LUND UNIVERSITY

Implementation of a Control Strategy for an Inverted Pendulum

Gustafsson, Kjell; Bernhardsson, Bo

1988

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Gustafsson, K., & Bernhardsson, B. (1988). Implementation of a Control Strategy for an Inverted Pendulum.
(Technical Reports TFRT-7405). Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
2

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/0179f1a0-5aa3-4406-bfca-710a95ca0ccf

CODEN: LUTFD2/(TFRT-7405)/1-029/(1988)

Implementation of a Control Strategy
for an Inverted Pendulum

Kjell Gustafsson
Bo Bernhardsson

Department of Automatic Control
Lund Institute of Technology
November 1988

Department of Automatic Control
Lund Institute of Technology

P.O. Box 118

S-221 00 Lund Sweden

Document name

Report

Date of issue

November 1988

Document Number

CODEN: LUTFD2/(TFRT-7405)/1-029/(1988)

Author(s)
Kjell Gustafsson, Bo Bernhardsson

Supervisor

Per Hagander, Karl Johan Astrém

Sponsoring organisation

Title and subtitle

Implementation of a Control Strategy for an Inverted Pendulum

Abstract

of Automatic Control 1988.

This report describes a program that swings up an inverted pendulum and then controls it in upright position.
The pendulum is mounted on a moving cart, and the cart is positioned using a hydraulic cylinder.

The program was written as a project in the graduate course "Design of Control Systems” at the Department

Key words

Commissioning ; Unstable Nonlinear plant; Robotics; Real-time control; Saturation; Engineering ingenuity

Classification system and /or index terms (if any)

Supplementary bibliographical information

ISSN and key title

ISBN

Language Number of pages

English 29

Security classification

Recipient's notes

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,

S5-221 03 Lund, Sweden, Telex: 33248 lubbis lund.

1. Introduction

This report describes a program that swings up an inverted pendulum and
then controls it in upright position. The pendulum is mounted on a moving
cart, and the cart is positioned using a hydraulic cylinder.

Several different controllers have previously been designed for the system.
Cascaded PID:s, and state feedback together with Kalman filtering, are two
strategies that have been tried successfully. The design described here is quite
similar to the state feedback design, but is implemented as a computer program
in contrast to the previous analogue controllers. This makes it easy to include
logic to swing the pendulum up from downright to upright position. The
program also includes code to drop the pendulum from upright position and
then catch it again after it has made one turn. Both clockwise and anti
clockwise turns are possible. To facilitate usage, a calibration mode has been
implemented.

The program utilizes basically the same sensors and actuators as previ-
ous analogue designs. Some antialiasing filters had to be added and also an
external amplifier to make use of full signal amplitude to the actuator.

The program was written as a project in the graduate course ?Design of
Control Systems” at the Department of Automatic Control 1988.

2. A Nonlinear Process Model

The inverted pendulum is shown in Figure 1. It is standing on a cart, which
can be moved using a hydraulic cylinder. The input to the system is a voltage
u fed to a hydraulic valve. The position of the hydraulic valve determines the
differential pressure over the hydraulic cylinder. A pressure large enough to
overcome static friction will make the cylinder and the cart move. The force
acting on the cart is denoted f.

0.15m

valve
cylinder

| T

u

Nh
o

Figure 1. Pendulum and cart

In the modeling we will regard the system as two subsystems: the first
consisting of the cart and the pendulum, and the second consisting of the
hydraulic valve and cylinder.

Modeling the cart and the pendulum
The kinetic energy T of the cart and pendulum can be written

T= —2—z2 + ((z — ¢lcos)? + (@l smtp)z)
Wz;m)z—mz(plcos<p+ —i?

while the potential energy V is given by
V = mglcos .

Form the Lagrangian as
L=T-V.

In the generalized coordinates (z,), Lagrange’s equations for the system are
d (8L oL f
dt \ 8z 0z

4 (90 o1
dt \ 9y dp

These equations can be solved for (2, ¢),

_1f — m?¢? sin ¢ + mlgsin g cos ¢

B M1+ ml(1 - cos?)

_ fcosp— mlp?cos psing + (M + m) gsing
B MU+ ml(1 — cos? p)

(1)

For the cart and pendulum at the Department of Automatic Control in
Lund, the different physical constants have the following values:

M =19 kg

m = 0.25 kg
1=020m
g = 9.81 m/s?

Modeling the hydraulic valve and cylinder

The input signal to the valve is a voltage u. This voltage determines the
position of the valve, giving rise to a force kyu acting on the cylinder. There
is also a static friction force fy, as well as a viscous damping k2. Together
these forces add up to the force f acting on the cart. Force balance gives

f = k_fu . f_f - kdé (2)

The viscous damping is large and for a constant voltage u the cylinder will
soon reach constant velocity. In Figure 2 the steady state velocity is plotted
as a function of input voltage.

When the cart is moving with constant speed, f = 0, then from (2)

) kf
z= kd ff

0.3

0.25+

0.2+

0.15F

Cart velocity [m/s]

0.1f

0.05f

0 1 2 3 4 5 6 7 8 9 10
Input voltage to hydraulic valve [V]

Figure 2. Steady state cart velocity as a function of the control signal wu.

The slope of the curve in Figure 2 determines the ratio ks /k4. Moreover, using
the voltage ug that just barely makes the cart move, the friction force can be
determined as f; = kjyuo.

By assuming that the mass of the cart is large compared to the pendulum
mass, i.e. M > m, the force f can be approximated as M 3. Then

M2+kdz’=kfu—ff (3)

The time constant of this system is given by M/ky, and can easily be estimated
by inspecting the step response of the system.

For our system the time constant was determined as 10 milliseconds, and
hence

k4 = 1900 kg/s
ks =59 N/V
fr=41N

The derived model depends on the hydraulic oil pressure. For the plots
and figures presented here it was 45 kg/cm?.

