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Summary 

Summary 
Proteins are the embodiment of the message encoded in the genes and they act as the building

blocks  and  effector  part  of  the  cell.  From  gene  regulation  to  cell  signalling,  as  well  as  cell

recognition and movement, protein-protein interactions (PPIs) drive many important cellular events

by  forming  intricate  interaction  networks.  The  number  of  all  non-redundant  human  binary

interactions,  forming the so-called interactome,  ranges  from 130,000 to 650,000 interactions  as

estimated by different studies. In some diseases, like cancer, these PPIs are altered by the presence

of mutations in individual proteins, which can change the interaction networks of the cell resulting

in a pathological state. In order to fully characterize the effect of a pathological mutation and have

useful information for prediction purposes, it is important first to identify whether the mutation is

located at a protein-binding interface, and second to understand the effect on the binding affinity of

the affected interaction/s. To understand how these mutations can alter the PPIs, we need to look at

the three-dimensional structure of the protein complexes at the atomic level. However, there are

available  structures  for  less  than  10%  of  the  estimated  human  interactome.  Computational

approaches such as protein-protein docking can help to extend the structural coverage of known

PPIs. 

In the protein-protein docking field, rigid-body docking is a widely used docking approach,

since is fast,  computationally cheap and is often capable of generating a pool of models within

which a near-native structure can be found. These models need to be scored in order to select the

acceptable ones from the set  of poses.  In the present thesis, we have characterized the synergy

between  combination  of  protein-protein  docking  methods  and  several  scoring  functions.  Our

findings provide guides for the use of the most efficient scoring function for each docking method,

as well as instruct future scoring functions development efforts

 Then  we  used  docking  calculations  to  predict  interaction  hotspots,  i.e.  residues  that

contribute the most to the binding energy, and interface patches by including neighbour residues to

the predictions. We  developed and validated a method, based in the Normalize Interface Propensity

(NIP) score. 
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Summary 

The work of this thesis have extended the original NIP method to predict the location of

disease-associated nsSNPs at protein-protein interfaces, when there is no available structure for the

protein-protein complex. We have applied this approach to the pathological interaction networks of

six diseases  with low structural  data  on PPIs.  This approach can almost  double the number of

nsSNPs that can be characterized and identify edgetic effects in many nsSNPs that were previously

unknown.  This methodology was also applied to predict the location of 14,551 nsSNPs in 4,254

proteins, for more than 12,000 interactions without 3D structure. We found that 34% of the disease-

associated nsSNPs were located at a protein-protein interface. This opens future opportunities for

the high-throughput characterization of pathological mutations at the atomic level resolution, and

can help to design novel therapeutic strategies to re-stabilize the affected PPIs by disease-associated

nsSNPs.

Keywords: Single Nucleotide Polymorphisms (SNPs), pathological mutations, protein-protein 

docking, binding hot-spot, interface predictions, disease pathways
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"I have wrestled with an alligator,

I've done tussled with a whale, 

I've  handcuffed lightnin', 

thrown thunder in jail. 

Only last week, I murdered a rock,

injured a stone, hospitalized a brick. 

I'm so mean, I make medicine sick. 

All you chumps are gonna bow 

when I whoop him, all of you. 

I know you got him,

I know you've got him picked, 

but the man is in trouble. 

I'm gonna show you how great I am.”

- Muhammed Ali
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Chapter 1 Introduction 

Chapter 1 Introduction 

1.1 The role of the proteins in the cell

A cell is the basic structural and functional unit of any living organism. From single cell organisms

to multicellular organisms, most of the cells have information stored in the DNA, coded in the form

of nucleotide sequences, which must be transcribed into RNA, and then in turn into a chain of

amino acids, the building blocks of proteins. This straightforward flux of information is the so-

called  “central  dogma”  (Crick  1970).  However,  this  linear  view of  the  flow of  information  is

incomplete. In nature, self-interacting elements capable of modifying the above described flux of

information  challenge  the  idea  of  the  central  dogma.  This  is  the  case  of  ribozymes  with  self-

catalytic  activity  (Lilley  and  Fritz,  n.d.),  and  prions  (Derkatch  and  Liebman  2007),  misfolded

proteins that can alter the structure and function of other proteins. These self-interacting elements

add loops to the straight line in the central dogma. Even with these added loops, this view does not

fully depict  the crowded and dynamic environment inside the cell.  There are additional genetic

mechanisms that regulate the levels of proteins. An example of this is the field of epigenetics where

the marks found in the DNA nucleosomes, such as methylation, prevents the transcription of DNA

(Bharathy and Reshma 2012).  Proteins  themselves  appear  to  have an active role  to  protect  the

balance of gene products even when the cell present an abnormal load of the genetic material like in

polyploidy (Stingele et al. 2012). Among all of the interactions and factors that are driving all these

processes, proteins have a prominent role as they can serve as scaffolds, provide protection to RNA

or DNA (chaperones and nucleosomes), and act as receptors or effectors (such neuropeptides and

enzymes). 

Most proteins do not act as isolated units, and their interactions with biomolecules including

other proteins are a fundamental property that gives rise to different cellular events (Stingele et al.

2012;  Teichmann  2002).  A fundamental  aspect  that  should  be  taken  into  account  is  the  three-

dimensional  (3D)  nature  of  cellular  components.  Schematic  representation  of  DNA,  RNA and

proteins have been two-dimensional for simplicity, but all three folds into three-dimensional space. 

Protein folding is an exciting process itself.  From the amino acid sequence, the inherent

physicochemical properties of the polypeptide chain determine the first level of folding, known as
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secondary structure, which can be either -sheets or -helices, as well as elements of the sequence �  �
that do not fold into a specific structure and are referred to as “loops”. From this, combinations of

-sheets and -helices can form the tertiary structure, where many proteins gain their functionality.�  �
However, the majority of cell processes require the assembly of protein complexes, which constitute

the so-called quaternary structure. 

The relationship between the genetic information contained in the DNA and the structure of

proteins is currently object of intense investigation. Recent sequencing efforts have yielded much

information on the variants in genes (mutations), and association studies have revealed that these

variations are tightly linked to the physiological outcome of the organism (Lander 2011; Freedman

et al. 2011). There are two major approaches to analyze the effect of these variants: a reductionist

view where the analysis is focused on the molecular effect of a mutation based on the 3D atomic

structure of the protein of interest, and a systems approach focused on the effect on the network

generated by the interactions between the elements in the cell (Figure 1). The present thesis shows

that the synergy between these two approaches provides understanding on how mutations can affect

interactions from an atomic level to the network organization. 
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Chapter 1 Introduction 

1.2 The road to personalized medicine

High-throughput  techniques,  like  genome  sequencing,  mass  spectroscopy  and  DNA and  RNA

expression microarrays, are dramatically changing the way we study biological sciences. The first

major  change  arises  from  the  massive  data  generated  by  these  techniques.  Next-generation

sequencing (NGS) technologies have dramatically lowered the costs of gene sequencing, and are

providing  genomic  information  for  an  increasing  number  of  healthy  individuals  and  patient

populations.  A biological  scientist  has  to  face  the  overwhelming  stream  of  information  from

7
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of nsSNPs alter the interface of proteins. This can have an effect at the network scale in the cell



Chapter 1 Introduction 

different  sources,  ranging  from microorganisms  (Venter  et  al.  2004)  to  patients  in  health  care

systems (Wang 2014). Computational resources are fundamental to efficiently analyze all this data.

Institutes like National Center for Biotechnology (NCBI) and the European Bioinformatics Institute

(EBI) receive data from different sources and store it in big public databases such the GenBank

(Benson et al. 2005) and UniProt (The UniProt Consortium 2007). Moreover, they have integrated a

variety of  tools  like  BLAST (Benson et  al.  2005)  or  CLUSTAL (Higgins  and Sharp  1988)  in

publicly available websites with the goal of providing the scientific community with analytical tools

for their research. This vast amount of information is an opportunity for biological sciences to put

statistical methods and rigorous mathematical models into the molecular details that rule a living

organism. 

Following the first human genome completion (International Human Genome Sequencing

Consortium 2004),  the scientific  community started an international  effort  known as  the “1000

genomes  project”  (1000  Genomes  Project  Consortium et  al.  2015).  The  project,  now finished,

consisted  in  obtaining the genome sequence  from subpopulation around the world,  making the

genomes  available  to  the  scientific  community  for  a  variety  of  analysis.  It  also  provides  a

framework for important questions on human genetics. In the past, the study of the genetic variation

in the human population or genotypes was only possible using the unique gene variants that gave

rise  to evident distinct states or phenotypes.  While the term genotype refers to the information

stored in the DNA sequences, the term phenotype refers to the product of the genotype or “what we

can see”, which can mean a protein fold or a cell type or even the look of the whole organism. With

the lower costs of genome sequences and resources like the "1000 genomes", common genetic traits

were found to be present in a large proportion of the human population (International HapMap 3

Consortium  et  al.  2010).  Many  of  these  traits  were  determined  by  Single  Nucleotide

Polymorphisms (SNPs). SNPs are single base pair changes in the DNA sequence that occur with

high frequency on the human genome (1000 Genomes Project Consortium et al. 2010) and the field

of human genetics now use it as the unit for genetic variation in populations. When the change

occur in the coding regions of DNA and results in a change in the amino acid of the protein is called

non-synonimous SNPs (nsSNPs). The nsSNPs can either produce a nonfunctional protein (nonsense

substitutions) or a multifunctional protein (missense substitutions) and in both cases can leading to a

disease  phenotype  (Al-Haggar  et  al.  2012;  Cordovado et  al.  2012).  The  International  HapMap

Project aims to identify changes among the genomes and to find correlations with the observed
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phenotypes. The number of SNPs per human genome is estimated to be around 10 million, all of

them showing a different effect. HapMap has so far catalogued 1.6 million SNPs with genotypes

from 11 human populations, including Japanese population from Tokyo, the Yoruba population from

Africa,  Han  Chinese  from  Beijing,  and  European  descent  population  (International  HapMap

Consortium 2005; Ritchie et al. 2010; International HapMap 3 Consortium et al. 2010). 

Genome-Wide Association Studies (GWAS) are a powerful tool to identify a link of a

relevant SNP with a human disease (Welter et al. 2013). The goal of GWAS is to identify genetic

risk factors through various association tests, backed by statistical analysis, to make predictions

about who is predisposed to a given disease, and then determine the genetic interplay of disease

susceptibility for the development of new therapeutic strategies (Bush and Moore 2012). The most

successful application of GWAS has been the identification of DNA sequences that play a role in

drug response (metabolism, efficacy or adverse effect). Warfarin dosage is an obvious example of

this success (Cooper et al. 2008). A GWAS study led to discover a set of SNPs in several genes that

influence  warfarin  dosing.  This,  with  further  validation  studies,  became a  clinical  genetic  test,

which allowed physicians to give the correct amount of warfarin to patients. 

The  relationship  between  genetic  analysis  and  clinical  outcome  fostered  the  field  of

personalized medicine. The current project "10K genomes" in the United Kingdom (Koepfli et al.

2015) is a scientific enterprise taken by the British government for a personalized medicine in the

public health care. The objective is to diagnose patients with rare diseases, who otherwise would

never get proper treatment. Candidate genes detected through GWAS are generating large datasets

of genetic variants associated with disorders, which are being deposited in public databases, such as

Online Mendelian Inheritance in Man (OMIM) (Scott et al., n.d.),  the database of Genotypes and

Phenotypes (dbGAP) (Tryka et al. 2014) or  Humsavar (The UniProt Consortium 2007). 

1.3 Interaction networks and pathways in the cells 

The analysis of the data obtained by high-throughput technologies also produced a revolution in the

biological field. It marked the start of the “OMIC era” (Kandpal et al. 2009). Genome, Proteome,

Peptidome, Exome, Transcriptome, are different ways to profile and classify the biological activities

of the cell. However, the analysis of any of these profiles in isolation does not give the answer to

fundamental  questions  about  the  genotype-phenotype  relationship  (Vidal,  Cusick,  and  Barabási
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2011). To infer the physiological effect caused by the changes in these profiles is necessary to study

how the elements of a cell affect each other. In fact, many of such “omic” sciences are inherently a

system-based  science  that  requires  an  integrated  approach  to  study  the  elements  on  a  given

condition by analyzing the interplay between these elements to achieve a biochemical function in

the context of a network (Wu, Hasan, and Chen 2014). The signaling pathways of the cell constitute

a well-understood example of how the elements of the cell interact to elicit a molecular process.

From an outside stimulus, receptor proteins transduce the signal using small molecules known as

second messengers, such as the circular Adenosine Monophosphate (cAMP). Enzymes like kinases

use the energy stored in Adenosine Triphosphate (ATP) to activate other proteins and start a cascade

that produces the release of other second messengers, like Inositol Triphosphate (IP3) and calcium

ions. Second messengers can be sensed by other proteins to inhibit the signaling or to start other

pathways, in many cases reaching the nucleus and regulating the DNA transcription (Lemmon and

Schlessinger 2010). Pathways become interconnected networks when components of one pathway

interact and control elements of another pathway. Graph theory can help to analyze a system as

complex  as  the  cell.  A young  discipline  in  biology,  systems  biology,  is  taking  advantage  of

computational  approaches  to  understand  how these  interactions  can  have  a  response  (Ma’ayan

2009).  Systems  biology  is  the  study  of  how  molecules  interact  to  give  rise  to  subcellular

machineries that form the functional units capable of performing the physiological functions needed

for the cell, tissue or organ (Bhalla and Iyengar 1999). The network analysis in systems biology

intent to gain biological meaning using a global network diagram derived from available data (Wu,

Xiaogang, and Chen, n.d.) 

Large-scale studies at  proteomic level have become widely accessible to the community

(Kuhner et al. 2009, Gavin et al. 2006, Yu et al. 2008) and are generating a diverse and increasing

amount of data, including protein binding and pathway information (Aranda et al. 2010, Szklarczyk

et al. 2015, Ogata et al. 1999). This has facilitated the computational construction of genome-wide

networks of interactions, or "interactomes" (Rolland et al. 2014). Thus, a system-wide approach

can point out the essential elements for regulating a given biological process (Wu, Hasan, and Chen

2014). For example, the response to a stimulus depends on the state of the signaling networks, and

this can be used in system biology to predict the outcome of such stimulus at molecular level (Janes

et al. 2005). An interactome network describes the interaction of genes or gene products, which

means that to provide some explanation of the genotype-phenotype relationships the networks have
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to  include  interactions  at  different  levels.  To  make  the  predictions  reliable  and  unbiased,  the

macromolecular interactions such as DNA-protein, post-translational modification and its target, or

protein-protein interactions (PPI) need to be of high quality and extensive (Rolland et al. 2014).

PPIs are probably the most critical networks as they underlie in almost all key cellular events like

proliferation, cell signalling, regulation or cell morphology alteration (Teichmann 2002). 

The most widely-used high-throughput laboratory techniques to construct PPI networks are

perhaps  the  Yeast  Two-hybrid  (Y2H),  and  Tandem  Affinity  Purification  coupled  with  Mass

Spectrometry (TAP-MS). Y2H is an ingenious system that uses separable transcriptional factors and

a reporter gene to prove the interaction between two proteins. The transcriptional factors have two

separable domains, a DNA-binding domain (BD) and a transcription activation domain (AD). The

target protein is fused with the BD and is called the bait, the binding partner is fused with the AD

and  is  called  the  prey.  The  interaction  between  bait  and  prey  reconstitute  the  function  as  a

transcription factor,  which can allow the expression of reporter  gene downstream from the AD

binding sequence (Fields, Stanley, and Ok-kyu 1989). TAP-MS relies on tags attached to the N-

terminus of target proteins. The intended target proteins are expressed inside the cell and allowed to

interact. Then, the target protein complexes are isolated by two steps of affinity purification. The

proteins that co-purified with the tagged proteins are identified by mass spectrometry (Puig et al.

2001).  Complementing  the initially constructed networks  with  text  mining of  the literature  has

facilitated building the interactomes of different  organisms,  like S.cerevisiae (Uetz and Hughes

2000; Ito et al. 2000), C. elegants (S. Li et al. 2004), A. thaliana (Cui et al. 2007), D. melanogaster

(Giot et al. 2003; Guruharsha et al. 2011) and human (Ewing et al. 2007). 

The estimated size of the human interactome ranges from 130,000 to around 650,000 binary

protein-protein interactions (Rual et al. 2005; Stumpf et al. 2008). Currently, the high confidence

human interactome accounts for ~14,000 PPIs (Rolland et al. 2014), far from being completed. The

main  challenge  in  the  study  of  the  interaction  networks  is  to  extract  biologically  relevant

information from an extensive list of interactions taking into account different sources of the data, in

order to gain insight into the molecular mechanism that drives various conditions (Khatri, Sirota,

and Butte 2012; Glazko and Emmert-Streib 2009). Comprehensive integrative approaches that take

into account data from DNA microarrays, protein expression, PPI information, and interaction with

metabolites are added to the complexity in the analysis of cellular functions (Ideker et al. 2001;
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MacBeath, Gavin 2002). To gain knowledge from this vast source of information,  network and

pathway analysis can help to interpret the changes in the PPIs caused by external stimuli. The first

generation of PPI human interactomes allowed network-based answers to the genotype-phenotype

relationship,  however,  given  their  limited  quality  were  not  useful  to  make  global,  accurate

interpretations (Stelzl et al.  2005; Rual et al.  2005).  Network analysis uses the topology of the

network to  highlight  key nodes  and strong interactions  between different  molecules,  known as

modules (G. Li et  al.  2014; Hartwell  et  al.  1999). In network analysis,  biological networks are

described as  “small  world  and scale-free” networks  (Barabási  and Oltvai  2004).  This  basically

means that the human interactome contains several highly connected molecules, i.e. nodes that are

known as “hubs.” These proteins usually have a fundamental role in signaling pathways and their

function is almost essential for the cell.  The highly dynamic character of the interactions in the

signaling pathways is a characteristic that provides robustness to the interactome (Albert, Jeong, and

Barabasi 2000). 

In complex networks like the human interactome, there are no clear clusters because of the

scale-free  property.  The  scale-free  property  makes  biological  networks  similar  to  nonlinear

problems like chaos, phase transitions, and fractals (Strogatz 2001). In fact, using only topological

information and a nonlinear dynamical modelling known as the ant colony optimization, revealed

fractal-like patterns in protein interaction networks in yeast (Wu, Xiaogang, and Chen 2012), Breast

Cancer (Wu, Harrison, and Chen 2009), and Alzheimer disease (Wu et al. 2009). 

This indicates the complexity of the PPI networks due the dynamics in the cell change in a

continue  manner.  On the  other  hand,  we know that  activity  in  a  cell  emerges  from functional

modules, defined as a group of different proteins that interact but that are not necessarily present in

the same space and time (Hartwell et al. 1999; Pizzuti and Rombo 2014). Thus, there must exist

some  degree  of  clustering.  There  are  two  different  ways  to  detect  functional  modules:  graph

clustering, or distant-based clustering. Graph clustering takes full advantage of the topology itself,

as  it  searches  for  groups of  nodes  in  the  network that  have  more  intra-connections  than  inter-

connections. Some graph clustering methods are Highly Connected Subgraph (HCS) (Hartuv, Erez,

and Ron 2000),  Restricted Neighborhood Search Clustering (RNSC) (King, Przulj,  and Jurisica

2004) and Markov Clustering (MCL) (Enright, Van Dongen, and Ouzounis 2002). In the distance-

based  clustering  method,  some  metrics  from graph  theory  become  the  similarity  measure  that
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clustering algorithms will use to identify the modules. Some of these metrics are the number of

edges (Vazquez et al. 2003), shortest path (Arnau, Mars, and Marín 2005), and shortest path profiles

(Maciag et al. 2006). 

Parallel to the network analysis, pathway analysis is a simplified approach that reduces the

complexity  of  interpreting  all  available  data  and  increases  the  explanatory  power.  Grouping

proteins,  genes,  and PPIs  according to the biological  process  where they participate  can reveal

clustering for a given event. This categorization breaks down long lists into smaller subsets that can

be  used  to  identify differences  between  two conditions,  thus  increasing  the  explanatory power

(Khatri,  Sirota, and Butte 2012; Glazko and Emmert-Streib 2009). Pathway analysis is different

from the network analysis, because it uses functional information about the proteins, like cellular

localization, catalytic activity, and processing aspects. Pathway analysis is more successful when it

includes  PPIs  networks,  Gene Ontology terms  (GO) and expression  data.  The assumption  that

proteins in the same pathway and with common functions are tightly regulated can lead to the

discovery of the “pathway network module”. In this way, we can delimit a large set of proteins that

co-regulate  each  other  to  perform a  particular  cellular  function  (Wu,  Hasan,  and  Chen  2014).

Additionally,  in  some  biological  networks,  there  is  a  correlation  between  GO terms  and  node

distance (Sevilla et al. 2005; Lord et al. 2003; Cho et al. 2007). On the downside, the annotation of

a  GO term has  a  heterogeneous  origin,  based  on  a  variety  of  experiments  and  computational

methods, which often leads to inaccurate/contradictory annotations and interpretation problems due

the functional diversity of the proteins under different conditions (Luciani and Bazzoni 2012).

There are different databases for protein networks and biological pathways: Biogrid (Chatr-

Aryamontri et al. 2015), Reactome (Croft 2010), KEGG (Qiu and Yu-Qing 2013), STRING (Mering

2003), PAGED (H. Huang et al.  2012), HPD (Chowbina et al.  2009), BioCarta (Nishimura and

Darryl 2001), or Interactome3D (Mosca, Céol, and Aloy 2013). Many of these databases provide, in

addition  to  the  list  of  interactions,  information  like  the  effect  of  the  interaction  (inhibition  or

activation), or the location of the interaction (e.g., nucleus, cytoplasm, and so forth). On the other

hand,  a  number  of  databases  provide  experimentally  obtained  structures  of  PPIs  but  lack  the

integrating context of the networks: 3D interologs (Lo et al. 2010), 3D complex (Levy et al. 2006),

SCOPPI (Winter et al.  2006), IBIS (Shoemaker et al. 2012), 3did (Mosca et al.  2014), PIFACE

(Cukuroglu et al. 2014). Interestingly, STRING and Interactome3D provide the 3D structures of the
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proteins and the complexes they form, in the context of network data. 

1.4 Defining diseases as PPI networks 

Smaller subsets of the human interactome can be used to find answers to the genotype-phenotype

relationship. Combining GWAS data, technically a “cause-effect” list for genes, with the network

view has provided the most comprehensive data for complex diseases. As complex diseases are

caused by several genes (e.g., heart disease, cancer, and diabetes), the use of networks seems a

natural approach to  gain insight  on their  molecular bases.  The human diseasome, which links

phenotypic features to all known disease genes, is the result of that approach (Goh et al. 2007). The

human diseasome can be exemplified by a bipartite graph in which a set of disease nodes is linked

with disease gene nodes (Goh and Choi 2012). The objective of the construction of a network for

each complex disease  holds  the  promise  of  identifying  those  interactions  altered  by mutations,

which could help to find a treatment to revert the network back to normal state. The core of the

human diseasome can be identified using a set of PPIs that are affected by a mutation leading to a

pathological state. It can be obtained by purely computational tools and can help to highlight the

key players that drive most of the characterized diseases (Janjić, and Nataša 2012). Even if the main

disease-related proteins are identified, these advances do not mean a way to find a magic bullet for

all pathologies. The highly dynamic nature of the signaling pathways due to their inter-connectivity

is a characteristic that adds robustness to the cell (Kitano 2004). One example of a robust disease is

cancer. A cancer tumor is a population of different cell types, each harboring their own mutations

(Calon et al. 2012; Ding et al. 2012; Gerlinger et al. 2012; Hou et al. 2012). In this way, there are

intracellular  and  intercellular  interaction  networks  with  different  dynamics,  since  not  all  the

proteome is expressed sequentially in a specific cue (S. P. Shah et al. 2012). Given the finite number

of interactions between nodes in the cellular networks, there is a limit to the number of network

configurations or states they can adopt. By rewiring the connections of a signaling network, cancer

mutations are probably creating new states that are only present in cancer cells, and that are known

as cancer network attractors states (Creixell et al. 2012). 

