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Abstract
It is argued that the accuracy of risk aggregation in Solvency II can be improved by updating skew-
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superior to the standard formula and to adjustments of the Cornish-Fisher type. The method handles
tail-dependence if a simple Monte Carlo step is included. A hierarchical Clayton copula is constructed
and used to confirm the accuracy of the log-normal approximation and to demonstrate the importance
of including tail-dependence. Arguably a log-normal scheme makes the logic in Solvency II consistent,
but many other distributions might be used as vehicle, a topic that may deserve further study.
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1 Introduction

Solvency II insurance regulation addresses uncertainty by first subtracting a so-called ‘best estimate’

so that company risk becomes a sum of zero-mean random variables organized as a hierarchy. At the

top level there are insurance risk, market risk, credit risk and operational risk as in Figure 1 with com-

ponents and sub-components underneath in structures that might in practice be much more complex

than shown. The risk is controlled and supervised through the so-called solvency capital requirement

(SCR) which is the 99.5% percentile of all net obligations for the coming year. Determining it is no

easy task, certainly not computationally, but nor in terms of modelling with so many parameters with

limited data to hang estimates on. A regulatory body must also strike a balance between accuracy

and simplicity. Monte Carlo might appear an obvious computational tool, but considerable modelling

effort and computer programming would be needed for a full bottom-up model which may be pro-

hibitively costly for not-so-large companies. Perhaps it would also be inconvenient for regulators to

supervise, and at any rate the solution adopted in Solvency II is different and much simpler.

The idea is to allocate SCR’s (or 99.5% percentiles) to all risk variables individually and accumu-

late them to a value for the entire company. To clarify the issue consider the simplified skeleton of

a non-life insurance company in Figure 1. It is a simplified extract of the Solvency II flow-chart in

EIOPA(2014) and will be used for illustrations later. The top SCR encompassing all company op-

erations branches out into components and sub-components. Those with no offshoots under them,

for example operational, lapse, credit risk and others are input to the scheme and have their SCR’s

specified as laid down by EU legislation in the Commission Delegated Regulation (2015) or by internal

quantification. These assessments are then merged to a new value one level above, and in this manner

the tree is climbed until the top for the entire company has been reached. The question is how the
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rule of aggregation should be constructed. Solvency II has opted for the so-called standard formula

which is exact for Gaussian systems, but in insurance and finance this condition is not too plausible

due to the existence of extremes and asymmetry; see Pfeifer and Strassburger (2009). The purpose of

this article is to promote schemes with higher accuracy while keeping things simple.

The most obvious objection to the Gaussian model is the symmetry forced upon all marginal dis-

tributions. This may not be very inaccurate for market risk extending over one year, see Ch 15 in

Sandström (2011), but it is wide off the mark for all those variables in insurance with heavy right

tails. Can skewness corrections be introduced in some way? The issue was taken up by Sandström

(2007) who used the Cornish-Fisher improvement of Gaussian approximations, and he was able to

demonstrate that skewness can be updated recursively and jointly with the SCR updates themselves.

However, there are other ways this can be done, and the problem deserves more research. One possi-

bility which is developed and examined below, is the use of log-normal distributions with a parameter

capturing skewness. This contributes an enhanced degree of consistency since the log-normal model

as motivating factor is present everywhere in Solvency II, and the added complexity compared to the

standard formula is one update more. The skewness recursion differs from that in Sandström (2007)

and is, as we shall argue, a more effective one.

But why not other families of heavy-tailed distributions? Closed expressions for the update for-

mulae as in Section 2 are no longer possible, but it can be done through numerics; see Section 3. We

might go even further. One of the referees has pointed out that the most accurate of all would be to

assign different types of distributions to different variables, and for example to consider the log skew

normal (Eling, 2012). The approach developed below handles even this, yet it is open to question

how far down this road it is practical to go. The parameters in heavy-tailed variables are often highly
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uncertain due to lack of data whatever the family of distributions selected, and a regulator must also

guard against making schemes too complex.

Then there is a second question of how covariation should be modelled. The standard Gaussian model

makes use of ordinary correlations which is a serious limitation unable to capture tail dependence.