Limitations

When |u| = 10 V the hydraulic valve saturates. This will lead to a limitation
in cart velocity at approximately 0.3 m/s. Also the position of the cart is
limited. The cart can only move £7.5 cm from the center position on the
track.

Measured signals

The cart and pendulum is equipped with sensors for cart position (2), cart
velocity (2) and pendulum angle (¢). The output form the sensors are given

in the unit V. The conversion from SI-units to voltage is defined by the sensor
constants K, K,, and K, where

K, =144 V/m
K,=232Vs/m
K, =14.0 V/rad

Simnon model

The nonlinear model was coded as a Simnon model, to be used for simulation.
The limitation in cart position was modeled as two well damped springs with
large spring constants. A listing of the Simnon code is given in Appendix A.

3. A Linear Process Model

The pendulum and cart are to be controlled about ¢ = 0 and z = 0. To
facilitate the controller design we will linearize the model about this point.

The angular velocity ¢ will normally be small, and the quadratic terms in
(1) can be discarded. Moreover, for small ¢, cos ¢ and sin ¢ can be approxi-
mated as 1 and ¢ respectively. Then (1) can be written

PR .
~ Mm% @
N f M4+m

LD VIR Vi
From (4) it can be seen that the approximation done in (3) is justified if
M > m. The dynamics of (3) is very fast (time constant ~ 10 ms) compared
to the dynamics of the rest of the system. Therefore we choose to discard it.
Then

. ky 1

zZz = E—u - Eff

and if also the friction force is neglected the hydraulic valve and cylinder can
be viewed as a constant gain from u to . Using this approximation, and the
fact that M >> m, turns (4) into

z::—fu

y (5)
5= L9
Y= T v

The signal from the position sensor as well as the angle sensor are given
in the unit V. The conversion from SI-units to volts is defined by the sensor
constants K, and K,. When writing (5) on state space form we would like to
scale the states such that they also have the unit V. This avoids some signal
scaling, and can be done by introducing the states as

z1 = Kyp
1. wg K, kf 4, g
= — — = — = Kv'_ = -
T2 Wo (Tl pau) p gK“ kd ? wO l
z3 = K,z

This gives the state space form
d 1 0 7} 0 T1 p Kz

X 22| =]lw 0 O z2 | +101{ au qg= Ve

z3 0 0 0 z3 q v

with wo, p, ¢, and a having the values

wo = 7.0 rad/s
p=3.0s""1
g=62s"1
a=0.72

The parameter a is the steady state gain from u to the velocity z measured
in the unit V, i.e. K, 2.

4. Controller Design

Controller structure

A state feedback controller with a Kalman filter is used to control the pen-
dulum around the upright position. The control signal is formed as a linear
combination of cart position, pendulum angle, and pendulum angular veloc-
ity. The cart position is measured directly, while the pendulum angle and
the angular velocity are reconstructed in the Kalman filter. It is possible to
measure the pendulum angle directly, but the signal from the sensor includes
an unknown offset. This offset is removed by the Kalman filter, and the re-
constructed signal is used in the state feedback.

In the previous section it was concluded that by neglecting friction and
some fast dynamics the transfer function from control signal u to cart velocity
z could be viewed as a constant gain. To further justify this view some of the
previous designs have included an inner feedback loop around the hydraulic
cylinder (see Figure 3). Ideally, one would like the loop gain in this loop to
be large, to make the transfer function approximately equal to unity in the
frequency band of interest. As seen in the previous section the static gain from
u to the measured velocity K,z is quite moderate (a = 0.72), and the gain in
the controller needs to be large in order to achieve large loop gain. Previous
designs have had the gain equal 1, which gives a quite small loop gain. An
attempt was made to raise the gain in the controller, but that lead to limit
cycles oscillations.

Since the loop gain in the inner feedback loop is quite low (0.72) its jus-
tification may be questioned. Still, it was decided to keep it, one large reason
being lazyness. The main effect of the inner loop is a change in gain from the
control signal u to the measured velocity K, 2

a

= 0.42
1+a ’

a =

but it also changes the dynamics. If it was to be omitted the state feedback
controller would have to be redesigned.

valve
cylinder

Y
KV

py —

Figure 3. Inner feedback loop

Kalman Filter

An extra state z4 is introduced as the unknown offset in the angle measure-
ment. The state 23 can be measured and is completely decoupled from the
rest of the states and is therefore not included in the estimator. The Kalman
filter equations are then

d 2, 0 we 0) z p ky
E 232 = () 0 0 2‘52 + 0] au+ kz (231 - il - 534)
Z4 0 0) 24 0 ky
(%4
g=(1 0 1) |2]
\ T4

Note that Gu =~ K,z (or if no inner loop is present, au ~ K,2). The quantity
K,z will differ from au due to e.g. saturation, friction, and unmodeled dy-
namics. Therefore, the Kalman filter states will better reflect reality, if using
K,z instead of au.

State feedback

The control signal is formed from to terms. One given by the state feedback
and one given by the inner loop.

T
u=-L (& #& z3) -K
In the state feedback, &1, £3 are estimated and z3 measured directly.

Choosing L

Three poles are to be positioned. Two of them correspond to the pendulum
while one is related to the cart position. The pendulum should be quite stiff
in its upright position. This is required to be able to handle disturbances well
(people tend to “hit” the pendulum to see if it falls). To achieve this the two
pendulum modes need to be quite fast. On the other hand the requirements
of the position mode are very modest. The cart should be kept at the center
of the track, but there is no reason to waste control energy by making the
bandwidth of this loop high.

