Single staining for
uPA (blue, 3689/HD-UK1), ZEBI1 (red, E-20)
and f-catenin (green, Ab6302) corresponding to
tumor front pictures in Figure 5D. uPA was
originally detected with Dylight 649 (invisible
far red) but converted to blue for representation.
DAPI staining is also shown. Scale bars
represent 25 um. (C) As in (B) but
corresponding to tumor center pictures in Figure
5D. (D) ZEB1 colocalizes with uPA in invading
cancer cells at the tumor front of CRCs. As in
Figure 5D but for an alternative (more
differentiated area) of the tumor front. (E) As in
(B), single staining for uPA, ZEBI and f-
catenin corresponding to tumor front pictures in
panel (D).
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SUPPLEMENTARY METHODS

Antibodies

The following commercial Abs were used in
this  study: anti-ZEB1  [Santa  Cruz
Biotechnology (SCBT), H-102 and E-20X],
anti-DKK1 (Abnova, 2A5), anti-macroH2A1
[Cell Signaling, clone 4827; Abcam, ab37264;
and (reference 1) a gift from M. Buschbeck,
Institut Josep Carreras, Barcelona, Spain],
anti-p300 (SCBT, N-15), anti-CtBP (SCBT, E-
12), pan-cytokeratin (Dako, IR053), anti-a-
tubulin (Sigma-Aldrich, B5-1-2), and blocking

anti-DKK1  (R&D, AF-1096). Secondary
antibodies were obtained from Jackson
ImmunoResearch  Europe  (JIR):  HRP-
conjugated pgoat anti-rabbit 1gG, HRP-

conjugated donkey anti-mouse IgG, and
Alexa Fluor® 488-conjugated goat anti-rabbit.
Normal goat serum used in chromatin
immunoprecipitation assays was also
purchased from JIR.

Plasmids

Wild type -228bp, -535bp, and -1068bp
fragments of the human DKK1 promoter
fused to firefly luciferase were obtained from
K. Katula (University of North Carolina,
Greensboro, NC), TOP-FLASH and FOP-FLASH
luciferase reporters from B. Vogelstein (John
Hopkins University, Baltimore, MD), and
(Gal4 x 5)-SV40-luc reporter from M.A. Lazar
(University of Pennsylvania, Philadelphia,
PA). The following expression vectors were
used: ZEB1 (CS2MT-ZEB1) and ZEB1ANterm
(CS2MT-ZEB1ANtR) (2), CaGGS-TCF4 from M.
Kato (University of Tsukuba, Japan), Gal4
(PM1), Gal4-ZEB1-CID (G-ZEB-700-776) and
Gal4-ZEB1-CIDpy: (G-ZEB-700-776-3mut) (3).
ZEB1-CIDpmy  (CS2MT-ZEB1-CID3mut) was
generated by mutation of the three CtBP
binding sites in ZEB1 (CS2MT-ZEB1) at
aminoacids 705, 734 and 767 to the
sequence ASASA that does not bind to CtBP.
pCS2+DKK1-Flag was obtained from Addgene

(plasmid 16690; Cambridge, MA), VP16-p300
(CMV-P300-VP16AD) from D. Livingston
(Dana Farber Cancer Institute, Boston, MA).
pCMV-B-galactosidase and pBluescript SK
vectors were purchased from Clontech
Laboratories (Mountain View, CA) and
Stratagene-Agilent  (Santa  Clara, CA),
respectively.

Gene expression array data and survival
plots

Association between ZEBI and DKKI
expression in CRCs and gene signatures
associated to different cohorts of patients
segregated by the expression of ZEB1 and/or
DKK1 above/below the upper quartile were
obtained from the analysis of published gene
array  databases, namely: GSE12945,
(GSE14333, GSE17538, GSE31595, GSE33114,
GSE37892, GSE39582 and GSE41258. Gene
expression heat maps were assembled using
Genesis software, version 1.7.6 (Institute for
Genomics  and Bioinformatics,  Graz
University of Technology, Graz, Austria).
Correlation between the expression of ZEB1,
DKK1, H2AFY and/or GLB1 and relapse-free
survival was examined in three array
databases of CRC containing survival data
(GSE17538, GSE37892, GSE39582). Statistical
significance  was  assessed by  Cox
proportional hazard regression and Kaplan-
Meier survival plots by the best cut-off were
computed as described (4).

Cell lines and cell culture

SW480, SW620, COLO320 and DLD1 cells
were obtained from the Cancer Cell Line
Repository at the Barcelona Biomedical
Research Park (Barcelona, Spain) that
conducts quality controls for authentication
and mycoplasma contamination. LS174T cells
were obtained from A. Mufioz (Instituto de
Investigaciones Biomédicas Alberto Sols,
CSIC, Madrid, Spain). SW480 and LS174T
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were maintained in Dulbecco’s modified
Eagle Medium (DMEM) (Lonza, Basel,
Switzerland) while SW620, COLO320 and
DLD1 cells were grown in RPMI 1640 medium
(Lonza). Both media were supplemented with
10% fetal calf serum (Sigma-Aldrich, Merck,
St. Louis, MOQ), 100 U/mL penicillin, and
100ug/ml streptomycin (Lonza). L-cells stably
transfected with an expression vector for
mouse Wnt3a (L-Wnt3a cells) or its
corresponding empty vector (L-Ctl cells) were
cultured in DMEM in the presence of 0.4
mg/ml of geneticin (G418 disulfate, Thermo
Fisher Scientific, Waltham, MA) and used to
obtain  Wnt3a-containing and  control
conditioned medium, respectively. In
selected experiments, SW480 cells were
treated with 10 mM of 4-methylthio-2-
oxobutyric acid (MTOB) (Sigma-Aldrich).
Wherever indicated, either recombinant
human DKK1 (rhDKK1) and DKK3 (rhDKK3)
(Peprotech, London, UK) was added to cell
cultures at 200 ng/ml during 24 h.

Transient and stable transfections and RNA
interference

For transient knockdown, 100-200 nM of
siRNA oligonucleotides were transfected into
cells using Lipofectamine RNAIMAX (Life
Technologies). siRNA oligonucleotides for the
following genes have been previously
described: ZEB1 (5), DKK1 (6), H2AFY (7),
TP53 (8), and MDM2 (9). Other siRNA
oligonucleotides were ordered from Sigma-
Aldrich with the following sequences: ZEB2
(5'-AAGAGAAGCUGUUUGGAGUGUAU

GA-3'), cTBP (5’-GGGAGGACCUGGAGA
AGUU-3’). A scramble siRNA 5'-GGUUAC
GAACUAAGCUAUA-3’ was used as negative
control. 48 hours after transfection, cells
were processed for functional assays. Stable
transfection of cells with specific plasmids or
the corresponding empty vectors was
performed using Lipofectamine 2000 (Life
Technologies). Positive cell clones were

selected after at least 3 weeks of culture in
0.8 mg/ml geneticin (G418 disulfate, Thermo
Fisher Scientific) and/or 10 pg/ml Puromycin
(Sigma-Aldrich). Stable lentiviral infections of
ZEB1 were performed using a pool of three
shRNAs against human ZEB1 (sc-38643V,
SCBT) (shZEB1-A) (5'-GAAGCA
GGAUGUACAGUAA-3’, 5’-GGCGAUAG
AUGGUAAUGUA-3, 5’-CCAGAACAGU
GUUUAUUCU-3’) or with a single shRNA from
Thermo Fisher (SMARTVector 2.0, SH-
006564-02-20) (shZEB1-B) (5’-TGAAT
TTACGATTACACCC-3’). An shRNA control
(shCtl) was also purchased from SCBT (sc-
108080-V).

Cell viability assays

Cell viability (the result of proliferation minus
apoptosis and senescence) was assessed by
MTT assays as follows. 1 x 10* SW480 cells
were transiently interfered for ZEB1, DKK1 or
both and were plated in 96 well plates. After
96 h, 10 pl of MTT (5 mg/ml in PBS) were
added and incubated for 1 h. Precipitated
formazan was dissolved in 100 pl of DMSO.
The colorimetric reaction was detected in a
Modulus Il Glomax detection system
(Promega Corp., Madison, WI) at 560 nm
absorbance using 750 nm as reference
wavelength. Results are mean values of at
least four independent  experiments
performed in triplicate and normalized to the
siCtl condition.

Cellular senescence assays

Senescence was determined by senescent
associated [-galactosidase activity (SA [-gal)
following overnight incubation at 372C in
CO,-free conditions using a commercial kit
(Cell Signaling). Pictures from representative
fields are shown. Percentage of SA-B-gal
positive cells was calculated by counting
twice the number of stained cells out of a
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total of 200 cells in 8-10 representative
fields.

Transcriptional assays

Luciferase assays were performed using
standard procedures. Briefly, cells were
grown in 12-well plates and were transiently
transfected with firefly luciferase reporters,
cDNA expression vectors and/or siRNAs with
2 pl of Lipofectamine 2000 per well. As
control, the corresponding expression empty
vectors and/or control siRNAs were also
transfected. The total amount of transfected
DNA was constant adjusting with pBluescript
SK. 0.25 ng of pCMV-B-galactosidase were
used for normalization of transfection
efficiency. Levels of luciferase and pB-
galactosidase activity were assayed 48 hours
later with Luciferase Assay System kit
(Promega Corp.) and Luminiscent B-
galactosidase Detection kit |l (Clontech),
respectively. Relative luciferase activity (RLU)
was determined using Modulus Il Glomax
microplate reader (Promega Corp.). Data
shown correspond to a representative
experiment from at least four independent
ones with each transfection conducted as
duplicates. When RLU values are represented
in a histogram, one of the conditions is
arbitrarily set to a RLU value of 100.