Papers addressing the issue in Solvency II are Pfeifer and Strassburger (2008), Savelli and Clemente

(2011), Bermudez, Ferri and Guillen (2013) and Alm (2015) who investigated the consequences for

the accuracy of the standard formula and proposed other ways to proceed. The log-normal approach

can be fortified in this direction through copula constructions at the expense of using a small dose of

Monte Carlo in the skewness update. As pointed out in Savelli and Clemente (2011) we are now en-

tering the realm of hierarchical copulas with highly unequal degree of dependence for different groups

of variables. To evaluate the accuracy of the log-normal aggregation method in the example in Figure

1 a bottom-up model is needed. The approach through nested Archimedeans in McNeil (2008) proved

convenient and shall enable us to indicate the significance of using copulas rather than correlations to

describe dependencies between variables.

2 Solvency capital recursions

2.1 The standard formula

The recursive step in the Solvency II aggregation scheme can be expressed as follows. Let X1, . . . , Xn

be dependent random variables with mean 0, standard deviations σ1, . . . , σn and 1 − ϵ percentiles

C1, . . . , Cn. The reason for zero mean variables is that the expected in Solvency II has already has

been taken through the so-called ‘best estimate’, as indicated earlier. Introduce

S = X1 + . . .+Xn (1)
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Figure 1 Solvency II representation of the risk components of a simplified insurance company.

and write σs and Cs for the standard deviation and 1− ϵ percentile of this sum. The issue is then to

compute Cs from C1, . . . , Cn which is achieved through the standard formula

Cs =

 n∑
i=1

n∑
j=1

ρijCiCj

1/2

(2)

with ρij = cor(Xi, Xj), see the Commission Delegated Regulation (2015). In the Gaussian case

Ci = σiϕϵ with ϕϵ the 1 − ϵ percentile of the standard normal, and the ordinary variance/covariance

formula in (4) left shows that the method is exact for Gaussian systems.

It can be used recursively. Let S1, . . . , Sm be sums similar to that in (1), and suppose their 1 − ϵ

percentiles Cs1, . . . , Csm have been obtained by m different applications of the rule in (2). The 1− ϵ

percentile of S1 + . . . + Sm may then be calculated by the same method provided the correlations of

S1, . . . , Sm have been specified which is precisely what is offered in the Commission Delegated Reg-

ulation (2015). Repeated applications of this technique while going upwards through the branches

of Figure 1 may proceed until the top that applies to the entire company and all its operations has

been reached. Initialization of the scheme when the input SCR’s are specified, is typically carried

out independently. Indeed on this point the Commission Delegated Regulation (2015) often refers to

5



log-normal rather than Gaussian distributions.

2.2 A Cornish-Fisher method

The aggregation rule in Section 2.1 is unlikely to be very accurate since skewness, often important in

insurance, is neglected. A possible remedy is to draw on the Cornish-Fisher approximation in statis-

tics. The idea which is due to Sandström (2007), makes use of the skewness coeffcients γ1, . . . , γn of

the variables X1, . . . , Xn and starts by adding the Cornish-Fisher term so that now

Ci = σi{ϕϵ + γi(ϕ
2
ϵ − 1)/6}, i = 1, . . . , n (3)

which are to be converted into an assessment Cs of the solvency capital of S one level higher up. This

is achieved by evaluating the standard deviations σs and skewness coefficient γs of S through

σs =

 n∑
i=1

n∑
j=1

ρijσiσj

1/2

and γs =
γ1C1 + . . .+ γnCn

C1 + . . . Cn
(4)

and when σs and γs replace σi and γi in (3), we arrive at Cs. This again sets up a recursion. If

σs1, . . . , σsm, γs1, . . . , γsm and Cs1, . . . , Csm have been obtained as standard deviation, skewness and

solvency capital for S1, . . . , Sm, then the same quantities can be found for S1 + . . .+ Sm.

The method is presented and motivated differently in Sandström (2007), but it is apart from this

exactly the same, see also Savelli and Clemente (2011) for a version that is a variation of Sandström’s.