The inter-connectivity of signaling pathways or pathway crosstalk is the underlying reason

for such high network dynamics and is one of the reasons why a drug specifically designed for a

key protein in a disease can fail. Thus, when a key pathway is inhibited, the cell may use another

pathway  that  can  have  a  similar  physiological  effect.  The  multiple  layers  of  gene  regulatory
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interactions modified by the alteration of the genetic material and structure (e.g. mutations in DNA,

or aneuploidy at chromosomal level) combined with feedback loops give rise to the robustness of

the cancer  cell.  Thus,  ‘de novo’ mutations  during chemotherapy,  in combination with feedback

controls, allow the cancer cell to be resistant to treatment (Kitano 2004). 

This is a problem from a pharmaceutical point of view, since a designed drug will be labeled

as useless when it fails to stop the disease progression. Traditionally, the pharmacological approach

to treat a disease has been a reductionist one, i.e. “one disease - one target - one drug”. In recent

years, this has caused two major problems in the pharmaceutical field: 1) “me-too” drugs, when

many companies  design  drugs  for  the  same  targets,  and  2)  poor  assignment  of  medication  to

phenotypes due to multi-target properties (Barratt  and Frail  2012). The combination of systems

biology with drug discovery, known as network pharmacology, is starting to change the approach

of “one disease - one target - one drug” (Brown and Yasushi 2012). The generation of diseasome

networks  does  not  aim exclusively  to  determine  the  role  of  the  gene  or  protein.  We  can  add

information such as the mutations that cause a given disease or confer susceptibility to a drug, in

order to determine the role of individual players in the crosstalk context. A recent study showed that

by using the pathway crosstalk data and available approved drugs it is possible to combine certain

drugs targeting a particular signaling pathway in order to reduce the dose, while still being effective

against cancer. As a consequence, this strategy has helped to develop an effective treatment less

harmful to the patient (Jaeger, and Aloy 2012; Jaeger et al. 2015). 

Progress made with these different approaches has improved the rational design of drugs.

Most of the designed drugs aim to block the binding sites of a protein. If the expected target of a

drug  is  an  enzyme,  a  first  approach  is  to  block  the  catalytic  binding  site,  as  in  the  case  of

neuraminidase inhibitors (Russell  et  al.  2006;  Vavricka et  al.  2011).  An alternative approach to

target  protein activity is  by interfering protein interaction binding sites,  therefore stabilizing or

disrupting PPIs, like the transthyretin inhibitors (Gallego et al. 2016). In fact, some mutations are

lethal  by modifying or  interfering in  a protein binding site,  as in  the case of  the formation of

amyloid fibrils that precedes the Amielod Lateral Sclerosis or Alzheimer's disease. In these cases, a

mutation in the protein transthyretin destabilizes the formation of the normal multimer protein state,

causing the proteins to aggregate in the form of fibrils. In this way, the mechanistic detail of how

the protein is affected by drugs or mutations can only be given by the 3D structure of the protein
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and the complexes that it forms. Therefore, a high-quality image of the 3D structure of the proteins

and the complexes they can form is an essential requirement for the design of effective drugs, which

combined with the network approach, gives rise to new pharmacological strategies to treat disease

in humans. 

1.5 Determination of the three-dimensional protein structures 

Several diseases such as cancer or RASopaties (a group of diseases related to the malfunction of

Ras signaling pathway), display altered PPIs networks (Kiel and Serrano 2014). Current therapies

that only target a single protein are not efficient in restoring the phenotype to normal in intricate

signaling pathways. It would be needed to use a network-based therapeutic strategy to turn back the

appearance of a malignant attractor state in the signaling network (Vidal,  Cusick,  and Barabási

2011). The use of pathway analysis on the network of interest could help to force the regression to

the  normal  state.  Current  network  maps  give  information  on  the  relationships  of  genes  or

interactions  between  proteins.  However,  the  vast  majority  neglects  the  structural  information

provided  by repositories  like  the  Protein  Data  Bank (PDB) (Kiel,  Beltrao,  and  Serrano 2008).

Databases such as STRING (Mering  2003) and Interactome3D (Mosca, Céol, and Aloy 2013) give

information about the reliability of the interactions for a given protein, and if available, they provide

the 3D structure of the complexes it can form. This type of information is of paramount importance

for the rational design of drugs or repurposing studies. Unfortunately, there is a big problem when it

comes to the use of 3D structures for PPIs. While there are 3D structures for nearly 50% of the

proteins forming the human proteome (Müller, MacCallum, and Sternberg 2002), only 7% of the

complexes forming the known human interactome is structurally characterized (Mosca, Céol, and

Aloy  2013).  Cheap  and  massive  sequencing  technologies  have  provided  drafts  of  complete

genomes, and mass spectroscopy the identification of thousands of proteins. However, obtaining the

atomic  resolution  of  a  protein  is  a  slow  and  arduous  process.  Below  are  detailed  the  major

experimental and computational approaches to protein complex structures. 

1.5.1 X-ray Crystallography 

The most widely used and accurate approach for obtaining high-resolution protein structures is the

crystallography of proteins in combination with X-ray diffraction. A highly concentrated purified

protein is needed for crystallization. Exposure of the crystal to an x-ray beam provides a diffraction

spot  pattern  that  gives  information  about  “structures  factors”,  which  allows  building  a  map  of
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electron density. The mathematical process to convert the intensities of the diffraction spots to the

electron map is known as the phase resolution problem. The goal is to build a model of the protein

based on this map, in which the protein sequence is the input to produce a thermodynamically stable

structure (Smyth 2000). However, the process is very slow, requires a large amount of sample at a

high purity/quality, and often the protein has to be modified to achieve crystallization, with the risk

of modifying the natural folding of the protein. Obtaining a crystal is not a routine process, since the

conditions to find the formation of a crystal vary from sample to sample. Even after successfully

obtaining  a  crystal,  it  might  not  be  sufficiently  optimal  to  determine  the  structure  with  high

definition. Moreover, factors like the temperature and pH can affect the folding of the protein so

that different structures can be obtained  (Schiffer et al. 1989). In fact, there are cases where the

applicability of this  technique is extremely hard or unfeasible.  Membrane proteins,  low affinity

complexes  fall  in  this  categorization  since  obtaining  a  crystal  requires  the  stabilization  by the

membrane bilayer or a chemical scafold to maintain the proteins folded and in close contact altering

their natural conformation. Also, intrinsically disordered proteins, or very flexible loops present a

problem since  the  periodicity  required  in  for  solving  the  phase  problem can  not  be  achieved.

Aditionally,  the  use  of  crystal  as  the  representation  of  the  in  vivo conditions  or  the  biological

relevant conformation of the protein has been challenged and still under debate. (R. P. Bahadur and

Zacharias 2008; Ranjit Prasad Bahadur et al. 2004; Ofran and Rost 2003).

1.5.2 Nuclear Magnetic Resonance (NMR) 

Another widely used technique to elucidate the 3D structure of a protein is  Nuclear Magnetic

Resonance (NMR).  Since the 50’s NMR has evolved from the field of physics to the medical

application. NMR relies on the use of strong magnetic fields where the nuclei and electrons of the

atoms absorb the electromagnetic energy and reach a frequency of emission similar to the natural

isotopes (typically C13 and H1). However, this signal changes due the surrounding environment, thus

giving also information of the nearby atoms. The advantage of NMR over the crystallography is that

protein is in solution, a more natural environment that allows small movement of the proteins. It is

very useful for determining the motions of proteins, including those large portions that do not have

specific folding and are called intrinsically disordered. NMR experiments are time consuming and

expensive, since larger molecules need machines with higher and higher frequency magnets. Thus, a

major drawback of NMR is the size of the sample, since currently structures larger than 35 kDa

cannot be determined. Therefore, in comparision with X-ray crystallography, very few complete
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structures  of  PPIs  have  been  obtained  by  NMR,  being  especially  difficult  the  case  of  multi

complexes (Marion 2013; N. Shah et al. 2006) 

1.5.3 Cryogenic Electron Microscopy (Cryo-EM) 

This technique is based on Electron Microscopy (EM). Standard EM needs to coat the sample with

some special protector that usually contains metal particles like silver or gold, generating a layer

with valleys and mountains according to the shape of the sample. Then, a laser is applied to the

surface produced in the layer, creating the image in slices as it passes like in confocal microscopy.

However to enhance the image of minuscule samples, and to prevent degradation, and motion, the

sample is fixed on a plate at very low temperatures, which is the basis for Cryo-EM.  

Until recently Cryo-EM was regarded as a low-resolution technique because it presented a

barrier at 6 Å of resolution and only allowed the inference of huge structures. However, with the

recent  improvement  of  the  sensors,  and  high-level  algorithms  for  image  recognition,  the

reconstruction of the 3D structure up to 2 Å resolution is possible. (Dominika, and Hans 2015). 

1.5.4 Small angle X-ray scattering 

A recent  structure  determination  development  is  the  small  angle  X-ray  scattering  (SAXS).  In

contrast  to  crystallography,  in  SAXS the  sample  is  exposed to  an  X-ray beam of  a  particular

wavelength that is moved from 0 to 5 degrees to produce intensity distributions. The generated

profile contains structural information of the atoms in the protein that can be in three different

regions: the Guinier region that can be related to the average size of the group of atoms, the Fourier

regions that contain information about the shape of the atoms in the protein, and the Porod region

that provides information about the surface occupied in the volume by the atoms (Boldon, Laliberte,

and Liu 2015). The advantage of this method is that proteins can be studied in different media and

even  disordered.  Interestingly,  for  the  resolution  of  protein  complexes,  this  technique  can  be

coupled  with  other  computational  methods  such  as  molecular  dynamics  or  protein  docking

algorithms (Jiménez-García et al. 2015). 

1.5.5 Computational modeling 

Despite all the recent advances, the majority of protein complexes are yet to be resolved. Thus, an

option to fill the structural gap in the human interactome is the use of  computational modeling.

The first attempt would be to construct the 3D structure of a complex from the amino acid sequence
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based  on  the  available  structure  of  complexes  formed  by  similar  proteins,  using  ab  initio  or

homology-based modeling techniques similar to those used to model individual proteins. In this

sense,  the  CASP  experiment  (Critical  Assessment  of  Techniques  for  Protein  Structure

Prediction) (Kryshtafovych et al. 2013) aims to assess how accurate is the prediction of current

modeling programs in blind conditions. One approach is to make fully ab initio predictions from the

protein sequences, considering the physicochemical properties of the amino acid and the energy

terms that drive the folding. An alternative approach is to take advantage of the structures deposited

in the PDB, by comparing gene products  of  different  genes  but with similar  folding,  so-called

homology modeling.  Homology modeling  is  a  powerful  tool  to  determine  the  3D structure  of

proteins and complexes with a high degree of similarity. The most successful programs in CASP are

multithreading software able to use structures deposited in the PDB, sequence similarity, and a little

ab initio modeling. Winning strategies in the last editions of CASP are those of I-Tasser (Y. Zhang

2008) and QUARK (Y. Zhang 2014) which are programs that integrate fragment search in the PDB

with the identification of basic folds that can be used as templates,  and then fragments can be

assembled  into models of proteins. 

1.6 Expanding the protein-protein structural studies through the use of 
docking tools 

As above described, experimental determination of the structure of a PPI is highly challenging. Co-

crystallizing  two  proteins  is  much  more  challenging  than  finding  the  right  conditions  for  an

individual protein; NMR has a size limitation, which leaves out mesoscopic protein ensembles, and

Cryo-EM is  still  in  development.  As  a  consequence,  all  these  experimental  procedures  can  be

defined as low-throughput. These limitations create a gap between the number of new PPIs that are

being discovered with high throughput experiments, and the very few 3D complex structures that

are  being  determined.  Computational  approaches  aim  to  compensate  the  difficulties  in  the

determination of PPIs structures. However, predicting the 3D structure of the complex formed by

two  interacting  proteins  is  a  very  challenging  problem.  The  issue  is  similar  to  the  structural

prediction  in  individual  structures,  in  the  sense  that  both  cases  need  a  description  of  the

physicochemical  forces that  regulate the interactions between the amino acid residues.  Features

such amino acid complementarity,  electrostatics,  steric clashes, hydrophobic effect,  or hydrogen

bonding, are concepts shared between both problems. 
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Unlike the problem of protein folding where the degrees of freedom in which a protein

sequence  can fold  makes the  space of  search  extremely large,  in  complex structure prediction,

proteins are assumed to have 3D structure. This means that the search space is a six degree problem

(three  translations  and  three  rotations),  if  we  do  not  consider  internal  movements  (rigid-body

search). Computational tools such as  protein-protein docking try to predict  ab initio the correct

orientation of two proteins that interact. Two major technical aspects can be found in the majority of

docking  methods:  the  generation  of  a  large  variety  of  structural  models  (sampling)  and  the

identification of the correct docking poses with a proper function (scoring) (Huang, Sheng-You

2014). At the core of several docking protocols resides the idea of geometric complementarity in the

protein-protein interface. However, in recent years different mechanisms have been proposed for

protein-protein association: 

- The basic  mechanism,  called  “lock and key”,  was  directly inspired  in  complementarity,

where the unbound monomers have a matching symmetry that is energetically favorable for

the complex formation. This binding mechanism implies that both monomers are rigid, and

they fit into one another.  

- The  "induced  fit"  mechanism  involves  conformational  changes  after  binding  of  both

monomers, before achieving the energetically favorable formed complex (Kuser et al. 2008).

- The "conformational selection" mechanism assumes that bound states are naturally samples

in  the  individual  proteins  and  the  binding  partner  selects  those  conformations  that  are

energetically favorable for binding (Gianni et al. 2014). 

Protein-protein docking aims to predict the structure of a protein complex, inspired on the

association mechanisms above described. In a real case scenario, the only information available is

the 3D structure (or a reasonable model) of the unbound proteins. Current sampling strategies can

be classified in: exhaustive global search, local shape feature matching, and randomized search. 

Exhaustive global search over the protein aims to sample the entire possible space around a

protein using as a probe another protein. In a rigid-body assumption, one needs to account for the

translation on three axes, and the rotation on three axes, being a six degree of freedom problem.

Exhaustive search can be achieved by using a grid to convert the surface of a protein into a coarse

description. Then, Fast Fourier Transform (FFT) calculations (Katchalski-Katzir et al. 1992) can be
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used to reduce the computational cost by simplifying the translational and rotational search of the

molecules. To completely search the 3D space of both proteins, one of the proteins (by convention

the biggest one) is fixed and becomes the static molecule, while the other one moves in the 3D

space  through  the  FFT-based  algorithm.  The  grid  representation  of  the  molecules  allows  to

distinguish between the inside, the surface, and the outside of each protein. The next step is to

obtain a correlation score for all the relative translations between the two grids. This correlation

score can be calculated on the molecular shape complementarity of the grids, by taking only into

account  the  overlapping  between  surfaces  as  defined  in  the  protein  grids.  After  speeding  the

correlation calculation by FFT algorithms, a scoring function is applied and, this process repeats for

each of the rotations of the mobile protein. This performs an exhaustive search of the 3D space of

the interacting molecules. This method is by far the most popular one and has given rise to different

programs where the differences are the description of the molecules on the grid. Some of these

programs are FTDock (Gabb, Jackson, and Sternberg 1997), ZDOCK (Chen et al. 2003), SDOCK

(Zhang and Lai 2011), PIPER (Kozakov et al. 2006), MolFit (Redington 1992). A drawback of this

type of approach is that it consider both proteins as rigid bodies, therefore, while it is suitable for an

initial  docking approach,  it  does  not  take  into  account  the  flexibility of  both  proteins.  In  fact,

flexibility is one of the major current challenges for all docking algorithms. 

Another approach is the local shape feature matching, with problem still remaining withing

six degrees of freedom. In this type of approach the molecular surface of both unbound proteins is

calculated, which helps to identify binding regions. A segmentation algorithm is used to identify

geometric  features,  such  as  convex,  concave,  and  flat  zones.  Then,  the  molecular  shape  is

represented by a graph in which each node is a representation for a surface region of the protein.

The next step is to identify matching surfaces, which is called geometric hashing. Programs like

Patchdock (Schneidman-Duhovny et al. 2005), DOCK (Kuntz et al.  1982), or LZerD (Esquivel-

Rodriguez et  al.  2014)  use this  type  of  sampling to  produce  tens  of  thousands poses  in  a  fast

manner. One of the particular problems of this approach is that the generated docking poses often

include many atomic clashes, so additional steps of steric checking, clustering of solutions to avoid

redundancy, or refinement are needed. 

The third approach in sampling is  random search.  In this  case,  it  is important to define

several starting points and then drive the sampling towards the optimal positions. Some methods
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such as ICM disco (Fernandez-Recio, Totrov, and Abagyan 2003), RossetaDock  and HADDOCK

(Dominguez, Boelens, and Bonvin 2003) use random search as part of their docking strategy. Some

algorithms based on random search are inspired by the swarms observed in the birds or insects. The

best  example  of  this  algorithm  applied  to  protein-protein  docking  is  the  Particle  Swarm

Optimization  (PSO)  (Clerc  2006).  For  exploring  the  energetic  landscape,  the  best  energetic

complexes are selected, and they are subsequently used as new seeds, with the process iterating

until there are no new seeds. During the funnel-like search, the process only keeps the energetically

favorable conformations and drive the docking proteins to the optimal matching pose. This type of

algorithms can consider  the flexibility of the proteins in the final refinement  phase,  during the

minimization, or through normal mode representation of the search vectors. These algorithms are

very  successful  to  find  near-native  solutions,  but  computationally  expensive.  One  successful

example is the program Swarmdock (Moal and Bates 2010). 

1.6.1 Scoring of docking poses 

Many current protein-protein docking protocols are successful if the interacting proteins undergo

only small  conformational  changes  upon binding. Even in these conditions,  docking algorithms

generate a large number of incorrect docking poses, so the aim is to place the near-native solutions

as close to the top as possible within a ranked list.. An important part of the success depends on the

accuracy of the scoring function used to evaluate the docked conformations, which in turns depends

on its capabilities to overcome the inaccuracies of the interacting surfaces and singling out near-

native conformations (Halperin et al. 2002; Vajda and Kozakov 2009). Generally speaking, scoring

aims to identify the lowest-energy state among the different possible states of a given interaction,

and thus,  in the case of docking,  it  should be ideally able  to  describe the energetic  aspects  of

protein-protein association (Moal and Fernández-Recio 2012). For practical predictions, the energy

description  of  a  system is  estimated  by approximate  functions,  and  a  large  variety  of  scoring

functions have been used, defined at different resolution levels (atomic or residue) (Tobi and Bahar

2006).  Docking  algorithms  often  rely  on  the  geometric  complementarity  of  protein-protein

interfaces.  The essential zones for binding are often preformed in the interacting proteins (Levi

2010), and as a consequence the interface of a protein complex could be considered an inherent

geometric feature of the protein structures. This has made shape complementarity a popular ranking

criterion  to  identify  near-native  solutions.  Still,  many  protein-protein  interfaces  are  flat,  so

complementarity alone is not enough to describe the right association mode. This is one of the
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reasons why a sampling step based only on geometry criteria often fails to produce correct models.

Indeed, the physicochemical nature of the residues has a major role in protein association. Important

elements include the electrostatic forces with complementary charges helping to provide the micro

environment needed for the interface formation and the correct orientation of the proteins, and the

hydrophobic  effect  with  the  burial  of  hydrophobic  patches  favoring  the  desolvation  of  the

interacting surfaces (Camacho and Vajda 2001, Camacho et al. 1999). Other factors are van der

Waals attraction and repulsion, and hydrogen bonding. However, scoring functions that use energy-

based  terms  to  model  these  effects  are  not  yet  accurate  enough  to  reliably  select  near-native

solutions from a pool of decoys, and thus further investigation is required to improve the quality of

docking predictions. 

Usually sampling and scoring are intimately coupled in a docking procedure. However, in

many procedures, scoring is performed independently as a post-docking analysis. Basically, this

approach consist in using a scoring function to re-rank the poses generated by a given docking

program. This strategy could be considered as a type of refinement of the docking results, but using

more sophisticated scoring functions than those used during the search phase. The idea behind post-

docking approaches comes from the reasonable success of sampling algorithms to produce at least

one near-native solution, also called a hit. In many cases, the in-built scoring function during the

docking phase cannot  be sensitive enough to place the near-native solution within the top of a

ranked list of possible conformations. The computational problem is simplified by detaching the

scoring functions from the sampling process, which also adds the possibility of combining different

scoring  functions.  Some examples  of  post-docking methods are  pyDock  (Cheng,  Blundell,  and

Fernandez-Recio 2007), ZRANK (Pierce, Brian, and Zhiping 2007), SIPPER (Pons et al. 2011),

DARS (Chuang et al. 2008). Given that docking programs typically report decoys ranked with only

one or two scoring functions, it remains to be seen whether a given method could further benefit

from the accumulated knowledge derived from the variety of currently available scoring functions

that have been reported in the literature, many of which were developed for different modeling

problems (Tobi 2010). One example of this is the combination PIE/PIER (Viswanath, Ravikant, and

Elber 2012). In some methods, the scoring functions are also combined with the inclusion of protein

flexibility,  like  in  Fiberdock  (Mashiach,  Nussinov,  and  Wolfson  2010),  Firedock  (Andrusier,

Nussinov, and Wolfson 2007), or RDOCK (Li, Rong, and Zhiping 2003). 
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Among  the  different  scoring  functions  applied  as  post-docking  analysis,  we  note  the

program pyDock  (Cheng,  Blundell,  and  Fernandez-Recio  2007),  which  is  an  outstanding  and

consistent protein-protein protocol using the FTDock or ZDOCK sampling combined with a scoring

function.  The  pyDock  scoring  function  is  formed  by  three  energy-based  terms:  Coulombic

electrostatics, desolvation energy and van der Waals potential. A protein is a charged entity and its

surface has to be in constant contact with solvent molecules, so considering the electrostatic charges

of the proteins is the basis of the majority of the scoring functions. But electrostatics alone is not

enough to place the two interacting proteins in the optimal position, so there is a need for additional

terms to help to improve the algorithm. Since many of the binding surfaces are flat, and the critical

contact residues at the interface are often hydrophobic, desolvation plays a major role in creating

the micro-environment necessary to allow the formation of a strong interaction between proteins.

On the other side, the van der Waals energy is usually important for the final assembly of two given

proteins, and it is very dependent on the correct side-chain conformations. When docking is rigid-

body, this potential is very noisy. The use of all the above mentioned energy descriptors makes

pyDock a very versatile, non-deterministic, and adaptable docking method as I will show in this

thesis. 

