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Abstract

By using the mixture theory defined in continuum mechanics, together with
constitutive theory it is possible to derive classical and generalized forms of, for
example, Fick's, Darcy's and Fourier's laws, and conditions for phase changes and
chemical reactions. These conditions are very important in several engineering
disciplines. The report includes the necessary definitions and axioms needed to
derive the classical physical laws. The different mathematical steps performed to
reach different results are in almost every case shown explicitly.

1. Introduction

A review of the paper Møcroscale Thervnod,ynarnics and the Chernical Potential for Swetling
Porous Med,ia is performed in this article. The concepts described in the paper of Bowen, ?åe
Theory of Mirtures, is also included as an important background to the present work.

The presented material in this paper is stuff that the author has studied during preparation of
a doctoral thesis. Since no 'simple' text book treats the combination of the explanation of basic
defrnitions in mechanics and the more complicated mixture theory I thought that engineers with
basic knowledge in mechanics might be interested in having all the needed essential information
collected in one place. The drawback with having the goal that an ambitious student should be
able to follow the content in this paper is that the many mathematical steps tends to destroy the
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simplicity of most of the presented results. On the other hand if successfully coming through
this paper the reader will obtain a solid understanding of the background to many common
theories of interests to engineers and will, furthermore, most probably develop thoughts about
how to apply them and how to develop them further.

The work is more or less identical to the paper Macroscale ThermodEnam'ics and the Chemi.cal
Potential for Swelling Porous Medi,a. The difference is that an extensive description of all
essentials steps needed to receive the closed set of equations for the studied thermodynamical
problem are explicitly included in the review to be presented. Furthermore, is the background
leading to, for example, kinematic relations and different forms of balance principles included
to make this ariicle complete, in the sense that all signifi.cant information about the theory in
question are included.

The paper consider, among different things, three diflerent important issues

1. A novel definition of the macroscale chemical potential for a porous medium is introduced.

2. The properties of the novel macroscale chemical potential are derived by slìghtly expanding
the usual Coleman and Noll approach of exploiting the entropy inequality to obtain near-
equilibrium results.

3. A discussion of the applications of mixture theory to swelling porous media.

The modified approach using an appropriate definition of the chemical potential, one is able
to d,eriue properties of the chemical potential which corresponds exactly with the properties of
the classical Gibbsian chemical potential. The motivation of the use of a new chemical potential
is illustrated.

2. Kinematics and definitions

The spatial pos'ition, or the place x, of a particle labeled X, is given by a function .1" called the
deformation .function or the motion. The motion is defined as

x: xo (X", ú) (2 r)

where Xo is tlte material coord'inales of the particle Xo of the øth body or const'ituenú in its
fixed reference configuration. At time ú tÌne spat'ial pos'ition x will be occupied by the particle
X" labeled with is corresponding material coordinates Xo. Assuming that an inverse to the
deformation functions, i.e. X"].,,,,,,n, exists for all continuous bodies 1, ...,W the motion of the
ath constituent could be described as

x": x;r (x,t)

The uelocity and accelerat'ion of the particle Xo at time ú are defined by

x'o: ôxo(x",t) lat

x'J. : ô2 No (X",t) lôt2

(2.2)

(2.3)

(2.4)
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respectively. That is, the velocity and the acceleration are regarded as functions of the particle
Xo having the material coordinates Xo and the time ú. This is the so-called material description.
Hence the prime affixed to a symbol with a subscript ø will denote the material der'íuat'íue

following the motion of the ath constituent.
Given (2.2), the velocity and acceleration of Xo can be regarded as given by functions of

(x, ú), i.e.
xå: x'o(x't) (2 5)

x'J: x'l(*,t) (2 6)

The uelocity gradient for the ¿th constituent at (x, ú) is defrned by

Lo : grad x'" (x, ú) , L¡oyi : 
U::i" 

Q.7)\-)'r ð* j

The velocity gradient can be decomposed as

Lo:Do +'Wo

where Do is the symmetric paú of L" defrned by

(2.8)

D,:+,(r," + r,l) (2 e)

and Wo the sleew-symmetric defined by

(2.10)

Here Do is called the rate of strain tensor or stretching tensor and'Wo is called the spin tensor,
For a mixture, the W bodiesl, ...,ffi are allowed to occupy common portions of physical

space. Then each spatial position x in the mixture is occupied by W particles, one from each
constituent. Each constituent is assigned a density. The mass dens'ity for the øth constituent is
denoted po. The density is a function of (x,t), i.e.

po: po(x,t) (2.11)

The density of the mixture at x and time ú is defined by

Ðt

p: p(x,ú) : t p"(x,t) (2.12)
A:T

The mass concentration of the ath constituent at (x, l) is

ca : ca (*,t) : p,l p (2.13)

Following (2.I2) and (2.13), the mass concentrations are related by

æ

Dr.: I (2.14)
=1

wo: IF,"_ n'")
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The mean uelocity, or simply the ueloc'ity of the mirture, at (x,ú) is the mass-weighted average
of the constituent velocities defined by

1Ð?
x: x(x,ú) : i f p,x! (x,ú) (2.15)

P -.,
The di,ffusion ueloc'ity for the oth constituent at (x, ú) is defined by

üø : üa (x, t) : x'o(x,t) - x(x, t) (2.16)

The diffusion velocity uo is the velocity for the ath constituent related to the mixture. It follows
from (2.15), (2.16), and (2.12) that

\,Pouo: o
A:T

The velocity gradient for the mixture at (x, ú) is

1, : grad x (x, ú) ; L¿j

(2.r7)

(2.18)

The relation between L and Lo is obtained by considering the identity

grad (pou") : üø I gradpo* pogtaduo

where I denotes the dyad product. Ffom (2.17), it follows that

Ð?

grad! poto: o

which together with (2.19) give the relation

Ð?æ

Dr" I grad po:l pograduo
a:I a:7

In addition, the expression

(2.te)

(2.20)

(2.2t)

UI

pL:DpoL:Ip" grad* :Dp"grad (x', - u") (2.22)
ø:L a:7 a:I

must be considered, in which (2.I2) añ (2.16) are used. The deflnition (2.7) together with the
expressions (2.2I) and (2.22) give the relation between L and Lo as

æ

pL :Ð(poL, + uo I grad po) Q.23)
a:7

Any time-dependent vector fields, and in fact any time-dependent scalar, vector, or tensor
freld l" associated with the øth constituent, can be regarded either as a function lo (Xo, t) of the

ôæ¿

ú
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particle X" (having the fixed material coordinates X") and the time l, or as a function f" (x, ú)

of the place x and the t'íme ú, provided that a definite motion x: Xo(X",ú) is given. Again,
the prime affixed to a symbol with a subscript a will denote the material deriuatiue following
the motion of the ath constituent. The material time derivative of lo is defined by

f; : + fx, (x,,t) ,t); xa : const.- dt. * . 1", /) , ú] ; Xa: const. (2.24)

If the inverse to the deformation function .To exists, the arbitrary function lo can be expressed
by functions of (x, ú). The definition (2.2\ and the chain rule for partial differentiation together
produce

, af .

r'" : ã (x, ú) * fgrad f (x, ú)] x! (x, ú) (2.25)

which is the relation between the material derivative l! and the spatial derivative Af IAL
The derivative of I following the motion defined by the mixture, that is x, is denoted by i

and is defined, in the same manner, by

r af .t : ;t (x, ú) * fgrad I (x, ú)] * (x, ú) (2.26)

As an exampÌe, considering the one-dimensional case: I :l(rt,ú). Differentiation yields,
il : @l lArl) d"r1 + @l lAt) dú, by dividing the whole expression with dt, one obtain: dl f dt, :
(ôllôq)d,qf dt+@llôt)dtldt. By identifying that ôllðt: i and also that d"qf dt: ár one
obtain the one-dimensional version of (2.26) as: I : dl ldt + (ôl lôr1) q.