A point for discussion is the skewness aggregation. Does it really make sense to evaluate γs as a

weighted average of γ1, . . . , γn as in (4) right when we know by the central limit theorem that skew-

ness has a tendency to go down when random variables are added? Or suppose γ1 = . . . = γn = γ

with X1, . . . , Xn independent. Then γs = γ/
√
n, very far below γs = γ returned by (4) right. This

estimate has in our opinion a strong tendency to over-estimate skewness. The consequences will be

evaluated in Section 4.

6



2.3 A log-normal solution

In reality a non-parametric approach to skewness correction, as in the preceding section, is doomed to

failure when X1, . . . , Xn are dependent. The expression (8) below shows that the skewness γs depends

on cross-moments such as E(X2
i Xj) and E(XiXjXk) which are out of reach in any simple manner

without imposing distributions on X1, . . . , Xn. If that is done, σs and γs can be selected so that they

match those that can be calculated from X1, . . . , Xn, and this offers hope of improving the accuracy

since the shape of distributions now is much better preserved when moving from one level to another.

There are many ways to proceed from here (see Section 3), but an obvious first choice is log-normals

which are envisaged everywhere in the Solvency II regime. A useful form of the model is

Xi = σi
e−τ2i /2+τiεi − 1

(eτ
2
i − 1)1/2

with εi ∼ N(0, 1). (5)

Here τi a parameter capturing skewness. Note that Xi → σiεi as τi → 0 by an elementary application

of l’Hop̂ital’s rule, and the normal distribution is the special case τi = 0. The model is further moti-

vated by the properties summarized in the following proposition:

Proposition 1 For the model in (5)

E(Xi) = 0, sd(Xi) = σi, γi = (eτ
2
i + 2)

√
eτ

2
i − 1, (6)

τi =
√
log(Ai +A−1

i − 1) where Ai =

(
1 + γ2i /2−

√
γ4i /4 + γ2i

)1/3

. (7)

Proof Recall that e−τ2i /2+τiεi has mean 1 and variance eτ
2
i − 1, and the expressions for E(Xi) and

sd(Xi) follow. The skewness γi on the right in (6) is the formula for the skewness of log-normal vari-

ables, see Bølviken (2014), p 319, and it determines τi from γi though a cubic equation for eτ
2
i . There
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is a unique real solution which is (7).

A main point in Proposition 1 is that it is simple to pass from γi to τi and back, but the exact

distribution of the sum S is complicated, and must be approximated. There is a considerable liter-

ature on this extending over several branches of applied mathematics. The most common approach,

followed below, is to use another log-normal with correct standard deviation and skewness. Such

moment matching goes back to Wilkinson (1934), and is in communication theory known as the

Fenton-Wilkinson approach after Fenton (1960). There is an error bound in Berggren (2005). The

early contributions dealt with independent variables only, but extensions to correlated ones can be

found in Dufresne (2004) and Henriksen (2008) with efficient Monte Carlo for the extreme tails in

Asmussen, Blanchet, Juneja and Rojas-Nandyapa (2011) and a limit theorem in Beaulieu (2012). A

completely different approximation based on moment generating functions was developed in Mehta,

Wu, Molisch and Zhang (2007), and this is an alternative to the line pursued here. Some authors,

notably Beaulieu and Xie (2004), Zhang and Song (2008) and Senaratne and Tellambura (2009) ar-

gue that other distributions than the log-normal provide better fit, but that is not attractive in our

situation of multiple, recursive applications of the same method.

Moment matching means that we have to determine the third order moment E(S3) and convert

it to skewness through γs = E(S3)/σ3
s . Elementary calculations show that

E(S3) =
∑
i

E(X3
i ) + 3

∑
i ̸=j

E(X2
i Xj) + 6

∑
i<j<k

E(XiXjXk) (8)

where closed expressions for the cross-moments are available when we have imposed correlations

ρij = cor(Xi, Xj) as in Solvency II which yields:
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Proposition 2. The skewness γs of S under the log-normal distribution is

γs =
∑
i

α3
i (e

τ2i + 2)(eτ
2
i − 1)2 + 3

∑
i ̸=j

α2
iαj{eτ

2
i (β2

ij − 1)− 2(βij − 1)} (9)

+6
∑

i<j<k

αiαjαk{βijβikβjk − βi − βj − βk + 2}.

where

αi =
σi

σs

√
eτ

2
i − 1

, and βij = 1 + ρij

√
(eτ

2
i − 1)(eτ

2
j − 1). (10)

Proof The detailed calculations can be found in Appendix A.