Analogous to CASP, protein-protein docking programs are blindly assessed in the Critical

Assessment of PRedicted Interactions (CAPRI)  (Janin et  al.  2003),  which is  an international

scientific effort to boost the development of different approaches to solve the problem of protein-

protein docking. After more than fifteen years since the first edition, the CAPRI experiment is now

the source of standard protein-protein docking sets and quality measurements. 

1.6.2 Template-based docking 

In addition to ab initio docking, the interface between two interacting proteins could be modeled

using  the  existing  structural  data  in  the  PDB (Sinha,  Kundrotas,  and  Vakser  2012).  Figure  2

provides a comparison with ab initio docking. As seen in modeling of individual proteins, some

evolutionary  distant  PPIs  converged  in  a  structural  conformation  which  is  optimal  for  the

recognition. This type of PPIs receives the name of interologs (Matthews 2001). The identification

of interlogs facilitates the study of PPIs. The conservation of the structural conformation of the

interface through evolution has also demonstrated a plasticity to changes, where only a 66% of the

interface  patch  is  conserved  leaving  a  34% of  the  patch  tolerable  to  residue  changes  (Faure,
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Andreani, and Guerois 2012). However, the interface is also a dynamic part of the protein that can

change during binding (Hamp, Tobias, and Burkhard 2012). In fact, the inclusion of evolutionary

data in the context of interface predictions seem to give additional confidence in the prediction

(Hamp, Tobias, and Burkhard 2015; Katsonis and Lichtarge 2014). 

It has recently claimed that there could be available templates for most of the known protein

complexes (Kundrotas et al. 2012). However, in the case of remote homology, i.e. the twilight zone,

the available templates do not provide better modeling than ab initio docking (Negroni, Mosca, and

Aloy 2014). 

1.7 Interface and hot-spot prediction 

The use of new approaches continues to enable the study of protein interactions from different

perspectives. The protein-protein interface is a critical zone for molecular recognition, formed by an

average of ~28 residues, accounting for around 1000 A2 of the area in one protein, and mostly
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flat(Levy 2010). Based on  the  relative  Accessible  Surface  Area  (rASA) of  the  residues  in  the

interface, three different zones could be defined (Levy 2010): 

1) The core, formed by residues that are exposed in the monomers and form the necessary

contacts for the interaction, contributing the most to the binding energy. 

2)  The  rim,  which  shields  the  core  from the  solvent  providing  the  micro-environment

required for establishing the interaction. 

3) The support, formed by residues that shift from buried to exposed when the complex is

formed, helping to establish the interaction. 

Usually, in the protein-protein interfaces, there are only  a few residues that contribute the

most to the binding energy, and are called interaction hot-spots. Alanine scanning (Morrison and

Weiss 2001) can be used to experimentally describe the contribution of the different residues to the

interaction.  The  technique  consists  in  performing  point  mutations  in  the  protein  sequence  for

alanine, so that the chemical neutral nature and size of the alanine allows to mimic the removal of a

given residue without perturbing too much the secondary structure.  Experimental analyses of hot-

spots have found that the core residues tend to contribute the most to the binding energy. 

Experimental alanine scanning is time consuming and costly. Computational approaches aim

to complement experimental data. Several interface prediction methods have been reported, based

on  sequence  conservation  (Valencia  and  Florencio  2005;   Minhas  et  al.  2013),  or  on

physicochemical  properties  of  the  residues  (Dong et  al.  2007;  Grosdidier  and Fernández-Recio

2008; Hwang, Vreven, and Weng 2014). This type of methods can be applied for its simplicity in a

high-throughput manner to analyze complete interactomes and obtain fast, relevant information for

a full set of PPIs. 

Interface residues seem to play different roles in disease according to the region they belong.

In a  recent  study found that  the core  interface residues  are  more  susceptible  to  disease-related

mutations, in contrast to those in the rim regions, which is consistent with the existence of hot-spot

residues at the interface of PPIs (David and Sternberg 2015). Complementary work showed that

about 11% of all known disease-associated SNPs also land outside but near to the interface (Gao et

al. 2015). Both studies found that the residues that are more vulnerable to disease-related mutations
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are residues buried in the interface; although they seem to differ about the preferred localization of

these mutations.

1.8 Protein-protein benchmark sets 

In order to assess the predictive accuracy of a newly developed method, it would be necessary to

have a reference set widely accepted by the community. In the case of the protein-protein docking

field, the reference set needs to have the crystal structure of the proteins in a free state and that of

the complexed or bound state. These structures must have a high resolution, and good coverage of

the proteins. In addition, the protein set should to be diverse enough, so that it can represent as

many as  the  known protein  families  as  possible.  The current  version  of  the  most  widely used

protein-protein docking benchmark has 231 protein complexes (Vreven et al. 2015). Each of those

complexes  has  the  crystal  structure  of  the proteins  in  unbound form and the bound form.  The

protein docking benchmark is divided into subcategories according to the difficulty, based on the

conformational changes that the proteins undergo from unbound to bound states. The most difficult

category corresponds to the cases that are the most difficult to predict with current protein docking

algorithms, mostly due to the large conformational changes of the proteins. 

Other benchmarks have been reported to assess different methods for PPI modeling, like

binding affinity changes upon mutation (Moal and Fernández-Recio 2012), scorer sets from CAPRI

(Lensink and Wodak 2014), or binding affinity data sets (Kastritis et al.  2011). There are other

useful  databases  such  as  template  libraries  (DOCKGROUND;  Liu,  Gao,  and  Vakser  2008),

structural  datasets  with  similarity  between  sequences  (3D-Complex;  Levy  et  al.  2006),  or

classification of the domain-domain interaction on protein complexes like SCOPPI (Winter et al.

2006). 

1.9 Extracting meaningful information from the biological Big Data 

As stated in the previous sections, the dramatic drop in costs of genome sequencing is generating an

unprecedented amount of genetic data on biological and pathological situations, which together with

the complexity of the genotype-to-phenotype information conversion derived from concepts that

were discussed in previous sections, such as interaction networks, pathway crosstalk, etc., makes

that the idea of “Big Data” is more and more linked with the biological sciences. In these moments,

new genome sequencing technologies provide large datasets, which are especially relevant to the
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field of healthcare, such as The Encyclopedia of DNA Elements (ENCODE) (Project, Leja, and

Birney 2012), or The Cancer Genome Atlas (TCGA) (Project, Leja, and Birney 2012; Zenklusen

2014).  The problem of analyzing Big Data in biology has fostered many different international

programs, which aim to order, annotate and compare the available data to gain knowledge from it

(Marx 2013). Now in biological sciences, there is a large and increasing number of observations

generated on different phenomena, which needs the implementation of algorithms borrowed from

computational sciences. On the other hand, the study of biological problems often depends on a

significant  number  of  variables  at  different  levels  of  resolution  and  typology,  like  the  genetic

background, temperature, humidity, cell type, metabolite concentration, transcription rates and so

on. Nonetheless, the biological data contains an enormous amount of repetitive patterns, from the

regulatory elements that precede a gene, to the folding topologies of proteins, which can help to

perform statistical analysis.  

Traditional statistical approaches could not be sufficiently accurate when analyzing the data

that is characterized by a big number of variables. To deal with this type of problem, computer

algorithms are training on a sufficiently large number of examples of these different patterns that are

found in the experimental observations, as well as on artificial data that are created to mimic the

observed patterns (Hughey, Hastie, and Butte 2016). 

Borrowed from the computer science field,  data mining techniques have been used in a

variety of scientific and social areas, ranging from economy to biology. The reason for a biologist to

use data mining schemes is the power of prediction that can be gained by using large datasets as

well as the capabilities to identify the relevant features. Data mining and statistics go hand in hand

with the need of a well-characterized source of examples for the extraction of the essential features.

Data mining applications, usually based on machine learning protocols, can accomplish the analysis

of multivariate data and are very efficient in classifying data with many patterns. In most of the

computational protocols and techniques it  is  mandatory to obtain fast,  reproducible results.  The

quality  of  results  are  highly dependent  on  characteristics  of  the  dataset  like  which  features  to

consider, number of missing observations, or balance between the different classes of examples.

With  a  properly  classified  and  ordered  dataset,  the  resulted  trained  model  can  easily  find

information  and  relationships  that  are  not  evident  in  a  simple  initial  analysis.  Data  mining

application rely on four different styles of learning: 
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1) Classification learning. This style depends on a properly detailed set of examples

from which  it  is  expected  to  learn  the  patterns  that  will  help  to  classify unseen

examples. 

2) Association learning. In this case, the learning scheme seeks for any association

among features,  i.e.  not just those that can help to classify the unseen examples,

which involves dealing with the problem of summarizing a given set of data. 

3) Clustering. Here the scheme seeks for groups of examples that can be classified

together.  

4) Numeric prediction. In this style the prediction is not a class of the problem but

rather a number. 

Many  biological  problems  are  classification  problems,  and  this  is  the  reason  why  the

classification  learning  is  the  most  used  style  in  the  bioinformatics  field  (Wang  2014).  The

classification  learning  is  called  supervised  because  it  functions  based  on  the  class  examples

provided, in other words, the way it works is using the examples and the given outcomes to create a

model for the predictions, which means that it depends on the size and reliability of the observations

used in order to produce a high-quality prediction (Figure 3). In some data sets no class values are

given, in which case the classification learning is called unsupervised. This category deals with

finding new patterns assuming the existence of an underlying structure of the dataset. Since there

are no class labels, this category strongly depends on on clustering techniques. In both cases, the

selection of features in one of the most important steps in machine learning, given that it helps to

build the classifier, or the rules to find the new patterns or information. Therefore, in this kind of

approaches  the  feature  selection  step  becomes  crucial,  since  there  is  a  risk  to  produce  over

complicated classifiers that will only work for the set used to train the algorithm. 
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1.9.1 Examples of different classifier types 

The simplest classifier for numeric features is the linear regression. Any kind of regressions can be

applied to classification. This approach is better suited to situations when the class types are binary,

e.g. correct and incorrect, 0 and 1, belonging or not, etc.  These classifiers search for a weighting

factor that will fit the values of the features using a linear function. This function will approximate

the “membership” of each feature to the class with a given probability. However, by using a linear

function the classifier will assume that the errors are independent and normally distributed with the

same standard deviation, and therefore the sum of the estimated probability will become unreal

(over 1). This can be avoided by using a logistic transformation that will adjust the probabilities for

each target value. Then, weighting factors must be found that fit well the training data.  
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Figure 3: A general machine learning scheme.

The starting point of almost all machine learning protocols is establish a training set to use as examples

for the algorithms. After training the researcher can built several modes according to the quality of the

data extracted. An external set of unsorted data or test set is used to evaluate the predicted performance of

the models. After the test set the result is usually the classification of the test set in an ranked list. 
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Most of the research in the biological field deals with multiclass problems, so other machine

learning algorithms that can be applied to multiple classes are needed. A popular method to address

multiclass problems is the Support Vector Machine (SVM) (Cortes and Vapnik 1995; Joachims et al.

2009). In this approach, the classification is made with a hyperplane that optimally separates the

data. The weights assigned to each feature represent an orthogonal vector forming the hyperplane

that separates the different classes. One advantage of the SVM algorithm is that the absolute size of

the orthogonal vectors gives an indication of how important each feature was for the separation.

Another  popular  algorithm is  random forests  (RF) (Breiman 2001),  which builds a randomized

decision tree using a sampling methodology that generates new training sets from the original. This

process is called bagging, in which different features of the initial training set are randomly deleted

or  replicated to  create  new sets  with the same sizes.  Bagging generates  a  diverse ensemble of

classifiers  by  introducing  randomness  into  the  learning  algorithm’s  input,  often  with  excellent

results. 

1.9.2 Feature selection 

Trying to optimize all the weights for the full set of features can be computationally expensive. As

previously discussed, one of the objectives of the feature selection (FS) is to avoid the overfitting of

the classifier, especially in supervised learning. There are other benefits of FS. For example, the

optimal parameters for a subset of features might not be the same than those for the full feature set

(Daelemans et al. 2003). Then, by studying the most important features, we gain understanding on

the underlying process that generated that data. FS also lowers the computational cost by selecting

the most important features. Note that not all machine learning algorithms have an embedded way

to do FS. For instance, filter techniques or wrapper methods can be applied to evaluate features and

present  a  selection as input to build the classifier.  Filter  techniques assess the relevance of the

features according to the properties of the data, but it does not take into account the dependencies

between features. Ignoring these dependencies may lead to bad classification performance. In the

case of wrapper methods, a different subset of features is used to generate and evaluate different

models. In this way the interaction between features is included in the FS, but this increases the

possibility of having an overfitted model. 
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1.9.3 Applications of machine learning in biological sciences 

The machine learning protocols have already been applied to a large variety of problems in the

biological fields. One of the first applications was to predict the probability of different mutations

found in a sequenced genome to cause a disease phenotype (Adzhubei et al. 2010). The protocol

consisted  in  training  a  SVM  algorithm,  with  various  features  like  B-factors,  changes  in  the

accessible surface area, and changes in the residue side-chain volume, among others. In this way,

the program could identify potentially harmful SNPs in a gene sequence. Other early example is the

prediction of a gene splice site (Degroeve et al. 2002), where feature relevance was measured with

the use of an SVM, helping to discriminate this structural element recognition from the sequence. In

high-throughput experimental data like microarrays, the most informative subset of genes can be

isolated using RF algorithms (Moorthy and Mohamad 2011; Díaz-Uriarte and Alvarez de Andrés

2006). 

In systems biology,  the topology generated by the interaction elements can also become

source material for predictions from computer trained programs. Since protein connections change

over time or under different conditions, it is possible to couple expression information, like the one

provided by RNA-seq experiments,  and a  Boolean genetic  model in order to  search for highly

connected elements (Crespo et al. 2013). 

Trained  classifiers  and  computer  trained  programs  from  different  types  of  sources  are

regularly used in modeling protein-ligand and protein-small molecule interactions, especially for

finding the more useful features to detect a suitable binding drug (Myint et al. 2012). 

Machine  learning  protocols  can  be  easily  applied  to  protein-protein  docking.  Using the

standard benchmarks and quality measures widely accepted by the docking community, like those

in CAPRI, the programs generate thousands of different poses that include only a handful correct

poses. Using a good ranking of these poses generates enough input to train an SVM model to find

binding sites for PPIs (Hwang, Vreven, and Weng 2014; Minhas et al. 2013). Another method that

combines machine learning and protein docking has been applied to build a predictor for damaging

nsSNPs that disrupt the interface of a complex (Goodacre et al. 2016).
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“A wise man can learn more from a foolish question

 than a fool can learn from a wise answer.”

– Bruce Lee
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Chapter 2 Objectives 
The  general  goal  of  this  thesis  is  the  application  of  docking  scoring  methodologies  to  the

characterization  of  missense  mutations  in  proteins  that  could  be  relevant  for  understanding

pathologies in a network-based context. The first part is focused on the analysis of a large number

of  scoring  functions  and  their  performance  on  different  docking  methods.  In  the  second  part,

docking-based  methodologies  are  applied  to  predict  the  involvement  of  missense  mutations  in

protein-protein interactions, and how this can be used to characterize such mutations when there is

neither structural information nor knowledge of which complexes are affected. 

The specific objectives of this thesis are:

1) Analysis and optimization of current scoring functions for protein docking, and the effect of

protein flexibility and binding affinity on the predictions.  

2) Optimization of the scoring of docking poses for the identification of interface and hot-spot

residues, and its application to characterize missense mutations. 

3) Characterization of  missense mutations  by interface  and hot-spot  predictions  in  selected

disease-related interaction networks  for  which little  structural  data  on the interactions  is

available. 

4) Large-scale  annotation  of  missense  mutations  and  their  involvement  in  protein-protein

interactions based on computational docking and scoring calculations . 
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“The harder you work, the harder it is to surrender.”

- Vince Lombardi
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Chapter 3 Methods

3.1 Protein-protein docking 

In the present work,  we have used several well-known and freely available rigid-body protein-

protein  docking  programs,  which  we  ran  with  the  specifications  described  below  (default

parameters otherwise). We ran FTDock 2.0 (Gabb, Jackson, and Sternberg 1997) with electrostatics

on, grid cell size of 0.7 Å, and surface thickness of 1.3 Å, with a total of 10,000 docking poses

generated for each case. We reconstructed of missing side chains of interacting proteins with scwrl

3.0 (Canutescu, Shelenkov, and Dunbrack 2003). ZDOCK 3.0.1 (Pierce, Hourai, and Weng 2011)

was used to generate 54,000 docking poses, from which we kept only the highest-scoring 10,000

ones for further analysis. We ran SDOCK (Zhang and Lai 2011) as recommended by their authors,

and we conserved 1,000 clustered docking models for further analysis.  

3.2 Protein-protein docking benchmark sets 

We  have  computed  the  predictive  success  rates  of  the  different  scoring  functions  and  their

combinations on the freely available protein-protein docking benchmark from Weng's laboratory,

for  which  the  structures  of  the  unbound monomers  and the  bound complex are  available.  The

docking benchmark version 4.0 (BM 4.0) contains a total of 176 targets (Hwang et al. 2010) while

the docking benchmark update version 5.0 (BM 5.0) includes 55 additional targets  (Vreven et al.

2015).

For additional validation,  we also used a recently published scorers-set  benchmark. This

benchmark contains 15 published targets from 23 CAPRI assessments. The scorers-set benchmark

(Lensink and Wodak 2014) contains more than 19,000 protein complex models generated by 43

different  predictors  groups,  including  web  servers.  Only  10% of  them are  docking  models  of

acceptable quality or better with  a range of 281 to 2182 decoys per case; being the number of

acceptable quality decoys 835, medium quality decoys 784, and high-quality decoys 479.
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3.3 Evaluation of docking predictions

In order to evaluate the predictive success rate of each docking method on the BM 4.0 and BM 5.0,

CAPRI quality measurements were calculated for each of the generated structures, based on the

fraction of native contacts (fnat), interface RMSD (IRMSD) and ligand RMSD (LRMSD) as defined

by CAPRI (Lensink,  Méndez,  and Wodak 2007) with  respect  to  the  known reference  complex

structures.  According to  CAPRI criteria,  the  quality of  the  structures  are  classified  as  follows:

incorrect [ fnat < 0.1 or (LRMSD > 10 Å and IRMSD > 4 Å) ], acceptable [ [(0.1 ≤ fnat < 0.3) and

(LRMSD ≤ 10 Å or IRMSD ≤ 4 Å)] or [(fnat ≥ 0.3) and  (LRMSD > 5 Å or IRMSD > 2 Å)] ],

medium [ [(0.3 ≤ fnat < 0.5) and ( LRMSD ≤ 5.0 Å or IRMSD ≤ 2 Å)] or [fnat ≥ 0.5 and (LRMSD  >

1.0 Å and IRMSD > 1.0 Å)] ], or high accuracy [ fnat ≥ 0.5 and (LRMSD ≤ 1 Å or IRMSD ≤ 1 Å) ].

This classification was already provided by CAPRI organizers for the models in the CAPRI score

set benchmark. Success rates are defined as the percentage of cases in which an acceptable solution

(following CAPRI criteria) is found with the top N docking models as ranked by a given scoring

function.

3.4 Protein-protein scoring functions

We selected 73 scoring functions from the CCharPPI server  (Iain H. Moal, Jiménez-García, and

Fernández-Recio  2015),  as  shown  in  Supplementary  Table  1. These  functions  were  already

described in a previous study (I. Moal et al. 2013). We did not use all the scoring functions provided

in the CCharPPI server due to technical limitations of the computing platform employed to perform

the calculations. For clarity purposes, the majority of contact and distance-dependent residue-level

potentials  were  originally  prefixed  with  ‘CP_’,  while  atomic  and  quasi-atomic  potentials  were

prefixed with ‘AP_’.  

3.5 Cardinality analysis and combination of the normalized values for re-
ranking

For all  scoring functions we calculated the set  of complexes for which an acceptable or better

solution appears in the top 10 decoys when ranked by that function. Then, for each pair of scoring

functions (A, B), \we calculated the size of their union (eq. 1) and symmetric difference (eq. 2) sets:
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|A∪B| = |A|+|B|−|A∩B| eq(1)

|AΔB|=|( A B∖ )∪(B A∖ )| eq(2)

These measures, which combine two scoring functions, give an indication of the extent to

which the scoring functions are successful on different subsets of the complexes. We also explored a

strategy in which scoring functions are combined not just on the basis of their ability to find top 10

solutions  in  different  subsets  of  the  complexes,  but  also  on  different  subsets  of  the  decoys  as

deliniated by the docking algorithm that was used to generate them. To do this, we combine three

pairs of scoring functions, where each pair was evaluated and selected on basis of its performance

on the decoys generated by each of the three docking methods. We calculated the union cardinalities

for the unified pair of scoring functions between the three docking methods, forming triplets of

scoring function containing one unified pair from FTDock, one unified pair from ZDOCK, and one

unified pair from SDOCK, this way combining up to six different scoring functions together. Here A

represents a unified pair of scoring functions that performs well in FTDock, B a unified pair of

scoring functions that performs well  in ZDOCK and C a unified pair  of scoring functions that

performs well in SDOCK

A∪B∪C=|A|+|B|+|C|−|A∩B|−|A∩C|−|B∩C|+|A∩B∩C| eq(3)

where A represents a unified pair of scoring functions that performs well in FTDock, B a

unified pair of scoring functions that performs well in ZDOCK, and C a unified pair of scoring

functions that performs well in SDOCK. 

To calculate the success rates of these combined functions, we proceeded as follows. First,

we combined different energy terms from pairs or triplets of scoring functions, selected using the

above measures. To do this, we first normalized each value using the z-score method (eq. 4):

Zi= x−μ
σ

eq(4)

where x is the value, µ the average and σ is the standard deviation. The normalized values of

the scoring function pairs for a given pose are directly added and used to re-rank the list of the poses

generated by each method. For combining triplets of scoring functions, we similarly sum the three
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z-scores. Note that this is a naive ranking and no weight optimization was undertaken.

3.6 Decoy sets for machine learning

We calculated  the  scoring  functions  again  in  an  identical  manner  to  the  CCharPPI  server.  We

imputed  the  corresponding  missing  values  as  the  mean  within  the  docking  method.  We  also

included cluster sizes as descriptors, calculated with the g_cluster tool in GROMACS (Pronk et al.

2013),using single-linkage clustering of ligand Cα positions after superposition on the receptor,

with cutoffs at 0.5Å intervals in the 3 to 7Å range. We used a final set of 91 features in total, during

the process we normalized the values of these features as z-scores.

For comparative reasons, we considered only the top 500 structures from pyDock, SDOCK,

and  ZDOCK.  pyDock  is  our  docking  protocol  that  uses  the  FTDock  decoys  with  comparable

performance  to  ZDOCK  and  SDOCK.  Poses  were  classified  as  incorrect,  acceptable,  medium

quality, or high quality, using the CAPRI criteria mentioned before. The following table resumes the

number of complexes at least a near-native solution, and a complete descriptor set calculated, for

both benchmark sets. 