Mutagenesis of human DKK1 promoter

Binding sites for ZEB1 in human DKKI
promoter were identified using MacVector
12.5 software (MacVector Inc.). Site-directed
mutagenesis was performed using the
QuickChange Lightning Site-Directed
Mutagenesis Kit (Agilent Technologies) as
previously described (5). Site-directed
mutagenesis of the ZEB1 binding site at -490
bp contained in the -535bp DKK1 promoter

luciferase reporter was performed using the
following  oligos:  5'-TGAGCAACTTGCAC
CCGCCTTATGGCCCTCTCAGAGGCGTCTTGC-3’
and 5’-GCAAGACGCCTCTGAG
AGGGCCATAAGGCGGGTGCAAGTTGCTCA-3'.
Mutations were confirmed by sequencing
with BigDye® Direct Cycle Sequencing Kit
(Life  Technologies) with  primer 5'-
AAGCACTTTTTGCCCCTCTCCT TT-3".

Quantitative real-time PCR

Total RNA from CRC cell lines and mouse
intestinal/colonic samples was

using SV Total RNA Isolation
(Promega Corp.,) and Purezol (Bio-Rad,
Hercules, CA), respectively. RNA was
retrotranscribed with random hexamers
using the standard procedure with GoScript
reverse transcription kit (iScript, Bio-Rad).
Quantitative PCR was run on at 60 2C using
SYBR®Green (Bio-Rad or Promega Corp.).
Assays were performed in triplicate and at
least three experiments were done. Results
were analyzed using Opticon Monitor 3.1.32
software (Bio-Rad) by AACt method
comparing values. GAPDH and B-actin were
used as reference genes for normalization in
human and mouse samples, respectively.
Figures shown are the average of at least
three independent experiments. Primers
used to amplify the different genes examined
in the study were as follows: human ZEB1 (5),
mouse Zeb1 forward 5'-A
ACTGCTGGCAAGACAAC-3’ and reverse 5'-
TTGCTGCAGAAATTCTTCCA - 3, human DKK1
(10), mouse Dkk1 (11), human ZEB2 forward
5’-GAAAAGCAGTTCCCTT CTGC-3’ and reverse
5'-GCCTTGAGTGC TCGATAAGG-3’, human
AATF forward 5-GACACGGACAA
AAGGTATTGCG-3’ and reverse 5'-
AGACCCAGTCCCTCTGAATC TT-3’, human
EIF3K forward 5’-TCCACCA CCTCTTCCT GTTC-
3 and reverse 5’-GGC
CTGCGTCTCTACATAGC-3’, human EHMT2
forward 5’- AGGTAGCCCGTTA CATGGTG-3’

extracted
System
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slides were deparaffinized and rehydrated
before being subjected to antigen retrieval
with 10 mM sodium citrate pH 6.0 for 5 min.
Slides were then incubated with a non-
specific binding blocking solution (5% donkey
normal serum plus 4% BSA in PBS, 0.5%
Tween 20) followed by the corresponding
primary (overnight at 4°C) and HRP-
conjugated secondary (1 h at 37 °C)
antibodies. The  immunohistochemistry
reaction was developed with a DAB substrate
kit (Vector Labs, Burlingame, CA) before
slides were counterstained with hematoxylin
and mounted in Di-N- butylPhthalate in
Xylene solution (DPX, Sigma-Aldrich). The
number of CRC cells in the tissue microarray,
assessed by their staining for pan-
cytokeratin-positive,  was  scored by
microscopic analysis at 400X magnification
according to the following scale: 0 (0-10
positively stained cells), 1 (11-20), 2 (21-30),
3 (31-40), 4 (41-50), 5 (over 50). For
immunostaining of senescent cells, frozen
samples of AOM-induced mouse CRCs were
embedded in OCT solution (Tissue-Tek®,
Sakura-Finetek, Torrance, CA), sectioned and
fixed before being processed for SA [-gal
staining using the same commercial kit than
for cells (Cell Signaling Technology, Danvers,
MA) before being counterstained with
nuclear  solution  (Sigma-Aldrich).  For
immunofluorescence staining of SAHFs,
SW480 cells were first transiently interfered
for ZEB1 and/or DKK1 or H2AFY during 48
hours and transferred into 8-well
PermanoxTM LabTek chambers (Nalgene-
Nunc, Penfield, NY), fixed for 30 min with 4%
paraformaldehyde solution (Electron
Microscopy Sciences, Hatfield, PA) and
permeabilized with PBS- 0.5% Triton X100.
LabTek slides were then incubated with the
blocking solution, primary, and
fluorochrome-conjugated secondary
antibodies and mounted with Prolong Gold
Antifade  Reagent with  DAPI (Life
Technologies). Immunofluorescence was

examined in a TCS SP5 Spectral confocal
microscope (Leica) at the Microscopy Unit of
the University of Barcelona. Images were
analyzed and RGB profiles generated using
ImageJ software applying a median filter of
0.5 pixels.

Statistical analysis

Statistical analysis of the data shown in this
study was performed using SPSS® 18.0
software (IBM, Armonk, NY) and/or Prism
(GraphPad Software Inc., La Jolla, CA).
Normal distribution of the data was
determined with Kolmogorov-Smirnov test.
Statistical significance of the normally
distributed data was assessed with a t-test
and with a non-parametric Mann-Whitney U
Test for those with non-normal distribution.
Where appropriate, relevant comparisons
were labeled as either significant at the p <
0.001 (***), p < 0.01 (**) or p < 0.05 (*)
levels, or non-significant (ns) for values of p >
0.05.
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LEGENDS TO SUPPLEMENTARY TABLE AND
SUPPLEMENTARY FIGURES

SUPPLEMENTARY TABLE S1

Relapse-free survival of ZEB1 and Wnt
antagonists in a published microarray of

CRC. Cox regression analysis and hazard ratio
survival rates of array GSE17538 were
computed as described in Methods section
(main text of the article).

SUPPLEMENTARY TABLE S2

Genes upregulated in cohort 4 of Figure 3A.
Genes upregulated when the expression of
both ZEB1 and DKK1 is in the three lower
quartiles in the microarray of Figure 3A.

SUPPLEMENTARY FIGURE S1

ZEB1 and DKK1 expression associate in
CRCs. (A) As in Figure 1B, mRNA levels of
ZEB1 and DKK1 following transient
knockdown of ZEB1 and/or DKK1 with
specific siRNAs (siZEB1-A and siDKK1,
respectively). (B) rhDKK1 and rhDKK3 inhibit
Wnt signalling. SW480 cells were treated
with different amounts of rhDKK1 and
rhDKK3 for 24 h and their effect on
transcriptional Wnt signalling was assessed
by the TOP/FOP ratio. The TOP/FOP ratio for
200 ng/ml of rhDKK1 and rhDKK3 is shown.
(C) rhDKK1, but not rhDKK3, reverts effect of
siDKK1 on cell viability. As in Figure 1B,
SW480 cells were transfected with 100 nM of
either siDKK1 or siCtl. Forty-eight h later cells
were treated with 200 ng/ml of either
rhDKK1 or rhDKK3 or DMEM medium
(untreated). Cell viability was determined as
in Figure 1B. (D) Expression of ZEB1 and
DKK1 positively associate in CRCs. ZEB1
expression—segregated by quartiles—in the
arrays of Figure 1C is displayed with respect
to DKK1 levels. (E) Expression of ZEB2 does
not associate with DKK1 in a panel of CRC cell
lines. SW480, COLO320, SW620, DLD1 and
LS174T were assessed for mRNA levels by
gRT-PCR. See Figure 1D for DKK1 levels.
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SUPPLEMENTARY FIGURE S2

ZEB1 transcriptionally activates DKK1
expression by direct binding to its promoter.
(A and B) As in the left panel of Figure 2B but
for SW620 and COLO320 cells, respectively.
(€) Transient knockdown of endogenous
ZEB2 has no effect on the expression of
endogenous DKKI1. ZEB2-positive COLO320
cells were transfected with 100 nM of a
specific siRNA against ZEB2 (siZEB2) or a siCtl
and the relative mRNA levels of DKKI and
ZEB2 were determined by ¢RT-PCR. (D)
Upper panel: Scheme of the -1068/+1
fragment of the human DKK1 promoter.
Consensus sites for TCF4 (red) have been
previously described in (19).
Consensus sites for ZEB1 (blue) identified in
this study within the first -1 kb of the DKK1
promoter include four sites at -880, -590, -
490 and -199 bp, two of them (those at -880
and -490bp) high affinity binding sites
(darker  blue). panel:
transcriptional activity of different fragments
of the human DKK1 promoter. SW480 cells
were transfected with 0.25 pg of luciferase
reporter constructs containing the indicated
deletion fragments of the human DKK1
promoter. (E) As in left panel of Figure 2E but
for SW620 cells. (F) As in Figure 2F but for
SW620 cells. (G) As in Figure 2l but for
SW620 cells.

reference

Lower Basal

SUPPLEMENTARY FIGURE S3

ZEB1 and DKK1 inhibit senescence in
colorectal carcinoma cells. (A) mRNA levels
of ZEB1 and DKK1 following stable
knockdown of ZEB1 and/or overexpression of
DKK1 in the cell lines of Figures 3B and 3C.