Some experimentation clearly showed that the main limiting factors of the
system are the saturation in cart velocity, the limitation in cart position, and

the sensor noise. The pole positions were in large decided by these limiting
factors. After some tuning the pole locations were chosen as

81,2 = —15 £ 154, s3 = —0.36

During the tuning of the controller, much insight was gained by looking at
eigenvector directions. These vectors make it possible to estimate how much
the different modes relate. In particular it is easily seen that the slow mode
corresponds to position control of the cart.

Choosing K

The trade off when choosing the Kalman gain is between noise magnification
and problems with too slow convergence of estimates making the pendulum fall
when connecting the state feedback controller. Clearly the angle measurement
offset does not change in the same time scale as @ and ¢. Therefore the Kalman
filter mode corresponding to the offset need not be as fast as the other two
modes.

When this fact was realized and utilized the performance of the system
improved considerably. This was especially clear when trying to catch the pen-
dulum. Then it is very important that the Kalman filter soon gives accurate
estimates of the different state variables, otherwise the catch will fail.

After much experimentation, the poles of the Kalman filter were placed
at

81,2 = —-15 + 151, 83 = -1

The Kalman filter states were connected to the analogue outputs of the
computer and an oscilloscope was used to monitor their transient and steady
state behavior. This was an extremaly useful tool in the evaluation of different
pole locations in the Kalman filter.

Discrete implementation

Since the controller is implemented as a computer program it has to be dis-

cretized. This was done by sampling the process (calculate & and I') and then

calculating a L and K using translated continuous time poles (e**). The sam-

pling time h was chosen as 3.5 milliseconds, which was the maximum speed

possible on the IBM PC-AT given the calculations that had to be performed.
The discrete time state feedback and Kalman gain was

= [26.0 55.1 -1.20]

K= [0.139 0.254 —0.0304]T

5. Strategy to Swing Up and Catch the Pendulum

When swinging up the pendulum the goal is to give it enough energy to make it
reach the upright position and then catch it there. To swing the pendulum up
as fast as possible, one can calculate how to move the cart to input as much
energy as possible to the pendulum at each time instance (c.f. computed
torque methods from robot control). We have chosen a much simpler strategy.
Our goal was not to swing the pendulum up in minimum time, but just to be
able to do it with a simple strategy.

Swinging strategy

By moving the cart back and forth the pendulum will start to move. The
amplitude of the oscillations can be increased by moving the cart in a certain
pattern. Each time the pendulum passes the downright position the cart is
moved in the opposite direction. The movements of the cart are large when
the amplitude of the oscillation is small, and then they are gradually decreased
as the pendulum comes closer to the upright position.

The described strategy is easy to implement. One only needs a position
servo for the cart, and then it is just a question of choosing the right set-points.
The position servo is implemented as a proportional controller (see Figure 4).
The inner feedback loop around the hydraulic valve and cylinder was not used.

| valve
cylinder

Y

L
s

A

-1

Figure 4. Cart position servo.

The gain in the proportional controller as well as how to choose set-points
in relation to the amplitude of the oscillation was determined using simulations
and experiments. A value of 2 for the gain was found appropriate, and the
relation between the amplitude of the cart movements as a function of the
angle of the pendulum was chosen as

Zres = sign(p) (0.3 +4.4 (""';—"")2 (3- 2"”;‘")) [cm]

with ¢ restricted to the interval (—=,7]. The variable ;, is the minimum
absolute value of the angle reached by the pendulum so far. The function is
plotted in Figure 5.

Catching strategy

The used catching strategy is very simple. When the pendulum moves into
a sector £4° around the upright position the state feedback controller is con-
nected to the process.

To make the transfer bumpless the Kalman filter need to be initialized. At
the connection the angle is measured and &, is initialized with this value. It is
possible to get an approximate value of the offset in the angular measurement
by measuring the angle when holding the pendulum in upright position, see
mode 9 below. This approximate value is used to initialize #4. The program
contains a default value of the offset that was correct in August 1988.

A tricky state to initialize is #,, corresponding to the angular velocity.
First it was tried just setting it to zero, but then it was very hard to succeed
in catching the pendulum. A better strategy is to try to estimate the angular
velocity by forming the difference between two succeeding angular measure-
ments. Unfortunately the angular measurement is very noisy and the estimate

10

Position reference value [em]

0 0.5 1 1.5 2 2.5 3 35

Minimum absolute value of angle [rad]

Figure 5. Relation between set-point to position servo and pendulum angle.

has poor quality. This is circumvented by filtering the differences with a first
order filter, i.e.

Zaest(n + 1) = €z2ear(n) + (1 — €) Ky (p(n) — ¢(n—1))

This estimate is then used to initialize £;. In the program we choose ¢ = 0.9
which together with a 3.5 milliseconds long sampling interval corresponds to
a filter with a time constant of 35 milliseconds.

Rotating the pendulum one turn

The pendulum entertainment show contains one extra item. The program
includes code to make the pendulum swing one turn either clockwise or anti-
clockwise. This is achieved by switching from pendulum angle control to pure
position control of the cart. The cart is then moved either to the left or to the
right to make the pendulum fall. After the pendulum having made one turn
the angle control is connected again.

When switching to angle control again the same bumpless transfer strategy
as when swinging up the pendulum is used. Moreover, by experimenting a little
it was found how much to move the cart to make the pendulum exactly reach
the upright position. This further improves the transfer to angle control.

6. Simulation of the Catching Strategy

The system was simulated to better understand its properties. The main
objective was to find for which initial angles ¢ and initial angular velocities
@, the controller would be able to catch the pendulum. The result of that
simulation is shown in Figure 6. Each successful catch is marked with an ’x’.

From practical experiments it was noted that failed catches seemed to
depend mainly on saturation in either cart velocity or cart position. This was

11

Initial angular velocity [rad/s]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Initial angle [rad]

Figure 6. Successful catches as a function of initial angle ¢ and initial angular
velocity ¢.