Sometimes the material derivative following the motion of the o component, i.e. lo is written
as D. (f) f Dt andthe velocity, as defined in (2.3), as va. That is a common way of expressing
(2.26) is D"0 a /\

Dt ,i + fgrad 0]v" (2.27)

For example, the material time derivative of the mass density pto ean be related to the spatial
time derivative ôp"f ôt by identifying I as p" to yield

, ÔPoo;: # * grad (p,) .*,,

It follows directly from (2.16), (2.25), and (2.26) that

t!-i:(gradf)uo

pLFL) _2u_Q") ,-- rF \--i
Dt Dt- 

: (grad r @J uá

The deformation gradients for the ath constituent is defined by

F" : GRAD Xo(Xo,t); Flo¡*: 
h

(2.28)

(2.2e)

(2.30)
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where GRAD denote the gradient with respect to the material coordinates Xo. Note that F;1
only exists if det Fo f 0, which is the case because of the assumed invariability of X". The linear
transformation inverse to F" is

ðX6¡n
ô*j

(2.31 )F;t : grad X, t (*, ú) ; FGJr¡ :

In accordance with (2.30) and (2.31) it is concluded that

F"F;t : Fo 1Fo : r; YIPL : do,
ôX6¡¡"ôr¡

Using the chain rule together with the definition of the velocity gradient as

, ô*'(o)n ôr'6yi ôX6¡n
t'ça)ii : ô"J 

: 
a\")r a"j

and noting that Xo is independent of the time ú, it follows that

L1o¡ri: (æ)' 
ô{!z¡* : F("1inF1.ln¡

l'e' 
Lo:"'o, ;r

(2.32)

(2.33)

(2.34)

(2.35)

which is the relation between the velocity gradient and the deformation gradient for the ¿th
constituent.

Another property of the deformation gradient of the ath constituent will be examined, namely
the relation between determinant of, i.e. detFo denoted J1f,¡ and deformation gradient Fo. Recall
that the deformation gradient and the inverse to the deformation gradient can be written as

ñ -. ôrk - 1 -- ôXp¡xFo: tnx : ffit F;t : xK,k: Ë (2'36)

where indices after comma indicate partial differentiation with respect to X6¡x when they are

majuscules, and with respect to ø¿ when they are minuscules. The determinant of Fo can be

obtained by the permutation symbols ey¡¡¡ and ektm, as

1

4"): l*x,Nl: à"n"*"rt^nk,K!rl,Lrm,M Q'37)

where ey7¡¡ ande¡"¡* are; (e) zero when at least two indicies are equal; (ii) 1, if the sequence of
numbers k, l, m is the sequence I, 2,3 or an even permutation of the sequence and (üi) -1, if the
sequence of lc, l, rn is and odd permutation of the sequence 1,2,3. Hence, er2y : es72 : esL2 : l,
eLg2 : e27z : ez2r : -1, all othet e¡"¡* - 0'

Each of the two sets of equations in (2.36) is a set of nine linear equations for the nine
unknowns rk,K ot Xx,n. A unique solution exist, since the Jacobian of the transformation is
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assumed not to vanish. Using Cramer's rule of determinants, the solution for X¡ç,¡" may be
obtained in terms of z¿,6. Thus

xx,*: cofactorr¿',r : ;!"o"MertrmÍr,Lfrm,M (2.88)
u (") ou (o)

Differentiating (2.37), yields

ôJE, 1

a")i;: i"o"*trtmnuLrm,M (2'39)

that is, the important identity for the Jacobi is obtained by combining (2.38) and (2.39), which
gives

utt' 
:cofactor nk,K: iqxo,r (2.40)

ör*,x
or, equally

u!^!' :/ärF;' (2.4r)
aE,

For certain problems it is convenient to introduce the vector wo denoting the displacement
of particle Xo of the ath body from its place Xo in the reference configuration to its place
x: Xo (X") in its deformed state:

w" (X") : Xo(Xo) -Xo Q.42)

l.e

Differentiation yields

that is

w"(X") :x(X,)-Xo

ari (x6¡) : ffior{øi 
: (6ti +

ôw6¡;
ôx6¡¡

dXç"¡i

(2.43)

(2.44)

ôr; - ðuro:¡

--r 

rJ
ôXb)¡-wxr ' ôX@l¡

(2.45)

The d,i,splacernent gradlient Ho is also introduced as

Ho: GRAD wo; H6¡r.i: 
æ 

Q.46)

This definition together with (2.45) and (2.30) give the relation between the deformation gradient
Fo and the displacement gradient lfo as

F,:I+H, (2.47)

One of the strain measures is the Lagrangian strain defined as

.' 
-l 

-t" : i, (Fj F" - I) (2.48)
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which may be expressed in terms of the displacement gradient flo as

Eo
1

t
1

t
1

t

(nln" - t)

({l + u")' (r + u,) - r)

(tt"+H;) +ïtTr"

a*È: (t.**)

wherc (2.47) was used. The Lagrangian strain measure has the benefit of giving zero contribution
of strains during rigid body rotation. However, the linear strain measure

",:*(u" + ul) (2.50)

is often adopted.
In solid mechanics one is often interested in calculating the displacement of a body from its

initially undeformed state. In order to do this one must introduce the concept of strains (and
stresses). The strain is a relative measure of the length change between two neighboring point
with regard to its initial undeformed length.

The classical linear strain measure, i.e. u : L (U + Hr) where H is the displacement
gradient, gives unphysical results when rigid body rotations occurs from the initial conflguration
and when large deformations is considered. Due to this fact one is interested to define a strain
measure that gives zero contribution to strains during rigid body rotation and also a measure
which makes it possible to study bodies with arbitrary large deformation.

Consider the relation between the current place x of a point in a body and the reference
configuration X and the displacement w, i.e. equation (2.43) repeated

x(X) :X+w(x) (2'51)

The differential d will be used denoting, for example, a differentiation like

¿ (x (x)) _ ô* o.52\dx ax
i.e.

a(x(x)) :5r* (2.53)// ax
By inserting the expression for x in (2.51) into equation (2.53) gives

a(x(x)) : {I#@ ax:ffiax+$pax : (t*ffi) o" Q.54)

Flom (2.54) and (2.52) one obtain

(2.4e)

(2.55)

(2.56)

Recall that the deformation gradient is defined as

f : GRAD (x)

I



where GRAD is used to symbolize that the differentiation is with respect to the initial configu-
ration X, i.e.