SUPPLEMENTARY FIGURE 5S4

ZEB1, through its induction of DKK1, inhibits
SAHF formation and cell senescence. (A)
ZEB1 mediates Wnt-induced inhibition of
cellular senescence. SW620 cells were first
interfered first with either siCtl or siZEB1-A.
After 6 h, the medium was replaced and cells
were cultured for up to 72 h in the presence
of conditioned medium from L cells stably
transfected with either a vector encoding
recombinant Wnt3a (L-Wnt3a cm) or its
corresponding empty vector (L-Ctl cm).
Senescence was assessed by staining for SA
B-gal. Representative pictures are displayed
in the left panel. Right panel, quantification
of the relative number of SA p-gal positive
cells from three independent experiments.
The first condition was arbitrarily set to 100.
(B) SW480 cells were cultured during 72 h
with conditioned media from L cells stably
transfected with either an expression vector
encoding recombinant Wnt3a (L-Wnt3a c¢m)
or its corresponding empty vector (L-Ctl cm).
mRNA levels for ZEB1, DKK1 and AXIN2 were
determined by qRT-PCR. (C) Induction of
senescence by siDKK1 is reverted by rhDKK1,
but not by rhDKK3. SwW480 cells were
transiently transfected with 100 nM of siCtl
or siDKK1 and 48 h later treated with 200
ng/ml of either rhDKK1 or rhDKK3 or DMEM
medium (untreated). As in Figure 4B,
senescence was assessed by the number of
SA [-gal positive cells (right panel) with
representative pictures shown in the left
panel. (D) Representative pictures of cells
stained for SA [-gal in Figure 4C. (E)
Representative pictures of cells stained for
SA PB-gal in Figure 4E. (F) Single
immunofluorescence staining for macroH2A1
(green, clone 4827) or DAPI (blue) for Figure
4F,
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SUPPLEMENTARY TABLE S2

Genes upregulated in cohort 4 of Figure 3A

ACAT2 CDH1 ELF3 IRGQO NHP2 PSMB7 RPSI14 SSSCAI
ACD CDKI ELOVLI KHSRP NIPAL3 PSMC3 RPS15 STi14
ACO2 CDK24P2 EMCB KiF44 NONO PSMD3 RPS154 STK24

ACOTI13 CDSI ERCC2 KPNA2 NOPS56 PSMD4 RPSI16 STOML2

ACOT7 CDX1 ETFA KRTI18 NOX1 PSMDS RPS18 STX3
ACTB CEACAMS FABPS KRT19 NRTN PTMA RPS19 SURF2

ACTGI CEACAMG6 FAH KRTS8 NT5C PYGB RPS2 TBL2

ADAPI CETN2 FAM60A LAMPI NUP43 OPRT RPS20 TBRG4

ADRM1 CFBP FAMY6B LARS2 NUPG62CL QOTRTI RPS21 TCA

AKRIAI CFL1 FLADI LASIL NUP93 RAEI RPS23 TCEB2

AKRIC3 CHCHD2 FOXA2 LCN2 NXTI RALY RPS24 TCF7

ALDHIBI CLDN3 FRAT2 LDHA OLFM4 RANBPI RPS25 TECR

ARF1 CLDN4 FTL LDHB OVOLI RANGRF RPS27 TFDP1

ARF3 CLN3 GoPC3 LDLR P2RY2 RBBP7 RPS29 TFRC
ARHGAP44 CLPB GADD45GIP1 LGALS3 P4HB RBM42 RPS3A THIL
ARLG6IPI COPE GAG6 LGALS3BP PA2G4 RDHII RPS4X THOPI

ASCL2 CoQ4 GALE LMANZ PAAFT REGIB RPS5 TIMM44

ASMTL coQ9 GAPDH LPCATI PAFAHIB3 RFC4 RPS6 TMEM106C
ASNS COX411 GDF15 LPCAT4 PAICS RFXANK RPS7 TMPRSS2
ASPM COX354 GINSI LRRC14 PAK4 RNASEH2A RPS9 TMPRSS4

ATP2C2 COX5B GINS3 LSM7 PC RNPEP RRPI2 TMSBI10
ATP5I COX6A1 GLBI LSR PCBDI RPL10A RUVBL2 TMX2

ATP6VIF cox7C GLOD4 LYRM4 PCBP2 RPLI2 S100411 TPPP3

ATPAF2 CRYBA2 GMPPA MCTS1 PDCD6 RPLI3 S10046 TPTI

AUPI cSs GNB2 MDH?2 PDIA6 RPLI4 SCANDI TRIM24
AURKAIPI | CSNK2A41 GNB2L1 MEAI PEBPI RPLIS SCD TSPANS
B3GNTLI CSNK2B GSPT2 MEST PESI RPLISA SCGBID2 755C4
BABAMI CTDPI GSR MET PETI12 RPLI9 SCO2 ST

BCAP31 CYci GSTM4 MIF PEXI0 RPL24 SDHA TUBGI
BDHI CYP5141 H2AFY MLF2 PFAS RPL27 SEC61A41 TXN

BPI DAK H2AFZ MMP15 PGKI RPL274 SF343 U24F1

BSG DBI HDHDI MORCH4 PHFI6 RPL29 SHMT2 UBAS52

BUD31 DDBI HDHD3 MPG PIGT RPL3 SKAT UBAP2L

BYSL DDC HINTI MRPL4 PLAGL2 RPL30 SLC1043 UBB
Cl0orfl16 DDT HIPIR MRPSI15 PLK1 RPL32 SLC25415 UBC
Cl6orf33 DDX394 HISTIHIB MRPS34 PLP2 RPL34 SLC2543 UBE2L3
Cl6orf59 DGATI HKDCI MRPS7 PMPCA RPL35 SLC2545 UCN
Cl6orfS0 DHX34 HMG20B MUC34 PMVK RPL35A SLC2546 UNC93BI
Cl9orf21 DIAPHI HMGBI MVD POLA2 RPL36AL SLC2745 UQCRI0
C200rf27 DMBTI HMGB2 MYC POLR2E RPL37 SLC3744 UXT
CYorfll6 DNMT1 HNRNPAB MYCN PPA2 RPL374 SLC4444 VDACI

Corf16 DUOX2 HNRNPM MYLPF PPARG RPL39Y SLC6A6 VILI
CAMP DUSIL HOXB13 N6AMTI PPIB RPL41 SLCYA3R1 WBPI11

CARHSPI ECHI HPCALI NADSYNI PQOBPI RPLS SMPDL3B WDRIS

CASPS EEFIAI HSP90ABI NARF PRDX2 RPL7 SNRNP25 YWHAE
CASP6 EEFID HSPDI1 NCAPD2 PRDX4 RPL7A SNRPA ZC3H3
CBLC EEF2 HSPEI NDUFAI10 PRMTI RPLY SNRPB ZNF574

CCDC5Y EFNA4 IDHI NDUFA3 | PROSAPIPI RPLPO SNRPD2 ZNF76
CCL20 EHMT2 IDH2 NDUFA4L2 PRPF4 RPLPI SNRPF ZNHITI
CCTs5 EIF283 IFITM1 NDUFABI PRPF6 RPLP2 S0ODI1 ZNHIT2
cDY EIF3F IFITM3 NDUFB11 PRRI3 RPSI0 SPINK1 ZpP2

CDC42EP4 EIF3G ILI7B NDUFB6 PSMBI10 RPS11 SPINT]

CDC45 EIF3K IMMT NDUFS7 PSMB3 RPSI2 SSR4

CDC6 EIF6 IMP4 NDUFS§ PSMB4 RPS13 SSRPI
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IV — SUMMARY OF THE RESULTS

ZEB1 regulates the expression of genes involved in the disruption of the basement
membrane in CRCs (172). Therefore, we sought to investigate whether ZEB1 also regulates the
remodeling of the peritumoral stroma. The following results were obtained:

a) ZEB1 regulates uPA and PAI-1 in opposite directions

We found that higher expression of ZEB1 in Wnt-positive SW480 cells associated with
lower E-cadherin and higher uPA expression, while Wnt-negative HCT116 presented the
opposite pattern. This correlation prompted us to hypothesize that ZEB1 may regulate uPA. To
test this, we explored the effect of knocking down endogenous ZEB1 on the endogenous levels
of uPA and PAI-1 protein and mRNA. uPA levels were reduced upon both transient and stable
ZEB1 knockdown. Interestingly, downregulation of ZEB1 in SW480 cells resulted in the
opposite effect on PAI-1—ZEB1 downregulation increased endogenous levels of PAI-1 protein
and mRNA. These results indicate that ZEB1 has opposing effects on the two arms of the PAS,
inducing uPA expression and repressing that of PAI-1.