Proposition 2 produces the following method. Start at σ1, . . . , σn and γ1, . . . , γn and convert the

second sequence to τ1, . . . , τn by (7). Now (4) left and (9,10) yield σs and γs with the corresponding

τs obtained by another application of (7) so that by (5)

Cs = σs
e−τ2s /2+τsϕϵ − 1

(eτ2s − 1)1/2
. (11)

The scheme has a more complicated skewness update than Sandtröm’s method, but it is easily pro-

grammed and recursive in the same way as the others.

3 General constructions

Other models than the log-normal can be used as vehicle for aggregation rules of this type. Let

F (x; τi) be a distribution function with mean 0, standard deviation 1, depending on some shape

parameter τi. With F−1(u; τi) its percentile function consider

Xi = σiF
−1(Ui; τi), i = 1, . . . , n (12)

where U1, . . . , Un are uniforms. This makes F (x; τi) the distribution function of Xi/σi, and the direct

extension of (5) is to let Ui = Φ(ϵi) with Φ the standard normal integral. Correlations in ε1, . . . , εn take
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care of dependency as before. The scheme can be developed for the Gamma, inverse Gaussian and Burr

families, all with skewness varying over the entire positive, real line and with a links between skewness

γi and shape τi. Closed expressions for γs as in Section 2.3 are not possible, but that can be handled by

Monte Carlo as in (14) below, and moment matching determines τs for the next round of the recursion.

One potential weakness in transforming Gaussians to variables with fat upper tails in this way is

that it forces a specific tail dependence on the model with correlations becoming smaller at the right

tail than on average. If this is considered undesirable, it can be corrected for by imposing a copula on

U1, . . . , Un in (12). In the log-normal case the model (5) now becomes

Xi = σi
e−τ2i /2+τiΦ

−1(Ui) − 1

(eτ
2
i − 1)1/2

, i = 1, . . . , n (13)

where Φ−1 is the percentile function of the standard normal. The method is as in Section 2.3 except for

the skewness update. Closed expressions for the cross-moments in (8) are no longer possible. Numer-

ical integration is a possibility, but simulation is simpler in our view. If (U∗
1l, . . . , U

∗
nl) for l = 1, . . . , N

are Monte Carlo realizations of (U1, . . . , Un), then:

Proposition 3. Under the log-normal copula model (13) or the more general model (12) an ap-

proximation of the skewness of S is

γs =
1

σ3
sN

N∑
l=1

∑
i

(X∗
il)

3 + 3
∑
i ̸=j

(X∗
il)

2X∗
jl + 6

∑
i<j<k

X∗
ilX

∗
jlX

∗
kl

 (14)

where for the log-normal

X∗
il = σi

e−τ2i /2+τiΦ
−1(U∗

il) − 1

(eτ
2
i − 1)1/2

or in case of (12) X∗
il = σiF

−1(U∗
il; τi). (15)

Proof. Follows immediately from (8) like in Proposition 2.
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The approximation in Proposition 3 becomes exact as N → ∞, but high Monte Carlo accuracy

isn’t necessary, and N = 1000 or even N = 100 simulations might be enough.

4 Example: The non-life module in Solvency II

4.1 Dependence through correlations

The first example is the non-life module in Figure 1 with ‘Premium/Reserve’ as variable X1, large

claims contracts (‘Cat’ which is X2) and lapse risk (‘Lapse’ or X3). The SCR’s of Premium/Reserve

and Cat are in practice computed from numerous sub-risks, but they are here log-normal percentiles.