The displacement gradient H is defined as

HG-L: GRAD (w) (2.5s)

where the super-script denotes 'Green-Lagrange' which will be included to emphasize that the
displacement is differentiated with respect to the initial configuration X, i.e.

1¡c-

ãut 1ôxt Iôuti I

1Xs Iöut I

ãXs )

L

}ut }utax, ax"ãuö ã-í
QX, ã^x,
Ou\ OD3
)Xt ôXz

(2.57)

(2.5e)

Hence, (2.55) can be written as

r' : lr + Hc-¿) (2.60)\/
Consider two points in a undeformed body the vector located between these two points is the
vector dX having the length d,9 in the same manner dx and ds are considered in the deformed
state between the same points. The relation between dX and d^9 and also between dx and ds, is

ldxl : d,r: t/rt*&.; ldxl : d,S : \/dxdlx (2.61)

And the quadratic length in the deformed and undeformed state, therefore is

(d,s)2 : d,x.d,x; (cls)2 : dX'dX (2.62)

The'Green-Lagrange'strain measute eG-L deflned in the direction defined by dXldS, i.e. in
the initial undeformed direction, is

ças¡2 - @s)2 d,x.ax-dxaxec-L:-ffi:ftoyt (2'63)

This can be compared to the linear strain measure e, í.e. e: (ds - dS) lds. This means that
the relative length change should be about 1.05-1.1 before any important differences between
the linear strain measure and the 'Green-Lagrange' strain measure is obtained. The benefit of
using the non-linear strain measure in (2.63) is, however, that this strain definition gives zero

contributions during rigid body rotatìon. This will be shown later.
From the definition of the deformation gradient F and from (2.55) is concluded that

dx: FdX : (t n rrG-L) ax Q.64)
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This means that the 'Green-Lagrange' strain measure e6-¿ defined in (2.63) could be written
AS

(ds)2 - (cts)2 Fdx.Fdx- dx.dx4-L:-ffi - , (2.65)

Using the following two identities

dx
,lS

r *Ø '*ffi:ffi (+r'rø¡

Ldx dx _ rdx (,ds ds-rds \
I (2.66)

(2.67)

it is concluded that (2.65) can be written as

€^ . - @s)2 - (¿s)2 :4. ( r+ rrrr-r'. dx\:c-L:-ffi d,s \\2\^ - -D;S) (2'68)

which shows that the strain measure ec-r is defined in the direction given from the vector
dxldS in the undeformed configuration.

The 'Green-Lagrange' strain tensor EG-¿ is introduced as

EG-L:I (rrr - r) (2.6e)

which is the term in the brackets of (2.65). This is a generalization of the strain measure 6c-¿,
that is ,þG-r' holds for all directions of interest.

The term FTF is often denoted C referred to as the right Cauchy-Green tensor, this tensor
was used by Green in 1841. That is, C is defined as

C : FrF Cachy-Green tensor (2.70)

The 'Green-Lagrange' strain tensor EG-L can be formulated solely in terms of the displace-
ment gradient instead of with the deformation gradient. Using the expression (2.69) and (2.60)
one can write

EG-L : å (e'e - r) : å ((r. H'-') (r + n'-") -r)
: å (rr + rHc-¿+r (Hc-r'¡r + (Hc-¿)r 1H"-'¡ -r) e.Tt)

: ä (rrc-"+ (nc-r,r¡ + + (rr'-")' 1n"-',

That is, the 'Green-Lagrange' strain tensor EG-¿ is given by

Ec-L : T (u.-"+ (nc-z¡r¡ + t (H.-")' in"-r, (2.72)

where the last term on the right hand side is the non-linear contribution to the strains when
using the 'Green-Lagrange' strain tensor. It should be observed that the displacement gradients

are with respect to the undeformed configuration X.
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By simply ignoring the non-linear contribution in (2.72), one obtain the classical linear strain
measure eG-¿, still with respect to the undeformed configuration X, i.e.

eG-L : å ((H'-,)+ (Hc-r¡r) tz zsl

Example 1. Consider a case where the motion is known in before hand for a rigid body.
The body will be subjected to a rotation in the nt - 12 plane from its initial configuration X
to its deformed state x. Such an rotation can be described by a relation

x: eX

where the rotation matrix is Q

Q:

where cp denotes the angle, i.e. the magnitude of the rotation from its initial configuration. That
is, the place x can be related to the initial fixed configuration X for a rigid body rotation, as

cosP -srn9
sin cp cos g
00 il

lîi): ['î; ill*l-sln9
cos (p

0

l.e

X1 costp - X2sing
Xlsing I X2cosp
X3

Recall that the deformation gradient is deflned as F:GRAD(x), i.e. F¿¡: Ô*¿lôX¡. The
terms of interest is therefore: Aqf AXL: cosg, Ôqf ôX2 - -sing, 0r2lõX1 : sinrP and
ôn2f ôX2 - cos (p. This means that the deformation gradient for a rigid body rotation takes the
form

I cos,p - sin rp 0 I
P: I sing cosp 0 |

I o o 1l
Using the definition of the 'Green-Lagrange' strain tensor, i.e. EG-¿-å (FtF - I) one obtain

rI:
12:
:x3 :

EG_L
cos P
sin g

-srnP
cos (p1

2 i]ltîr' :î; i]
1

2

00

l::il
T2



IE

This means that the 'Green-Lagrange' strain tensor gives the correct response during rigid body
rotation since no strains develops in this case.

For the linear strain measure i.e.

eG-L :å ((H'-') + (Hc-¿)r) : å (fn - 1)+(F - 1)')

one obtain

l-o o ol¿:lo o o l

lo o ol
EG

eG-L : I
cosg - 1

sin rp

0

-slnP
cosg - 1

0

1å1.'l

tl

cos(p-1 sing
- sincp cosg -00 ål

le

eG-L :

This means that important errors is introduced when using the linear strain measure when the
rigid body rotation significant deviates from zero.

2.1. Euler-Cauchy strain tensor

In this section the a strain measure which is related to an evaluation of the strain at the current
place will be derived. In the previous section the 'Green-Lagrange' strain tensor was discussed

which relates the strain state to its initial undeformed state. The 'Euler-Cauchy' strain tensor to
be derived here the current place is used as reference when calculating the strain. The derivation
follows the same concepts as in the previous section.