Table 1: Number of hits produced by each of the FFT-based docking method

Method BM 4.0 BM 5.0

pyDock 103 33

SDOCK 109 32

ZDOCK 114 25

3.7 Model training, selection, and validation 

We used the BM 4.0 for training the machine learning program, and it was randomly split into a

training set and selection set with a 2:1 ratio. We trained an ensemble support vector machines

(Joachims  2006) (R-SVM),  with  linear  kernel  function,  and  the  c  metaparameter  sampled

logarithmically 50 times in the 10-4 to 103 range. The R-SVMs were trained to minimize the fraction

of swapped pairs regarding a perfect ranking (see Figure. 4), which is analogous to the area under

ROC curve  for  binominal  classification,  using  the  n-slack  algorithm with  shrinking  heuristics

described  by Joachims  (Joachims  2005),  through  the  SVMrank  program  (Joachims  2006).  We
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repeated the process until we generated an ensemble of 200 R-SVMs for each c value. We applied

all  R-SVM to  their  respective  selection set  and scored (see below).  In  total,  the top  scoring  n

models, up to n=50, were selected for combination using the Schulze method (see below) when

applied to  the external  test  set.  The  results  in  figure  12 and 13 and Supplementary Table 2

correspond to c and n metaparameter values found by leave-one-out cross-validation. The method is

both insensitive to small changes and robust across a wide range of c and n values. 

We used the BM 5.0 as the external set to evaluate the performance of our method. This set

was no included in the train set and only evaluated with the Schulze method. When using the BM

4.0 as the validation set, the whole data set is split into training, selection and test set in a 2:1:1

ratio. For each complex in the BM 4.0, the consensus Schulze ranking is applied only using R-

SVMs for which that complex does not appear in either the training or the model selection set. 

3.8 Scoring R-SVM models 

The total score S evaluated each R-SVM model, the sum of individual scores for each of the n t

complexes in the selection set, si, compared to the mean score for that complex across the R-SVM

ensemble, si: 

 ∑
j=1

n t

si−si eq(5)

By taking the score relative to the mean, the total score reduces biases in the selection set by

preferentially favoring R-SVM models which perform well on difficult complexes, those which the

other models struggle to perform well  on, and disfavors models which perform poorly on easy

complex, those which the other models do perform well on. 

For calculating the individual scores of a complex, the decoys are first clustered at 3.5Å (see

above). The rank of the top best decoy list the nc clusters. The overall rank for the complex, r, is the

rank of the top listed cluster for which the top-ranked decoy have at least an acceptable quality.

Calculation of the scores is as follows: 

si=
log10 (nc)−log10(r )

log10(nc)
eq(6)

This score can range from 0, if  only the last  cluster has a top ranked decoy that is not
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incorrect, to 1, where the top-ranked decoy of the top ranked cluster is at least acceptable. If no

acceptable or better solutions appear as top-ranked decoys within any cluster, si is set to zero. The

logarithmic form gives greater importance to higher ranks heighten the difference in  si between

ranks.

3.9 Applying the method with Schulze ranking 

We calculated the physicochemical features for each decoy, to implement the model to the external

test sets or new docking cases. The decoys are ranked using each of the n selected models in the R-
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Figure 4: Scheme of the machine learning protocol and democratic ranking. 

An  overview  of  the  algorithm.  1:  The  training  decoys  are  characterized  using  physicochemical

descriptors, which are organized into a matrix. 2: R-SVMs are calculated with random 2:1 model training

and model selection split. Each R-SVM generates a weight vector (w) in descriptor subspace such that

decoys  for  each  complex  (ellipses),  when projected  upon it,  are ordered  to  minimize the number  of

swapped pairs relative to a perfect ranking: high quality (red) > medium quality (orange) > acceptable

(yellow) > incorrect  (gray).  3:  The highest  performing models  are selected according to their  model

selection score, and form the R-SVM ensemble. 4: When applied to a new set of decoys, rankings from

each R-SVM in the ensemble are combined into a preference graph, with arc (edge) weights indicating

the number of times each pose (node) is ranked higher than each other pose. For each pair of poses, a

pairwise ranking is obtained by finding the strongest directed path between them, from which the final

consensus ranking follows
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SVM ensemble, by their order when projected onto the R-SVM weight vector line in descriptor

subspace. Each of these rankings is combined using the Schulze electoral voting system(Schulze

2011). 

Complete digraphs, where nodes are decoys and arc weights indicate the number of times

the tail  node is  ranked higher than the head node,  are used to find strongest paths between all

ordered pairs of decoys, (a,b), where path strength corresponds to the minimum arc weight in a

directed path originating at a and terminating at b. Decoy a is ranked higher than decoy b if the

strongest path of (a,b) is higher than that of (b,a). As preferences are transitive, a consensus ranking

follows directly from the pairwise rankings. 

3.10 Prediction of extended interface patches by pyDockNIP.

We have developed a new version of the pyDockNIP method for predicting hot-spot residues in a

given protein-protein complex, as follows. Docking simulations were run with FTDock (Jackson,

Gabb, and Sternberg 1998) to generate 10,000 rigid-body docking poses, which were rescored by

pyDock scoring function (Cheng, Blundell, and Fernandez-Recio 2007). From the docking results,

normalized  interface  propensity  (NIP)  values  per  residue  were  calculated  with  the  built-in

pyDockNIP module  (Grosdidier and Fernández-Recio 2008), and those residues with NIP value

greater or equal to 0.2 were predicted as interface hot-spot residues. The novelty here is that the

predicted interface patches were extended by including surface residues (relative accessible surface

area rASA > 1 Å2) within 10 Å distance from the predicted interface hot-spot residues (Figure 5).
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The protein-protein docking BM 4.0 (Hwang et al. 2010), was used to test the performance

of the above described method to predict extended protein-protein interfaces. We processed all the

176 complexes in  the benchmark with our docking-based interface prediction protocol,  starting

from  the  structures  of  the  unbound  proteins.  The  predicted  extended  interface  patches  were

compared to the real interfaces, which were composed of those residues within 10 Å of the partner

molecule in the complex structure.  Figure 5 shows a schematic representation of this procedure.

Then sensitivity and precision of the method were computed as follows.

Sensitivity (S )=
True Positives

True positives+False negatives
eq(7)

Presicion (P)=
True Positives

True postives+False positives
eq(8)

3.11   Construction of the disease interaction networks

Genes associated with different diseases were obtained from the OMIM database (Amberger et al.

2009). For each gene, the UniProt codes and nsSNPs variants were obtained from the humsavar.txt
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Figure 5: Scheme of prediction of the interface in a monomer using the hotspot prediction. 

After the docking procedure, we used pyDockNIP module to obtain hotspots of the interaction. The next

step consisted in set a radius of 10 A around each hot-spot. We used the value of rASA to collect the

surface residues around the hotspots thus forming the predicted interface
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file (release 2014_06  of June 11th, 2014; downloaded from www.uniprot.org). The nsSNPs were

classified, according to the humsavar.txt file, as: i) disease-associated, when the mutation is known

to cause a disorder; ii) polymorphism, when the mutation is believed to be a neutral mutation; and

iii) unclassified, when the mutation is detected in one or few patients, but showed low statistical

significance due the limited size of the sample.  This  yielded a  total  of 112,205 disease-related

nsSNPs associated to  3,440 disease phenotypes  (based on OMIM ID),  involving 2,355 distinct

proteins (based on UniProt ID). 

The network for each of the corresponding gene list was obtained using the Interactome3D

server(Mosca,  Céol,  and Aloy 2013).  The network for  each phenotype showed all  the possible

partners which interacted with our query using UniProt codes. Table 2 displays the expansion and

the coverage in each of the phenotypes extended networks used. When possible, the best structures

or  models  for  the  UniProt code  corresponding  to  a  protein  was  downloaded  using  from

Interactome3D database(Mosca, Céol, and Aloy 2013). We selected the best structures and models

with  the highest  coverage  and sequence  identity from the proteins.dat  file  of  the  database.  We

downloaded  the  existing  structures  and  models  for  the  corresponding  protein  complexes  from

Interactome3D. If several structures or models were  present for  the same  single  protein, then we

assigned the same  UniProt code, but each part was used in separate docking experiments. In the

same manner, the best structure or model, with the highest coverage and sequence identity, for the

interaction was selected using the interactions.dat file of the database
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Table 2: Structural coverage of the disease-related protein interaction networks analyzed in this 
work  

a OMIM
b humsavar
c Available structure or homology-based model
d union

Protein Interaction networks

Proteins Interactions
HIGM5 608106 2 1 17 17 21 5
LHON 535000 6 21 23 22 33 10
CRC 114500 10 29 270 222 691 145
MCI 608446 11 0 193 162 582 154
HIV-1 609423 25 1 91 80 142 72
CMH 192600 7 174 198 162 531 100

61 226 729 610 1934 449

Phenotype
OMIM
 Code

Associated
Proteins

Proteinsa

Disease 
nsSNPsb

Proteins w/
 Structurec 

Interactions w/
 Structurec

All six diseasesd
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. With this, we gathered 630 different proteins with structure or model that correspond to

1816 interactions  which  contained  2786  nsSNPs.  We  performed  9217 docking  simulations  on

interactions  without  structure  and  491 docking simulations  on interactions  with  structure.  After

docking  we performed  the  same classification  of  residues  as  with  BM 4.0,  but  since  multiple

structures  can  be  present  for  a  single  protein,  to  avoid  ambiguous  classifications  for  the  same

residue we used for classification the average of rASA for the residue in each of the structures.

Residues were classified as core, interface and non-interacting surface. Core residues were

those with relative ASA < 0.1 (relative ASA is the ASA value for a given residue over the ASA

reference value of the corresponding residue type). Then, exposed residues (relative ASA > 0.1)

were classified as interface residues if any of their atoms are found within 10 Å from another atom

from  a  partner  protein.  The  remaining  residues  are  classified  as  non-interface  surface.  When

multiple structures exist for a single protein, to avoid ambiguous classifications for the same residue

we used for classification the average of rASA for the residue in each of the structures.

3.12 Statistical analysis of nsSNPs on disease-associated protein 
interaction networks

In this work, we selected six disease phenotypes for which there is detailed structural information

for most of the individual proteins within the network, but low structural coverage of the protein-

protein interfaces: Hyper-IgM syndrome 5 (HIGM5); Leber hereditary optic neuropathy (LHON);

Colorectal cancer (CRC); Susceptibility to myocardial infarction (MCI); Susceptibility to HIV type

1 (HIV-1); and CardioMyopathy Hypertrophic variants 1 to 15 (CMH).

All nsSNPs found in humsavar.txt for the protein structural interaction networks associated

to the six selected disease phenotypes, were mapped to the corresponding protein structure. For this,

the human sequences with all the variants were downloaded in a FASTA format from the UniProt

web page (“The Universal Protein Resource (UniProt)” 2007). Then, the sequence and numbering

of the PDB files in our dataset were extracted and aligned with the corresponding FASTA sequence

when the numbering was incorrect or shifted. 

The observed/expected (O/E) ratios for the distribution of nsSNPs in the above mentioned
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protein regions (core, interface and non-interacting surface) were calculated as the observed fraction

of nsSNPs found in each protein region over the fraction of nsSNPs expected by chance in each

protein region. The latter was estimated from the fraction of total residues found in each protein

region in all analyzed proteins.

The preference of a nsSNP for being at a given protein region i rather that at a region j was

computed as an odds ratio (OR), as previously described (David et al. 2012):

                              O Rij=

Pi

(1−Pi)

P j

(1−P j)

               eq(9)

where Pi is the probability of observing a nsSNP of a given type in protein region i, and is

computed as:

                                           P i=
ni

N i

                               eq(10)

where ni is the number of nsSNPs of a given type observed at protein region i, and Ni is the

total number of residues at protein region i in all the analyzed proteins. A two-tailed P-value of less

than 0.05 was considered indicative of the statistical significance of a preference for nsSNPs to be

in one region over another compared to a random distribution based on the number of residues in

the regions. Statistical analysis was performed using the statistical packages in R (3.1.1 version).

3.13  Identification of interface pathological mutations at RAS/MAPK 
cascade.

We used our interface prediction method to extend a previous study (Kiel and Serrano 2014) on 956

RASopathy  and  cancer  missense  mutations  found  in  15  genes  of  the  RAS/MAPK  pathway:

PTPN11,  SOS1,  RASA1,  NF1,  KRAS,  HRAS,  NRAS,  BRAF,  RAF1,  MAP2K2,  MAP2K1,

SPRED1, RIT1,  SHOC2 and CBL.  For the determination of possible pathways affected by the

nsSNPs at the interface of the proteins, we used the GO annotation for the functional classification

of genes provided by PANTHER database (Mi 2004).
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3.14  Network graph and analysis 

We used Cytoscape 3.4.0 (Shannon et al, 2003) to plot the different networks used in the thesis. This

is an open source plotting program with a broad community of users that actively support systems

biology analysis. For the enrichment of molecular function GO terms in the networks we used the

Cytoscape plugging BINGO (Maere, Heymans, K. and Kuiper, 2005), with default parameters for a

simple hyper-geometric test.

3.15  Interactome and core diseasome analysis with the combined 
expanded NIP strategy

We applied the same workflow we previously devised for the study of the six selected diseases to

the high-confidence human interactome reported in 2014 by Rolland and coworkers (Rolland et. al

2014). As a complementary analysis, we also obtained the list of protein-protein interactions for the

core diseasome reported in 2012 by Janjić and Pržulj (Janjić, and Pržulj. 2012). The core diseasome

is a PPI network of key proteins involved in 561 GO terms related to pathologies that has been

generated by computational analysis using a clustering technique known as k-Core decomposition

of the H. sapiens PPI network data from BioGRID (Breitkreutz 2008) and HPRD (Keshava Prasad

2009) databases.  We  obtained  all  the  structures  or  homology  models  for  proteins  and  protein

complexes  in  that  network  from  Interactome3D.  In  total,  merging  the  interactome  and  core

diseasome, we analyzed a total of 4,254 different proteins that formed a total of 11,925 interactions.

Among them, there is available complex structure or a straightforward homology model for only

2,226 interactions have available which involve a total of 2,039 proteins with structure or homology

model. We performed protein-protein docking in 34,810 PDB pairs without a structure for their

interaction. For testing purposes, we also performed docking on the 2,226 interactions common to

the interactome and the core diseasome with structure or homology model.  Table 3 gives further

details on the exact number of docking runs performed by each method in the human interactome

and the core diseasome.

For  this  analysis,  we  used  two  docking  protocols:  pyDock  and  ZDOCK.  The  interface

residue predictions were based on the NIP protocol extended by neighbor residues, as previously

described (methods section 3.9). The original NIP analysis is done on the docking models generated

by FTDock and scored by pyDock, whose performance when extended with neighbor residues was

previously assessed (methods section 3.9). In addition, here we also used ZDOCK docking poses to
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obtain  the  NIP values,  with  two  different  strategies:  one  using  the  ZDOCK docking  poses  as

directly ranked by ZDOCK default scoring, and the other based on the ZDOCK poses as ranked by

pyDock scoring function (PYDOCK_TOT).  Thus, we generated three different NIP predictions: the

original  one based on FTDock rescored by PYDOCK_TOT, plus those based on ZDOCK with

default scoring and on ZDOCK rescored by PYDOCK_TOT. Then, for each residue we kept the

maximum of these three NIP values,  from which the predicted extended interface was generated,

using the neighbor residues as previously described. The performance of these new approaches for

NIP calculation was assessed on the BM 4.0.

The difference in docking runs between pyDock and ZDOCK comes from the availability of

memory to perform the discretization of the surface of certain proteins into the corresponding grid.

pyDock parameters are optimized for the use in parallel computing, this allows the use of shared

memory from several processors, while ZDOCK only runs in single processor, thus the memory is

limited. This is the reason why the geometry and size of certain proteins did not allow to perform a

docking with ZDOCK. 
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Table 3: Number of docking runs performed by each method in the human interactome and the 
core diseasome networks 

Docking method

pyDock 2223 31

pyDock 28932 5522

ZDOCK 2220 31

ZDOCK 28778 5522

Human
 Interactome

Core 
Diseasome

Protein complex with
Structure or homology model

PDB pairs from 
Interactions w/o strcuture

Protein complex wth 
Structure  or homology model

PDB pairs from
 Interactions w/o strcuture



“Extraordinary claims require extraordinary evidence.”

― Carl Sagan
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Chapter 4 Results

4.1 Performance of scoring functions in evaluating different protein-
protein docking methods on the protein docking BM 4.0

We evaluated the performance of the 73 functions for the scoring of rigid-body docking poses

generated for the BM4.  Figure 6A shows the performance of the ten most successful functions

ordered by top 10 success rate for FTDock, ZDOCK and SDOCK, respectively. In general, scoring

functions  provided  better  predictive  rates  when  evaluating  ZDOCK  and  SDOCK  models.

Interestingly, for all docking methods, there were always other scoring functions that performed

better than its own in-built scoring method. The three scoring functions were found among the ten

most  successful  ones  for  all  docking methods  were:  AP_PISA(Viswanath,  Ravikant,  and  Elber

2012),  CP_TSC(Tobi and Bahar 2006), and CP_HLPL(Park and Levitt  1996; Pokarowski et  al.

2005).  The function CP_HLPL was originally developed for describing intramolecular contacts in

protein structure modeling. The functions CP_TSC and AP_PISA were specifically designed for

protein-protein docking using linear programing to train both functions.  CP_TSC is a coarse-grain

potential with three interaction sites per residue (side-chain centroid and N and O backbone atoms),

which calculates the energy of  interacting pairs  with a  two-step potential  well. AP_PISA is an

atomic potential which has a three-step potential between atom pairs, and was trained using side

chain refined interfaces. These two potentials showed the best performance for the three docking

methods, with AP_PISA being particularly successful in evaluating docking models generated by

ZDOCK and SDOCK methods, when considering both the top 1 and the top 10 success rates. One

of the possible reasons for the difference in performance of the three docking methods is the high

variability in the total number of near-native solutions generated by each method (FTDock: 1,653;

SDOCK:  18,700;  ZDOCK:  37,709).  This  is  an  important  factor  that  clearly  can  affect  the

capabilities of the scoring functions of discriminating near-native solutions from false positives. 
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Figure 6: Performance of scoring functions on (A) BM 4.0, and (B) BM 5.0.

The first three columns show the success rates for the ten best performing scoring functions for

each docking method,  for the top 1,  10 and 100 predictions.  Only the ten best  performing

scoring functions according to top 10 success rates are shown. Columns F1-F5 show success

rates for the top 10 predictions according to conformational changes upon binding (F1:  rigid;

F2: low-flexible; F3: medium-flexible; F4: flexible, and F5: highly-flexible; see Methods). The

two last columns show the success rates for the top 10 predictions according to binding affinity

(see Methods). 
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4.2 Performance of scoring functions according to protein flexibility

The  predictive  success  of  rigid-body  docking  is  known  to  depend  strongly  on  the  degree  of

conformational change that interacting proteins undergo upon binding(Carles Pons et al. 2010). We

evaluated here whether this also applies to all scoring functions. For that, we classified the BM 4.0

cases according to the extent of unbound-to-bound conformational changes, based on the average

interface  RMSD  (avgeIRMSD)  for  unbound  receptor  and  ligand  when  superimposed  onto  the

corresponding  molecules  in  the  complex  structure,  thus  defining  five  categories:  "rigid"

(avgeIRMSD ≤ 0.5 Å), "low-flexible" (0.5 Å < avgeIRMSD ≤ 1 Å), "medium-flexible" (1 Å <

avgeIRMSD ≤ 2 Å), "flexible" (2 Å < avgeIRMSD ≤ 3 Å), and "highly-flexible" (avgeIRMSD >3

Å).

Figure 6A shows the  top  10 success  rates  for  the above-analyzed scoring functions  on

models generated by each docking method,  for  cases  classified according to  unbound-to-bound

conformational changes. In general, for each combination of scoring function and docking method,

the best success rates are obtained for the rigid cases, as expected, and the performance decreases

for the most flexible cases. However, there are interesting exceptions. For instance, AP_PISA on

ZDOCK models provided better performance on the medium and flexible cases than on the low-

flexible ones, and almost as good as on the rigid ones. Similarly, the performance of CP_HLPL on

ZDOCK was independent of the flexibility category. Interestingly, a few combinations of scoring

functions and docking methods identified acceptable docking models within the top 10 decoys for

the highly-flexibly cases. These are extremely challenging for rigid-body docking prediction, so the

fact that some scoring functions can predict some of them is in principle encouraging. However, due

to the smaller  number of flexible  cases  in the benchmark these differences are  not  statistically

significant (Wilcoxon signed rank test FTDock p-value = 0.333, ZDOCK p-value = 0.667, SDOCK

p-value =0.333). Only 6% (11 cases) in the BM4 corresponds to the highly-flexible category which

contains the monomers that undergo the biggest conformational change upon binding to form a

complex. In general, the performance of the different scoring functions on the rigid cases shows

more consistency, while that on the most flexible cases shows more variability,  which suggests

possible random effects on the latter due to lower signal-to-noise ratios 

4.3 Performance of scoring functions according to binding affinity

The predictive performance of rigid-body docking also strongly depends on the binding affinity of 

the complex (Vajda 2005). High-affinity complexes are in general predicted with higher accuracy. 
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We have explored here to what extent the performance of the different scoring functions depends on

the affinity of the complexes. For that, we gathered the experimental binding affinity data from the 

affinity benchmark(Kastritis et al. 2011) for 89 cases of the protein-protein docking BM 4.0. Then 

we classified these cases into two categories according to their binding ΔG value: “Strong” (ΔG ≤ 

-12 Kcal/mol, and “Weak” (ΔG > -12 Kcal/mol ).

Figure 6A  provides the success rates for the top 10 predictions of the previously analyzed 

scoring functions for the different docking methods on the benchmark BM 4.0 cases as classified by

binding affinity. In general, predictive performance on the strong affinity cases is better than on the 

weak affinity cases. However, there are some exceptions, being the most notable ones the SIPPER 

SIPPER (C. Pons et al. 2011),  and PROPNSTS (Liu et al. 2004)) functions when evaluating 

FTDock models, which yielded much better predictions for the weak affinity cases. Interestingly, 

these two scoring functions are based on the same residue potentials derived from protein-protein 

complex structures. It seems that they are able to capture the binding energy determinants of weak 

complexes better than other atomistic potentials.

4.4 Performance of scoring functions on the CAPRI scorer set benchmark

We evaluated the performance of the 73 scoring functions on the scorers set benchmark, which is

formed by 15 targets from the CAPRI experiment  (Lensink and Wodak 2014), for which a range of

docking models  was blindly generated by a  variety of  docking methods (see Chapter  Methods

section  3.2).  Figure  7A shows  the  predictive  rates  for  the  best  30  scoring  functions  in  this

benchmark according to the top 10 success rate. 

We found here some of the most successful scoring functions overlap with those that have

performed well on BM 4.0, such as AP_T1 (Tobi 2010), AP_T2 (Tobi 2010), CP_DECK (Liu and

Vakser 2011), CP_TB (Tobi 2010), CP_TSC and AP_PISA. Interestingly, the best success rates for

the top 100 predictions were obtained by coarse-grain potentials, in general. Perhaps coarse-grained

potentials are providing a more balanced score that is more adequate to the heterogeneity of docking

models generated by a large variety of docking methods in this scorers set benchmark from CAPRI.

The most successful function for the top 100 predictions is CP_TB, a scoring function designed for

docking, which was among the most successful ones with FTDock on the BM 4.0. 
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Figure 7: Performance of scoring functions on different docking sets. 