Initial angular velocity [rad/s]

0 005 o1 015 02 025 0.3 035 0.4 0.45 0.5

Initial angle [rad]

Figure 7. The influence of control signal saturation on the success of the catching
strategy. The points marked with X’ corresponds to u saturated at +10 V, and
’0’ corresponds to u saturated at +5 V.

confirmed through simulation (see Figure 7 and Figure 8). Note that in Figure
7 there are initial values for which a catch is possible when the control signal
is limited to 5V, while it fails when the limitation is +10V. This indicates
that the controller could be improved.

The linear model is a very good approximation at the pendulum positions
where a catch is possible. This can be seen in Figure 9 were the results

12

Initial angular velocity [rad/s]

0 005 01 015 02 025 0.3 0.35 0.4 045 0.5

Initial angle frad]

Figure 8. The influence of limited cart position on the success of the catching
strategy. The points marked with *X’ corresponds to z limited to +7.5 cm, and ’0’
corresponds to z limited to +3.5 cm.

from simulation using the linear model almost overlaps the results from the
nonlinear model. Using the linear model it would probably be possible to
calculate the region for successful catches analytically. No attempt to do this

was done.

Initial angular velocity [rad/s]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Initial angle [rad]
Figure 9. A comparison between the nonlinear and the linear pendulum model.
Points marked with X’ corresponds to the nonlinear model while ’0’ corresponds

to the linear.

The different Simnon models used in the simulations are listed in Ap-

13

pendix A.

7. Implementation

Hardware

To be able to swing up the pendulum some minor changes had to be done to
the hardware used by previous designs.

With the angle sensor it is only possible to resolve an angle modulo /2,
and hence during a full 27 turn four different angles will give the same output
from the sensor. This was handled by adding a new sensor consisting of a
photodiode and a disc with black and white sectors. Using that setup it is
possible to detect when the pendulum moves between different 7/2 sectors.
The program gets the angle measurement as well as the sector measurement
and can easily determine the correct angle in the range +=.

All the sensors use a system with carrier frequency and thus the signals
have a large high frequency component. Therefore to avoid aliasing the signals
have to be filtered. First order RC-filters with a cut-off frequency of 35 Hz
were used.

The signal range from the D/A-converters on the computer were £10V,
while the actuator accepts a control signal in the range +15V. To use the full
range an external amplifier was added. It has the gain 3/2 and therefore the
control signal has to be attenuated a factor 2/3 internally.

Software

The program (a listing is given in Appendix B) uses a foreground-background
scheduler due to Dag Briick, [1988]. It is written in C and assembly language
and runs on the IBM PC-AT. The scheduler is optimized for speed.

The foreground process implements the controller. It also includes the
logic for swinging up the pendulum and making it swing one turn. The con-
troller is implemented as a finite state machine. Some state transitions are
automatic and depend on different logical tests, while others have to be initi-
ated from the keyboard. The only task for the background process is to read
these state transitions from the keyboard.

The state machine has 11 different states. The program includes a variable
mode which tells what state is currently active. The mode-variable is used in a
large case-statement that constitutes the main part of the foreground process.
The rest of the foreground process handles the angle measurement. The sensor
handles a 7/2 sector and some logic has to be added to deal with a full 4+
range.

The states in the state machine are as follows:

Idle. The cart is kept at the middle of the track.

1 Controlling. The state feedback controller and the Kalman filter is run-
ning, keeping the pendulum at upright position. If failing in this mission
the state machine moves to state 3.

2 Swinging. The pendulum is swung back and forth to eventually reach
upright position. This is achieved using position control of the cart, and
an alternating set-point sequence. This state also handles the transfer to
controlling in upright position (state 1).

14

10

11

8.

Wait state. After a failed catch this state is used to wait until the pen-
dulum stops rotating past the upright position. Then the state machine
moves on to state 4.

Wait state. Before trying to swing up the pendulum again (state 2)
one needs to know how high the pendulum is currently swinging in order
to determine the right set-point amplitude for the cart position control.
That is done in this state and then control is transfered to state 2.

Anti clockwise turn. Start state to make the pendulum do an anti-
clockwise turn. The cart position is measured to know how to move the
cart to make the pendulum fall in a controlled way. Move on to state 7.

Clockwise turn. Start state to make the pendulum do an anticlockwise
turn. The cart position is measured to know how to move the cart to
make the pendulum fall in a controlled way. Move on to state 7.

Falling. Make the pendulum fall either clockwise or anti clockwise by
moving the cart, and then move on to state 8.

Turning. State to wait for the pendulum to reach upright position again.
Then the state machine moves to state 1 in the same way as the transition
from 2 to 1. If the pendulum due to some reason would not reach upright
position again, there is a time out that eventually will force the state
machine to state 3.

Calibration. The offset in the angular measurement varies with time.
Since it is used to initialize the Kalman filter when catching the pendulum
it is important to know it as well as possible. In this state it is measured
when controlling the pendulum in upright position and then stored to be
used at subsequent catches. This state should only be used when already
in state 1. After one sample the state machine moves back to state 1.

Manual start. If the offset in the angular measurement has changed sub-
stantially it may be impossible to swing up the pendulum automatically.
Then this state can be used to start it manually. Stay in state 0 and then
switch to state 10 while holding the pendulum in upright position. Then
use the calibration state 9 to make the automatic swinging work properly.

Stop. Set output to zero and stop program execution.

A full listing of the program is given in Appendix B.

How to use the program

To use the program do as follows:

1
2
3

Find a diskette with the program. Copy pendulum.exe to the hard disc.
Start the program pendulum.

Follow the instructions on the screen on how to connect D/A and A/D.
When done hit RETURN. When doing this the pendulum must be hanging
straight down, otherwise some internal variables in the program will be
initialized incorrectly.

The state machine in the program will now be in state 0. You can change
to any other state by typing the state number and hit RETURN. To swing
up the pendulum type 4 and hit RETURN.