Consider the relation between the current place x of a point in a body and the reference

configuration X and the displacement w, i.e. equation (2.43) repeated

x(X) :X*w(x) (2.74)

I.e
X:x(X)-w(x) (2.75)

a differentiation expressed as

cos(p-1 0

0 cosg-1
00

dx: {¿*dx
(2.76)

dx (2.77)

will be performed by inserting the expression for X ín (2.75) into (2.76), as

ô(x(x)-w(*))
dx

ôw(x)
dx

ôw (x)
ôx

tuom (2.77) one obtain

d.x:
0x

ôx
ôx ('-ôx

13



ax : l'-9Y\
ô*: \'- ô*/

Recall that the inverse of the deformation gradient is

F-1 - grad (X)

i.e.
f axt ôxt ãx, 1I Br' 8t' ôr" I

¡-1 _ | ãXz ãKo AK2 I- -l¿i- 8e 8fr I

L 6*, ãrz 0"s J

The displacement gradientIJE-' will be deflned as

HE-c : grad (w)

l.e.

where the difierence between HE-c compared to HG-¿ should be clear.
Hence, equation (2.78) can be written as

F-r - lr _ u"-r) (2.88)\/
Consider, again, two points in a undeformed bod¡ the vector located between these two points
is the vector dX having the length d,S in the same manner dx and ds are considered in the
deformed state between the same points. The relation between dX and dS and also between dx
and ds, is

ld,xl: ds : ,f dx&.; ldxl : d,S : dx.dx (2.84)

l.e.
(d,s)2 : d,x'd,x; (dÐ2 : d¡''dy'.

The 'Euler-Cauchy' strain e6-cr is defined as

(2.78)

(2.7e)

(2.80)

(2.81)

(2.82)

(2.85)

(2.86)

(2.87)

(2.88)

in the direction defined by dx/ds. Using

2 (d.s)2

dx:F-rd,x: (r - øE-c) ax

1as72 - @s)2
çF;-l; 

- 
o

2 (ds)'

@12 - @s)2€E-c : 
, @tf-

dx.dx-dX.dX

d,x.d,x- F-1dx.F-1dx
2 (ds)

to rewrite (2.86) by replacing dXl>y F-ldx, as
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This can be brought to the rm

e, -c - ças¡2 - las¡2 a

2(d,s)2 ',* ({; {t- (P-')'"-')) #)
if the following two identities is used.

Li:#:+# ('#)

,-'ff=r-'# : # (+(p-')' "-'#)
In the same manner as the 'Green-Lagrange' strain tensor was introduced the 'Euler-Cauchy'
strain tensor EE-c is deflned as the terms in the brackets of (2.89), i.e.

Eu-c:È (r_ 1n-'¡r r-,) e.s2)

where the inverse to the deformation gradient is F-l : (t * H"-"). The term (f -r¡r rr-r
is often denoted B-1 where B is referred to as bhe left Cauchy-Green tensor, introduced by
Cauchy in7827.

Since the inverse to the deformation gradient is F-l : (t * H"-") the 'Euler-Cauchy'

strain tensor EE-c can be formulated as

EE-c : å (r- 1n-')'p-') : + (t- (t-r"-")" (r-""-'))
: å (r- (u -rHE-c - (nø-c¡r I+ (Hø-c¡t (""-"))) (2.e8)

: I (n'-c +(nø-c;r¡ - T çn'-cr' 1H'-",

l.e.
EE-c : L (ru-"+ (HE-c)r) _ å (rr"-c¡r çrrn-c) e.s4)

where the displacement gradient HE-c is with respect to the current deformed place x.
One possibility, is to use thìs type of strain measure together with updating of the mate-

rial coordinates in every calculation step. It should be noted that calculations which involves
non-linear strain measures, e.g. EE-c or EG-¿ must be solved numerically with equilibrium
iterations in every computation step in order to search for equilibrium.

(2.8e)

(2.e0)

(2.e1)

2.2. Strain rate

Often one is interested in developing equations in a so-called rate form, for example, the stress

rate can be a (constitutive) function of the strain rate. These type of relations are often adopted
in a step by step calculation in non-linear problems.

It will be shown later that some problems is related to the rate form of the strains. This
problem steams from the fact that an observer recording the strain rates, for example between

15



two points in a body, will record different strain rate depending on which frame (or coordinate
system) this observer happens to relate the measured strain rates to. This is in general an
unacceptably effect. Physical properties which is independent of the (observers) coordinate
system chosen is said to be frame-indifferent. In continuum mechanics one only use to relate
physical properties to each other if the can be shown to behave frame-indifferent, which seems

reasonable. Frame-indiflerence will be discussed in more detail later.
F\rrthermore, it is of interest to compare the choice of kinematic definitions and the con-

stitutive relations introduced in solid mechanics and in fluid mechanics. Usually, the stress is

assumed to be a function of the velocity gradient when dealing with fluid mechanical problems

and when a stress state in a solid is studied the stresses is most often assumed to be a function
of the strain or of the strain rate (or both). Here the kinematic relation between the strain rate
and the velocity gradient will be shown for the 'Green-Lagrange' strain rate measure. Therefore
the results of the discussed topic in this section may be used as a link between the kinematical
defi.nitions used in classical solid mechanic problems and in fluid mechanics.

Consider, again, the length ds between two points in the undeformed body and the length
d^9 in the deformed body (between the same to points), i.e.

ldxl : d"t: r/d,*fl*; ldxl : d,S : dx.dx (2.e5)

That is,
(cts)2 : d,x.d.x; (dS)2 : dX.dX (2.e6)

By difierentiating (ds)2, using a dot denoting the material time derivative, one obtain

@* :Ñ¿*:¿*. d,x-fd,x d'x :2d,x'd'x (2.g7)

where it also should be observed that the time derivative of d,S, i.e. the length in the undeformed
reference configuration is zero, due to d,S being constant.

Further, the relation between the distance vector dx between two points in the deformed
state and in the undeformed reference state dX is given from the deformation gradient F as

d,x:F.d.X (2.98)

Differentiation gives

¿x:it¿x+FdX; ß-:o (2.99)

i.e.

d,x: d,i<: FdX (2.100)

where it should be noted that dX is constant.
The velocity gradient L describes the relation between the distance vector dx between two

points in the deformed state and its corresponding rate of change of length, i.e. d*

Ld,x:d.*. :d,x (2.101)

It is concluded from (2.100) and (2.101) that

di(:þdx:Ld,x (2.102)
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That is, l,:þaXlAx, or L : ÈF-t, which has been shown earlier.

By replacing dxín (2.97) by the expression given by (2.101), one obtain

(d'')2 :2d'x'(Ld'x) (2'103)

Recall that the velocity gradient L can be decomposed into a symmetric part D and by a

skew-symmetricpart'was 
L:Dfw (2.104)

where
D :å (L + L') ; w :+ (L - t') (2.10õ)

This fact that W is skew symmetric i.e. W - -Wt, means that all diagonal element is zero.

Insertion of the expression (2.104) into (2.103), gives

L@ù' : dx'(Ddx)* dx'(wdx)
: ¿" ((à (t + t r)) dx) + dx. ((å (t - r,r)) ax) (2.106)

: dx.(Ddx)

where the defrnitions in (2.105) is used. It is observed ihat 2dx ((+ (t-tt))dx) :0, due to
W being skew-symmetric. The rate of change of the cubic length obtained is

L@')": dx'(Ddx) (2.107)

Consider, the'Green-Lagrange'strain measure eG-L in the direction defined by dXf dS,i.e.