A) Success rates on the CAPRI score set benchmark. (B) Success rates on the docking sets obtained by

merging the results from the three docking methods. Only the 30 best performing scoring functions are

shown.
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A)

B)

A) BM lensick 
B) heterogeneus pool



Chapter 4 Results

4.5 Performance of the scoring functions with different docking methods 
on protein docking BM 5.0 update

In order to confirm the previous findings, we also evaluated the performance of the different scoring

functions and docking methods on the recently available protein docking BM 5.0 update  (Vreven et

al. 2015), formed by cases that were not present in BM 4.0. This analysis provided unexpected and

interesting results.  Figure 6B shows the success rate of the ten most successful functions (when

considering the top 10 predictions) for FTDock, ZDOCK and SDOCK, on the BM 5.0 update. We

can observe that the best scoring functions now are different from the best scoring functions of BM

4.0  (Figure  6A),  especially for  ZDOCK and SDOCK. One of  the  most  striking  differences  is

AP_PISA,  which  shows  much  lower  performance  than  on  BM 4.0,  and  may be  indicative  of

overfitting to  the BM 4.0 complexes  during training.  This  may also explain some of  the other

differences observed.

Supplementary Figure 1 and 2shows the performance on the BM 5.0 update of the best-

performing  functions  resulting  of  the  previous  BM  4.0  analysis.  he  predictive  rates  of  these

functions for the BM 5.0 update are much lower than those observed for the BM 4.0 cases. In

addition,  there  are  now  less  differences  in  the  best  predictive  rates  for  the  different  docking

methods. Indeed, now the evaluation of ZDOCK and SDOCK docking models does not show better

success rates than FTDock as is the case for the BM4.0. The performance for the scoring functions

on the FTDock models, with similar success rates on both BM 4.0 and 5.0, is more consistent than

that of ZDOCK and SDOCK. It seems that the performance obtained for some scoring functions on

BM 4.0 with ZDOCK and SDOCK were excessively high. One reason could be that these scoring

functions might have been overtrained on cases from BM 4.0, using ZDOCK and SDOCK methods

to generate docking decoys,  another explanation could be that SDOCK is technically similar to

ZDOCK.

The BM 5.0 update provides a set of cases that were not used for training, since it does not

include complexes from previous benchmark sets. A key question is whether the best-performing

scoring functions for BM 5.0 update represent bona fide success rates for docking in general or they

appear good only for this particular set of cases for another reason. The fact that CP_HLPL and

CP_TB are found among the best-performing scoring functions with the three docking methods on

BM 5.0 update, suggests that their good performance on BM 4.0 was not due to overtraining, and
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therefore they could be of more general applicability for new cases. Indeed, CP_HLPL, which used

with SDOCK provided the best  top 10 success rate  among all  functions (25%), was originally

developed from intramolecular contacts for modeling protein monomers. On the other side, CP_TB

was developed for docking but trained in a composite set of representative transient complexes.

This knowledge-based potential was designed to tolerate small changes in side chain orientations,

which may contribute to its avoidance of overtraining.

4.6  Performance of scoring functions according to binding affinity and 
flexibility in BM 5.0 update cases

We have analyzed the results of the cases in BM 5.0 update as classified according to unbound-to-

bound  conformational  flexibility  (Figure  6B).  Several  functions  (CP_TB  with  FTDock  and

SDOCK models; CP_BT, CP_BFKV and CP_SKOa with FTDock, etc.) can provide similarly good

performance for rigid and low-flexible cases. 

We also analyzed the results  for  the 35 cases  of the BM 5.0 update for  which there is

experimental binding affinity available (Vreven et al. 2015). These cases were classified as strong or

weak,  according  to  their  experimental  binding  affinity  (Figure  6C).  The  affinity-dependent

performance of some of the scoring functions varies according to the docking method. For instance

CP_HLPL shows no dependence on affinity for SDOCK, but strong dependence for FTDock. The

performance of some of the functions for the strong binders in the BM 5.0 update is better than

those  in  the  BM  4.0,  perhaps  due  to  the  fact  that  the  BM  5.0  has  fewer  cases  with  affinity

information.

4.7 Scoring performance on models merged from different docking 
methods

We merged all docking models generated by the three docking methods into a single decoy set, and

evaluated the performance of each scoring function on this heterogeneous pool. We have evaluated

the performance of each scoring function on this heterogeneous pool of docking solutions.  Figure

7B hows the performance for the best 30 scoring functions on this set ordered by top 10 success

rates. In general, the success rates for the best performing functions were lower than those obtained

with the individual methods. For instance, the best performing scoring function on the merged pool

of  docking models  is  CP_TB,  with 24% success  rate  for  the top 10 predictions,  while  for  the
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individual methods, CP_HLPL with SDOCK, and CP_BFKV (Feng, Kloczkowski, and Jernigan

2010) with FTDock yielded higher success rates (over 25%). Surprisingly, these scoring functions

yielded much lower success rates on the large docking set (20% and 12%, respectively)

 This shows that some scoring functions are particularly efficient for a specific docking

method, so it seems more reasonable to use each docking method only with the scoring functions

that  have  shown the  best  performance  on  such  method.  A different  question  is  which  scoring

function to  use when we do not  know which docking method was used to build each docking

model. In this case, a good scoring function that might work for a particular method (i.e. CP_BFKV

on  SDOCK  and  FTDock)  might  give  worse  predictive  rates  in  other  docking  method  (i.e.

CP_BFKV on ZDOCK). In this situation, it would be better to choose some more general scoring

function that could provide good success rates in all methods (i.e. CP_TB or PYDOCK_TOT). This

could be relevant in the CAPRI scorers experiment, for instance, in which a variety of docking

models need to be scored, but there is no information given on how they were generated

4.8 Performance of combined scoring functions

We next explored whether the combination of scoring functions might improve the predictive rates.

First,  we identified pairs of scoring functions that provided successful results in complementary

subsets  of  complexes.  The  first  metric  we  used  to  do  this  is  the  size  of  the  combined  set  of

complexes for which an acceptable or better  solution was found in the top 10 by either of the

scoring functions (union cardinality). The second metric was similar, but excluding the complexes

that  are  identified  by  both  functions  (symmetric  difference  cardinality).  These  measures  were

chosen to give an indication of how both scoring functions bolster each other, and therefore, this

could  be  used  as  an  estimation  of  the  potential  synergistic  effect  of  the  two  functions  when

combined. Figure 8 shows the cardinality values (for top 10 predictions) for the combinations of the

ten functions with the greatest union values when paired, for each of the docking methods on the

BM 5.0 update. Supplementary Figures 3-8 shows these values for all pairs of scoring functions.

We can observe that some pairs of scoring functions are highly complementary, since they are able

to  capture  near-native  solutions  on  non-overlapping  sets  of  complexes  (e.g.

PYDOCK_TOT/CP_BFKV  with  FTDock;  PYDOCK_TOT/AP_T2  with  ZDOCK;

AP_MPS/SDOCK or AP_MPS/CP_RMFCEN1 with SDOCK).
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Figure 8: Cardinality analysis on the different FFT methods using BM 5.0 

The heat-maps show the union (right) and symmetric difference(left) values for pair combinations of the

ten scoring functions that provided the highest union values (top 10 predictions) for each docking method

on  BM 5.0  update,  with  functions  grouped  using  single  linkage  clustering..The  heatmaps  show  the

scoring function pairs  with highest  cardinalities  for  top10 hits,  with functions grouped using  single

linkage clustering.

C) SDOCK Union
C) SDOCK
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From the above analysis, one could estimate the most favorable pairs of scoring functions,

i.e. those ones that when combined should yield improved success rates. Therefore, we tested the

predictive power of the best pairs of functions derived from the cardinality analysis. For this, we

normalized the energy values obtained from each pair  of functions and converted them into z-

scores. Then we added these values without weighting and used them to re-rank all the generated

decoys for each case. Figure 9 shows the predictive rates (on BM 5.0 update) for the combinations

of the ten scoring functions that provided the largest union values (for top 10 predictions) on the

BM 5.0 update. Some combinations yielded >30% success rates for FTDock models (as compared

with 20-25% for the individual scoring functions). However, in the case of ZDOCK and SDOCK

docking  methods,  success  rates  of  the  best  combined  scoring  functions  did  not  improve  the

individual ones. This small improvement in the success rates for a few combinations of scoring

functions is not sufficient to guarantee that this strategy could be of general applicability to a new

set of cases, and requires further investigation.

For some pairs of scoring functions, the cardinality analysis did not reflect well the

success rate values after rescoring with the combined functions. For instance, with FTDock,

the best union was found for PYDOCK_TOT/CP_BFKV, providing near-native models for

42% of the cases within the top 10 predictions, but the combined functions have a top 10

success rate of 27%. Individually,  PYDOCK_TOT has a  top 10 success rate of 20% and

CP_BFKV  of  26%.  For  some  reason  PYDOCK_TOT  seems  to  contribute  little  at  the

combined success rate in the top 10 predictions in spite of the observed high cardinality. On

the other hand, the best top 10 success rates after rescoring with the combined functions is

provided by CP_SJKG/AP_dDFIRE (33%), while individually, CP_SJKG and AP_dDFIRE

have much lower success rates (16% and 20%, respectively). For this pair, the union was not

among the best values of all cases, so cardinality analysis was not able to foresee the strong

synergy shown by the combination of these two scoring functions.
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So far, we selected the top scoring functions for each docking method in BM 5.0 update and

evaluated its performance in the BM 5.0 itself. To make a blind test, we selected the ten scoring

functions with the best top 10 success rates from BM 4.0, and computed their cardinalities on BM

5.0 update (Figure 10). With FTDock the best cardinalities are found for combined pairs involving

PYDOCK_TOT,  being  the  highest  ones  the  combinations  with  CP_HLPL and  CP_TB.  With

ZDOCK  there  are  many  combinations  that  give  a  high  cardinality,  such  the  combination  of

PYDOCK_TOT with AP_T1/2 or AP_PISA. 

60

Figure 9: Success rates on BM 5.0 for pair combinations of scoring functions using z-scores.

Performance on BM 5.0 of scoring function pairs formed by unweighted combination based on z-scores,

using the ten scoring functions that provided the best union values (for top 10 predictions) on BM 5.0 for

each docking method. The ten pairs of scoring functions with the best top 10 success rates are shown for

each docking method: A) FTDock, B) ZDOCK, and C) SDOCK. 
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Figure 11 shows the top 10 success rates on BM 5.0 for the best scoring function pairs

formed by unweighted combination based on z-scores, using the ten scoring functions that showed

better performance from BM 4.0. We found two pairs of combinations that reached a success rate

above 30% within the top 10 predictions: the pair PYDOCK_TOT/CP_HLPL with FTDock (31%),
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Figure  10: Cardinality  analysis  on  the  different  FFT methods  using  BM  4.0  top  scoring  functions
evaluating the BM 5.0. 

See figure 5 for details 
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and the pair AP_PISA/CP_HLPL with SDOCK (31%). Thus, combined pairs formed by scoring

functions selected on the basis of BM 4.0 yielded success rates on BM 5.0 as high as those obtained

when the combined pairs were formed by functions selected among the best ones in BM 5.0 update,

which suggests little or no overfitting. 

Overall,  this is not a considerable increase in the success rate. To extend the number of

existing near-native solutions and possibly improve the scoring performance, a heterogeneous pool

of decoys could be created from the three docking methods and the best scoring functions for each

docking method.  In fact,  a  researcher  is  not  limited  to  use  only one docking method,  e.g. the
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Figure  11: Success  rates  on BM 5.0  for pair combinations of  the  best-performing scoring

functions from BM 4.0.

Performance on BM 5.0 of scoring function pairs formed by unweighted combination based on z-scores,

using the ten  most successful  (top 10 predictions)  scoring functions from BM 4.0,  for  each docking

method: A) FTDock, B) ZDOCK, and C) SDOCK. 
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complementarity of ZDOCK and FTDock both using the PYDOCK_TOT scoring was used to help

to model yeast interactome.39 In this line, we aimed to combine the pairs of scoring functions that

performed well on each set of docking decoys generated by FTDock, ZDOCK and SDOCK, and

tried to  evaluate  whether  they would  improve the predictive  results.  For  this,  we built  scoring

function  pairs  formed  by  unweighed  combinations  based  on  z-scores,  using  the  ten  scoring

functions that provided the best top 10 success rates for each docking method in BM 4.0. With

them, we built triplets of combinations formed by one pair of scoring functions from each docking

method, and computed the union cardinality (for the top 10 predictions) for each triplet on BM 5.0.

Supplementary Table 2. shows the combined triplets with the 50 best union cardinalities. The best

triplet combinations generated by this strategy captured 30 cases (55%), considerably more than the

18  cases  (33%)  predicted  by  the  best-performing  pairs  of  scoring  functions  (CP_SJKG  and

AP_dDFIRE with FTDock) from the cardinality analysis carried out with the individual docking

methods. According to these results, the use of triplet combinations of the best pairs of functions for

each method seemed to anticipate a large improvement in success rates. To confirm this, we used

the best scoring function pairs for each method (according to BM 4.0), and computed the success

rates of the triplet combinations of function pairs / docking methods on BM 5.0 (Figure 12). The

best triplet combination is formed by PYDOCK_TOT and CP_HLPL with FTDock, AP_T2 and

AP_PISA with ZDOCK, and AP_calRWp and SDOCK scoring function with SDOCK (38% success

rate). However, despite the expectances, this is not much better than the best performance we found

for a pair of scoring functions (CP_SJKG/AP_dDFIRE with FTDOCK; top 10 success rate 33% on

BM 5.0). 

The combination of scoring functions performed here was based on a direct addition of the

normalized functions. There was no attempt to improve the combination of values, by optimization

of parameters,  multi-parametric fitting, etc. However, due to the process of selection of scoring

functions, there could be a possible bias towards the best-performing functions on the BM 5.0. The

use of more sophisticated approaches to combine the scoring functions could yield better predictive

rates, but such analysis should be done with caution, to minimize the risk of overfitting, for instance

by putting feature selection within an outer cross-validation wrapper.
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4.9 Consensus ranking of protein-docking decoys

So far, the combination of scoring functions performed here was based on a direct addition of the

normalized functions. There was no attempt to improve the combination of values, by optimization

of parameters, multi-parametric fitting, etc. However, due process of selection of scoring functions

there is a possible bias towards the best-performing functions on the BM 5.0. The use of more

sophisticated approaches to combine the scoring functions could yield better predictive rates, but

such analysis  should be done with caution,  to  minimize the risk of overfitting,  for instance by
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Figure 12: Success rates on BM 5.0 for triplet combinations of the best performing scoring functions
and docking methods from BM 4.0. 

Performance on BM 5.0 of the triplets formed by unweighted combination of scoring functions (z-scores)

with each of the docking methods, using the ten most successful (top 10 predictions) scoring functions

from BM 4.0 for  each docking method.  The origin of each scoring function pair  is  indicated at  the

beginning of each line as follows: FD from FTDock, ZD from ZDOCK, and SD from SDOCK.
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putting feature selection within an outer cross-validation wrapper.

In order to attempt the combination of many scoring functions we decided to explore the use

of  machine  learning  algorithms  to  improve  the  ranking  of  the  different  methods.  The  decoys

characterized  by  a  large  selection  of  scoring  function  from  the  previous  study  were  used  as

descriptors or features, that were ordered by an ensemble of ranking support vector machines (R-

SVMs)  (Joachims 2005). A consensus ranking is calculated by combining the R-SVMs using the

Schulze voting method. The method was applied independently to decoy structures from four state

of the art docking programs, ZDOCK, SDOCK, to our docking protocol pyDock (not to confuse

with PYDOCK_TOT which is the scoring function) and a non-FFT method SwarmDock (I. H. Moal

and Bates 2010). Our collaborator I.H Moal obtained the docking decoys from SwarmDock and

evaluated them with the same scoring functions. Swarmdock is regarded as one of the best protein-

protein  programs  in  the  CAPRI  contest,  and  its  sampling  is  based  on  the  Swarm  Particle

Optimization (SPO) algorithm. We used this program as an important point of comparison for the

enhancement of the FFT based methods and the precedent of the work done with the diverse scoring

functions. 

To validate, we trained the models using the protein-protein docking BM 4.,0 and evaluated

the ability to retrieve near-native solutions using the new complexes added in the BM 5.0 as an

external validation set  (Figure. 13). Of the complexes for which a near-native solution could be

found, a near-native structure was identified as the top-ranked solution in 12-22% of the interactions

prior to re-ranking, which increased to 16-44% using our approach. Similarly, retrieval in the top 10

increases from 33-51%, to 50-67%, and top 100 improves from 70-90% to 91-100%, indicating that

sampling becomes the limiting factor in obtaining a top 100 near-native solution within our scoring

scheme.
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We globally boosted the success rates of each docking procedure on the BM 5.0 (Figure 13

and Supplementary Table 3)  as following: top1 ranking to 24%, top10 ranking to 45 % and top

100 ranking up to 69%.We also applied the method to the original complexes in the docking BM 4.0

using multiple leave-many-out cross-validations (Figure 14). A quarter of the complexes were left

out at random from the training set for each of the R-SVM models, and for each complex, the

Schulze re-ranking only combined the models for which the complex was omitted from the training.
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Figure 13: Retrieval rate of the different methods on the BM 5.0.

 Panels show the top 1, top 10 and top 100 retrieval rates for the original (red dots) and consensus (green

dashes) rankings, as well as the distributions for the ensembles of support vector machines when applied

to the new complexes in the BM 5.0 as external test set
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We see improvements of 10-20% to 24-42%, 31-50% to 51-68% and 69-90% to 89-100%

respectively for the top 1/10/100 retrieval rates. For SwarmDock, this corresponds to top 1/10/100

success  rates  of  30%,  49%,  and  65% respectively,  in  the  case  of  pyDock  14%,30%,52%,  for

ZDOCK 20%,38%,65%, and SDOCK 20%,40%,59%, when considering all 176 complex in the BM

4.0 typically performed (Figure 15-right and Supplementary Table 3). On both benchmarks, a

large improvement can be attributed to the R-SVMs which, when combined using Schulze ranking,

typically performing as good as or better than the average R-SVM model on its own. For all four

docking protocols, the method yields a significantly better ranking of the top-ranked near-native

solution (p<< 0.01, Wilcoxon signed-rank test), and large improvements compared to other methods

reported in the literature (Figure 15 and Supplementary Table 3). 
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Figure 14: Retrival rate of the different methods in the BM 4.0.

As in the previous figure panels show the top 1, top 10 and top 100 retrieval rates for the original (red 

dots) and consensus (green dashes) rankings, as well as the distributions for the ensembles of support 

vector machines when applied to the new complexes in the BM 4.0 as external test set
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4.10  Structural analysis of pathological mutations on protein interaction 
networks

After all the analysis on the scoring of docking poses described in the previous sections of this

thesis,  we  next  aimed  to  explore  whether  docking-based  computational  approaches  could  help

characterizing disease-related mutations in PPIs at interactomic scale, where the majority of protein-

protein interfaces have no structural data. For this purpose, we focused our analysis on the protein-

protein  interaction  networks  of  six  disease  phenotypes  for  which  there  is  detailed  structural

information for most of the individual proteins within the network, but low structural coverage of

the protein-protein interfaces.  Table 2  (see Chapter Methods section 3.11)  shows the number of

proteins   associated to each disease according to OMIM, as well as the number of proteins and

complexes forming the first-layer interaction network and their structural coverage.
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Figure 15: Comparison of success rates: machine learning and democratic ranking versus other docking 

methods. 

Panels show the top 1 and top 10 success rates for the whole docking pipeline for the 55 new BM 5.0

complexes (left)and the 176 BM 4.0 complexes (right), using data from  this study(1), as original rankings

(lighter colors) or using either the BM 50 complexes as external test set or multiple leave-many-out cross-

validation  with the  BM4 (dark  colors),  and  data  reported  in   Vreven et  al.(2)  ,   Torchala  et  al.(3)  ,

Schneidman-Duhovny et al.(4), Chowdhury et al.(5),  Ohue et al.(6)  and  Huang (7). 
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We first analyzed the location of the known nsSNPs within the protein interaction networks

of the six analyzed diseases, considering only those protein-protein interactions that had available

structure (or a reliable homology model). This structural dataset was formed by 449 protein-protein

complexes that had available structure (or a reliable homology-based model),  and involved 353

proteins with available structure (experimental or modelled). We found that 258 of these proteins

had at least one annotated nsSNP (Table 2). The entire set comprised a total of 1,624 nsSNPs that

could be structurally characterized, of which 832 were related to a disease (not necessarily any of

the  originally  analyzed  six  diseases), 499  were  classified  as  polymorphisms,  and  293  were

unclassified. Among the structurally mapped disease nsSNPs, 48% are buried, 22% are located at a

protein-protein interface, and 30% are found at a non-interacting surface (Figure 16A). We can

compare these numbers with the values expected by chance for buried, interface and non-interface

residues  (29%, 31% and 40%, respectively),  as  estimated  from the  residue  composition  of  the

studied proteins (see Chapter Methods section 3.12). Thus, the observed/expected (O/E) ratios for

buried, interface and non-interface disease nsSNPs are 1.68, 0.70 and 0.75, respectively. The disease

nsSNPs are located in buried positions clearly more often than expected by random, which has

already been observed in previous studies (David and Sternberg 2015; David et al. 2012). However,

the O/E value for the interface disease nsSNPs obtained here (0.70) is clearly below that reported in

previous studies on a large interaction data set (0.96 (David and Sternberg 2015); an earlier studied

found this value to be 1.20, but in that case interface residues were defined exclusively based on

distance criteria and could include some buried residues (David et al. 2012)). More interesting is to

analyze the preference of a disease nsSNP for being at a protein-protein interface rather that at a

non-interacting surface, computed as an odds ratio (OR) (see Chapter Methods section 3.12). Here,

we found that disease nsSNPs had similar probability of occurring at protein interfaces than at non-

interacting surfaces (OR 0.94). Again, this value is lower than that previously reported on a large

interaction dataset, in which they found a clear preference of disease nsSNPs to be at interface

regions  rather  than  non-interacting  surfaces  (OR 1.35  (David  and Sternberg  2015)).  The lower

preferences found here for the disease nsSNPs to be located at protein-protein interfaces can be

explained by the low structural coverage of the protein interactions in the six diseases studied here

(which were indeed selected because they had high structural coverage for the individual proteins

but low structural coverage on the protein-protein complexes). This shows that the lack of structural

data on protein-protein complexes might underestimate the role of many disease nsSNPs involved

in protein interactions and can lead to poor characterization of the effect of these mutations in the
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network topology.

Thus, it remains to be seen whether having more structural data on the protein interactions

for these six diseases analyzed here could improve the structural and functional characterization of

known disease-related nsSNPs. The following section will explore computational ways to extend

the structural characterization of protein interaction networks.

4.11  Prediction of interface residues by docking

The  main  goal  of  this  part  is  to  explore  computational  ways  of  characterizing  pathological

mutations possibly involved in protein-protein interactions for which there is no available structural

71

Figure 16: Distribution of nsSNPs in the protein interaction networks of six selected diseases

Distribution of nsSNPs (detailed for disease, polymorphism and unclassified) in the protein interaction

networks from the six selected diseases, as classified in core, interface and surface non-interface, with

expected distributions were calculated from residue composition, and O/E ratios for the different residue

locations and types of nsSNPs, based on (A) structural data; (B) modelled interactions; and (C) combined

structural data and modelled interactions.
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data. We previously found that energy-based protein docking can be efficiently applied to identify

interface  and  hot-spot  residues  in  protein-protein  complexes  (Grosdidier  and  Fernández-Recio

2008).  This approach was implemented in the pyDockNIP module within our docking protocol

pyDock  (Cheng,  Blundell,  and  Fernandez-Recio  2007).  We  have  evaluated  the  predictive

capabilities of this method at different NIP cutoff values, on the protein-protein docking BM4.0, and

the results (Figure 17) confirm that this method can predict interface residues with high precision

(65-70%),  but  very  low  sensitivity  (less  than  10%).  This  sensitivity  level  is  too  low  for  its

applicability at large protein interaction networks, given that the majority of pathological mutations

involved in protein interfaces would not be detected. In order to improve its applicability, we have

extended the  predicted  interface  patches  by including residues  in  the  vicinity  of  the  originally

predicted ones (see Chapter Methods section 3.10). This strategy showed a better trade-off between

precision and sensitivity, with improved sensitivity up to 28%, at the expense of precision (Figure

17).   
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Figure 17: Prediction of the interface in the BM 4.0 using the extended interface with pyDockNIP and

pyDockNIP extended . 