b) ZEB1 induces uPA expression by direct transcriptional activation

We investigated the mechanism of ZEB1-mediated induction of uPA by examining the
effect of ZEB1 overexpression or knockdown on uPA promoter region. In line with the results
shown above, knockdown of ZEB1 with siRNA reduced basal uPA promoter activity and
diminished its response to Wnt3a ligand. We next investigated whether the ability of ZEB1 to
activate uPA transcription was mediated by direct binding of ZEB1 to its promoter. In
chromatin immunoprecipitation (ChlIP) assays we found that an antibody against ZEB1
specifically immunoprecipitated regions of the uPA gene promoter containing ZEB1-binding E-
box sequences. Mutation of these sites suppresses response to ZEB1 overexpression. When
Wnt signaling was exogenously activated through the overexpression of TCF4, the mutation of
ZEB1 sites did not affect the activation of uPA promoter. However, the response was lower
due to the lack of ZEB1 component. These results demonstrated that ZEB1 binds to the uPA
promoter to directly drive its transcription.

c) ZEB1 inhibits PAI-1 expression by reducing the stability of its mMRNA

We tested the ability of ZEB1 to repress the human PAI-1 promoter at the transcriptional
level. However, it could not be ruled out that ZEB1 can transcriptionally repress PAI-1 via
binding to regulatory promoter regions. We therefore explored alternative mechanisms by
which ZEB1 represses PAI-1, namely mRNA stability. SW480 cells knocked down for ZEB1 were
treated with Actinomycin D to inhibit RNA elongation and PAI-1 mRNA levels examined by RT-
PCR. After Actinomycin D treatment, PAI-1 mRNA remained more stable in ZEBI-depleted
cells, compared to its controls. These results indicate that ZEB1 controls PAI-1 expression, at
least partially, through regulation of its mRNA stability.
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d) uPA expression mediates ZEB1-dependent CRC cells migration and invasion

We wondered whether upregulation of uPA by ZEB1 contributes to ZEB1-mediated
tumor cell migration and invasion. Indeed, cells knocked down for ZEB1 displayed significantly
lower migratory and invasive capacity than control cells. To evaluate the contribution of uPA
loss in ZEB1-inhibited cells to this effect, we also tested counterpart cells overexpressing
exogenous UPA. We found that forced re-expression of uPA virtually fully restored their
migratory capacity and a significant part of their invasive capacity. Moreover, pharmacological
uPA inhibition impaired the restoration of migratory and invasive properties, demonstrating
that the effect observed was due to the specific role of uPA.

e) ZEB1 is required for the in vivo expression of uPA and its induction by Wnt

The in vivo relevance of these findings was tested by examining uPA and PAI-1
expression in the developing intestine of late stage Zeb1-null (-/-) mouse embryos (embryonic
day 18.5). We found that uPA was significantly reduced in the developing intestine of these
mice indicating that in vivo expression of uPA requires of ZEB1. In contrast, expression of PAI-1
in Zeb1-null embryos was not altered or only slightly upregulated. To examine whether ZEB1 is
required in Wnt-mediated uPA induction, we tested the ability of recombinant mouse Wnt3a
ligand to activate uPA expression in mouse embryonic fibroblasts (MEFs) from the Zeb1-null
mice. Importantly, we found that induction of uPA by Wnt3a was significantly reduced in Zeb1
null (-/-) MEFs. Overall, these results confirm that ZEB1 is critically required for the regulation
of the PAS and Wnt-mediated induction of uPA in vivo.

f) ZEB1 co-expresses with uPA but not PAI-1 at the invasive front of CRCs

We therefore tested whether the expression of ZEB1, uPA and PAI-1 correlates in cancer
cells at the invasive front using an array of primary human CRCs. We found that ZEB1, nuclear
B-catenin and uPA were expressed by a higher number of cancer cells than PAI-1. Statistical
correlation indicated that ZEB1 expression associates with uPA, but not with PAI-1, in CRCs
tumor front. This correlation was confirmed by confocal immunofluorescence analysis. High
levels of ZEB1 and uPA were found co-expressed by cancer cells at the invasive front of CRCs.
Altogether these data show that ZEB1 and uPA are co-expressed in vivo in cells at CRCs
invading front.

Next, we sought mechanisms of tumor progression regulated by ZEB1 beyond the
induction of an EMT phenotype. Given that ZEB1 is induced by canonical Wnt signaling and, in
turn, it activates several Wnt-target genes, we started by exploring a potential modulation of
Wnt antagonists by ZEB1 during tumor progression. Firstly, we explored whether ZEB1 and
Wnt antagonists have opposing effects on the survival of CRCs. The results obtained were:

a) The role of ZEB1 in survival determination depends on the co-expression of DKK1

Examination of the relapse-free survival associated with ZEB1 revealed that, as
expected, high expression of ZEB1 correlated with poorer survival, while expression of most
Wnt antagonists was associated with better prognosis. In contrast, we found that DKK1 and
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SFRP4 were associated with poorer prognosis, indicating that they may have a tumor-
promoting role in CRCs. Since DKK1 is also a target of Wnt pathway (154), we investigated
whether joint expression of DKK1 and ZEB1 affects overall survival in CRCs. Interestingly, we
found that the maximum effect of ZEB1 as a predictor of reduced survival requires high levels
of DKK1. This suggests that, at least for some of its tumor-promoting functions, ZEB1 depends
on DKK1 expression. We also observed a positive association between ZEB1 and DKK1 in
primary CRC samples, as well as in a panel of CRC cell lines. Altogether these results indicate
that ZEB1 and DKK1 are co-expressed in CRCs where they jointly determine a worse prognosis.

b) ZEB1 directly activates DKK1 expression in CRC cells

These data led us to investigate whether ZEB1 may activate DKK1 expression. We first
examined whether deletion of the Zeb1 gene alters Dkk1 expression in the intestinal tract of
Zeb1-deficient mice. Compared to wild-type littermates, Dkk1 expression was reduced in the
intestinal tract of Zeb1 (+/-) mice, indicating an in vivo association between both genes. In
addition, we examined the effect on endogenous DKK1 expression of knocking down
endogenous ZEB1 in three CRC cell lines expressing high levels of ZEB1. Both transient and
stable ZEB1 interference led to a downregulation of DKK1 mRNA and protein levels. These
results indicate that ZEB1 induces DKK1 expression in CRC cells.

Additionally, we found that ZEB1 binds to a -490 bp E-box in the promoter region of
DKK1 promoter. In order to test the functionality of this site, this sequence was mutated to a
sequence known not to bind ZEB1. The mutation of the ZEB1 site reduced its basal activity in
Whnt-active CRC cells. Transient and stable knockdown of ZEB1 resulted in a downregulation of
the activity of wild-type but not of mutant DKK1 promoter. We also examined the response of
both versions of the DKK1 promoter to ZEB1 overexpression. While exogenous ZEB1 further
activated transcription of the wild-type promoter, it had no effect on the mutant version.
Moreover, both p300 and TCF4 cooperated with ZEB1 in the activation of DKK1 promoter. In
summary, these results demonstrate that endogenous ZEB1 directly drives DKK1 transcription.

c) ZEB1 and DKK1 mediate inhibition of cellular senescence in CRC cells

In a series of 1557 cases of CRCs, low expression of ZEB1 and DKKI1 induces a
senescence-associated gene signature. To ascertain the molecular mechanisms through which
ZEB1 and DKK1 inhibit senescence in CRC cells, we validated the regulation by ZEB1 and/or
DKK1 of a subset of the genes included in the signature. The H2AFY gene (encoding for histone
macroH2A1) was one of the genes selected for validation.

Consequently, we investigated whether ZEB1 and DKK1 inhibit senescence in CRC cells.
Compared to the control cells, single interference of either ZEB1 or DKK1 resulted in an
increase in the number of senescent cells. This number was maintained upon simultaneous
knockdown of ZEB1 and DKK1, suggesting that DKK1 inhibits senescence through the same
functional pathway that ZEB1. To test this hypothesis we investigated whether exogenous
overexpression of DKK1 could revert the onset of senescence induced by ZEB1 knockdown
and, of note, it succeeded in reverting it. These effects were also confirmed by the use of a
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recombinant DKK1 protein and a DKK1-blocking antibody, which respectively repressed and
activated senescence.

We also examined whether manipulation of ZEB1 and/or DKK1 expression alters SAHF
formation, and found that knockdown of ZEB1 or DKK1 increased the assembly of SAHF. In
parallel with cellular senescence, simultaneous knockdown of ZEB1 and DKK1 did not increase
SAHF formation compared to single ZEB1 knockdown. These results indicate that inhibition of
senescence by ZEB1 is mediated, at least in part, by activation of DKK1 expression

d) ZEB1 and DKK1 inhibit cellular senescence by repression of H2AFY

Among the senescence-related genes previously selected, we focused our attention on
H2AFY, since its expression is required for the formation of SAHF and senescence onset (100).
Interference of both ZEB1 and DKK1 genes in SW480 cells upregulated macroH2A1 protein
expression. Repression of H2AFY by ZEB1 was also tested in vivo and the expression of H2afy
was upregulated in the intestine of Zeb1 (+/-) mice. In order to confirm that the inhibition of
senescence driven by ZEB1 and DKK1 was mediated by macroH2A1 modulation, CRC cells were
transiently transfected with siRNA against H2AFY and tested for senescent cells number. As
expected, siH2AFY inhibited both basal senescence and the senescence induced by ZEB1
knockdown. These results indicate that the ability of ZEB1 and DKK1 to repress senescence
depends, at least in part, on their repression effect on macroH2A1.

e) Repression of H2AFY is mediated by mutant p53, Mdm2 and CtBP

Next, in an attempt to define the molecular mechanism underlying this effect, we
explored whether ZEB1 corepressors mediated the repression of H2AFY. Indeed, transient
knockdown of the main corepressor of ZEB1, i.e. CtBP, upregulated H2AFY expression.
Furthermore, mutation of CtBP binding sites in ZEB1 hampered the ability of ZEB1 to repress
H2AFY expression. Interestingly, both stable DKK1 overexpression and DKK1 recombinant
protein induced the expression of CtBP. In conclusion, DKK1 cooperates with ZEB1 in the
repression of H2AFY by upregulating the corepressor CtBP.