€^ . _ (¿s)2 - @s)2 :f .lr+ r"t"_r.. dx\
G-L: -ffi cts \\2 \- - -));s ) (2'108)

where the 'Green-Lagrange' strain tensor EG-L for arbitrary direction is

EG-L:I (nrr - l) (2.109)

Combining (2.108) and (2.109), yields

2 d.s)'

dx
dS

EG_L
dx-^
0"Ð

ds

2@S)2

dx
a,Ð

( dx
dS

LEG (2.1 10)

(2.tt2)

The 'Green-Lagrange' strain measute eG-L will now be differentiated with respect to time
(material time derivative), as

eG-L: (d,)'- (ds)') 12@"Ð2: (2.111)

Since d^9 and dX are independent of time, expression (2.111) reduces to

eG-L : +@,* : d,x. (t"-'ax)
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But, it was also shown in (2.106) that

L@ù': dx'(Ddx) (2.113)

Now using dx : F.dX to replace dx in (2.f06) to yield

L@')': (Fdx).(D (Fdx)) : dx. (rrorax) (2.rt4)

By combining (2.112) and (2.113) the relation between the symmetric part of the velocity gra-
dient D and the rate of change of the'Green-Lagrange'strain tensot'iÐc-L is obtained, i.e.

dx.(FrDFdx) : dx (EG-¿dx) (2.115)

Since dX is arbitrary one conclude that

'itG-L : FrDF (2.116)

where it should be noted ihat the dot denotes the material time derivative, i.e. this time
derivative is 'following the motion' of the body exhibiting strains. The result in (2.116) are due
to E. and F. Cosserat in 1896.

By using the right Cauchy-Green tensor, i.e.

C : FrF (2.117)

and noting that
EG-L - å (e'r-r) : å(c-r) (2.118)

when it is clear that the following holds

ilG-L : Lc (2.119)

Recall, further, that the deformation gradient F and its transpose can be expressed with its
corresponding displacement gradient IIG-¿, ì.e

" 
: (t + Ht-') ; Fr : (l+ 1u"-'¡') Qflo)

If the displacement gradient IJ?-L is very small, the approximation for EG-¿ is

itG-L : FrDF ¡v IDI: D; if (2.121)

Observe that D is shown to be frame-indifferent, see previous sections, however, EG-¿ is in gen-

eral not frame-indifferent. Methods to tackle this dilemma, valid when signifi.cant displacement
gradients is observed within a body will not be discussed in this work.

ft .u'
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3. Two phase, N-constituent, structure of balance lawts

In this section mass balance equations for constituents appearing in different phases will be
studied at macro scale. The consequences of requiring the sum of the mass balance equations
for the individual constituents to be equal to the mass balance for the phase will be derived.
The balance equations for the phases should, further be equal to the balance equation for the
whole mixture.

Mass balance for constituent j in phase a is the postulate

& l*,"no'|t): - t'uo,.d.uL 
o"* 

I*@5+ 4) au (3 1)

where eo is the volume concentration of the o phase, d. i" the mass density concentration of
the jth constituent in phase o, vlo is the velocity of the jth constituent, the mass exchange of
jth constituent between phase boundaries is denoted êr. and the chemical reaction of the jth
constituent within the phase is denoted do.

Using the divergence theorem on the first term on the right-hand side of (3.1) gives

6 e.f-vr-.d,s
Jan ,[ o* þ-y'.vi,) do (3.2)

Combining (3.1) and (3.2) yields the local form of the balance of mass of ihe jth constituent in
phase o, i.e.

â(u"^'i
Ai? *div (e.y'.vr-): êL+ C., i:!,...,N' d:I,s (3.3)

The mass balance for the phase a can in an identical manner be brought to the local form

rc#¿ * div (eopov o) : êo (3.4)

where êo will be defined as the net gain of mass between phases, i.e.

N

)-^i _^ (3.b)

?-"'- "'

where .ò/ number of constituents are considered. This means that the chemical reaction ôlo do
not affect the mass exchanges between phases.

The equations (3.3) and (3.4) can also be written in terms of the material time derivative
instead of the spatial derivatives. Consider the relation (2.27) between the two derivatives, i.e.

po(eop): q_g ^ ,
Dt t'st + vo .grad (r.p-) (3 6)

where Do (r.p-) lDt is the derivative with respect to the motion of the phase o. Combining
(3.a) and (3.6), gives

D. (eop.)
Dt - vo . grad (t.p.) f div (eopovo) : êo (3.7)
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Using the identity
div (eopovo) : eopodiv (.r.) + [grad (e,p,)]v, (3.8)

gives the alternative version of (3.4), i.e. by combining the identity (3.8) with (3.7) one obtain

D' (eoZ') r eopodiv (uo) : êo (3.9)Dtl
The definition of the phase velocity vo is

vo:1Td."t (8.10)
P. /_t

The phase density po is in the same manner defined as

N
p.:Dd. (9.11)

:1

In order to study the structure of the mass balance principals a summation of the .ð/ number of
constituent equations building up phase a will be performed, i.e.

îGW -tdiv(e.y'.vL)-êL-r.) :0, i :!,...,N (3.12)

,=í\ ot /

Due to (3.10) and (3.11) this equation can be written as

rc;f¿*div(eopov,) :ËGt+æ.), i:1,...,N (3.13)
j:1

That is, by comparing (3.12) and (3.13) it immediately follows that

NN

DGt" + d") : ê.o +\do : êo (3.14)
j:7 j:1

if one requires that the sum of the constituent equations should be equal to the phase equation.
It is also noted that

N

Du.: o (3'15)
j:7

The local mass balance for the whole mixture is the postulate

ô ('P) * div (epv) : o (3.16)
æl

or equally
aØ)

At
* div (pv) : 6 (3.17)
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which gives the proper interpretation of the volume concentrations, i.e

R

D*:'-t
a:7

The definition of the velocitv of the mixture is

(3.18)

(3.1e)

(3.21)

1
\i¡:- I

a:l,s iF-"Ðn",vd
p

where also (3.10) is in use. \Mith (3.11) the definition of the mass density of the whole mixture
becomes

(3.20)
a:l,s

Summation of the .¿R number of phases is

Po

t Pop- d"
Nt

j=1
t

a:l,s

Rt * div(eopovo) - ê. -0, a
a:l

ô (e.p-)
At,

R

Using (3.19) and (3.20) gives

ryP*div(epv)- t êo:o (r.22)
& a:t,s

By comparing (3.11) with (3.17) gives the conditions

R

le.p.: ep: p @.23)
a:7

and

Ð-"u': 
o (3'24)

which is the consequences of requiring the sum of the phase mass balance equations to be
identical with the balance principal for the whole mixture.