Skewness coefficients for Premium/Reserve and Lapse were selected as γ1 = γ3 = 0.15 which means

that the 99.5% percentiles are around 3 times the standard deviation, a frequent assumption in EIOPA

(2014). For catastrophe risk skewness γ2 is in practice much larger and is varied below. Standard

deviations of the three variables are those in Scenario A in Table 1, and correlations are as in EIOPA

(2014); i.e. Premium/Reserve and Cat have correlation 0.25 with Lapse independent of the two others.

Solvency capital requirements have been plotted in Figure 2 left against the Cat skewness coefficient

which was varied between γ2 = 0 and γ2 = 6. Note that γ2 = 6 corresponds to the log-normal param-

eter τ2 ≈ 1 which yields a distribution with quite heavy tails. Methods examined are the log-normal

and Cornish-Fisher approximations (‘Logn’) and (‘CoFi’) and two versions of the standard formula

denoted ‘Solvency II’ and ‘Gaussian’ which differ in their input SCR’s. ‘Solvency II’ took log-normal

percentiles as Ci (which imitates how Solvency II is used in practice), and ‘Gaussian’ normal ones. Ap-

proximately exact values based on one million Monte Carlo simulations have been appended as ‘Exact’.

All methods are fairy accurate when skewness is small, but ‘Gaussian’ (for which skewness is not
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Figure 2 The solvency capital requirement against catastrophe skewness (left) and against a common

skewness (right) when dependency is described by correlations. Note: Vertical axis scales differ.

taken into account at all) quickly under-estimates as γ2 increases. The log-normal approximation

follows the exact one with a maximum, conservative error about 8% when γ2 = 6. The standard

formula, also conservative is less accurate while the Cornish-Fisher method is far too high (which is

caused by the skewness estimate being twice as large as it should). The experiment has been redone

on the right in Figure 2 with common skewness γ1 = γ2 = γ3 = γ for all three variables and with γ

varying between 0 and 6. The log-normal method now follows the exact one closely, ‘Solvency II’ is

also accurate whereas errors in ‘Gaussian’ and Cornish-Fisher are large.

4.2 Dependence through the Clayton copula

To what extent does the accuracy of log-normal solvency capital aggregation stand up when linear

correlations are replaced by other mathematical descriptions of dependence? The illustration in Figure

3 is based on the same assumptions as in Section 4.1 except for Premium/Reserve and Cat now being

related through a Clayton copula. A useful form of it is Marshall-Olkin mixing with U1 and U2 in (15)
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Figure 3 The solvency capital requirement against catastrophe skewness (left) and against a common

skewness (right) under Clayton dependency. Note: Vertical axis scales differ.

specified as

Ui =

(
1− θ

log(Vi)

Z

)−1/θ

, i = 1, 2 (16)

where V1 and V2 are independent and uniform and Z Gamma-distributed with mean 1 and shape 1/θ;

consult Chapter 6 in Bølviken (2014) for the construction. Correlation between Premium/Reserve and

Cat remains at 0.25 approximately if θ = 0.326 which was used for the experiments.

Methods examined in Figure 3 are the log-normal approximation in Section 2.3 and the alternative

one in Section 3 based on the true copula with skewness at the next level determined by one million

simulations (much more than needed). Nearly exact evaluations of solvency capital were produced by

Monte Carlo (one million simulations). These assessments are plotted against the Cat skewness on the

left and a common skewness value for all three variables on the right. The log-normal approximation

based on the correct model is again accurate. Clayton dependence has real impact on the results even

in a situation with such moderate dependency between variables. The method in Section 2.3 with the
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correct correlation, but without tail dependency taken into account, under-estimates 10− 12% on the

left and 15− 18% on the right.

5 A simplified Solvency II insurance company

The second example is the Solvency II company in Figure 1 with credit and market risk added the

non-life module in Section 3. The sum of these three components is the basic solvency capital require-

ment (BSCR) which together with operational risk yields SCR for the entire company. Conditions

and assumptions are summarized in Table 1. Correlations between the variables under the non-life

and market risk modules are needed and also between non-life, credit and market risk one level above.