The Mdm2 ubiquitin-ligase cooperates with CtBP in transcriptional repression of gene
promoters (218) and, in parallel, is activated by either wild-type and mutant p53 protein (219,
220). Thereby, we sought to investigate a potential involvement of both TP53 (which is
mutated in SW480 cells) and MDM2 in the regulation of CtBP. In fact, we found that DKK1
activated the expression of both genes, inducing a sequential cascade that ends in the
activation of CtBP and consequent repression of H2AFY.

f) In vivo inhibition of Zeb1 triggers senescence and reduces CRC tumor formation

We decided to test the correlation between ZEB1, DKK1 and macroH2A1 at the invasive
front of sporadic CRCs. Evaluation of ZEB1 and DKK1 staining in a tissue microarray of 53
primary human CRCs stages | to IV revealed a positive correlation between both proteins.
Conversely, macroH2A1 expression displayed an inverse correlation with ZEB1 and DKK1. In
addition, we examined whether expression of ZEB1 in CRCs represses senescence in vivo. To
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that effect, wild-type (+/+) and Zeb1 (+/-) mice were used in a well-established mouse model
of chemical-induced CRC. Interestingly, we found that tumors from wild-type mice barely had
senescent cells whereas those from Zeb1-deficient colon displayed large number of SA B-gal-
stained cells. Likewise, SAHF were only observed in the tumors isolated from Zeb1 (+/-) mice
but not in those from wild-type mice. Moreover, in line with these results, Zeb1 (+/-) mice
developed lower number of tumors than wild-type mice. Finally, tumors induced in Zeb1-
deficient mice displayed stronger expression of macroH2Al. These results indicate that
expression of ZEB1 in CRCs represses senescence while its downregulation is sufficient to
trigger macroH2A1 expression, SAHF formation and senescence in vivo.

g) The tumorigenic potential of ZEB1 depends on its role as a repressor of H2AFY

In order to assess whether ZEB1’s tumorigenic capacity depends on the repression of
H2AFY, we used a xenograft mouse model, where stable CRC cells with either ZEB1 or H2AFY
or both genes stably depleted were orthotopically injected in immune-deficient mice. We
observed that the inhibition of H2AFY reverted the decrease in tumor volume caused by ZEB1
depletion. Therefore, we concluded that ZEB1 mediates tumorigenesis induction through the
repression of H2AFY.

h) The role of ZEB1 as determinant of worse survival in CRC patients depends on its
role as an inhibitor of H2AFY and senescence

Analysis of survival in 928 human CRCs demonstrated that those displaying high
expression of ZEB1 and low expression of H2AFY have lower survival probability than those
with high levels of ZEB1 but joint high levels of H2AFY. This implies that the maximum effect of
ZEB1 as a predictor of poorer survival in CRC requires of low levels of H2AFY. Therefore, the
role of ZEB1 depends not only on its activation effect on DKK1 but also on its repression of
H2AFY. Likewise, we also tested whether expression of GLB1, the gene encoding for SA -gal,
alters the predictor value of ZEB1 in CRC survival. Indeed, among CRCs with high levels of ZEB1,
patients with low levels of GLB1 have poorer survival than those with high levels of GLBI.
Altogether, these results indicate that ZEB1 promotes tumor progression and determines
worse prognosis in CRCs, at least to a large extent, through its effect as an inhibitor of
senescence.
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V — GLOBAL DISCUSSION

The role for ZEB transcription factors in mediating progression of cancer lies on their
capacity to induce cellular transition from an epithelial to a mesenchymal state (22, 27, 37). It
is widely described that the acquisition of mesenchymal traits by the tumor cells provides a
more aggressive phenotype and enhances the invasive capacity (19, 20, 26). In CRCs, invading
cells at tumor host interface express high levels of ZEB1. This induction of ZEB1 expression is
required to achieve an appropriate migration through the surrounding ECM and to initiate
metastasis to distant organs (28, 170).

Recent reports have questioned the role of Snaill and Twistl in metastasis (51, 52).
Instead, ZEB1 is involved in invasion initiation and bloodstream entering even before a primary
pancreatic tumor can be histologically detected (78). In addition, it also promotes the
formation of lung metastasis (221). In CRCs, the elevated expression of ZEB1 at tumor front
(170) promotes cell intravasation and dissemination to the liver, where its downregulation
permits the formation of metastasis (222, 223).

In this context, the distinct pieces of work presented in this Thesis show new
mechanisms through which ZEB1 is mediating CRC progression, beyond classical mesenchymal
transformation and metastasis induction. Therefore, the results support the key role of the
EMT-TF ZEB1 in cancer progression. In fact, previous data had already connected ZEB1's role
with the induction of several distinct cancer hallmarks (8, 21). For instance, it has been
associated to an upregulated stemness capacity (74, 77), angiogenesis induction (84) and
improved cell-death resistance (81, 82).

Since ZEB1 is best known for its role on epithelial-mesenchymal plasticity and apico-
basal polarity regulation (28, 224), as well as metastasis induction (21, 225), we decided to
investigate the potential involvement of ZEB1 in alternative ways of driving tumorigenesis.
Thereby, the two studies that are presented in this Thesis associate the role of ZEB1 to two key
processes in oncogenic progression: the disruption of extracellular matrix that precedes tumor
cell invasiveness and the overcome of cell senescence, that enhances cell proliferation
capacity. In fact, the results we found are tightly connected by a coordinated activation
through Wnt-mediated ZEB1 induction.

The first work describes the importance of ZEB1 in the remodeling of the surrounding
tumor matrix, required for an efficient invasive capacity. This process supports the acquisition
of mesenchymal features by the cell, dynamically coordinating migration and invasion to
neighbor tissues. The work was focused on the role of PAS in CRC, and reported a differential
regulation by ZEB1 of two of its components: uPA and PAI-1. In the case of uPA, we found that
it is directly induced by ZEB1, through direct association to its regulatory promoter region.
Instead, PAI-1 is repressed by ZEB1, although its regulation is independent of any
transcriptional mechanism and is related to a reduction of its mRNA transcript stability. As a
confirmation of the results, we observed that ZEB1 and uPA were co-expressed at invading
CRC cells, whereas the expression of PAI-1 presented an inverse pattern.
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ZEB1 cooperates with the Wnt signaling effector complex B-catenin/TCF4 in the
activation of specific Wnt targets (LAMC2 and MT1-MMP) that mediate the disruption of the
BM (172, 187). We found here that it is also capable to directly activate even another Wnt
target, such as the PAS member uPA, whose role in ECM remodeling is preceded by the BM
cleavage exerted by LAMC2 and MT1-MMP, among other laminins and metalloproteinase
family members (187). Remarkably, LAMC2 and uPA, well-defined markers of invading CRC
cells, are both activated by ZEB1 and their expression is correlated at CRC tumor front
buddings (226). Thus, ZEB1 coordinates colorectal cancer progression through the
simultaneous activation of diverse Wnt signaling targets. In fact, LAMC2 and uPA not only
correlate with ZEB1 and nuclear B-catenin at the CRC tumor front (172), but the expression of
both is activated by the cooperative transcriptional activity of ZEB1 and Wnt-effector TCF4
(60).

Binding of uPA to surface complexes conformed by its own receptor (UPAR) and a5
integrin stimulates the activation of Ras-MAPK signaling and, consequently, enhances cellular
proliferation (227). At the same time, ZEB factors regulate the expression of both a4 and a5
integrins (63, 228, 229). Since the formation of this complex activates migration and invasion
in CRC cells, once again ZEB factors are probably modulating proliferation and invasion
processes through the combined activation of both the PAS system and integrins family
members (230).

An interesting finding of this study is the regulation that ZEB1 exerts on PAI-1, which was
found to be unrelated to its gene promoter modulation. In fact, ZEB1 was reported to inhibit
PAI-1 expression through post-transcriptional mechanisms involving a reduced mRNA stability.
This new function had not been previously reported, although it requires further investigation
in order to define whether it exclusively occurs in the case of PAI-1 mRNA or it is extensive to
other transcripts. This result is in line with previous studies that had reported a specific
regulation of PAI-1 mRNA stabilization, involving RNA binding proteins such as SERBP1 (231-
233). Since the expression of PAI-1 protein is tightly regulated by modulation of its mRNA
stability, a potential role for ZEB1 at this point has a special interest in order to interfere with
its function in CRC stromal remodeling. HuR protein is involved in the stabilization of mRNA
transcripts when it is translocated from the nucleus to the cytoplasm (234, 235). Importantly,
in colon cancer and melanoma cells, it has been reported that it forms a cytoplasmic mRNA
stabilizing complex with B-catenin (236, 237). Therefore, translocation of B-catenin to the
nucleus upon Wnt signaling activation (as it occurs in APC-mutant SW480 cells) reduces the
activity of this complex and impairs the stabilizing function of HUR on mRNA transcripts (237).
Furthermore, it must be noted that HuR binds to a specific sequence of PAI-2 mRNA, providing
post-transcriptional control of its expression (238). In this sense, one could speculate that -
catenin/TCF4 complex promotes an earlier degradation of PAI-1 mRNA, not only by the
induction of ZEB1 (172), but also by impairing HuR function through the reduction of B-catenin
cytoplasmic levels.