If the program does not catch the pendulum it will try again. If it, after
several tries, still has not managed to catch the pendulum you should go

15

back to the idle state by typing 0. Then try a manual start by holding

the pendulum in upright position and switch to state 10.

6 When the pendulum stands upright calibrate the system using state 9.
This will help the program to succeed in catching the pendulum in sub-
sequent tries.

7 Now you are ready for demonstrations. Make the pendulum do turns by
using state 5 and 6. Drop the pendulum using state 0. Swing it up again
using state 4.

Note that although you have the possibility to make the state machine go
to any state by typing its number on the keyboard, you should only use states
0, 4,5,6,9, and 10. The states 1, 2, 3, 7, and 8 are internal and should not
be accessed manually. If you do use them, internal states in the state machine
may be set erroneously, and the program has to be restarted.

9. References

Brick, Dac (1988): “A Foreground/Background Real-Time Scheduler for
the IBM AT,” CODEN: LUTFD2/TFRT-7393, Department of Automatic
Control, Lund Institute of Technology, Lund, Sweden.

16

10. Appendix A: Simnon models

Here follows a listing of the Simnon code used when simulating the system.
Both the linear and the nonlinear model are included.

continunous system pendulum

" Filename: pendulum.t
* Author: Kjell Gustafsson

" This is a nonlinear model of an inverted pendulum on & moving cart. There
" is no damping in the movements of the pendulum. The cart is controlled by
" & hydranlic cylinder. The input signal is a voltage to the hydrualic valve
" which results in a force. There is mlso a static friction force and =

" viscous damping in the cylinder.

" The position of the cart is limited. This is modelled ms two large well-
" damped springs mt zmax mnd zmin respectively.

input u " input voltage to hydruamlic wvalve [V]

output zm " output from position semsor [V]

output vm " output from velocity semsor [V]

output thm " output from angle sensor [V]

output stopsim " tells when the pendulum has been catched

state =z " cart position [m]

state v " cart velocity [m/s]

state th ' pendulum angle [rad] (th=0 pendulum standing upright)
state w " pendulum angular velocity [rad/s]

der dz dv dth dw

" dynamic equations

dz = v

dv = (m2«lest+(-lwkw + gict) + 1leftot)/den

dth = w

dv = (st*(-m2+l*ct*usw + (ml4m2)+g) + ftot*ct)/den

den = 1#(mi+m2*(1-ct*ct))
st = sin(th)
ct = cos(th)

" calculating input force

ftot = fh + fzsat " hydranlic force + force due to limitatiom in position
fh = flin - ffric

flin = kf*u - kviscav

ffric = if abs(v)<eps then ffricO else fstat+sign(v)

££7icO0 = if abs(flin)<fstat then flin else fstat*sign(flin)

fstat = 0.7*kf " the cart starts moving when u=0.7

fzsat = if z<zmin then k+*(zmin-z)-d+v else if z>zmax then k+(zmax-z)-d*v else 0O
d = 2#sqrt(k+ml)

" form output variables

zZm = z#kz " measured position
vm = vekv " measured velocity
thm = th+kth " measured angle

" is the pendulum caught or dropped
dropped = abs(th)>dropang

caught = (abs(th)<catchang) and (abs(w)<catchw) and (abs(v)<catchv)
stopsim = dropped or caught

17

dropang : 1

catchang : 0.015

catchw : 0.12

catchv : 0.02

mi : 19 " cart mass [kg]

m2 : 0.25 " pendulum mass [kg]

1 : 0.2 " pendulum length [m]

g : 9.8 " gravity constant [m/s~2]

k : 1e8 " spring constant in z saturation

kz : 144 " position mensor conversion constant [V/m]
kv : 23.2 " veloocity sensor conversion constant [Vs/m]
kth : 14.0 " angle sensor conversion constant [V/rad]
k£ : 9.2 " gain from valve voltage to force [¥/V]
kvisc : 1900 " viscous damping coefficient [N/m/s]

zmin : -0.076 " minimum cart position

zmax : 0.076 " maximum cart positiom

eps : 0.005

end

continuous system pendulum

" Filename: linpend.t
" Author: Kjell Gustafsson

" This is a linearized model of an inverted pendulum on a moving cart.
‘" There is no demping in the movements of the pendulum. The input signal
" is the cart velocity.

" The position of the cart is limited. This is modelled as two large well-
" damped springs at xmax and xmin respectively.

input u " cart velocity
output wm " measured velocity, differs from u due to
" limited cart position
output stopsim " tells when the pendulum has been catched
state thm " pendulum angle measured in [V], state x1 in report
state x2 " state x2 in report
state =zm ' cart position measured in [V], state x3 in report

der dthm dx2 dzm
initial

thm = initths«kth
x2 = (kth*initw-ptkvsinitv)/omega

sort
" dynamic equations

dzm = q*wm

dthm = wm

dx2 = omega*thm

vm = if z<zmin then O olse if z>zmax then O else u ' real cart velocity

wm = omega*x2 + p¥vm " measured angular velocity
z = zn/kz " real position [m]

v = vm/kv " real velocity [m/s]

th = thm/kth " real angle [rad]

v = wm/kth " real angunlar velocity [rad/s]

18

" is the pendulum caught or dropped

dropped = abs(th)>dropang
caught = (abs(th)<catchang) and (abs(w)<catchw) and (abs(v)<catchv)
stopsim = dropped or caught

dropang : 1.5
catchang : 0.01
catchw : 0,08
catchv : 0.02

omega : 7.0 " parameter in linearized state space model
P : 3.0 " parameter in linearized state space model
q : 6.2 " parameter in linearized state mpace model
kz : 144 " position sensor conversion constant [V/m]
kv : 23.2 " velocity sensor conversion constant [Vs/m]
kth : 14.0 " angle sensor conversion constant [V/rad]
zmin : -0.076 " minimum cart position

zmax : 0.075 " maximum cart position

initth : O " initial pendulum angle [rad]

inite : O " initial pendulum angular velocity [rmd/s]
initv : O " initial cart velocity [m/s]

end

discrete system regul

" Filename: stfkal.t
" Anthor: Kjell Gustafsson

" Linear state feedback controller with Kalman filter. Used to control the
" inverted pendulum.