There is also a correlation for the relationship between BSCR and operational risk at the top. The

values quoted are with one small modification (see below) taken from Commission Delegated Regu-

lation (2014) and were obtained by statistical studies of the European insurance industry. Skewness

parameters are moderate except for catastrophe, credit and operational risk where values are much

higher. Those for credit and operational risk are taken from Sandström (2011), see p 240. Standard

deviations reflect the volume of company business with three strategies A, B and C. The first two

assume the same insurance portfolios, but differ in investments with B much heavier in equity and

nothing in property. In strategy C catastrophe insurance has been removed, and the premium/reserve

component doubled.

Bottom-up modelling is needed to validate the approximations against nearly-exact SCR’s obtained by

Monte Carlo. This means a joint model for the input variables in Table 1 which are Premium/Reserve,

Cat, Lapse, Credit risk, Equity, Bonds/Cash and Property. Consider first the model in Section 2.3

where dependence was defined by the correlation matrix of the normal variates in (5). The aim is to
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Operational risk: σ = 0.05, γ = 4.5 with maximum correlation with BSCR
Correlations for Non-life, Credit, Market: ρ12 = 0.50, ρ13 = 0.25, ρ23 = 0.25

Non-life Credit Market
Premium/ Cat Lapse Equity Bonds/ Property
Reserve Cash
σ γ σ γ σ γ σ γ σ γ σ γ σ γ

A 1.00 0.15 1.00 5.00 0.05 0.15 0.05 1.10 0.50 0.15 0.50 0.05 0.25 0.15
B 1.00 0.15 1.00 5.00 0.05 0.15 0.05 1.10 1.60 0.15 0.25 0.15 0.00 0.15
C 2.00 0.15 0.00 5.00 0.05 0.15 0.05 1.10 0.50 0.15 0.50 0.15 0.25 0.15

ρ12 = 0.25, ρ13 = 0, ρ23 = 0 ρ12 = 0.50, ρ13 = 0.75, ρ23 = 0.50

Table 1 Scenarios for the experiments in Section 5. Company strategies A, B and C are
defined by the standard deviations σ with changes from strategy A in bold face.

calibrate it so that all the correlations in Table 1 are reproduced. Those between the Non-life, Credit

and Market modules at the second level is then a an obstacle that can’t be overcome in general (see

Filipovic, 2009), but in the present case it could by selecting cross-correlations between variables in

different modules numerically, aided by Monte Carlo (one million simulations). Operational risk has

in Solvency II correlation 1 with BSCR, a value beyond reach for log-normals, and the maximum that

could be achieved was selected in its place.

A similar, copula-based model is also needed. It should, like the other one, recreate the correlations in

Table 1 to promote insight into the impact of discrepant treatments of tail-dependency. Multiple, hier-

archical copula modelling is treated in great generality in Bedford and Cooke (2002) with Aas, Czabo,

Frigessi and Bakken (2009) and Savelli and Clemente (2011) contributions in insurance. In Savelli and

Clemente (2011) the aggregate distribution has been obtained by assuming a log-normal distribution

and by using Hierarchical Copula without any approximation, as both marginal distributions and

copula have been generated by Monte Carlo methods.

A convenient approach in the present context was proposed by McNeil (2008) who pointed out

that the Clayton copula (16) can be used recursively when dealing with trees like the one in Figure 1.

His technique opens up a huge number of possibilities, and by trial and error aided by Monte Carlo
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Stra- Dependence through correlations Clayton dependence
tegy ‘Gaussian’ ‘Solvency II’ Cornish-Fisher Log-normal Exact Log-normal Exact
A 5.63 8.04 11.47 7.89 7.59 8.31 8.56
B 6.94 9.24 13.29 8.84 8.63 9.32 9.72
C 6.58 7.11 7.47 6.99 6.96 7.11 7.31

Table 2 SCR approximations and nearly exact values under the conditions and company strategies
in Table 1. Dependence model in terms of correlations on the left and the hierarchical Clayton
copula in Appendix B on the right.

(one million simulations) we arrived at the iterative Clayton/McNeil scheme in Appendix B which

produces correlations very close to those in Table 1.