Sensitivity and precision of interface residue predictions based on pyDockNIP (alone or by

adding neighbor residues) for proteins in the protein-protein docking BM4.0, according to NIP

cutoff value. 
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As an additional test, we applied this procedure to the structural interaction networks of six

selected diseases, as above mentioned, containing 449 protein-protein interactions for which the

complex structure is available or can be modelled based on a homologous template, and 353 protein

with available structure or model. Some of the proteins in this dataset had more than one binding

partner,  so  we  considered  as  interface  residues  those  that  are  involved  in  any of  the  possible

interactions. As a consequence, 44% of the surface protein residues were located at a protein-protein

interface (Table 4). Then computational docking was run on the separated complex components of

the 449 protein-protein complexes, being them either x-ray structures or homology-based models,

and the predictions were compared to the real interface residues. The predictions yielded a precision

of  64%, with a sensitivity of  50% (Figure 18).  This improvement in the predictive success rates

with respect to the results in the protein-protein docking benchmark might be due to the fact that

many of the proteins in the disease-associated interaction networks showed several binding partners,

and thus the proportion of surface residues that are at the interface in that set (44%) was larger than

in the docking benchmark (23%).  
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Figure 18: Success rates in the mapping of nsSNPs with the predicted extended interface. 

The docking-based extended interface predictions were applied to the structural interaction networks from

the  six  selected  diseases.  Precision  and  sensitivity  are  shown  for  interface  residue  predictions  and

interface nsSNPs. The latter are also detailed for interface disease-related, polymorphism and unclassified

nsSNPs.

Unclassified

Polymorphism

Disease

SNPs

Interface

0 10 20 30 40 50 60 70 80

Sensitivity
Precision

Percentage



Chapter 4 Results

4.12  Docking-based interface prediction can help to improve nsSNP 
characterization

We tested  the  docking-based  extended  interface  predictions  for  the  identification  of  interface

nsSNPs in the disease-associated interaction networks, and the predictive success rates were similar

to those of the interface predictions (Figure 18). We then evaluated how many of the disease-related

nsSNPs that are known to be at protein-protein interfaces can be detected by the above mentioned

extended  interface  prediction  based  on  docking  calculations.  Thus,  for  all  832 disease-related

nsSNPs in  our  structural  interaction  network  dataset,  we applied  our  docking-based method to

predict  whether  they  were  located  at  interfaces.  When  compared  with  the  183  disease-related

nsSNPs that were actually located at interfaces in our structural dataset, the predictions showed very

similar  numbers  in  precision  (62%),  and sensitivity (51%) to  those for  the  interface prediction

(Figure 18). When applied to other types of nsSNPs, the prediction success rates were also similar,

except for the "unclassified" nsSNPs, for which sensitivity is slightly lower (Figure 18). In general,

the above results show that docking-based predictions can identify with reasonable precision when a

given nsSNP is  located at  a  protein-protein interface,  independently on whether  such nsSNP is

associated to a disease or no. This provides a valuable resource to characterize nsSNPs in cases with

no structural information on the potential protein-protein interactions. 
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Table 4: Detailed analysis of location of nsSNPs based on complex structures and modelled 
interactions

Structures Models Combined

Total analysed proteins 353 583 603

258 411 424

SNPS in interface: 449 736 975

SNPS in core 619 970 1003

SNPS in surface: 556 909 808

RESIDUES

Total residues 76168 189629 199846

Residues  in core 21710 53849 54936

Residues in surface 30679 80749 76142

Residues at interface 23779 55031 68768

Total residues hotspot 5918 11839 16449

Total residues hotspot at interface 3673 11839 14459

SNPS

ALL_SNPS 1624 2615 2786

Disease 832 1363 1438

Polymorphism 499 851 899

Unclassified 293 401 449

SURFACE

Disease 250 384 343

Polimorphism 188 399 340

Unclassified 118 126 125

CORE

Disease 399 609 629

Polimorphism 118 231 228

Unclassified 102 130 146

INTERFACE

Disease 183 370 466

Polimorphism 193 221 331

Unclassified 73 145 178

HOTSPOTS_INTERFACE

Disease 33 74 109

Polimorphism 46 35 76

Unclassified 17 44 61

Tota proteins with
At least 1 SNP
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4.13  Identification of interface nsSNPs in complexes with no available 
structure

The above described protein interaction networks  for  the six  selected diseases  contained 1,485

interactions for which there is no available structure. They involved as many as 3,323 nsSNPs that

could not be structurally mapped in such interactions.  Some of these nsSNPs might have been

considered in the previous analysis of the structural interaction network dataset, simply because

they were involved in other complexes with available structure, but they still lacked information for

all the other interactions with no available structure. In 1,367 of these interactions, the interacting

subunits  had  available  structure  or  could  be  easily  modelled  by  homology,  which  made  them

suitable for docking calculations. In total, there were 583 proteins with structure or easily modelled

by homology (Table  4).  We ran  docking  simulations  on  these  interactions  to  predict  interface

residues, and then used this information to identify nsSNPs located at protein-protein interfaces.

Some of the interacting proteins have different PDB structures corresponding to different parts of

the protein, in which case we used all of these structures independently in docking. For instance, in

the interaction between the oncogene RAF1 and the heat shock protein HSP90AA1, there are five

different  PDB structures  associated  to  RAF1,  covering  different  zones  of  the  protein,  and  two

different PDB structures associated to HSP90AA1. Such discontinuous structural coverage for these

proteins  makes  that  the  modeling  of  this  interaction  alone  needs  10  independent  docking

simulations. As a consequence, we run a total of 9,204 docking simulations, and as many of 2,615

nsSNPs could be characterized in 1,367 modelled protein-protein complexes. Within these nsSNPs,

we found 1,363 disease-related, 851 polymorphisms, and 401 unclassified. Among the docking-

based  characterized  disease  nsSNPs,  45% were  buried,  27% were  located  at  a  protein-protein

interface, and 28% at a non-interacting region (Figure 16B). According to the residue composition

of  the  studied  proteins,  the  values  expected  by  chance  for  buried,  interface  and  non-interface

residues are 28%, 29%, and 43%, respectively. Thus, the O/E ratios for buried, interface and non-

interface disease nsSNPs are 1.57, 0.94 and 0.66, respectively. These numbers are virtually the same

as those found in previous  studies  on larger  interaction sets  (1.58,  0.96,  and 0.71,  respectively

(David  and Sternberg  2015) ).  Based on the  modelled  interactions,  disease  nsSNPs have  clear

preference for being at protein-protein interfaces as compared with non-interacting surfaces (OR

1.42), also in line with previous studies (OR 1.35  (David and Sternberg 2015)). This shows that

modeling interaction networks by docking has the capability of extending the characterization of

nsSNPs in cases with no available structural data.
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4.14  Integrated experimental and computational characterization of 
protein interaction networks

Then,  we combined  the  results  of  the  structural  dataset  with  the  modelled  interactions  for  the

protein interaction networks of the six selected diseases. In this way, we had structural or modelled

data for a total of 2,786 nsSNPs in 2,043 protein-protein interactions. They contained 1,438 disease-

related, 899 polymorphisms and 449 unclassified nsSNPs. Among the characterized disease-related

nsSNPs, 44% were buried,  32% were located at  interfaces,  and 24% at  non-interacting regions

(Figure 16C). According to the residue composition of the structurally characterized and modelled

proteins, the values expected by chance for buried, interface and non-interface residues are 27%,

34%, and 38%, respectively. Thus, the O/E ratios for buried, interface and non-interface disease

nsSNPs are  1.59,  0.94  and 0.63,  respectively  (similar  to  previous  studies  David  and Sternberg

2015)). This shows an even clearer preference of the disease nsSNPs for being at interfaces rather

than at non-interacting regions (OR 1.51). This clearly shows that the combination of experimental

and  computational  information  can  help  to  improve  the  structural  characterization  of  protein

interaction networks and the identification of nsSNPs involved in interactions.

Interestingly,  the  disease-related  nsSNPs  that  are  estimated  to  be  interacting  hot-spots

according to the docking-based predictions (interface residues with NIP > 0.2) show an O/E ratio of

1.05, and a clear preference over the non-interacting regions (OR 1.68), similar to that previously

reported  for  interface  core  disease  nsSNPs  vs.  non-interacting  regions  (OR  1.72  (David  and

Sternberg 2015)).  

For the interaction networks of the six selected diseases, on top of the 183 disease-related

nsSNPs that could be structurally mapped at protein-protein interfaces, we found  283  additional

disease-related nsSNPs that  were predicted to  be at  an interface based on the docking models,

yielding a total of  109 interface  disease-related nsSNPs that were also characterized as hot-spots,

and which are likely to have a significant edgetic effect.
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4.15  Docking-based characterization of pathological mutations in the 
RAS/MAPK pathway

We used our interface prediction method to extend the characterization of nsSNPs in other protein

interaction networks. A recent comprehensive study on pathological mutations involved in cancer

and  RASopathies  in  proteins  of  the  RAS/MAPK  pathway  showed  that  around  20%  of  the

structurally-mapped pathological mutations were predicted to have a direct effect on protein-protein

or domain-domain interfaces(Kiel and Serrano 2014). However, for over 30% of the mutations that

could be mapped at a protein structure, they could not find any structural or energetic reason that

might  explain their  pathological  character.  The majority of  these mutations  were located at  the

protein surface, and the authors proposed that they might be involved in protein interactions for

which there is no sufficient structural data. Some of the mutations could be located at a known

protein-protein interface but perhaps do not have any impact on the binding affinity  (Teng et al.

2009), while they could actually affect other protein-protein interactions with no available structural

data (Keskin and Nussinov 2007; Martin and Lavery 2012). Therefore, we aimed to complete the

interface structural and energetics data of this protein interaction network with our computational

approach, to explore whether this can help characterizing some of these "unexplained" mutations.

We used the first-degree neighbors to construct the network for the 15 proteins analyzed in the

mentioned study (Kiel and Serrano 2014). 
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The  complete  interaction  network  involved  a  total  of  236 proteins,  234  of  them  with

available  structure,  and  482  protein-protein  interactions  (300  of  them  without  structural

information). We  performed  1,893  docking  calculations  on  those  protein  interactions  with  no

available structure, in order to identify the interface and hot-spot residues. From the 208 nsSNPs

that were unexplained in the mentioned study (David and Sternberg 2015), we found 95 nsSNPs (in

59 residues of 11 proteins) that were predicted to be at a protein-protein interface based on the

docking  calculations.  That  is,  interface  predictions  based  on  docking  calculations  helped  to

rationalize almost half of the unexplained mutations. Among them, we found 44 nsSNPs (in 29
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Figure  19:  Structurally unexplained mutations of the RAS/MAPK pathway that are predicted to be

involved at protein-protein interfaces

The mutations shown here were not previously characterized due to the lack of structural data, but have

been predicted here to be involved in protein interactions as hot-spots, based on docking calculations (see

Methods).  Main  proteins  of  the  RAS/MAPK  pathway  are  represented  as  circles,  and  the  additional

proteins in the first interaction layer are shown as cyan squares. The interactions affected for each mutation

in the main proteins are shown as connecting links. The thickness of the edge line is related to the number

of pathways in which a given interaction is involved
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residues of 9 proteins) that were predicted to involve a protein-protein hot-spot residue (Figure 19).

These nine proteins play a significant role in the Ras pathway, and are found to interact with several

other signaling proteins. Cross pathway connectivity among signaling proteins is a network property

that is related to the robustness or fragility of cell functions (Martin and Lavery 2012). Therefore,

nsSNPs located at protein-protein interfaces in these nine proteins could not only affect the Ras

pathway  but  also  other  pathways.  Figure  20  hows  the  pathways  involving  proteins  whose

interaction is affected by the pathological mutations predicted to be located at a binding hot-spot.

We found the most affected pathways are related to the vascular system formation and activation of

immune cells. The VEGF, PDGF, FGF and interleukin signaling pathways are closely involved in

cell proliferation, differentiation and angiogenesis, all of them highly relevant in the development of

cancer. 
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Figure 20: Pathways affected by pathological mutations in RAS/MAPK proteins predicted to be at binding

hot-spots

Proteins of the RAS/MAPK pathway are shown as colored circles, showing pathological mutations  that

were not previously characterized due to the lack of structural data, but that have been predicted here to be

binding hot-spots for docking partner proteins involved in other pathways (linked to the corresponding

mutation). 
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4.16  Interactome and core diseasome analysis with high-throughput 
docking simulations 

In previous sections of this thesis, we have shown how docking-based interface predictions can help

to characterize mutations in selected interaction networks that vary in size and complexity. Here, we

have extended our protocol to analyze the entire high-confidence human interactome (Rolland etal

2014) and the human core diseasome (Janjić, and Pržulj. 2012). In total, we analyzed 4,254 different

proteins involved in a total of 11,925 interactions and 14,551 SNPs from the humsavar data file. In

addition to the analysis previously performed in six selected disease networks, we also used the

ZDOCK docking protocol to predict the interface residues. From the scoring function analysis in

section 4.8 we found that combination of PYDOCK_TOT with ZDOCK gives a high-success rate

without the risk of overfitting. One of the reasons for using this additional strategy is that some

complementarity  to  the  pyDock  docking  protocol  was  previously  observed  when  evaluating
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Figure 21: Sensitivity and precision comparison between ZDOCK and FTDock based extended NIP
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ZDOCK decoys with PYDOCK_TOT (Mosca et al. 2009). We selected the highest NIP value found

by any of the docking methods, in order to predict as many hot-spots residues as possible. Taking

into account all the docking runs performed in the human interactome and the core diseasome, we

performed 36,678 dockings simulations for FTDock and 36,551 for ZDOCK .The difference in the

successful number of docking runs comes from the fact that our version of FTDock is optimized to

run in parallel processors using shared memory this allows the discretization of the complicated

geometry of the protein into the grid, such as large lineal helices, while ZDOCK run in a singe

processor  limited  to  the  memory  available  to  that  processor.  After,  we  evaluated  the  decoys

generated by these two docking method with our scoring functions PYDOCK_TOT.  Figure 21

shows and compares the sensitivity and precision to find residues at the interface in the BM 4.0,

using  ZDOCK Scoring and ZDOCK evaluated  with  PYDOCK_TOT and the  pyDockNIP from

FTDdock.  Clearly,  the  sampling  method  influence  the  sensitivity  and  precision  of  the  hotspot

prediction and the NIP extended. In the NIP alone prediction, FTDock has greater precision and

ZDOCK has higher sensitivity that drops to the same level as FTDock as cutoff value increases. In

general, both types of NIP precision obtained from ZDOCK is in the range of 40-50% while the

sensitivity  is  around  30-40%.  This  is  a  relevant  difference  with  FTDock,  in  which  precision

increases with the cutoff values. Still, the most beneficial cutoff value for NIP extended generated

from ZDOCK is 0.2.

We  analyzed  the  high-confidence  human  interactome  and  core  diseasome  interaction

networks, in the same way as we previously analyzed the six selected disease networks(see section

4.15 in this chapter). Figure 22 shows the sensitivity and precision for the method of the maximum

NIP and neighbors to find the three types of SNPs at the different zones, assessed on the interactions

with available structure. This test was performed on a set of 2,226 PPIs with crystal structure from

the  PDB  or  reliable  homology-based  model.  The  observed  results  are  different  to  the  results

obtained from the six diseases, due the sample size difference and use of other docking method.
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This interface prediction strategy using the maximum NIP and extending it to the neighbors

shows a sensitivity and precision above 75% and 50%, respectively, for the interface residue and

SNPs predictions (except for unclassified SNPs). Thus, the interface residue predictions reach a

sensitivity of 76% and a precision of 58%, while the interface disease-associated SNPs show a

sensitivity of 79% and precision of 57%. 

Next, we analyzed the distribution of the nsSNPs in these interaction networks, including the

interactions for which there is no available structure. Table 5 shows details of the analysis carried

out. 

83

Figure 22: Sensitivity and precision of the NIP extended methods in all the complexed protein structures
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Figure 23C shows the location of SNPs in the interactome and core disease networks, based

on the available structural data and on the docking-based interface predictions. Figure 23A shows

the same analysis using structural data for only the interactions with available structure. Figure 23B

shows the analysis for the interactions with no available structure, with interface predictions based

on the docking models. We can observe the expected strong preference of disease-associated SNPs

for core region vs. non-core regions. It is known that many pathological mutations cause the disease

by affecting  the folding and stability of  a  protein.  Although to  a  lesser  extent,  we also find  a

preference  of  disease-associated  SNPs  for  the  interface  zone  vs.  non-interacting  surface.  The
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Table 5: Detailed analysis of location of nsSNPs based on complex structures and modelled 
interactions for the human interactome and core diseasome

Structures Models Combined
Total number of proteins 2039 4022 4254
Proteins with known nsSNPs 1293 2549 2712

Interface nsSNPs 2500 4309 6261
Core nsSNPs 1583 3970 3935
Surface nsSNPs 2706 3977 4355

Total residues 409219 1162790 1231941
Core residues 78571 330447 306001
Surface residues 173014 421402 423973
Interface residues 157634 410941 501967

nsSNPS
Disease 3259 6145 7326
Polymorphism 1640 4153 4461
Unclassified 1890 1958 2764
Total number of nsSNPs 6789 12256 14551

SURFACE
Disease 1054 1583 1881
Polymorphism 793 1926 1833
Unclassified 859 468 641

CORE
Disease 992 2546 2573
Polymorphism 225 887 804
Unclassified 366 537 558

INTERFACE
Disease 1213 2016 2872
Polymorphism 622 1340 1824
Unclassified 665 953 1565

INTERFACE HOTSPOT nsSNPs
Disease 279 716 949
Polymorphism 156 388 547
Unclassified 205 333 584
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polymorphism nsSNPs have a distribution closer to the expected one, showing no preference for

core or interface regions.. Interestingly, the unclassified SNPs show an important preference for the

interface vs.  non-interface surface while they do not show preference for core.  These could be

disease-related SNPs that do not have a strong effect on the structure of the protein, but could have

a more subtle effect by affecting specific interactions, which together with the limited number of

patients from which they are derived, make that they are difficult to unequivocally associate to a

pathological condition. . Interestingly, when the predictions were assessed on the interactions with

available  structure,  the  unclassified  SNPs showed the  lowest  precision.  This  high  rate  of  false

positives could indicate that these SNPs are affecting interactions for which there is no available

structure, and that is another reason why they have not been reliably associated to a disease yet. Of

course, we should not disregard that the false positives found in the prediction benchmark might

just  be an artifact of the prediction of this type of SNPs, so these results should be taken with

caution.
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Figure 23: Distribution and odds ratio for the docking-based interface predictions in interactome and core
diseasome

See details in Figure 13
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The network generated for the human interactome with the interactions affected by SNPs

based on the structures and docking models is difficult to visualize in a printed figure due the large

number of  interactions  in  the interactome and core diseasome networks.  This  network has 585

nodes, corresponding to 3,346 edges representing the PPIs. About 1,284 interactions are affected by

at least one disease-associated nsSNP, and 1,349 are affected by unclassified nsSNPs. We found 21

pathways can be affected by this mutations. Figure 24 shows a simplified network derived from our

analysis, showing only the interactions affected by each type of nsSNPs. 

To complement this result we analyzed the molecular function associated for all the proteins

involved  in  an  interaction  that  are  affected  by  diseases-asociated  nsSNPs  according  the  GO

classification. As expected, the analysis show an over-representation of the binding of proteins in

different context such enzyme binding, nucleotide binding, cytoskeletal protein binding. This means
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Figure 24: Simplified network of the human interactome network affected by nsSNPs at the interaction.

A representation of the interactome organized in a circular layout. Nodes in blue squares represent protein

where nsSNPs are predicted to be at the interface of a PPIs.  
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that a broad spectrum of this functions are altered by the nsSNPs that cause a disease.  Figure 25

show the most representative cluster of the over-representation analysis. 

Going  further  with  the  analysis,  we  clustered  the  generated  network  using  the  docking

models and structures according to the edge betweeness metric. This metric is an indicator of the

importance of the interaction given the topology of the network.  Figure 26 show the cluster with

the top scoring clustering in the network.
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Figure 25: Overrepresentation analysis of GO molecular functions altered by the disease nsSNPs at the
interface.

Size the node indicate the enrichment of the GO molecular term associated to the name of the proteins in 

the network. At the center, the GO term of Protein binding is the parent term of all the other GO terms, 

arrows indicate this hierarchic array  . Color indicate statistically significance associated to the GO term. 

The darker the color the higher their statistical significance. 
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The topology of the network shows different modules produced by the interaction between

proteins with nsSNPs at the interface zone. The network view with bundle edges helps to analyze

the burden caused by the altered interactions. For instance, the protein PDGFRB does no harbor any

nsSNP at the interface, but it is surrounded by different proteins with at least 1 disease-associated

nsSNP. All  the interaction partners  are  increasing the burden of  their  nsSNPs in this  particular

protein. Also we observed some modularity in the network. There is a complex module established

by the  interactions  between  JAK2,  RAF1,  KIT,  CBL,  INSR,  IGF1R,  BCR,  STATB5,  PLCG1,

EGFR, PPARA, and PTPN11. Three of these 12 proteins, JAK2, CBL, and IGF1R, are surrounded

by a large number of neighbors, which means that the burden of the nsSNPs is larger in these three

88

Figure 26: Top scoring cluster of PPIs according the to edge betweeness metric 

Edge colors correspond to the node (protein) of origin. Edges are bundled together to facilitate the visual

representation of the modules formed by the PPIs.
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proteins than in other parts of the interactome.

As in the previous study of the pathological mutations in the RASopathy networks based on

the docking calculations, we focused the analysis to the cellular pathways that are possibly affected

by the nsSNPs that are found at the interface of the proteins. Figure 27 shows all the possible

pathways that are affected by the existence of a nsSNP at the interface of a protein.  Figure 28

shows the  biggest  cluster  of  pathways  according  to  the  edge  betweeness  measurement.  In  this

cluster the central and most involve pathway is CCKR signaling map ST. Most of the interaction

partners of the displayed protein seem to have a role in this pathway and probably affecting another
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Figure  27:  Cellular  pathways  affected  by  nsSNPS  at  the  interface  of  the  proteins  in  the  human
interactome  

The interaction network all pathways (circles nodes) predicted to be affected by disease nsSNPs, because

they involve proteins (square nodes) whose interaction is altered by disease-associated nsSNPs according

to the interface predictions and available structural data. The color represents the pathway in which each

protein is involved. Edges are bundled to maximize the visualization of the clusters formed by simple

association between proteins and pathways.
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14 pathways out of the 17 total pathways. A characteristic of this network is also that many of the

proteins in this cluster have a maximum of two interaction partners. This indicate to some degree

the burden of the nsSNP on the protein. For example, disease nsSNPs in KAT5 at the interface seem

to affect 5 different pathways. 