In order to achieve an optimal migration through the ECM, the role of ZEB1 in the
activation of uPA could be relevant since its proteolytic function enables tumor cells migration
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and invasion (194). Furthermore, the simultaneous role of ZEB1-mediated inhibition of uPA
repressor PAI-1 is an additional driver of cell invasion. However, PAI-1 presents high affinity for
Vitronectin (Vn) and, thereby, its presence is translated into a Vn-rich stroma, which facilitates
traction for cancer cells, enabling their migration through the stroma (205). In consequence,
despite ZEB1 enhances tumor promotion through its opposite regulation of PAS members,
other mechanisms are required to check the levels of PAI-1. Otherwise, ZEB1 could provoke an
excessive degradation to the tumor surrounding ECM, which would impair an appropriate
traction for migrating cells (113, 205).

Remarkably, uPA activates angiogenesis processes by induction of VEGF receptor
(VEGFR) expression (239, 240). Conversely, PAI-1 displays an antiangiogenic role in melanoma
cells (241), while it also blocks the binding of VEGFR2 to integrin receptors at endothelial cells
(242). Of note, ZEB1 has been associated to angiogenesis promotion through the regulation of
vascular endothelial growth factor (VEGF). At the same time, ZEB1 is also induced by VEGF (84,
243). In light of the results shown in this Thesis, and taking all these previous data together, it
can be hypothesized that ZEB1-mediated opposite modulation of uPA and PAI-1 is not only key
in the tumor stroma remodeling, but it also mediates other tumor progression roles driven by
the PAS.

PAI-1 belongs to the family of Serpin proteins, whose role in brain metastasis from lung
cancer has been recently reported (244). The presence of plasmin in the brain
microenvironment is lethal for most of the metastasizing cells. Thus, cells expressing high
levels of Serpin proteins are protected from this effect, since plasminogen is not cleaved into
plasmin in the specific regions surrounded by these cells. In addition, PAI-1 is also present in
liver metastatic cells from CRC primary tumors (245). In parallel, metastatic cells need to
recover their epithelial traits (through MET, the reversion of EMT process) in order to settle
and constitute the secondary tumor (20). Therefore, it can be suggested that a downregulation
of mesenchymal features in parallel to a loss of ZEB1 in distant metastasis provides an increase
in PAI-1 levels and, possibly, in other members of Serpins family, which drive the settling of
metastatic cells.

Another interesting finding is the potential feedback loop that seems to exist between
uPA and ZEB1 in CRC cells. In fact, the stable overexpression of uPA in SW480 cells increased
ZEB1 protein expression that may, as well, support the enhanced malignant and invasive
properties conferred by uPA overexpression itself. This result, that appears to be somehow
unexpected, can be explained through the role of uPAR, which mediates the cell signaling
triggered by uPA. In fact, the uPAR membrane domain activates distinct signaling routes, such
as Ras-MAPK or PI3K-Akt (246) that, in turn, induce ZEB1 expression (21). Since both uPA and
UPAR promoters are activated by the ZEB1-activator NFkP (247-249), we sought to investigate
whether uPAR could be also activated by ZEB1. Contrary to our expectancies, our preliminary
non-published data indicated that uPAR was not regulated by ZEB1, although this point should
be evaluated in further detail.

In parallel, the knockdown of uPA expression in breast cancer cells is associated to a
decrease in the levels of Vimentin, Snail or Twist. Moreover, uPA activates some stemness-
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associated genes (250). At the same time, Snail activates uPA and uPAR, in a positive feedback
loop (251), that resembles the ZEB1-uPA loop here reported. Thus, and according to our
results, uPA supports the role of EMT-TFs, not only by enabling mesenchymal cells to invade
surrounding tissues, but also by activating its own expression and cooperating in other
oncogenic functions.

In order to assess the effect of a total elimination of ZEB1 expression in vivo, the assays
were performed either in MEFs or in the developing murine intestinal tract, where uPA
expression was drastically diminished in Zebl-null samples. This finding implies that ZEB1
activation on uPA expression is not only confined to cancer cells and that it may also have a
role in intestinal tract developmental stages. We also found that the expression of ZEB1 is
required to mediate the activation of uPA by Wnt signaling activity. The role of cancer-
associated fibroblasts has acquired a high relevance in the interplay between tumor cells and
surrounding ECM (252-254). According to the data presented here, Zeb1 is indispensable for
the activation of Wnt target genes, such as uPA, in murine fibroblasts. Since uPA is also
expressed in stromal cells (255, 256), it is plausible to suggest that ZEB1 mediates the
mechanisms through which tumor cells cooperate with the stroma in the progression of
cancer.

Thereby, the results presented in the first study of this Thesis unveil a new role for ZEB1
in the promotion of cancer progression. Apart from the induction of a mesenchymal
phenotype, ZEB1 modulates the stroma remodeling by an opposite regulation of uPA and PAI-
1, exerted by different mechanisms. The new data presented here provides alternative options
for therapeutic approaches targeting ZEB1’'s role in CRC stroma, enhancing its value as a
potential therapeutic CRC target.

In line with the expanding variety of ZEB proteins functions in malignant transformation,
the results obtained in the second study of the Thesis have assigned to ZEB1 a role in Wnt-
induced repression of cellular senescence. Although previous studies had shown that Zeb1-null
MEFs undergo senescence before wild-type ones (86, 87), the specific basis that underlies
ZEB1-mediated senescence repression had not been still described. Here, we have uncovered a
molecular mechanism by which ZEB1 inhibits the senescence onset in cancer. In fact, the
unexpected finding that ZEB1 activates the Wnt-antagonist DKK1 and both synergize in
determining a worse CRC relapse-free survival led us to uncover a senescence-associated
signature repressed by the presence of high levels of both ZEB1 and DKK1. Among the set of
genes from this signature, the mechanism of regulation of H2AFY (encoding macroH2A1
histone) was further analyzed. Remarkably, this histone displays a key role in SAHF formation
and is associated to a better prognosis in cancer (257, 258). Finally, we also confirmed that the
low expression of senescence-associated genes (including H2AFY) correlates to a poorer
relapse-free survival in CRC patients.

First of all, the analysis of CRC relapse-free survival associated to the distinct sFRP and
DKK Wnt antagonists families members revealed that, contrary to what we expected, high
levels of DKK1 were related to a worse prognosis. In general terms, Wnt antagonists exert a
tumor suppressive function, since they impair the transcription of Wnt targets (144, 158, 259-
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261). However, under specific conditions, some Wnt antagonists have an opposite role, thus
promoting tumor progression. For instance, DKK2 drives invasion and metastasis in Ewing
sarcoma (262), and DKK4 is upregulated in renal and colorectal carcinomas (263, 264).
According to our results, DKK1 is associated to cell migration in hepatocellular carcinoma
(265).

Since DKK1 is transcriptionally activated by the B-catenin/TCF4 complex (154), Wnt
signaling is able to modulate itself by a negative feedback loop through one of its targets. In
fact, it is epigenetically inactivated in CRCs (155). However, recent data has identified DKK1 in
the cell nucleus as a marker of chemotherapy resistance and as a determinant of poor survival
(266). This paradoxical function of DKK1 had already been widely reported by previous
researchers (267, 268). The results shown in this Thesis support the tumor-promoting role of
DKK1, in light of the data about relapse-free survival and its co-expression with ZEB1 factor at
the CRC invasive front. Nevertheless, in the samples we have analyzed, DKK1 is mainly stromal
and cytoplasmic. Therefore, its role in the nucleus deserves further study since it may depend
on the cell context.

We found that ZEB1 cooperates with TCF4 in the activation of DKK1 promoter activity. In
a published work where | participated, we demonstrated that ZEB1 mediates the induction of
Wnt targets MT1-MMP and LAMC2 (172) and it is also described for the uPA promoter in the
first study here reported. In Wnt-positive cells, TCF4 and ZEB1 associate through their C-
terminal regions and this binding converts ZEB1 from a transcriptional repressor into an
activator (60). As it is shown in the DKK1 promoter assays, the induction by ZEB1
overexpression is enhanced upon simultaneous overexpression of TCF4, resembling the
reciprocal cooperation demonstrated on uPA and LAMC2 promoters (60). These assays have
been performed in CRC cell lines with strong Wnt signaling (269). It is possible to speculate
that an opposite effect may occur in Wnt negative cells, possibly implying a repression of DKK1
promoter. We also found that p300 histone acetyltransferase, which binds the N-terminal
region of ZEB1 (56, 57), was involved in DKK1 gene activation. Cooperation of ZEB1 with TCF4
in the activation of DKK1 involves recruitment of p300. Since it binds to DKK1 promoter at the
same region that ZEB1, as demonstrated by ChIP assays, it can be concluded that ZEB1 is
recruiting p300 coactivator to the DKK1 promoter region. Therefore, ZEB1 seems to activate
DKK1 through cooperation with distinct cofactors at both protein ends. While p300 binds the
N-terminal region, it is probable that (in a Wnt-active context) TCF4 is simultaneously bound at
the C-terminal end (60).