SCR evaluations are summarized in Table 2. The left hand side where dependence is through or-

dinary correlations confirms the picture in Figure 2 with the log-normal approximation quite accurate

with an error at 4 − 5% on the conservative side. ‘Solvency II’ is a good deal less accurate whereas

the Cornish-Fisher results are up to 60% too high. The difference between Scenarios A and B had

little impact on error, but in Scenario C with no catastrophe insurance at all every method worked

except Cornish-Fisher. Moving on to Clayton dependence on the right, one striking feature is how

much assessments have gone up. Replacing correlation matrices with a comparable tail dependence

model lead to increases of 30−40% in the SCR’s. The log-normal approximation, when fed the correct

model, is still accurate.

6 Concluding discussion

The log-normal distribution with moment matching up to order three provides fair accuracy and

preserves much of the simplicity in the Solvency II standard formula (see, Braun, Schmeiser and

Schreiber, 2015 and Eling and Pankoke, 2014). Errors were largest in unbalanced situations with

strong skewness diversification between variables, and this may well be typical. Approximation based
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on the log-normal is superior to a non-parametric approach of the Cornish-Fisher type where the

weakness in how skewness is aggregated can’t be easily rectified when variables are dependent. The

log-normal family is a first choice when moving out of the pure Gaussian since it is so frequently cited

in Solvency II literature, but it was not examined whether it is a better vehicle than other heavy-tailed

distributions such as Gamma, Burr or inverse Gaussian which can be developed in much the same way.

It may be worth a study: Do some families lead to methods more robust towards model error than

others, and if erring on the conservative side is what we want, should this influence the family selected?

Simulation was avoided when the log-normal method was constructed from dependent Gaussian vec-

tors, but that implies a certain, narrow view on tail dependence, and copulas may adapt better to

reality. This is an issue of some importance since SCR evaluations are sensitive towards the type of

tail dependence as the example in Section 5 demonstrated. The log-normal approximation was still

accurate, and the Monte Carlo (which is now required) does not add too much complexity, but can the

simplicity be maintained in other respects? Specifying dependence in terms of correlations is straight-

forward whereas copulas may appear less immediate, yet hard to avoid if the 99.5% security advocated

by the European regulatory authorities is taken seriously. The correlation matrices of Solvency II of

today must then be taken out and replaced by copulas.
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Appendix A. Skewness of the sum of log-normals.

It follows from (8) that γs = E(S3)/σ3
s can be written

γs = B1 + 2B2 + 6B3

where

B1 =
1

σ3
s

∑
i

E(X3
i ), B2 =

1

σ3
s

∑
i ̸=j

E(X2
i Xj), B3 =

1

σ3
s

∑
i<j<k

E(XiXjXk).

The skewness expression (6) right yields

1

σ3
s

E(X3
i ) =

σ3
i

σ3
s

(eτ
2
i + 2)(eτ

2
i − 1)1/2 = α3

i (e
τ2i + 2)(eτ

2
i − 1)2

with αi as in (10) left. Hence B1 is the first sum on the right in (9).

To verify that the other two sums coincide with B2 and B3 we need ρij = cor(Xi, Xj) which is

related to ωij = cor(εi, εj) through

ρij =
eωijτiτj − 1

{(eτ2i − 1)(eτ
2
j − 1)}1/2

or eωijτiτj = 1 + ρij

√
(eτ

2
i − 1)(eτ

2
j − 1) = βij

with βij as in (10). Inserting for Xi and Xj yields

B2 =
∑
i ̸=j

α2
iαjE

(
(e−τ2i /2+τiεi − 1)2(e−τ2j /2+τjεj − 1)

)

=
∑
i ̸=j

α2
iαjE

(
e−τ2i −τ2j /2+2τiεi+τjεj − 2e−τ2i /2−τ2j /2+τiεi+τjεj + e−τ2j /2+τjεj − (e−τ2i /2+τiεi − 1)2

)
.

The expectations of the four terms inside the outer parenthesis can be calculated by the elementary

formula for the mean of log-normals which leads to

E(e−τ2i −τ2j /2+2τiεi+τjεj ) = eτ
2
i +2ωijτiτj , E(e−τ2i /2−τ2j /2+τiεi+τjεj ) = eωijτiτj ,
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E(e−τ2j /2+τjεj ) = 1 and E(e−τ2i /2+τiεi − 1)2 = eτ
2
i − 1.