time ¢

tsamp ts

input zm " measured position [V]

input thm " measured pendulum angle [V]

input wvm " measured cart velocity [V]

output u " control signal, voltage to hydraulic valve
state x1 x2 x4 " Kalman filter states, see report

new nx1 nx2 nx4

initial

x1 = kth*initth

x2 = (kthxinitw-ptkv+initv)/omega

sort

err = thm - x1 - x4 " prediction error

" Kalman filter equations

nxl = fiflsx1l + £i124x2 + glsvm + kilserr
nx2 = £fil2+x1 + fill#x2 + g2+«vm + k2%err
nx4 = x4 + k3%err

" control signal calculation

utemp = - 1li*x1 - 12%x2 ~ 13%zm - lvm*vm
u = if utemp>ulim then ulim else if utemp<-ulim then -ulim elze utemp

fill
£i12

cosh(omega+h)
sinh(omega*h)

gl = p/omegu*fil2
g2 = p/omegan*(£i11-1)
ts =t +h

ulim : 10

h : 0.0036

kth : 14.0

kv : 23.2

11 : 26.0

12 : bb.1

13 : -1.20

lvm : 1

ki : 0.139

k2 : 0.254

k3 : -0.0304

control signal saturation
sempling period

angle sensor conversion constent [V/rad]
velocity sensor conversion constant [Vs/m]

state feedback gains

feedback gain in inner loop

Kelman filter gains

parameter in linearized state space model
parameter in linearized state space model

initial pendulum angle [rad]
initial pendulum angular velocity [rad/s]
initial cart velocity [m/s]

discrete system regul

ti
ts
input

input thm

Filename:

lstfkal.t

Author: Kjell Gustafsson

Linear state feedback controller with Kalman filter. Used to control the
inverted pendulum. Equivalent to the controller in ’stfkal.t’ but changed
to fit together with the linear model.

me t
amp ts

input wvm

output u

st
ne

ate xi x2 x4
v nxl nx2 nx4

initial

x1
x2

s0

er.

kthxinitth

rt

r = thm - x1 - x4

measured position [V]
measured pendulum angle [V]
measured cart velocity [V]

control signal, voltage to hydranlic valve

Kalman filter states, see report

(kth*initw-pskv+initv) /omega

" Kalman filter equations

nx:
nx
nx

1
2
4

x4 + k3+err

filtlexi + £i12+x2 + glsvm + ki+err
£i12+x1 + fil1xx2 + g2+«vm + k2+err

control signal calculation

utemp = (- 11*x1 - 12+x2 - 13%zm)+gain

u

if utemp>ulim then ulim else if utemp<-ulim then -ulim else utemp

20

f£ill =

£i12 =

gl = p/omegaxfil2
g2 =

te =t +h
ulim 10
h s 0.0036
kth : 14.0
kv : 23,2
11 : 28.0
12 : b65.1
13 : -1.20
lvm : 1
gain : 0,42
ki : 0.139
k2 : 0.254
k3 : -0.0304
P : 3.0
omega : 7.0
initth : O
inite : O
initv : O
end

p/omegas(fi11-1)

cosh(omega+h)
sinh(omega*h)

control signal saturation

sampling period

angle sensor conversion constant [V/rad]
velocity sensor conversion constant [Vs/m]

state feedbaock gains

feedback gain in inner loop
gain from u to real velocity

Kalman filter gains

parameter in linearized state space model
parameter in linearized state space model

initial pendulum angle [rad]

initial pendulum angular velocity [rad/s]

initial cart velocity [m/s]

connecting system conn

" Filename:
" Author: Kjell Gustafsson

u[pendulum]
thm[regul]

zm[regul]
vm[regul]

ulcterm] =

end

thm[pendulum]
zm[pendulum]
vm[pendulum]
stopsim[pendulum]

11.

Appendix B: Program listing

Here follows a listing of the program. For a listing of the scheduler see [Briick,

1988].
/=
*« PENDULUM.C
*
* Progrem to sving up and control the inverted pendulum in upright position
* Authors : Bo Bernhardsson and Kjell Gustafsson
- Date : 880525
* Major revision : 880826
*
* The program does not use any routines from the math library since
* since in realtime they does not seem to work properly together with
* the io-routines. The construction abs((int) x) is often used instead
« of fabs(x).
*/

#include <stdio.h>
#include "fb.h"
#include <math.h>

/% 4/D and D/A converter channels */

#define
#define
#define
#define
#define
#define

CH_ANG
CH_COL
CH_POS
CH_VEL
CH_PROC
CH_U

HOWNERO

/* pendulum engle */
/% color of code disc, i.e. what sector */

/* cart position %/
/% curt velocity */

/* vhich process is running, used for timing */
/% control signal */

/* Other compile-time constants */

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define

UHIGH
ULOW
GRAY

H

TICKS
VEIGH
VLOW
STARTOFFSET
OMEGA

P
DOWESCALE

SWITCHANGLE
FAILARGLE
TWOSEC
ESTPOLE

2047.0
(-UHIGH)

512

0.0036
(H/0.0005)
(0.89+UHIGH)
(-0.92+UHIGH)
(-0.13«UEIGH)
7.0

3.01
(22.0/33.0)

(0.1+UHIGH)
(0.4+UBIGH)
(2.0/8)
0.90

/* Global data, parameters %/

float
float
float

float

float
float

float
float

K;
11, 12, 13;
xi, k2, k3;

refmin,

currminangle;
offset;

prevangle;
x2est;