This network analysis helps to find other proteins that are relevant in terms of increasing the

burden of a disease nsSNPs on cellular pathways rather than in specific partners. In addition, we can

observe some degree of connection between similar cellular functions, such as in the cases of the

Toll signaling pathway, inflammatory pathways or T/B Cell activation. 
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Figure 28: Top scoring cluster with the highest edge betweeness from the pathway analysis 

17 different pathways are predicted to be the most affected using automatic clustering by edgebetweeness.

The network show in circular  nodes the pathways and the name of  protein involved in  altered PPIs

appears at the intersection of the edges coming from the different pathways
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“The first rule is to keep an untroubled spirit. 

The second is to look things in the face and know them for what they are.”

― Marcus Aurelius
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Chapter 5 Discussion

5.1 Insights from post-docking analysis in rigid body sampling

Proteins are the physical embodiment of the message contained in the genes and they often work

through  protein-protein  interactions  that  are  critical  in  all  cellular  processes.  The  study of  the

structural and energetics requirements for these protein interactions is fundamental to understand

better  biological  processes  at  molecular  level  and  to  develop  new  therapeutic  applications.

Computational docking can help to overcome the technical limitations in experimental structure

determination. A key component of a docking algorithm is an efficient scoring function capable of

identifying the correct docking orientations.  Two factors have limited the development of more

accurate scoring functions: the availability of source data for training and testing, and the challenge

of describing the conformational flexibility of the interacting proteins. The first limitation factor is

related the lack of enough protein complexes with a high-quality structure. Provided there were

high-quality crystal structures for all types of interactions, then the optimization of the different

energy terms in a scoring function would be much more efficient.  The second limitation factor

remains  a  major  challenge  in  protein-protein  docking,  since  the  efficient  description  of

conformational changes upon binding would require side-chain and backbone refinement during

docking, and on-the-fly adjustment of the energy terms. Our post-docking processing of the docking

decoys that have been generated from different programs has proven to be a successful method to

characterize protein complexes and to explore the differences in sampling. We found several scoring

functions  that  provided  better  predictions  than  the  inbuilt  scoring  functions  in  each  program.

Moreover, the simple combination of such scoring functions enhanced the detection of near-native

solutions.  Usually,  the  best  performing pair  combination  of  functions  mixed different  levels  of

resolution, e.g. coarse-grain and atomistic. Among the coarse-grain scoring functions, CP_HLPL

showed great  adaptability to  different  sampling methods,  with no indication of  overtraining.  In

addition, this function performed successfully on the most flexible cases from both benchmarks, but

it  did  not  combine  well  in  a  pairwise  manner  with  another  scoring  functions.  Combining  two

scoring functions with different resolutions has been a discussed idea in the docking community.

Combining a coarse-grain function with an atomic one would help to  pick up different  signals
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arising  from the  two  different  resolution  levels.  Indeed,  we  found  that  many  pairs  of  scoring

functions have an acceptable success rate, consistently with the above discussed ideas. Interestingly,

some  atomistic  scoring  functions  can  also  combine  with  other  scoring  functions  of  the  same

resolution level, like PYDOCK_TOT. We pushed further the combinations with the FFT methods,

by mixing the best pair  of scoring functions for each docking method. The combination of the

different pairs for each of the three different methods revealed a slight set of combinations that

could  be  useful  for  re-scoring  the  generated  decoys.  The analysis  of  cardinalities,  such as  the

symmetric difference metrics, helped to identify that many of the combinations of the three methods

had significant  overlapping.  Nevertheless,  a  few combinations  with the three different  methods

showed  a  significant  improvement  in  the  predictive  success  rates,  as  compared  to  the  simple

methods. On the down side, we faced the limitation of not having another external set to test them

to reduce the possibility of overtraining.

5.2 A single scoring function does not provide an effective description of 
protein complex formation

A sophisticated framework for integrating a variety of scoring functions is required in order to take

advantage of the different signals that all available scoring functions might provide. Determining

the relevance of a scoring function for correctly ranking docking decoys is a task that requires

several regression and adjustments in a multivariate model. The previous analysis clearly showed us

the  direct  interplay between different  scoring  functions,  and our  approach was very direct  and

simple, but it posed a high risk of overtraining in the BM 5.0. On the other side, although the

docking community provided useful benchmarks to assess the success rate of the scoring functions,

we faced two drawbacks to using them for the purpose of evaluating the re-ranking power of a

variety of scoring functions. The first drawback was the size. For instance, although the scorer set

benchmark provided a variety of models from different groups, it was composed of a small number

of cases. The second drawback was that it cannot be completely disregarded that any of the scoring

functions  had  been  trained  on  some  of  the  previously  available  benchmarks.  Fortunately,  the

recently released BM 5.0 update was a  good external  set  that  gave us the opportunity to  train

models and assess their performance, thus avoiding the risk of overtraining the models. By using the

BM 4.0 as training setfor the several available scoring functions, together with the quality rank of
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each of the thousand decoys generated for the docking programs, and a stepwise feature selection

process, we successfully trained hundreds of SVM models. The actual innovation was a final step

that used a voting system to obtain a consensus ranking from the best performing models. This

combination pushed the near-native poses from each docking method to the top of the list, which

improved even further each of the resulting rankings. The success rates of the FFT-based methods

were comparable with the success rates of the best general docking methods. Actually, the only

method that performed better than the FFT-base methods was SwarmDock when the SVM and

voting system was applied to its ranking. Using the enhanced SwarmDock as a point of reference,

we noted that the sampling method had a significant influence on the successful identification of a

near-native solution. Still, SwarmDock remains computationally expensive and prohibitive for high-

throughput use. In BM 4.0 the re-ranked docking procedures beat almost all other methods, except

for default Swarmdock, which uses a different sampling strategy. Not all docking methods have the

success  rate  published for  the BM 5.0,  but  the  re-ranked FFT-based methods were superior  to

HADDOCK, one of the best protein-protein docking methods in CAPRI, and were very close to re-

ranked SwarmDock.  This  difference shows again the influence of  the  sampling on the  scoring

functions, as well as the advantage of integrating many weighted scoring functions. With this result,

we show how protein-protein docking can be further improved, with the use of different biophysical

descriptors  previously  gathered  in  our  group  and  widespread  techniques  borrowed  from  the

computer sciences. It remains to be seen if computational strategies such as a deep neural networks

can improve the results in the same way as we did. It would be also important to tune the different

sets  of  descriptors  according  to  the  difficulty  of  each  case,  due  to  their  flexibility  or  binding

energies. Another improvement would be devising a meta-model able to integrate the best of the

different  FFT-based  docking  procedures,  since  these  are  computationally  inexpensive  and  can

search the whole 3D space. The base of this meta-model would be the observation we made trying

to combine the normalized values of the three methods, which resulted in a considerable increase of

the success rates on the BM 5.0. 

5.3 The hard task of linking structural information to phenotypes

Structural  characterization  of  nsSNPs  and  their  involvement  in  protein-protein  interfaces  is  a

starting point to understand complex diseases,  for which databases like dSysMap  (Mosca et  al.

2015) are valuable resources. However, a major problem is the limited structural data available for
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protein-protein complexes, and as a consequence, only a fraction of all possible nsSNPs can be

accurately located at the interfaces. In this work, we have used docking models to characterize

nsSNPs that are likely to be involved in protein-protein interactions. To test this approach, we have

selected six complex diseases in which their  associated proteins are involved in  protein-protein

interactions for which there is little structural data.

The first difficulty we encountered in this analysis was the availability of data. The task of

finding all  the  coding protein  genes  to  construct  the  protein  interaction  network  of  a  complex

disorder is not trivial, as there are different sources of data for nsSNPs (e.g. humsavar) and disorder
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Figure  29: LHON  network  with  nsSNPS  observed  with  the  Structures  and  pyDock  NIP  extended

predictions. 

Given the limited structural data on the protein interaction network in LHON pathology, docking-based

predictions are key to identify disease nsSNPs (CPK representation) located at protein-protein interfaces.

Selected protein structures/models are shown, with residues colored according to their NIP value (in red

NIP > 0.2; in blue NIP < 0.0). 
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genes (e.g. OMIM) that are not always fully consistent. Indeed, the gene map file used here from

OMIM had 3,438 described phenotypes, while the version of humsavar used in this work has 2,727

phenotypes with assigned nsSNPs. This means that there could be protein coding genes associated

to  a  disease phenotype,  which do not  have any described nsSNP. An example of  this  was the

phenotype MCI (susceptibility to myocardial  infarction) [MIM: 608446].  This phenotype is  not

considered in databases like dSySmap, because all coding protein genes that have been reportedly

associated to the disease harbor mutations for other diseases, and thus no nsSNPs can be found

associated  with  this  MIM  code  in  humsavar (Table  1).  Therefore,  a  specific  analysis  of  this

phenotype using only the nsSNPs annotated in  humsavar is not realistic. When we analyzed the

interaction network of the proteins associated to this disease, including all nsSNPs associated to any

other diseases, we found a strong preference of these nsSNPs to be at an interface rather than in

non-interacting regions (OR 1.52, P-value < 0.005). The involvement of different nsSNPs causing

other diseases in the protein-protein interfaces of this interaction network is indicative of a complex

genotype-to-phenotype relationship, which is probably masking the nsSNPs linked to this specific

MCI phenotype. 

Due to the limited structural data, in phenotypes like the Leber hereditary optic neuropathy

(LHON) [MIM:535000], a rare mitochondrial disease, not a single nsSNP related to this disease

could be structurally located at  a protein-protein interface,  since there are no structures for the

protein complexes involved in this disease except for the self-interactions. Using our docking-based

interface prediction approach, we were able to structurally map 12 of the 21 nsSNPs associated to

this disease, and found that 4 of these mutations are predicted to be located at a protein-protein

interface; additionally we found nsSNPs associated to other diseases like Alzheimer and Breast-

ovarian cancer (Figure 29). We found the nsSNPS associated to LHON in three out of six of the

protein associated to the disease (MT_CO3, MT-ND1, and MT-ND5). We notice that these proteins

are part of the respiratory chain. One of the proteins, MT_CO3 (UniProt P00414), is part of the

complex IV assembly of the cytochrome oxidase c, which is the terminal member of the respiratory

chain  of  the  mitochondria.  The  other  two  affected  proteins  are  components  of  the  NADH-

ubiquinone oxidoreductase complex, which is key to the catalytic function of the respiratory chain.

We could only analyze part  of the chain 1 (MT-ND1, UniProt P03886) and chain 5 (MT-ND5,

UniProt  P03915).  MT-ND1/2  harbor  more  nsSNPs  at  the  interface  that  are  also  linked  to

Alzheimer's disease (MIM 502500). MT-ND1/5 proteins  are involved in the recognition of BCRT
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domains, especially MT_ND5. The nsSNPs that we found located in the interface might be very

specific for this LHON disorder, probably altering the recognition of such domains. We also found

other  elements  of  the  respiratory  chain  affected  by  nsSNPs  at  an  interface  zone,  which  were

described  to  cause  other  mitochondrial  related  disorders.  For  example,  the  protein  ELANE

(P08246), a mitochondrial elastase, is involved in two different diseases, cyclic hematopoiesis (CH;

MIM 162800) and severe congenital neutropenia 1 (SCN1; MIM 202700). Interestingly, the nsSNP

I104N, which is known to play a role in causing CH, is predicted here to be located at a protein-

protein interface.

5.4 Prediction of edgetic effects of SNPs affecting specific pathways

Crosstalk in cellular pathways provides the cell with a robust network of interactions to respond to

stimulus. The description of these pathway crosstalk events at molecular level and the mutations

that  may affect  them would open multiple  applications  in  biomedicine,  from understanding the

homeostatic response of a given drug in a particular population to discovering new personalized

scenarios for drug repurposing (Guney et al.  2016; Jaeger, Duran-Frigola, and Aloy 2015). The

structural characterization of missense mutations by combining complex structures and docking

predictions, as shown in this work, can be essential to achieve this understanding at interactomic

level. As an example, structural analysis of the TNNC1 interaction network in MHC phenotype

(Figure 6) shows that different nsSNPs could affect the interaction with different proteins. Indeed,

mutations affecting TNNT1 binding are in different region than those affecting TNNI1 and TNNI2.

Docking-based predictions can help to understand the structural role of additional nsSNPs that are

involved in interactions for which there is no available structural data. For instance, based on the

docking models, CDK1 binding has been found to be affected by TNNC1 nsSNPs D145E, G159R

and E134D; UBE2C binding is found to be affected by E134D; and RBM15B binding is found to be

affected by G159R and E134D (Figure 30). 

In the case of RASopathies, where several of the network nodes are important interaction

hubs,  a given disease-associated nsSNP at the interface region might  have an edgetic effect  by

affecting certain specific pathways but not others. Therefore, we examined all the pathways that are

probably affected by disease-related nsSNPs using NIP extended, and found around 50 affected

interactions  with  proteins  that  were  involved  in  38  different  pathways. The  network  topology
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provides  hints  for  the  role  of  these  nsSNPs.  Figure 19 shows the  interactions  predicted  to  be

affected by pathological mutations not previously characterized due to the lack of structural data.

Interestingly, we identified 26 different pathways involving proteins whose interaction was affected

by pathological mutations predicted to be located at hot-spot residues (Figure 20).

 As much as 25 of these pathways are mediated by interaction partners of BRAF and HRAS.

The  remaining  one,  the  nicotinic  acetylcholine  receptor  signaling  pathway,  was  affected  by  a

pathological  mutation  in  CBL.  In  total,  there  are  8  pathways  affected  by the  mutations  at  the

predicted hot-spots that would have not been identified based only on the available structural data

(Figure 20). According to our hotspot prediction, the pathways that are involving a larger number

of proteins whose interaction was predicted to be affected by pathological mutations are the RAS

pathway,  VEGF  signaling  pathway,  T  cell  activation  and  angiogenesis.  All  of  these  pathways
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Figure  30:  Pathways affected by pathological mutations in RAS/MAPK proteins predicted to be at
binding hot-spots

Proteins of the RAS/MAPK pathway are shown as colored circles, showing pathological mutations that

were not previously characterized due to the lack of structural data, but that have been predicted here to

be binding hot-spots for docking partner proteins involved in other pathways (linked to the corresponding

mutation). 
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involve interaction partners of both BRAF and HRAS proteins.

5.5 Identification and analysis of the protein-protein interactions affected 
by disease nsSNPs 

We previously designed a workflow that allows analyzing the role of nsSNPs on the interaction

networks for specific diseases. Here, we aimed to extend our methodology to larger interaction sets,

considering the current amount of sequencing projects that are analyzing hundreds to thousands of

proteins, in which thousand to millions of variants are identified. As previously described, FFT-

based docking programs are computationally cheap and fast, which makes it possible to perform

high-throughput  docking over  the  entire  high-confidence  human interactome.  By validating our

method  with  ZDOCK,  we  had  two  widely-used  docking  programs  to  obtain  the  normalized

interface propensities (NIP) values that are used to identify interface and hot-spot residues. In this

way,  we  had  three  different  but  complementary  sources  of  NIP values:  the  standard  pyDock

approach (FTDock docking poses  scored by pyDock),  the  ZDOCK docking poses  with  default

scoring, and the ZDOCK docking poses rescored by pyDock. Our method was tested in all the

interactions that have a 3D structure available, where we found that the method could place the

nsSNPs  at  the  interface  regions  with  high  sensitivity  and  reasonable  precision.  Applying  this

methodology to the entire human interactome, we found more than 1,200 interaction affected by a

disease-associated nsSNP using the combined information from the available structures and the

docking models.  These interactions could be potentially new pharmacological  targets  in a wide

variety of diseases.  Using extensive interaction networks,  we can search for those proteins that

create or receive a major burden on the cell with their altered interactions. Thus, we analyzed the

interaction  network  of  proteins  with  the  different  cellular  pathways.  With  this  analysis  of  the

cellular pathways affected by the interactions, we gained complementary knowledge of the proteins

that can drive the cell to a disease state. Both ways to analyze the interaction networks produced

complementary results.  On the one side,  in the analysis  of direct interactions,  we observed the

burden over some particular proteins with no nsSNPs at the interface. From the point of view of the

pathway analysis, we observed important proteins that are in a crossroad of different pathways.

Connecting pathways in this  way provide hints  of  the probable meaningful  interactions for the

pathway crosstalk. For instance, the CCRK pathway has been reported to possibly play a role in

several digestive disorders (Tripathi et al. 2015). Overall, this shows that large-scale computational

docking-based  calculations  could  complement  current  efforts  to  characterize  disease-associated
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genetic  variants  that  alter  protein sequence (missense mutations),  by providing a  structural  and

energetics analysis for many of them. The information generated can be integrated into different

mutation  pathogenicity  predictors  or  could  be  used  to  guide  virtual  screening  experiments  to

identify small-molecule ligands capable of modulating specific interactions. In both cases, these

analyzes aim to have future impact on personalized medicine, helping to improve diagnosis from

genetic information, and to develop new therapeutic approaches targeted to individual patients with

specific variants.

5.6 Future directions

To further improve the predictive capabilities of this approach, we integrate ab initio docking and

template-based modeling. It has been recently proposed that currently available structural data on

protein-protein  complexes  is  sufficient  to  provide  templates  for  all  protein-protein  interfaces,

providing that the interacting proteins have structure or a good model (Kundrotas et al. 2012). The

problem is that for remote homologous, the existing templates (if any) cannot be directly used to

model  a  protein-protein  complex  structure  with  reliability  (Negroni,  Mosca,  and  Aloy  2014).

Integration of this data with ab initio docking could help to model a larger number of complexes

and thus broaden the study of edgetic alteration of an entire disease interaction network. 

On the other side, in this thesis we were able to locate disease nsSNPs at protein-protein

interfaces for many cases for which there were no structural data available on the interaction. These

newly characterized nsSNPs that cause a disease due to their direct involvement in the interface

would  be  interesting  targets  for  identifying  small-molecule  compounds,  for  the  modulation  of

signaling cascades or drug development. We have a distinct advantage over other methods that need

the 3D structure of the complex to find hot-spots (Oliva and Fernandez-Fuentes 2015), or where

templates are necessary to model the protein complex structure (Tuncbag et al. 2011). The major

advantages of our method are that it is not computationally expensive, it can identify hot spots and

interfaces fairly accurately without prior knowledge of the 3D structure of the complex, and it is an

excellent complement for the existing experimental data (it can be optimally combined with SAXS

data,  mutational  experiments,  etc.).  In  addition,  including  the  network  analysis  facilitates  the

identification of neglected proteins that participate in the development of disease phenotypes, and

opens  the  possibility  of  high-throughput  docking  experiments  to  characterize  specific  disease

interactomes. 
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“If you thought that science was certain - well, 

that is just an error on your part.” 

- Richard Feynman
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Chapter 6 Conclusions

1.- From a systematic analysis of the performance of 73 known functions for the scoring of

rigid-body docking poses generated with different docking methods on a standard protein-protein

docking benchmark, we found that some of the scoring functions have much better predictive rates

than the original functions used in each method 

 2.- A few scoring functions were sufficiently robust to different types of docking methods,

which can be of interest when evaluating a heterogeneous pool of docking models generated by a

variety of methods. The combination of different scoring functions looks promising to obtain better

predictive rates, but this should be carefully done in order to avoid overtraining.

3.-  Integrating  scoring  functions  using  methods  originally  developed  for  information

retrieval and electoral voting provides a powerful method for enhancing the atomic modeling of

protein complexes in a way that is tailored to the technique used to generate the models. We have

implemented  this  approach  in  public  available  rigid-body  protein-protein  programs  pyDock,

ZDOCK, SDOCK.

4.- We have presented here a procedure to improve the characterization of genomic variants

involved  in  protein-protein  interactions,  especially  in  cases  with  low  or  limited  structural

information on the binding complexes.

5.- This procedure overcomes current structural data limitations and can help to understand

the structural and functional role of genomic variants involved in protein-protein interactions, as

well as their edgetic effect on specific protein interaction networks within a given disease. 
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“Heroes and scholars represent the opposite extremes... The scholar struggles for the benefit of all
humanity, sometimes to reduce physical effort, sometimes to reduce pain, and sometimes to
postpone death, or at least render it more bearable. In contrast, the patriot sacrifices a rather

substantial part of humanity for the sake of his own prestige. His statue is always erected on a
pedestal of ruins and corpses... In contrast, all humanity crowns a scholar, love forms the pedestal of

his statues, and his triumphs defy the desecration of time and the judgment of history.”

― Santiago Ramón y Cajal, Advice for a Young Investigator
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“I, myself, have killed six people. All random, all undetected, no way to trace them to me. And, let
me tell you, there's nothin' like it. It's a great feeling. Yeah, I know, you're thinking. 'Aw, he's a

comedian. He's just sayin' that stuff.' Good. That's exactly what I want you to think.” 

― George Carlin, Brain Droppings
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Supplementary Figure 1:  Comparison of the success rate of the Scoring Functions in the 

analysis in the BM 5.0. 

 A) We used the BM 5.0 update as an external set of protein complexes to test possible overtraining 

of the best Scoring Functions found for the BM 4.0. B) The best scoring functions for the BM 5.0 

are mainly coarse-grain Scoring Functions. Some of this new set of Scoring Functions are shared at 

least between two of the methods, like PYDOCK_TOT or CP_BFKV, and there are two Scoring 

Functions shared among all methods CP_HLPL and CP_TB . This latter showed a big success rate 

for the top100 ranking in the scorers set and CP_HLPL appear again shared in all methods, this 

indicates the robustness of both by the good scoring in the different set of decoys.
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Supplementary Figure 2 Comparison of the success rate in top100 ranking of the scoring 

functions in BM 5.0. 