In different applications it is more convenient to adopt the concentration of constituent j
in phase o, denoted C{, instead of the mass density concentration. The concentration Cr. is

defrned as

CL: d.lp. (3.25)

That is, the concentration Cr. is related to the mass density of the phase a. It immediately
follows that

(3.26)
N1N

Dc'":;Dd.:tj:r ' " ¡:t
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where (3.11) is used.
The definition of the so-called diffusion velocity ur" of the jth constituent in phase a is

rL: vro - vo Q.27)

Combining (3.27) with the mass balance equation expressed in terms of mass density concen-

trations, i.e. (3.3) one obtain

a (dre") i div (e-f.ur.) + air, (r.li.u-) : ê!.* c., i : 1,..., N (3.2s)
at

Noting thai by use of the definition (3.25) the flrst term on the left-hand side of (3.28) can be

written as

(3.2e)

where standard partial derivatives is used. Further the second term on the left-hand side of
(3.28) can be written as

dív (e./.v.) : div (e.cj.p.v,) : cLdiv (ropouo) r eopovo ' grad (c1-) (3.30)

Using (3.29) and (3.30) in (3.27) yields

a (c'")
ðt

€a1aYa'grad (Cr.) : -dív (e.f¡tr^) + a2 + æ.

Flom the balance of mass of the phase a, i.e. equation (3.4), it is concluded that

n¡ lð (P".) - 
'l

t'" 
l-= U- I div (eopov.)l: Ct-è. (3.32)

That is, combining (3.31) and (3.32) gives the mass balance for the jth component in phase a
expressed in terms of the concentration C{ instead of the mass density concentratiot y'o, one

obtain
ô (cii

,-r--# i div (e.y'.u!.) + topouo' grad (Cr") : êL -f C- - CLê. (3.33)

By noting that the material derivative $p ir related to the spatial derivative S through the

velocity of the phase * u", ff : P +[grad 0]vq, one can write the frrst term on the left-hand
side of (3.33) as

D.(ct-) ô(cÐ ., 1/^i\1t'r."-t# : t'r.tãÏ * lsrad (cr')l e'p.v' (3'34)

That is, the material derivative of the concentration Cr. can be expressed as

,-r-'-#*div(e-f¡tL):êL+õi.-cr-ê. (3.35)

which is an alternative version to (3.3) of the mass balance of the jth constituent in the a phase.

a(d"e") _ô(c¡^p-e.) _n¡ô(p.e.) -^. a(ct-)
at ôt - "a at -r po"o--61-

,*14ffàr div (eopov .))+ ,.,* + (3.31)

22



Consider, finall¡ the derivation of the mass balance equation for the jth constituent in a
phase using the material time derivative instead of the spatial derivative used in (3.3). The
relation between the derivatives becomes

n"(r.d.) _ð(t"pL)
Dt At

f v'. . grad (t-d")

where (2.27) is used. Hence, the balance equation (S.3) can be written as

n. (r.d.) --i --^s t - J \ r ,ri,, (. ^j .,j \X- - vr, ' grad (r.d.) * div (e.f-vt-) : êk + æ. (3.37)

Noting that the following identity is valid

div (e.f,vr.) : ,.d.di, ("å) + vro . grad (r.d") (3.38)

Combining (3.36) and (3.37) gives

'-# t e.d.div(tå) : ê'. + c. (3.39)

The summation of (3.39) yields the already derived condition for the a phase, i.e. (3.14).

4. Balance of linear momentum

The momentum balance for the jth constituent in phase a is the postulate

ft lo,-*'ro, 6 ed'
Jam

(4.1)

(t^d.eL+it- + tL + êt vr, + d.vt ) du

where tr" is the stress tensor of jth constituent, g,. the body force, t,, ir tt" net gain of
momentum for the jth component of the a-phase due to interactions with the other phases.

îlo measures the gain of momentum for the jth component of the o-phase through interactions
with other species in the same phase

Using the divergence theorems

6 e,d,vL(vr,.as) : / ai., (r.d.ut øv1.) du (4.2)
Jan Jn

and

fu*tLor: lnatu 
(e.tr.) du (4.J)

one can write the local form (4.1) as

(3.36)

- fuor.úut-(vr- 
as)+

*l*
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ô (e.úvL)\"1!-o' ol : -div (e.f.vt ø "L) + div (e.tr.)

+e^d.gL+it +tl-+ êr.vr.+ C.vt

Partial differentiation of the left-hand side of (4.4) gives

(4.4)

(4.5)

(4.7)

a (e.d.vL)
0t

vJ.
a (e.d.)

Ôt

a (e.d.)
at

a ('L) -At

%/'-[s.ua("å)]"å

where the relation between the material and spatial derivatives, ,t. %lr) : # + fgrad 0]vr, is

used. Noting that the identity

div (e-y'.vr.ø v',) : vr.div (e.y'."å) + e.d.lstad ("å)] tå (4.6)

holds, the momentum balance (4.4) can by (4.5) and (a.6) be written as

NLfuÐ ,I¿Dt : -"". a+P i div (e*f,v'.) - uL - c,)

+div (e.tl) + e.d.eL+it + ¡L

+ e.d^

+ eod.vJ*

eod-

where it is concluded that the terms in the bracket cancels due to the balance of mass for the
jth constituent in phase o, i.e. see equation (3.3). The momentum balance reduces to

,.pLDjP: ¿iv (e'tå) + e.d.s!.+t'.+tL (4.8)

In the same manner one can show that the same condition for the phase o becomes

D. (v.)
t.p.=ff: div (eot.) I eopogo|_T. (4'9)

where îo is the net gain of momentum for the o-phase due to interaction with the other phases.

Summation of the constituent equation (4.8) i.e.

i,.n'JP: f o,u (e.tL) +f,.d.ei*Ë ¡,^*îr,. (410)
j:7 j:r j:r j:r j:r

should result in the postulate for the phase a, i.e. equation (a.9). The restriction imposed by
this fact will be examined. Consider first the definition of the so-called inner stress tensor

¡¡
tb:Ðtr. (4.11)

j:r
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The body force for the phase is, further, defined as

(4.t2)

FYom the above deflnitions the equation (4.10) can be written

N N

\e.d. : div(eotro) i ropogo+Dt'. +D¡L (4.13)
j:7 j:7 j:1

Consider the arbitrary property f. (x, ú). Assume that the property for the constituents fro can
be weighted as

(4.r4)

(4.15)

,N*.:a)-
P* /:t

d-e!-

oL("1)
Dt

1NNrr _ 4lr'.ry:DcttL,,_ o.fu j:l
The material time derivative of l* is by use of (4.14) written as

p, (f,) _ $ p, (c¿,rr,) _ $ /., p. (rL) * ., p. (cå)\
Dt -+ Dt -?-\"" Dt 'Ld Dt )

where also partial differentiation is performed. It has been shown earlier that the material time
derivative of the arbitrary property lo following the motion of the phase o and the property
following the motion of the constituent j in the a phase can be related through the diffu-

sion velocity for the jth constituent as: 4P - "-9 : (Brad få)rå. F\rrther, it has

been shown that the mass balance for the jth constituent in phase a can be expressed as:

,.p.'-fÐ+:div(e.y'*d.) : ¿L + ôL - Croêo wherc the concentration of jth constituent is

defined as: Ci.: d.lp.. From this it is concluded that (4.15) multiplied with eopo canbe
formulated as

_ D.(r-) ! / ,up"(rL) *¡i p, (c',)l 
tn.rule,p*-ì- : ,oPo L 

\t, a + ,L Dt )

+t eodo
DL(IL)

- r.d. (srad lå) uå
DIj:r

^r

j=L
+ ! (-rr.aiv (e.y'.ur.) + tL (ê!. * do - cLê.))