The second study of the Thesis directly connects DKK1 with the repression of
senescence. Previous literature is controversial at this point and murine models of accelerated
aging have uncovered an augmented Wnt activity during the acquisition of senescence (270).
Additionally, Wnt ligand Wnt5a induces senescence through the non-canonical Wnt pathway
in ovarian cancer (136). The discrepancy is also extended to the role of Wnt antagonists. For
instance, sFRP1 mediates senescence induction provoked by DNA damage (271), while DKK3
displays an antiproliferative role in lung carcinomas (272).
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DKK1 expression correlates with an increased senescence in bone and esophagus cells
(273, 274) and mediates the effect of p16 (275). The promoter region of CDKN2A (encoding for
pl6 protein) is methylated in SW480. Despite the low basal expression of this gene,
downregulation of ZEB1 induces CDKNZ2A expression. Interestingly, we found that DKK1
overexpression after ZEB1 knockdown caused no variation in the ZEB1-mediated upregulation
of CDKN2A mRNA levels. Instead, around 50 genes conformed a senescence gene signature
that was downregulated by DKK1 expression. Some of the genes that were further validated in
genetically-modified CRC cell lines are involved in PML bodies formation (276) or in the
stabilization of p53 tumor suppressor (277). It must be noted that both cases are paradoxically
opposite to the oncogenic events triggered by Wnt signaling (140, 278). Altogether, these data
suggest that DKK1 may be exerting distinct roles on senescence modulation, depending on the
context and the specific markers evaluated.

Wnt signaling pathway also plays a role in senescence repression. In fact,
phosphorylation of HIRA in specific residues, which is mediated by GSK3, is necessary to drive
the formation of SAHF in nuclear heterochromatin (279). In consequence, the inhibition of
GSK3B, with a key function as a member of the B-catenin destruction complex delays the
induction of senescence, either replicative or induced by oncogenes (135, 140). In addition,
downregulation of Wnt3a is necessary and sufficient to trigger the recruitment of HIRA into
nuclear bodies and to drive cells into senescence by promoting the formation of SAHF (140).
Our results in Wnt-active cell lines SW480 and SW620 corroborate the repression that Wnt3a
exerts on the senescence onset. Moreover, knockdown of ZEB1 eliminates Wnt3a effect,
suggesting that it mediates senescence repression driven by the Wnt pathway.

The earlier growth arrest and increased senescence of Zeb1-null MEFs is accompanied
by an upregulation of ZEB1 targets p15 and p21 (56, 87). In line with these previous works, we
have corroborated the role of ZEB1 in senescence repression in the context of CRC. Apart from
the already described regulation of CDKN2B, our results show a simultaneous elevated
expression of CDKN2A upon ZEB1 inhibition in CRC cells, which correlates with the senescent
phenotype. In addition, ZEB1 promotes tumor progression after the functional loss of Rb
tumor suppressor (86, 280), a classically reported cell cycle inhibitor and senescence inducer
(281). Instead, we have found a mechanism involving ZEB1 in the senescence repression
mediated by Wnt signaling in CRCs.

Importantly, ZEB1 is repressed by the tumor suppressor pathway p16/Rb (86, 282). In a
model of lung adenocarcinoma, ZEB1 promotes tumor initiation through overcoming
senescence. In this context, a loss of function of Rb tumor suppressor allows Ras oncogene to
induce ZEB1 that, in turn, represses senescence-associated genes in a complex mechanism
involving miR-200 (86). Regarding miR-200, it has been reported to drive growth arrest in
endothelial cells by downregulation of ZEB1 expression (283). In line with previous data, our
results indicate that ZEB1 plays a relevant role in protecting cells from entering a senescent
state, as well as it has been described for other tumor suppressor mechanisms, like apoptosis.

In connection with the first study presented, PAI-1 is a classical marker of senescence
(284) and is a key target of p53 in mediating the induction of senescence (285). Additionally, it
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controls senescence mechanisms in accelerated aging murine models (286). As found in the
first study, it is repressed by ZEB1, which stimulates a rapid decay in the stability of its mRNA
transcripts. These results are in line with our data showing that ZEB1 inhibits senescence.
Nevertheless, PAI-1 was not included in the senescence signature genes because, like CDKN2A
and CDKN2B, it was not regulated by DKK1.

TGF-B signaling induces PAI-1 in parallel to ZEB2 expression in kidney fibrosis (287). This
work diverges from the repression effect we reported for ZEB1 on this senescence marker.
However, it is not surprising that both ZEB factors display distinct roles in the regulation of
senescence, considering that ZEB2 promotes replicative senescence in liver carcinomas (88). In
addition, ZEB2 and DKK1 expression did not correlate in CRC cells, and knockdown of ZEB2 had
no effect on DKK1 expression levels. Taking these data together, it is possible that the opposite
function of both ZEB factors in senescence modulation lies on distinct modes of regulation of
DKK1 and PAI-1 expression.

Interestingly, we found that DKK1 upregulates CtBP expression, which presents a key
function in distinct tumor-promoting events such as metabolism, stemness and genome
instability in breast cancer (288). In relation to senescence, it represses p16 in melanoma cells
(289), supporting the inhibitory effect of ZEB1 reported here. In addition, we also found that
the use of a CtBP inhibitor (MTOB) caused an increase of senescence, accompanied by an
upregulation of another senescence marker, H2AFY. In breast cancer cells, MTOB has already
shown to be effective in reverting the pro-tumoral functions of CtBP (288). This
pharmacological inhibitor is also effective in reverting the antiapoptotic role of CtBP in CRC
cells (290). Remarkably, our results support a possible therapeutic strategy aiming at CtBP
pharmacological inhibition, since they connect CtBP repression with the induction of another
tumor suppressor mechanism, such as senescence.

In line with a potential use of CtBP pharmacological inhibitors like MTOB (288), there is
also an increasing interest in obtaining small molecule drugs against EMT-TFs, including ZEB1
(291). It has been recently published that class | histone deacetylase (HDAC) mocetinostat is
effective in repressing ZEB1 and in reverting chemoresistance induced by ZEB1 (292). However,
this drug may present off-target effects, since it promotes global epigenetic acetylation (292).
Unfortunately, no compounds targeting exclusively ZEB1 have been reported up to date.

Cellular senescence presents a special interest in the development of new therapeutic
strategies in cancer treatment (293-295). Growth arrest and the triggering of a senescent
phenotype in cancer cells may involve lower side effects than current chemotherapeutic
treatment and can stimulate the activity of immune system against tumor cells (294, 296).
Several drugs have proved to induce senescence in cancer cell lines (294). In addition,
gallotannin reinforces the induction of cellular senescence in CRCs through the induction of
DNA damage (297). In light of our results, inhibiting the newly identified mutant p53-MDM2-
CtBP pathway that represses macroH2A1 can be helpful in provoking cellular growth arrest. In
fact, we have demonstrated that pharmacological repression of one of its components (CtBP)
results in an increased number of senescent cells.
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The newly identified pathway that mediates the induction of CtBP by the extracellular
ligand DKK1 presents a special relevance among the results of the second study presented in
this Thesis. This pathway involves the activation of TP53 and MDM?2. In line with our results,
the use of inhibitory compounds of MDM2 (nutlin-3a) has been associated to an increased
senescence in cancer models, such as the case of prostate cancer (298, 299). Since MDM2
mediates p53 destruction (300), it harbors a tumor promoting effect. For instance, it mediates
the anti-apoptotic effect induced by Ras signaling in CRC cell lines (301). MDM2 has been also
proposed as a potential target for CRC therapy (302). Thus, we suggest that the activation of
CtBP and ulterior cooperation with ZEB1 promoter repression activities might be one of the
mechanisms through which MDM2 exerts its pro-tumoral functions in CRCs.

Of note, SW480 cells harbor mutations in p53 protein (R273H and P309S), included
among the most common p53 mutations in CRC patients (303). Importantly, both wild-type
and mutant forms of p53 activate the MDM2 promoter through binding to its promoter region
(219, 304). However, while wild-type p53 impairs the induction of a mesenchymal phenotype
by activating miR-200 (i.e. repressing ZEB1), its mutant version promotes an EMT induction.
Accordingly, in line with the data presented here, the EMT-TF ZEB1 is activated by mutant p53
and repressed by the wild-type form (220). In order to investigate a differential role between
the two versions of p53 in the repression of senescence in CRC cells, further experiments
combining intact and mutant p53 CRC cell lines should be performed.

We have reported that the induction of p53 by DKK1 triggers the final repression of
macroH2A1 histone through the sequential activation of MDM2 and CtBP. Of note, mutant p53
confers oncogenic features to cancer cells, reversing in some cases the functions of wild-type
p53 (305). In fact, some specific mutant forms (including the R273H, present in SW480 cells)
drive tumorigenesis and enhance tumor growth and proliferation, therefore endowing tumors
with a more aggressive phenotype and associate to poorer survival in CRCs (306, 307). Our
results in mutant p53 cells support these previous data, since the mutant form of p53 in
SW480 cells plays a key role in the repression of senescence orchestrated by ZEB1 and DKK1.