 (A)  In the BM 4.0, we found three Scoring Function: CP_TB,  AP_PISA CP_HLPL have good 

success rate in top10 ranking and are shared among methods. Also, in general the atomistic Scoring 

Functions have better success rate than the coarse-grain Scoring Functions except CP_TSC. (B) The

analysis in the BM 5.0 update changes the order of the ranking Scoring Functions. The best Scoring

Functions in ZDOCK and SDOCK is AP_calRW and its refined version AP_calRWp, both showed 

big ranking power in the scorer set. With FTDock the best atomistic Scoring Functions is 

PYDOCK_TOT. The only Scoring Functions shared for all the three methods is CP_HLPL, this 

suggests this Scoring Functions is resilient to the possible changes caused by the different sampling 

methodologies.
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Supplementary Figure 3 Union cardinalities heatmap of FTDock showing the relation between 
all the pairs of scoring functions 
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Supplementary Figure 4 Symmetric difference cardinalities heatmap of FTDock showing the 
relation between all the pairs of scoring functions 
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Supplementary Figure 5 Union cardinalities heatmap of ZDOCK showing the relation between 
all the pairs of scoring functions 
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Supplementary Figure 6 Symetric difference cardinalities heatmap of ZDOCK showing the 
relation between all the pairs of scoring functions 
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Supplementary Figure 7 Union cardinalities heatmap of SDOCK showing the relation between all
the pairs of scoring functions 
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Supplementary Figure 8 Symmetric difference cardinalities heatmap of SDOCK showing the 
relation between all the pairs of scoring functions 
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Supplementary Table 1 Docking success rates in top 1, top 10 and top 100, for the four docking

pipelines before and after re-ranking, and a comparison to other docking protocols.

a) Re-ranked using the presented method, BM5 results are those when the BM5 complexes are

used as external validation set, and BM4 results are cross-validation scores. b) Results from this

study,  prior  to  re-ranking using the same decoy set.  c)  Results  from Vreven et  al.  d)  Results

fromTorchala et al. e) Results from Schneidman-Duhovny et al. f) Results from Chowdhury et al. .

g)Results from Ohue et al. . h) Results from Huang, where a slightly different definition of near-

native is used.
BM5 update (%) BM4 (%)

n=55 n=176
Method Reference T1 T10 T100 T1 T10 T100

SwarmDock+re-rank a 24 45 69 30 49 65
SwarmDock b-c-d 16 38 67 10 36 65

pyDock+re-rank a 18 40 54 14 30 52
pyDock b 7 20 42 6 18 40

ZDOCK 3.0.1+re-rank a 20 27 45 20 38 65
ZDOCK 3.0.1 b 5 20 36 13 26 47

SDOCK+re-rank a 9 29 56 20 40 59
SDOCK b 13 24 47 13 26 49

ZDOCK3.0.2+IFACE c 5 27 53 - - -
pyDock c 7 20 42 - - -

HADDOCK c 9 20 40 - - -
PatchDock+FireDock e - - - 10 24 49

F2Dock f - - - 13 25 38
ZDOCK 3.0.2 f - - - 7 22 42

MegaDock 1.0 g - - - 0 2 6
MegaDock 2.0 g - - - 1 3 10
MegaDock 2.1 g - - - 1 5 13

ZDOCK 3.0 g - - - 7 13 27
ZDOCK 3.0.2 h - - - 12 31 52

SDOCK h - - - 10 23 46
PIPER h - - - 9 21 40

FRODOCK h - - - 5 19 46
ATTRACT:LJ h - - - 5 19 47

ATTRACT h - - - 5 18 43
ZDOCK 1.3 h - - - 7 15 41

ZDOCK 2.3.2 h - - - 6 14 38
HEX h - - - 4 11 25
DOT h - - - 2 10 27

PatchDock h - - - 3 7 23
MolFit/GH h - - - 2 7 25

ZDOCK 2.1 h - - - 1 7 20
HEX/G h - - - 0 4 16

MolFit/G h - - - 1 3 19
GRAMM h - - - 0 3 11

FTDock/G h - - - 1 2 11
FTDock h - - - 1 2 11
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Supplementary Table 2: Scoring functions use from the Ccharppi server and  their reference.

Scoring Function Description Reference

CP_BFKV Contact potential calculated between 
intermolecular residues

Proteins 59(1):49 (2005) and BMC 
Bioinformatics 11:92 (2010)

CP_BL Contact potential calculated between 
intermolecular residues

Proteins 59(1):49 (2005) and BMC 
Bioinformatics 11:92 (2010)

CP_BT Contact potential calculated between 
intermolecular residues

Proteins 59(1):49 (2005) and BMC 
Bioinformatics 11:92 (2010)

CP_GKS Contact potential calculated between 
intermolecular residues

Proteins 59(1):49 (2005) and BMC 
Bioinformatics 11:92 (2010)

CP_HLPL Contact potential calculated between 
intermolecular residues

Proteins 59(1):49 (2005) and BMC 
Bioinformatics 11:92 (2010)

CP_MJPL Contact potential calculated between 
intermolecular residues

Proteins 59(1):49 (2005) and BMC 
Bioinformatics 11:92 (2010)

CP_MJ3h Contact potential calculated between 
intermolecular residues

Proteins 59(1):49 (2005) and BMC 
Bioinformatics 11:92 (2010)

CP_MJ2h Contact potential calculated between 
intermolecular residues

Proteins 59(1):49 (2005) and BMC 
Bioinformatics 11:92 (2010)

CP_MJ1 Contact potential calculated between 
intermolecular residues

Proteins 59(1):49 (2005) and BMC 
Bioinformatics 11:92 (2010)

CP_MJ2 Contact potential calculated between 
intermolecular residues

Proteins 59(1):49 (2005) and BMC 
Bioinformatics 11:92 (2010)

CP_MSBM Contact potential calculated between 
intermolecular residues

Proteins 59(1):49 (2005) and BMC 
Bioinformatics 11:92 (2010)

CP_MS Contact potential calculated between 
intermolecular residues

Proteins 59(1):49 (2005) and BMC 
Bioinformatics 11:92 (2010)

CP_Qa Contact potential calculated between 
intermolecular residues

Proteins 59(1):49 (2005) and BMC 
Bioinformatics 11:92 (2010)

CP_Qm Contact potential calculated between 
intermolecular residues

Proteins 59(1):49 (2005) and BMC 
Bioinformatics 11:92 (2010)

CP_Qp Contact potential calculated between 
intermolecular residues

Proteins 59(1):49 (2005) and BMC 
Bioinformatics 11:92 (2010)

CP_RO Contact potential calculated between 
intermolecular residues

Proteins 59(1):49 (2005) and BMC 
Bioinformatics 11:92 (2010)

CP_SKOb Contact potential calculated between Proteins 59(1):49 (2005) and BMC 
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intermolecular residues Bioinformatics 11:92 (2010)

CP_SKOa Contact potential calculated between 
intermolecular residues

Proteins 59(1):49 (2005) and BMC 
Bioinformatics 11:92 (2010)

CP_SJKG Contact potential calculated between 
intermolecular residues

Proteins 59(1):49 (2005) and BMC 
Bioinformatics 11:92 (2010)

CP_TD Contact potential calculated between 
intermolecular residues

Proteins 59(1):49 (2005) and BMC 
Bioinformatics 11:92 (2010)

CP_TEl Contact potential calculated between 
intermolecular residues

Proteins 59(1):49 (2005) and BMC 
Bioinformatics 11:92 (2010)

CP_TEs Contact potential calculated between 
intermolecular residues

Proteins 59(1):49 (2005) and BMC 
Bioinformatics 11:92 (2010)

CP_TS Contact potential calculated between 
intermolecular residues

Proteins 59(1):49 (2005) and BMC 
Bioinformatics 11:92 (2010)

CP_VD Contact potential calculated between 
intermolecular residues

Proteins 59(1):49 (2005) and BMC 
Bioinformatics 11:92 (2010)

CP_TSC The residue level interaction two-step 
potential

BMC Struct biol 10:40 (2010).

CP_SKOIP The residue level interaction contact 
potential

Biophys. J. 84(3):1895 (2003).

AP_DCOMPLEX The DComplex potential Proteins 56:93 (2004).

AP_dDFIRE Interaction energy calculated using the 
dDFIRE potential

Proteins 72:793 (2008).

AP_DFIRE2 Interaction energy calculated using the 
DFIRE2 potential

Protein Science 17:1212 (2008).

CP_RMFCEN1 The 6bin-HRSC centroid-centroid 
potential

Proteins 70(3):950 (2006).

CP_RMFCEN2 The 7bin-HRSC centroid-centroid 
potential

Proteins 70(3):950 (2006).

CP_RMFCA The C_alpha-C_alpha potential Proteins 65(3):726 (2006)

CP_TB The residue level interaction contact 
potential

Proteins 62(4):970 (2006).

CP_TSC The residue level interaction two-step 
potential

BMC Struct biol 10:40 (2010).

AP_T1 The first atomic two-step potential BMC Struct biol 10:40 (2010).

AP_T2 The second atomic two-step potential BMC Struct biol 10:40 (2010).
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AP_DOPE The DOPE statistical potential Protein Sci. 15(11):2507 (2006).

ELE Total electrostatic energy as calculated 
using PyDock

Proteins 68:503 (2007) and Protein 
69:852 (2007)

DESOLV Desolvation energy as calculated using 
PyDock

Proteins 68:503 (2007) and Protein 
69:852 (2007)

VDW Van der Waals energy as calculated using
PyDock

Proteins 68:503 (2007) and Protein 
69:852 (2007)

PYDOCK_TOT Total pyDock energy Proteins 68:503 (2007) and Protein 
69:852 (2007)

ODA The optimal docking area (ODA) score Int. J. Data Mining Bioinf. 3:55 
(2009) and J. Chem. Inf. Mod. 
51:370 (2011).

PROPNSTS Amino acid propensity score J. Chem. Inf. Mod. 51:370 (2011).

SIPPER The SIPPER potential J. Chem. Inf. Mod. 51:370 (2011).

AP_DARS The DARS potential Biophys J. 2008 95(9):4217-27

AP_URS The URS potential Biophys J. 2008 95(9):4217-26

AP_MPS The MPS potential Biophys J. 2008 95(9):4217-25

AP_WENG The pair-wise statistical potential 
implemented in Zdock

Proteins 2007 69(3):511-20.

CP_DECK The residue level distance-dependent 
potential

BMC Bioinformatics. 2011 12:280.

CP_ZPAIR_CB The E_pair Z-score C_beta potential Protein Sci. 2011 20(3):529-41.

CP_ZLOCAL_CB The E_local Z-score C_beta potential Protein Sci. 2011 20(3):529-41.

CP_ZS3DC_CB The E_ZS3DC z-score C_beta potential Protein Sci. 2011 20(3):529-41.

CP_Z3DC_CB The E_3DC Z-score C_beta potential Protein Sci. 2011 20(3):529-41.

CP_EPAIR_CB The E_pair C_beta potential Protein Sci. 2011 20(3):529-41.

CP_ELOCAL_CB The E_local C_beta potential Protein Sci. 2011 20(3):529-41.

CP_ES3DC_CB The E_ZS3DC C_beta potential Protein Sci. 2011 20(3):529-41.

CP_E3DC_CB The E_3DC C_beta potential Protein Sci. 2011 20(3):529-41.

CP_E3D_CB The E_3D C_beta potential Protein Sci. 2011 20(3):529-41.

CP_ZPAIR_MIN The E_pair Z-score R_min potential Protein Sci. 2011 20(3):529-41.

CP_ZLOCAL_MIN The E_local Z-score R_min potential Protein Sci. 2011 20(3):529-41.
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CP_ZS3DC_MIN The E_ZS3DC z-score R_min potential Protein Sci. 2011 20(3):529-41.

CP_Z3DC_MIN The E_3DC Z-score R_min potential Protein Sci. 2011 20(3):529-41.

CP_EPAIR_MIN The E_pair R_min potential Protein Sci. 2011 20(3):529-41.

CP_ELOCAL_MIN The E_local R_min potential Protein Sci. 2011 20(3):529-41.

CP_ES3DC_MIN The E_ZS3DC R_min potential Protein Sci. 2011 20(3):529-41.

CP_E3DC_MIN The E_3DC R_min potential Protein Sci. 2011 20(3):529-41.

CP_E3D_MIN The E_3D R_min potential Protein Sci. 2011 20(3):529-41.

AP_calRW The calRW distance-dependent atomic 
potential

PloS One. 2010 5(10):e15386.

AP_calRWp The calRWplus orientation-dependent 
atomic potential

PloS One. 2010 5(10):e15386.

AP_GOAP_ALL The total GOAP energy Biophys J. 2011 101(8): 2043-2052.

AP_GOAP_DF The DFIRE term in the GOAP energy Biophys J. 2011 101(8): 2043-2052.

AP_GOAP_G The GOAP_ag term in the GOAP energy Biophys J. 2011 101(8): 2043-2052.

AP_PISA The PISA score Proteins 81(4):592 (2013).
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Supplementary Table 3 Union cardinality of top 50 perfoming pairs of scoring functions when we 

combined zscores from the three different FFT methods ordered by union columun.
FTDock ZDOCK SDOCK UNION

CP_HLPL and CP_DECK PYDOCK_TOT and ZDOCK CP_QP and AP_calRWp 30

PYDOCK_TOT and AP_GOAP_DF PYDOCK_TOT and ZDOCK AP_T2 and CP_TSC 29

AP_PISA and CP_TSC PYDOCK_TOT and ZDOCK CP_QP and AP_calRWp 29

PYDOCK_TOT and AP_GOAP_DF PYDOCK_TOT and AP_T1 AP_T2 and CP_TSC 28

PYDOCK_TOT and AP_GOAP_DF CP_DECK and ZDOCK AP_T2 and CP_TSC 28

PYDOCK_TOT and AP_GOAP_DF AP_T2 and PYDOCK_TOT AP_T2 and CP_TSC 28

PYDOCK_TOT and AP_GOAP_DF AP_T2 and CP_DECK AP_T2 and CP_TSC 28

PYDOCK_TOT and AP_GOAP_DF AP_PISA and PYDOCK_TOT AP_T2 and CP_TSC 28

PYDOCK_TOT and AP_GOAP_DF AP_PISA and CP_TSC AP_T2 and CP_TSC 28

CP_RMFCA and AP_GOAP_DF PYDOCK_TOT and ZDOCK AP_T2 and CP_TSC 28

CP_HLPL and PYDOCK_TOT PYDOCK_TOT and ZDOCK CP_QP and AP_calRWp 28

CP_HLPL and PYDOCK_TOT PYDOCK_TOT and ZDOCK AP_T2 and CP_TSC 28

CP_HLPL and PYDOCK_TOT AP_PISA and CP_TSC CP_QP and CP_TS 28

CP_HLPL and PYDOCK_TOT AP_PISA and CP_TSC AP_calRWp and CP_TS 28

CP_HLPL and CP_RMFCA PYDOCK_TOT and ZDOCK AP_T2 and CP_TSC 28

CP_HLPL and CP_DECK PYDOCK_TOT and ZDOCK CP_QP and CP_TS 28

CP_HLPL and CP_DECK PYDOCK_TOT and ZDOCK CP_QP and CP_HLPL 28

CP_HLPL and CP_DECK PYDOCK_TOT and ZDOCK CP_QP and AP_PISA 28

CP_HLPL and CP_DECK PYDOCK_TOT and ZDOCK CP_QP and AP_dDFIRE 28

CP_HLPL and CP_DECK PYDOCK_TOT and ZDOCK CP_HLPL and AP_PISA 28

CP_HLPL and CP_DECK PYDOCK_TOT and ZDOCK AP_T2 and CP_TSC 28

CP_HLPL and CP_DECK PYDOCK_TOT and ZDOCK AP_dDFIRE and CP_HLPL 28

CP_HLPL and CP_DECK PYDOCK_TOT and ZDOCK AP_calRWp and CP_TSC 28

CP_HLPL and CP_DECK PYDOCK_TOT and ZDOCK AP_calRWp and CP_TS 28

CP_HLPL and CP_DECK PYDOCK_TOT and ZDOCK AP_calRWp and AP_dDFIRE 28

CP_HLPL and CP_DECK AP_T2 and PYDOCK_TOT CP_QP and AP_calRWp 28

CP_HLPL and CP_DECK AP_PISA and CP_TSC CP_QP and CP_TS 28

CP_HLPL and CP_DECK AP_PISA and CP_TSC CP_QP and AP_PISA 28

CP_HLPL and CP_DECK AP_PISA and CP_TSC CP_QP and AP_calRWp 28

CP_HLPL and CP_DECK AP_PISA and CP_TSC CP_HLPL and AP_PISA 28

CP_HLPL and CP_DECK AP_PISA and CP_TSC AP_calRWp and CP_TS 28

CP_HLPL and AP_PISA PYDOCK_TOT and ZDOCK CP_QP and AP_calRWp 28

CP_HLPL and AP_PISA PYDOCK_TOT and ZDOCK AP_T2 and CP_TSC 28

CP_HLPL and AP_PISA PYDOCK_TOT and ZDOCK AP_calRWp and CP_TSC 28

CP_HLPL and AP_PISA AP_PISA and CP_TSC CP_QP and AP_PISA 28

CP_HLPL and AP_PISA AP_PISA and CP_TSC CP_QP and AP_calRWp 28

CP_HLPL and AP_PISA AP_PISA and CP_TSC CP_HLPL and AP_PISA 28

CP_HLPL and AP_PISA AP_PISA and CP_TSC AP_T2 and CP_TSC 28

CP_HLPL and AP_GOAP_DF PYDOCK_TOT and ZDOCK AP_T2 and CP_TSC 28

AP_PISA and PYDOCK_TOT PYDOCK_TOT and ZDOCK CP_QP and AP_calRWp 28

AP_PISA and PYDOCK_TOT PYDOCK_TOT and ZDOCK AP_calRWp and CP_HLPL 28

AP_PISA and CP_RMFCA PYDOCK_TOT and ZDOCK AP_T2 and CP_TSC 28

AP_PISA and AP_GOAP_DF PYDOCK_TOT and ZDOCK AP_T2 and CP_TSC 28

SIPPER and CP_TB PYDOCK_TOT and ZDOCK CP_QP and CP_HLPL 27

SIPPER and CP_TB PYDOCK_TOT and ZDOCK CP_HLPL and AP_PISA 27

SIPPER and AP_GOAP_DF PYDOCK_TOT and ZDOCK CP_QP and CP_HLPL 27

SIPPER and AP_GOAP_DF PYDOCK_TOT and ZDOCK CP_QP and AP_PISA 27

SIPPER and AP_GOAP_DF PYDOCK_TOT and ZDOCK CP_QP and AP_calRWp 27

SIPPER and AP_GOAP_DF PYDOCK_TOT and ZDOCK CP_HLPL and AP_PISA 27
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Supplementary Table 4: Union Cardinality of the tripplets used to re score BM 5.0 update
FTDock ZDOCK SDOCK UNION

PY DOCK_TOT and CP_TB PY DOCK_TOT and ZDOCK SDOCK and CP_TSC 26

CP_HLPL and PY DOCK_TOT AP_T2 and CP_DECK AP_calRWp and SDOCK 26

CP_HLPL and PY DOCK_TOT AP_PISA and AP_T1 SDOCK and AP_PISA 25

PY DOCK_TOT and CP_TB AP_T2 and PY DOCK_TOT SDOCK and CP_TSC 25

CP_HLPL and CP_DECK PY DOCK_TOT and CP_TSC SDOCK and AP_PISA 25

PY DOCK_TOT and AP_GOAP_DF AP_PISA and ZDOCK SDOCK and AP_PISA 25

PY DOCK_TOT and AP_GOAP_DF AP_PISA and PYDOCK_TOT SDOCK and AP_PISA 25

PY DOCK_TOT and AP_GOAP_DF AP_T1 and ZDOCK SDOCK and AP_PISA 25

CP_HLPL and PY DOCK_TOT PY DOCK_TOT and AP_DCOMPLEX AP_calRWp and SDOCK 25

CP_HLPL and PY DOCK_TOT AP_T2 and ZDOCK AP_calRWp and SDOCK 25

CP_HLPL and PY DOCK_TOT AP_T2 and AP_PISA AP_calRWp and SDOCK 25

PY DOCK_TOT and CP_TB AP_PISA and CP_TSC SDOCK and AP_T1 24

AP_PISA and CP_TB PY DOCK_TOT and CP_TSC SDOCK and AP_PISA 24

PY DOCK_TOT and CP_TB AP_PISA and ZDOCK SDOCK and CP_TSC 24

PY DOCK_TOT and CP_TB PY DOCK_TOT and CP_TSC CP_Qp and SDOCK 24

PY DOCK_TOT and AP_GOAP_DF AP_T2 and CP_TSC SDOCK and AP_PISA 24

PY DOCK_TOT and AP_GOAP_DF PY DOCK_TOT and AP_DCOMPLEX SDOCK and AP_PISA 24

PY DOCK_TOT and CP_TB CP_Qp and PY DOCK_TOT SDOCK and CP_TSC 24

CP_HLPL and PY DOCK_TOT AP_DCOMPLEX_AP_T1 AP_calRWp and SDOCK 24

PY DOCK_TOT and CP_TB AP_PISA and ZDOCK CP_Qp and SDOCK 23

PY DOCK_TOT and CP_TB AP_PISA and AP_T1 CP_Qp and SDOCK 23

PY DOCK_TOT and AP_GOAP_DF CP_Qp and AP_DCOMPLEX SDOCK and AP_PISA 23

PY DOCK_TOT and CP_TB PY DOCK_TOT and CP_TSC SDOCK and CP_HLPL 23

PY DOCK_TOT and CP_TB PY DOCK_TOT and CP_TSC SDOCK and CP_TSC 23

PY DOCK_TOT and AP_GOAP_DF AP_T2 and AP_DCOMPLEX SDOCK and AP_PISA 23

PY DOCK_TOT and CP_TB CP_Qp and PY DOCK_TOT AP_T2 and SDOCK 23

PY DOCK_TOT and AP_GOAP_DF CP_Qp and PY DOCK_TOT SDOCK and CP_HLPL 22

PY DOCK_TOT and CP_TB CP_Qp and AP_T2 AP_T2 and SDOCK 22

PY DOCK_TOT and CP_TB AP_T2 and AP_DCOMPLEX SDOCK and CP_TSC 22

PY DOCK_TOT and CP_TB AP_DCOMPLEX_AP_T1 SDOCK and CP_TSC 22



“You must unlearn what you have learned.”

– Yoda
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Chapter 9 Thesis advisor report
The present PhD thesis by Didier Barradas Bautista produced four academic articles, three as

first author and one as second author. Three of the articles are submitted to journal with impact

factor from 2.499 to 5.766 as indexed in ISI. The remaining article is soon to be submitted. The

work has been presented to the scientific community in local and international congresses with

talks or poster.

•Research articules

2016 A  large  scale  characterization  of  disease-related  variants  in  the
structural  human  interactome  using  high-throughput  docking
calculations .Barradas-Bautista D and Fernández-Recio J. In preparation

2016 A  systematic  analysis  of  scoring  functions  in  rigid-body  docking:  the
delicate balance between the predictive rate improvement and the risk
of overtraining. Barradas-Bautista D, Moal I, Fernández-Recio J. Submitted

2016 Structural  modeling  of  protein-protein  interfaces  for  the  functional
characterization  of  disease-related  amino  acid  mutations  .Barradas-
Bautista D and Fernández-Recio J. Submitted

2016 Web-search based integration of biophysical models for protein 
assembly selection. Moal I, Barradas-Bautista D,Jiménez-García B,  Torchala
M,  Van  der  Velde  A,  Vreven T,  Weng  Z,  Bates  PA  and   Fernández-Recio  J.
Submited

•Congress and workshops 
attendance 

2016 POSTER: FROM NETWORKS TO INTERACTIONS : 3D DISEASOMES AND HOTSPOT
PREDICTIONS TO  IDENTIFY  EDGETIC  MUTATIONS.  BIOINTERACTOMICS -  FEBS
IUBMB WORKSHOP ,SPAIN

2016 POSTER:  PREDICTING  EDGETIC  MUTATIONS  IN  STRUCTURAL  DISEASOMES
USING PROTEIN-PROTEIN DOCKING SIMULATIONS: FROM  NETWORK TO 3D
INTERACTIONS  AND  BACK.  XVII  INTERNATIONAL  CONGRESS  OF  SYSTEM
BIOLOGY, SPAIN

2016 TALK: A  STRATEGY  TO  MIX  DIFFERENT  BIOPHYSICAL  SCORING  FUNCTIONS
FUSING  THE  RANKING  POWER  OF  FFT-BASED  PROTEIN-PROTEIN  DOCKING
PROTOCOLS. 5TH INTERNATIONAL IBERIAN BIOPHYSICS CONGRESS, PORTUGAL

2016 TALK: STRUCTURAL  DISEASOMES  AND  HOT-SPOT  PREDICTION  ENABLE
DETECTION  OF  NETWORK-ATTACKING  MUTATIONS  XIII  SYMPOSIUM  ON
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