Using the identity

div (e-y'.lr.uå) : e.f. (grad' fL) uL * f',div (r.d"uL)

equation (4.16) takes the form

D.(r.) å/ ^DLFL) ,., i¡i.i\,n.i/' , -., '\
',p,3#: ,Ð ('"n 

"--# - div (e.y'.tLuL) +rL (ê!. + c, - cLêò 
)

(4.t7)

(4.18)
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By identifying the arbitrary properties fr. and lo as: lk:vL and lo : vo, equation (4.18)
gives

€aPa
D. (v.)

DI T t.d. - div (e.d.vå ø rå) + vr* (et + c. - cLê") (4.1e)
j:r

Noting that the velocity of the jth constituent vro can be expressed by the diffusion velocity u',
and the velocity of the a phase vo as: vlo : uå -l va, one can use equation (4.18) to establish
that

tj:r eodo - div! (e.y'.ur.øur.) (4.20)
j:7

^r-div! (t.d.uL) I vo * Ð(ut + c"- cr.ê.)ú.
j:r j:L

N

D Gt" + c, - ci.e.) v.
j:r

Using, further, the restriction for the difiusion velocities, i " DËr d.uL:0 and the relation

Di:rêL: êo tosether with ÐI:rcL: 1 and DI:, Gt + ¿L - cLê.): 0, that is (4.20) takes

the form

-iG"n'JP) : -^n'-/-.*å þ*y'*'.r-ø'-!-) (421)
j:l\ , 

^
+ D (¿'" + c. - cr.ê") d.

J:L

Combining (4.13) and (4.21) results in

div €otto -\(e"d.u!.øuL) * eoposor I t'" +Ðîr. (4.22)
j:r j:7 j:l

N,V^1V
+\et ut*+Dc.."L_ 7D¿""0"j:l j:r '"i:L

where also Ct : d.l p. is used.
According to (4.22) the stress tensor for the a phase, to, takes the form

NN¡/
t.:Dtr--D@"-t"øur') :tt'-Ð (/¿1.ø1") (4'23)

j:l j:r j:7

where the definition of the inner stress tensor (4.11) is used. The second order tensor f.u!-Øu!.
is the so-called Reinholds stress tensor which is observed to be svmmetric.
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The local form of the moment equation for the a phase is the postulate

D. (v.)
,.r."-ff : div (eot') I eopogo+T* (4.24)

By comparing Ø.22) with (4.24) the following choice will be adopbed

NN

)-f'^ +\cgut :t. (4.25)

?- " ':'
and

NN

Du,. *D,¿.uL: o (4.26)
j:r j:1

The relations (a.25) and (4.26) are the conditions that must be fulfilled in order to assure that
the momentum balance equations for the constituents and the phase are compatible.

The local postulate for momentum balance of the whole mixture is

D (")p--Di: div(t) * ps Ø.27)

The summation of the phase equations, i.e.

aa" " D.(v,) _+'. R R

2eopo---pl-: ¡ ,Jiv(r*t.) tDr.p.g.+tî, (4.28)
a--l a:1 a:7 q:7

should result in the equation for the whole mixture. The condition for ûo, i.e. the net gain of
momentum for the o-phase due to interaction with the other phases, must be

RR

Dî.*Iêou.:g (4.29)
a:t q:l

in order to fullfil this condition. The relation (4.29) can be derived in the same manner as the
relations for the constituents within phases, see equations (a.25) and (4.26).

5. Balance of angular momentum for the mixture

The angular momentum is usually used only to show that the stress tensor for a single constituent
material must be symmetric. This derivation will be performed in this section.

The postulate for angular momentum is

* [ e*o')du:- 6 xxpv(v.ds)+ $ xxTds* [ *rpsau (51)
ðt Jn' Jan ' Jan "/æ

where x is an arbitrary place. The divergence theorem gives

rl
ó xxpv (v.ds) : / div (p (* t v) ø v)d'u (5.2)
Jan Jæ
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and

{ xxTds: Iaiu(xxT)døJan Jæ

which means that the local form of the angular momentum is

ô (x ì. vp) : -div (p (* 
" 

v) ø v) -t div (x x T) *xxpg
ðt

This equation will now be simplified further. Consider the identity

fie*,e)
, ,ôp ô(xxv)(xxv) Ar+p-'ô,
(x x v) X. rry9 - p [grad (x x v)]v

(5.3)

(5.4)

(5.5)

(5.6)

(5 7)

(5.8)

(5.e)

(5.10)

where

isusedwithf:xxv,i.e.

le
. .ôolx x v) -- -F.' 'ðt

D(xxv)

Equations (5.4) and (5.5) combines to yield

(xxv) H"r"#9

, ,ôp D(xxv)(xxv)æ*r-.n,

f fgrad (x x v)]v

p fgrad (x x v)] v - (x x v) div (pv)

-p [grad (x x v)]v
*div (x x T) *xxpg

Dt . af."È (*,t) : ã (x, ú) * fgrad r (x, ú)] v (x, ú)

D(xxv)
DI

DI

ô(xxv)
at

p [grad (x x x)] *
-div (p (x x i<) ø x)

*div (x x T) +xxpg

The first term on the right hand side of (5.4) is rewritten with the identity

div (p(x x v) 8v) : (x x v) div(pv) *p[grad (x x v)]v

Combining (5.8) and (5.9) to yield

This equation is further rearranged to yield

(x x v) (X.div(pv)) * /#: div (x x r) * xxpg
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The balance of mass for the whole mixture is

?' * ot,, (pv) : oat'
And due to this the balance of angular momentum reduces to

D(xxv)
,-_l: div (x x T) + xxpg

This equation will be analyzed further to show that the stress tensor T is symmetric
Consider the identity

(5.13)

(5.14)

(5.17)

(5.18)

(5.2t)

p X (5.15)

and also the identity

div (x x T) : xxdiv (T)

* (Tsz - Tzs) ir * (?rs - 
"sr) 

iz -f (Tzt - Tp)iz
(õ.16)

The verifi.cation of this identity will be left to the reader. Combining (f.lS) and (5.16) with
(5.14) yields

D (")
DT

px

iil

pxx D (")
DT

: xxdiv (T)

* (Tsz - Tzs)ir * (Trs - Tst) iz i (Tzt - Ttz) i3 f xxpb

Rearrangement of this equation gives

"" (o#-div (r) -oo) (Tt" - Tzz)it

+ ("re - Tst) iz * (Tn - Ttz) is

Due to the linear balance of momentum, i.e

D (")
DI

(5.1e)p -div (T) - pb :0

Equation (5.18) simplifies to

o : (Tez - Tzz) ir f (?ra - 
"sr) 

iz I (Tn - Ttz) iz (5'20)

Usingtherectangularbasevectorsil:[1 0 0]r,i2:[0 1 0]r,is:[0 0 1]t
one obtain

Tsz -Tzz
Tts -Tzt
Tzt - Ttz

29



from equation (5.20). That is, the stress tensor

T- (5.22)

is symmetric. This fact can be illustrated by writing Tsz : Tzz, Ttz : Tst and Tzt : Tt2 or
equallv 

T: Tr (b.28)

Cauchy's laws of motion is simply the linear momentum equation (??) together with the
fact that the stress tensor is symmetric which was shown by using the postulate of angular
momentum (5.14), compare previous sections. That is

,'+: divT + ps; and T:TT (5.24)

This, further implies that the stress tenors for the constituents indeed can be unsymmetrical.