But now some straightforward calculations imply that

B2 =
∑
i ̸=j

α2
iαj{eτ

2
i (e2ωijτiτj − 1)− 2(eωijτiτj − 1)}

which becomes the second sum in (9) when eωijτiτj is replaced by βij .

Then there is B3 which after inserting for Xi, Xj and Xk equals

B3 =
∑

i<j<k

αiαjαkE
(
(e−τ2i /2+τiεi − 1)(e−τ2j /2+τjεj − 1)(e−τ2k/2+τkεk − 1)

)
.

The expectation of the product is derived by multiplying out the the three factors so that it becomes

a sum of eight terms, i.e.

e−τ2i /2−τ2j /2−τ2k/2+τiεi+τjεj+τkεk − e−τ2i /2−τ2j /2+τiεi+τjεj − e−τ2i /2−τ2k/2+τiεi+τkεk

−e−τ2j /2−τ2k/2+τjεj+τkεk + e−τ2i /2+τiεi + e−τ2j /2+τjεj + e−τ2k/2+τkεk − 1,

and the formula for the mean of log-normal variables now yields

B3 =
∑

i<j<k

αiαjαk

(
eωijτiτj+ωikτiτk+ωjkτjτk − eωijτiτj − eωikτiτk − eωjkτjτk + 1 + 1 + 1− 1

)
which becomes the third sum in (9) when eωijτiτj = βij is inserted everywhere.

Appendix B. A hierarchical Clayton copula.

Bottom-up models for the simplified insurance company in Figure 1 must be constructed through

Premium/Reserve (variable X1), Cat (X2) , Lapse (X3) , Credit risk (X4), Equity (X5), Bonds/Cash

(X6) and Property (X7). Their percentile functions transform them to uniforms U1, . . . , U7 for which

we seek a copula with higher dependence at the right tail that on average. It should reproduce the cor-

relations in Table 1, including those between the non-life, credit risk and market risk modules. Using

21



the Clayton copula iteratively as in McNeil (2008) provides all of this. The mixing relationship (16)

is a central building block, and we also need the alternative form of that model which specifies the

second uniform as

U2 = {1 + U−θ
1 (V −θ/(1+θ) − 1)}−1/θ

where V is uniform and independent of U1; consult Chapter 6 in Bølviken (2014). In a chain of ap-

plications where the aim is to capture correlations between groups of variables it does matter which

version is used.

The following set of commands defines the model for U1, . . . , U7 in Section 5. Note the uniforms

Unl, Ucr, Uma assigned the Non-life, Credit risk and Market risk modules to create the approriate cross-

correlations between them. They are generated through a separate copula construction at the start

of the algorithm. Gamma variables with mean 1 and shape 1/θ are written Gamma(1/θ) and their

percentile function G(u; 1/θ). This yields when ∼ denote drawings:

Uniforms for cross-dependencies between modules
Unl ∼ uniform, Vcr ∼ uniform,

Y ∼ uniform, Vma = {1 + (1− Vcr)
−θnl(Y −θnl/(1+θnl) − 1)}−1/θnl ,

Ucr = {1 + U−θcr
nl (V −θcr/(1+θcr)

cr − 1)}−1/θcr ,

Uma = {1 + U−θma
nl (V −θma/(1+θma)

ma − 1)}−1/θma .
Uniforms for the non-life module

Z = G−1(Unl; 1/θ1), V1 ∼ uniform, V2 ∼ uniform,

Ui = (1− θ1 log(Vi)/Z)−1/θ1 , i = 1, 2, U3 ∼ uniform.
Uniform for the credit risk module

U4 = Ucr.
Uniforms for the market risk module

Zi ∼ Gamma(1/θi), Ui = (1− θi log(Uma)/Zi)
−1/θi , i = 5, 6, 7.

The model was found be trial and error and reproduce the correlations in Table 1 not far from exactly

if the parameters are θnl = 0.17, θcr = 1.87, θma = 0.82, θ1 = 0.328, θ5 = 0.34, θ6 = 1.65, θ7 = 0.34.
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