/%

/%
/*
/*
/*
/%
/=
/*
/*
/*
/%
/*
/*
/*
/*

4/D and D/A converter limits */

separates white and black */
sampling period in seconds */
schedular ticks per sample */
largest angle measurement */
smallest angle measurement */
angle measurment offset */
coefficient in state model %/
coefficient in state model #/
attenuation corresponding to */
external amplifier */

switch to angle control */
failed angle control #*/

two seconds */

estimation pole */

/% gain in position servo */
/% state feedback gains */
/% kalman filter gains */

/% absolute value of minimum angle so far */

deltaref; /% position set-point when swinging */

/* offset in angle measurement */

/* angle at previous sample */

/* estimation to initialize Kalman filter */

22

int sector; /* sector number, 0..3 %/

int seccol(4]; /% color of mector »/

int nextsec[4][2]; /% to what sector are we moving */
int mode; /* current mode */

int nsemp; /* used for timing */

int clockwise; /* clockwise or anticlockwise turn /
float turnposref; /* reference position when making */

/#* pendulum rotate one turn %/

float u; /% control signal #*/
float xilhat, x2hat, x4hat; /* kanlman filter states */
float fili, f£i12, g1, g2; /* parameters in state space model */

/*

* input()

*

* Read a value with prompt and range checking.
.

*/

float input(prompt, min, max)
char *prompt;
float min, max;

{
float x;

again:
printf("Ys: ", prompt);
scanf ("%, &x);
if (x < min || x > max) {
printf£("Value out of range (%f..%f)\n", min, max);
goto again;

return x;

¥

/*

* init_param()

*

* Initielize parameters and controller coefficients
»

*/

void init_param()
{
/* position servo gain, state feedback gains, Kalman filter gains =/

K =2;
11 = 26.0;
12 = B6.1;
13 = -1.20;
ki = 0.139;
k2 = 0.264;
k3 = -0.0304;

/% position set-points vhen svinging %/

refmin = 90;
deltaref = 2500;

/* plent model parameters */

fiil=cosh(OMEGA+H);
£i12=sinh(OMEGA«H) ;
g1=P/0OMEGA*sinh(OMEGA*E) ;
g2=P/OMEGA* (cosh(OMEGA*E)-1) ;

offset = STARTOFFSET;

/*
* init_sectorlogic()
*

* Initialize the sector logic
L S

*/
void init_sectorlogic()
{
/* when the program starts the pendulum is hanging down, i.e. sector O */

sector = 0;

/* on the code disc sector O and 2 are black and sector 1 and 3 are white %/

seccol[0] = 1;
seccol[1] = 0;
seccol[2] = 1;
seccol[3] = 0;

/* sector number (first index) and engle sign (second index) */
/% determine the next sector */

nextsec[0][0] =
nextsec[1][0]
nextsec[2][0] =
nextsec (3] [0]
nextsec [0][1]
nextsec[1][1]
nextsec[2][1]
nextsec[3][1] =

e we wa

]
N WOMOKRNGD

/*

* foreground()

*

* This is the controller. It is implemented as a finite state machine
* with the variable ’mode’ determining the state.

*

*/
#pragma check_stack-

void foreground()

{
float ref; /* current reference value */
float sensorangle; /* angle from semsor, corresponds to +-45 deg */
float angle; /% angle recalculated corresponding to +-180 deg */
float correctangle; /% angle +180 deg, corrected with offset */
float err; /* Kalman filter residuml */
float v; /* cart velocity %/
float temp; /* temporary variable */
int color; /* color on code disc */
int sign; /* sign of sensorangle */

/* output control signal calculated last sample */

24

Diout(CH_U, (int) u);

/* read sensorangle and color of code disc */

if (ADin(CH_COL)>GRAY)

color = 1; /* black */
else
color = 0; /* white #»/

sensorangle = ADin(CH_ANG);

if (sensorangle>0)
sign = 1;

else
sign = 0;

/* moving to new sector 7 »/

if (seccol[sector] != color)
sector = nextsec[sectorlsignl;

/* convert sensorangle to range +-180 degrees */
switch (sector) {

case O :
/* doun »/
if (sensorangle>offset)
angle = 2+(VLOW - VHIGH) + sensorangle;
else
angle = 2+«(VHIGH - VLOW) + sensorangle;
break;

case 1 :
/* left x/
angle = 2+«VLOW - sensorangle;
break;

case 2 :
/* up */
angle = sensorangle;
break;

case 3 :
/* right */
angle = 2*VHIGH - sensorangle;
break;
}

correctangle = angle - offset;

/* finite state machine */
switch (mode) {

case O :
/+ idle */
currminangle = 4+«UHIGH;

/* cart position control at center of track */
u = DOWNSCALE#K+(0.0 - ADin(CH_P0S));
prevangle = 0O;

break;

case 1 :
/* controlling */
v = ADin(CH_VEL);

25

/* Kalman filter »/

orr = angle - xihat - x4hat;

temp = fillexihat + fii12+x2hat + gi*v + kiserr;
x2hat = fii2+xihat + fillex2hat + g2«v + k2werr;
xihat = temp;

x4hat = x4hat + k3+err;

/* state feedback and inner feedback loop */
u = -DOWNSCALE*(li*xihat + 12*x2hat + 13«ADin(CH_POS) + v);

/* have we dropped the pendulum? */

if (abs((int) xihat)>FAILANGLE)
mode = 3;

break;

case 2 :
/* svinging +/

/* calculate set-point for cart position #/
if (ebs((int) correctangle)<currminangle)
currminangle = abs((int) correctangle);
temp = currminangle/(4+UHIGH) ;
ref = refminttemp*temp*(1i.5-temp)*deltaref;
if (correctangle<0)
ref = -ref;

u = DOWESCALE*K*(ref - ADin(CH_PO0S));