In CRCs, the induction of senescence through microRNA-34 (miR-34) reduces tumor
growth as well (308). Interestingly, miR-34 is activated by wild-type p53 (309). Therefore, the
presence of mutant p53 in SW480 cells may impair miR-34 induction. In line with the results
shown in the second study, mutant p53 drives senescence inhibition through the activation of
MDM_2, CTBP and ZEB1. Accordingly, the lack of effect of mutant p53 on miR-34 could be
enhancing its effect on senescence overcome and corroborating the pro-tumoral effect of
mutant p53 in cancer cells (305).

We found that ZEB1 and DKK1 inhibit expression of H2AFY through direct recruitment of
ZEB1 to its promoter region. We actually found several potential binding sites for ZEB1 in the
first 2kb of its promoter region. In addition, we validated one of the high-affinity binding sites
by ChIP assay, demonstrating a direct binding of ZEB1. The role of ZEB1 as a transcriptional
modulator depends on Wnt signaling activity (60). Several Wnt targets such as LAMC2, uPA or
DKK1 are activated by ZEB1 in a Wnt-positive context like in SW480, SW620 or COLO320 cells.
However, in the case of H2AFY we have found that ZEB1 can still function as a repressor on the
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H2AFY promoter, even in CRC cells with strong Wnt activity. Interestingly, the CtBP corepressor
is involved in inhibiting expression of H2AFY gene. It is therefore tempting to speculate that,
even after being converted into an activator by TCF4, ZEB1 still can repress the activity of some
specific promoters when it is bound to corepressors.

In parallel to the modulation that ZEB1 and DKK1 impose on H2AFY protein and mRNA
expression, we found that GLB1, the gene encoding for SA B-gal, was also repressed by both of
them. This is an important result, since most of previously published data only focuses on
assessing the enzymatic activity of lysosomal SA B-gal (91, 95). Instead, very few studies have
investigated the connection between GLB1 transcript levels and senescence. Even though, the
depletion of GLB1 mRNA correlates with a decreased staining for SA B-gal (310, 311).
According to these data, we have corroborated that the upregulation of senescence in ZEB1-
downregulated cells is accompanied by an increase in GLB1 mRNA expression, whereas the
overexpression of DKK1 reverts this effect.

ZEB1-mediated repression of macroH2A1 was corroborated in vivo through different
approaches. In fact, a tissue multiple array (TMA) with more than 50 CRC patient samples was
used and we found a positive correlation between ZEB1 and DKK1 at the tumor front, whereas
macroH2A1 displayed an inverse pattern. Accordingly, macroH2A1 expression is also lost in
advanced bladder cancer, compared to the initial stages (312). In addition, the expression of
macroH2A1 is associated to a more differentiated cellular status in colon cancer (313).
Therefore, macroH2A1 function is opposite to that of ZEB1 and DKK1 in invading tumors, since
it is associated to the loss of cellular mesenchymal and aggressive traits.

In the AOM-DSS CRC model we found that tumors formed in Zebl-deficient mice
displayed more SA B-gal positive cells than tumors from their wild-type counterparts. In
consequence, the lack of Zebl impaired tumor formation in these mice, which, in addition,
presented a lower mortality during the assay when compared to wild-type ones. Remarkably,
murine models that are deficient for mounting an apoptotic response display increased tumor
formation upon combined treatment with AOM and DSS (314). Additionally, the loss of the
angiogenesis-mediator VEGFR2 protects from tumor formation in this model by inducing
senescence (315), while an increase in cell senescence diminishes the proliferation rate in
colon tumor cells (316). Taken these data together, it can be suggested that several tumor
suppressor mechanisms may be involved in modulating tumor formation in mice models of
AOM/DSS administration. Interestingly, ZEB1 inhibits most of these tumor suppressor
functions (82, 84).

We corroborated the importance of macroH2A1 levels in tumor formation in a xenograft
murine model, where CRC cells were implanted. The maximum tumor growth of CRC cells was
obtained upon stable depletion of H2AFY, involving reduced senescence. Accordingly, the
induction of senescence decays tumor growth in some cancers (317, 318). Therefore, the loss
of mesenchymal features is accompanied by a senescence induction, resembling the effect we
found upon ZEB1 depletion. It can be thus suggested that EMT-TFs not only modulate tumor
growth in vivo by modifying cellular adhesions and polarity, but also through the suppression
of senescence.
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The results here presented report new mechanisms of CRC tumor progression that are
orchestrated by ZEB1 in a context of active Wnt signaling and confirm that its role is not simply
restricted to a mesenchymal transformation, but it also modulates several other cancer
hallmarks. In the first study, the distinct modulation of PAS members was unveiled,
constituting a new mechanism of tumor invasiveness through ECM regulated by ZEB1. The
second study sets ZEB1 as a key repressor of cellular senescence, through the activation of a
new signaling pathway that involves the Wnt-antagonist DKK1. Both studies expand the
oncogenic functions of ZEB1 in CRC and enhance its potential as a promising therapeutic
target. In fact, inhibiting ZEB1 by using global deacetylase drugs (i.e. mocetinostat) (292) or
through repression of the canonical Wnt pathway (81, 319) appear as promising strategies.
However, these drugs do not target ZEB1 exclusively and other chromatin remodeling proteins
or Wnt-effectors may be affected. Therefore, the pharmacological inhibition of ZEB1 in cancer
therapy is still not currently available and further translational studies are required. In
summary, the pieces of work presented in this Thesis combined with recently published
research on ZEB factors set ZEB1 as a promising therapeutic target in cancer therapy.
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VI - CONCLUSIONS

The results described in this Thesis can be summarized as follows:

Conclusions of the first study:

1-

ZEB1 modulates the migration of CRC cells through the peritumoral stroma by means
of an opposite regulation of the PAS members; namely, activation of uPA expression
and repression of PAI-1.

ZEB1 activates uPA at the transcriptional level by direct binding to its promoter region,
through a mechanism that involves p300. In parallel, Wnt signaling requires ZEB1
presence to mediate uPA induction.

PAI-1 is repressed by ZEB1 through a transcriptional-independent mechanism. ZEB1
reduces PAI-1 mRNA stability, which represents a new mechanism of gene regulation
by ZEB1.

uPA is required for ZEB1-mediated CRC cells migration and invasion, driven by Wnt
signaling. Its repression impairs cell invasion even in the presence of ZEB1.

ZEB1 correlates with uPA, but not with PAI-1, at invasive front of CRCs, supporting its
key role in remodeling the ECM in the tumor microenvironment.

Conclusions of the second study:

1-

The maximum effect of ZEB1 in determining worse survival in CRC requires the
simultaneous expression of Wnt antagonist DKK1. The expression of both genes
correlates positively in CRCs.

ZEB1 transcriptionally activates DKK1, through a mechanism that involves p300 and in
cooperation with the Wnt-effector TCF4.

Joint expression of ZEB1 and DKK1 inhibits a senescence signature in CRC patients.
Some of these senescence-associated genes, including H2AFY, are repressed by a
cooperative action between ZEB1 and DKK1.

ZEB1 requires of DKK1 expression to repress SAHF formation and cellular senescence in
CRC cells.

The repression of macroH2A1 by ZEB1, involves direct binding to the H2AFY gene
promoter.
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6- ZEB1 represses H2AFY expression and senescence in CRC cells through the subsequent
induction of DKK1, mutant TP53, MDMZ2 and CtBP. The ultimate activation of CtBP
cofactor enhances the repressor activity of ZEB1 on the H2AFY promoter.

7- ZEB1 correlates positively with DKK1 at the tumor front of invasive CRCs. Conversely,
the expression of macroH2A1 is inversely correlated to both ZEB1 and DKK1.

8- Downregulation of ZEB1 in CRC cancer cells in vivo is sufficient to trigger senescence,
reduce tumor load and improve survival in a mouse model of colon cancer.

9- The tumorigenic capacity of ZEB1 depends on the concomitant low expression of
macroH2A1.

10- The role of ZEB1 as a determinant of worse survival in CRC depends on its inhibition of
H2AFY and senescence markers like GLB1.
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Abstract Cancer is a complex multistep process involv-
ing genetic and epigenetic changes that eventually result in
the activation of oncogenic pathways and/or inactivation of
tumor suppressor signals. During cancer progression, can-
cer cells acquire a number of hallmarks that promote tumor
growth and invasion. A crucial mechanism by which car-
cinoma cells enhance their invasive capacity is the
dissolution of intercellular adhesions and the acquisition of
a more motile mesenchymal phenotype as part of an epi-
thelial-to-mesenchymal transition (EMT). Although many
transcription factors can trigger it, the full molecular
reprogramming occurring during an EMT is mainly
orchestrated by three major groups of transcription factors:
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the ZEB, Snail and Twist families. Upregulated expression
of these EMT-activating transcription factors (EMT-ATFs)
promotes tumor invasiveness in cell lines and xenograft
mice models and has been associated with poor clinical
prognosis in human cancers. Evidence accumulated in the
last few years indicates that EMT-ATFs also regulate an
expanding set of cancer cell capabilities beyond tumor
invasion. Thus, EMT-ATFs have been shown to cooperate
in oncogenic transformation, regulate cancer cell stemness,
override safeguard programs against cancer like apoptosis
and senescence, determine resistance to chemotherapy and
promote tumor angiogenesis. This article reviews the
expanding portfolio of functions played by EMT-ATFs in
cancer progression.
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