/% estimate angular velocity to be able to initialize Kalman filter */
if (sector==2)

x2est = ESTPOLE#x2est+(1.0-ESTPOLE)*(angle-prevangle)/H;
else

x2est = 0.0;

/* time to try to catch the pendulum? %/
if (abs((int) currminangle)<SWITCHANGLE) {
mode = 1;
xihat = correctangle;

x2hat = (x2est - P+ADin(CH_VEL))/OMEGA;
x4hat = offset;
b
prevangle = angle;
break;
case 3 :

/% wait state after failed catch »/

/* cart position control at center of track */
u = DOWESCALE#K+(0.0 - ADin(CH_P0S));

nsamp = nsamp+1;

/* Teset timer each time the pendulum passes upright position */
if (abs((int) correctangle)<SWITCHANGLE)
nsamp = 0;

/¥ pendulum no longer rotating, just swinging? */
if (nsamp>TWOSEC) {
nsamp = 0;

mode = 4;
currminangle = 4+UHIGH;
}
break;
case 4 :

/* estimate currminangle #*/

/* cart position control et center of track */
u = DOWNSCALE*K#(0.0 — ADin(CH_P0S));

26

nsemp = nsamp+l;

if (abs((int) correctangle)<currminangle)
currminangle = abs((int) correctangle);

if (nsemp>TWOSEC) {
nsamp = 0;
mode = 2; .
currminangle = 1.i*currminangle;
}

break;

case b ;
/* transition state to get position before anti clockwise turn */
turnposref = ADin(CH_POS);
mode = 7;
clockvise = O;
break;

case 6 :
/* transition state to get position before clockwise turn */
turnposref = ADin(CH_P0S);
mode = 7;
clockuise = 1;
breek;

case 7 :
/* make pendulum fall =/
if (clockwise==1)
u = DOWHSCALE+K+(turnposref + 200 - ADin(CH_P0S));
else
u = DOWNSCALE+K*(turnposref - 220 - ADin(CH_P0S));

/% have the pendulum fallen yet? */

if (abs((int) correctangle) >FAILANGLE)
mode = 8;

break;

case 8 :
/* turn =/

/* cart position control at position determined by pendulum angle */
if (clockwise==1)
if (correctangle>0)
u = DOWNSCALE+K+(turnposref + 200 - ADin(CH_PDS));
else
u = DOWESCALE+K*(turnposref - ADin(CH_P0S));
else
if (correctangle>0)
u = DOWNSCALE+X+(turnposref - ADin(CH_P0S));
else
u = DOWNSCALE#K#(turnposref - 220 - ADin(CH_P0OS));

/% estimate angular velocity to be able to initialize Kalman filter */
if (sector==2)

x2est = ESTPOLE+x2est+(1.0-ESTPOLE)*(angle-prevangle)/H;
else

x2est = 0.0;

/* time to try to catch the pendulum? */
if (abs((int) correctangle)<SWITCHANGLE) {
mode = 1;
xihat = correctangle;
x2hat = (x2est - P+ADin(CH_VEL))/OMEGA;
x4hat = offset;
nsamp = O;

}

/* time out, did the turn fail? %/
nsamp = nsamp+1l;
if (nsamp>TWOSEC) {

¥

mode = 3;
nsamp = O;

}

prevangle = angle;
break;

case 9 :
/* calibration state, one sample */
offset = x4dhat;

mode = 1;
breek;

case 10 :
/* manual start +/
mode = 1;
xihat = angle ~ offset;
x2hat = 0;
x4hat = offset;
break;

case 11 :
/+* stopping +/
u= 0;
break;

>

/* limit control signal */

if (u < ULOW)

u = ULOW;
else if (u > UHIGH)
u = UBIGH;

/* output signal to be mble to time the comtroller, the background */
/* process outputs zero at the same channel */

Daout (CH_PROC, 1000);

#pragma check_stack+

/

*
* main()

*

* Main program.

L
*/

main()

{
PrAnt (" smskkkbkok ks b kokok o ko bk ok kkdkonkn \ ") §
printf("* BoB’s and Kjell’s *\n");
printf("+ PENDULUM-SWINGER *\n");
print£("* May 1988, August 1988 *\n");
printf£("» *\n") ;

PTAntE(M adkkbk s bk Aok ok ko b kodokk kb \n") ;
printf("\n\n");

print£("Connect the 4/D and D/A as follows:\n");
printf("Inputs: 4/D O - pendulum angle\n");

printf(" 4/D 1 - code disc\n");
print£(" 4/D 2 - cart position\n");
print£(" 4/D 3 - cert velocity\n");

printf("OQutput: D/A 1 - control signal\n\n");
printf("Hit return when all connections are done.");

vhile (getchar() != ’\n’)
/% wait */;

28

printf£("\n\nOptions:\n");

print£("“Mode
printf£("Mode
printf(“NMode
printf("Mode
print£("Mode
printf("Mode
print£(''Mode
printf("Mode
print£(''Mode
printf(“Mode

0o -
1-

o~ LN
[}

[}
!

printf("Mode 10 -
printf(“Mode 11 -
printf£("During normal operation use only mode O, 3, 6, 6, 9, 10, and 11\n\n");

/* Initialize %/

u = 0;
init_param();

Idle \n');
Controlling \n");
Swinging \n");

Prepare swinging (1) \n");
Prepare swinging (2) \a");
Anti clockwise turn \n");
Clockwise turn \n");
Make pendulum fall \n');
Catch turning pendulum \n");

Calibrate \n");
Manual start \n");
Stop \n\n");

init_sectorlogic();

nsamp = O;
mode = 0;

schedule (foreground, (int) TICKS);

vwhile (mode != 11) {
mode = (int) input(“Mode", 0.0, 11.0);

};

reset();

29