6. Energy balance

The energy balance postulate for the jth constituent in the a-phase is

* l*'"n (uz n + ("'')') d' ,.d. (nL + + (,L)') í.- d,s (6. 1)

e. (t2v2 - qå) .d"

+ 
loG. d.rr.-le. y'.vr- . c!.) d,

+ l*("'" (t," * ,'.)) o"

* l-(a'"+ n'.) a"

* l*uL(tX* L @,.)') a,

* l*r. ("X * à (,'.)') a,

where EI is the internal energy density for the jth constituent in phase o, qro is the heat flux
vector for 7tþ constituent, E{ is the heat supply to jih constituent from all other constituents
in phase a, Qro is the heat supply to jth constituent from other phases than a, rro is the external

heat sourcc and (ut )2 : vL .vi..
Using the divergence theorem on the term on the left-hand side of (6.1), i.e.

f

lu*r.ú ("X * L f,'"1') vr-. d"s : 
l*at, ('-¿. (t'. + + (r'.)') '2) a, (6.2)

Tn Ttz Ttz
Tzt Tzz Tzs

Tn Tzz Tss

- f,*
* 

fu*
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and on the first term on the right-hand side of (6.1), as

fuor. $'-"'. - ú) . a": / ai" (e. (t7u'. - q.)) d" (6.3)

the energy balance for the constituents (6.1) can by (6.2) and (6.3) be brought to the local form

&r-n (u'. * i t"'-l') : -aiv (e.d. (t'. * L @X)') "'") (6.4)

+div (e. (tL'L - 4-))
Ie.d.rL-le.d.rt- ' sL

+vå (få +tL) +Q'.+ e'.

+êL(Er.++(,Ð')

+æ.(øt + + (r'-)')

Partial differentiation of the term on left-hand side of (6.4) gives

&,.n (tz* i t".f) : (t'.* ä f,'.)') *P (6.5)

+ (u"d-)
u("x+iþÐ")

0t

Fbrther, partial differentiation of flrst term on right-hand side of (6.4) gives

aiv (e.d. (ul" * L @')') "'") : (u:" * L þLf) dív (e.f.vr.) (o.o)

*srad (tX* ä t')') .,.d.uL

By using the relation between material derivative and spatial derivative, i." '4;å) - '(#) :
(grad få) v'o, with IL: EL + L @L)' one obtain

n'"(n"+ L @L)') _u("2+LþL)')- at - fs'u'a (tX* i @')')) "2 (6.7)
DI

By multiplying (6.7) wíth eoy'oand eliminating the term grad(,øi + + @L)')'r.d.ui.in (6.6),

yields

atv (e-d- (tX * i @'")') "'") ("U* + þ')') dív (e.y'-vr.) (6.8)

leod.
o'"(øx+ + þL)')

Dt

-e.d.
u(ua++@Ð')

at
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Consider next the mass balance for the jth component in phase a, i.e
a("{L) 

*¿rr(r.pLuj.) :
êL + ¿L, multiplied witrr (ø1 + \ (uL)2), i.e.

lrL * ä t '.)') 9þ"¿") (tZ * i l"'.)') div (e-f*vr-)

* (rX+ + (,'")') êL

* (t'"+ L þL)') d"

By eliminating the term' (,øi + + þL)')div(e.y'.vr.) in (6.8) and (6.9), one obtain

o - (u'.*1,("1)")*P

+e.d.
u (t'"+ + (,Ð')

At

+div (e.d.(t'"* i @'"f)"'")

-rodo
o'"(a'"++(,Ð')

DI

- (t'"+ | ç,'"¡') e2

- (t'"+ | (,'.)'z) æ.

ft,.e. (rx * à {"'.)') : -aiv (e.d. (t. * î @'")') "'")
(6.11)

+e.d.
o'.(n. + ä þL)")

Dt

* ("'"+ È (,'")') ¿t-

* ("'" + | (,2)2) u.

^n1@#@ : div (e. (tå"å - q,,))

Combining (6 10) and (6 5) the result is

(6.e)

(6.10)

(6.12)

Combining, further, (6.11) with the energy balance equation (6.4) one obtain

+e-f.rr.+e.d.ut-. gL

*"5 ç1r;;f. ai * e;
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Since the following identity
ox (ä @'")')

DT
(6.13)

(6.17)

and

div (e.t'.v'.) : v', 'div (e.tL) + eÅå 'gradv'* (6.14)

: vr, . div (e.tL) + tr (e-t}j d!.)

holds, where dr. :gradvr. is the velocity gradient, the equation (6.12) can be brought to the
form

,^d^DL !EL) : tr (e,tliar,) - div (e.qr.) (6.15)çaya 
Dt

/
'E (ar" (e.tL) +e!-e.d.* (t,, *uL) - r"n"-lp)
*e.y'.ri.+8L+ E.

Due to the equation for the momentum balance: ,,ø."J9:aiv(e.tå) t e.d.eLfi.t + tL,
i.e. equation (4.8), the third term on the right-hand side of (6.15) cancels, i.e.

' Pi (ct\
,.d."3#ø: ¡¡ (6,tlidr,) - div (r"4.) -f e-y'.rl + QL+ Et (6.16)

which is the local form of the energy balance (6.1).
Consider next the postulate for the phases building up the whole mixture, which can be

written

*, Io,-0. ('. * l(o.)2) au : - fu*'.r.(". * L@.)')vo' ds

* fu*r.(toto - 
q.) 'ds

* l*(r.r.,.*fr.pi.uL *r) *
* / ("" .i, + Q.) a,

* l*u. (n. + | (u.)2) au

According to the same procedure used to obtain the local statement (4.24) for the constituents
in phase d, one obtain the local version of the whole phase, as
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D.(E. + ä (r.)')
€aPa DI

div (eo (t.v, - q.)) (6.18)

N

*.eoporof\e'd*"L ' eL
j:L

+u..f'+ 8o

The following definitions for the external heat ro and the inner internal heat density E1q of.

the phase a will be adopted

(6.1e)

where the internal heat density .Eo is related to the inner internal heat density .Ðro by the
diffusion velocity, as 

_ ./v

Eo: Ero + +\d."L' (6.20)
-ya j:t

The inner heat flux vector q¡o is defined as

N

er,: )ì (qL-ttluL+ f.nr.ur.) (6.21)
j:r

where the heat flux vector qo is given by

N

Çlo:ero+åtd."ËuL $.22)
j:r

Another quantity ko, which is related to the heat flux, will also be introduced:

/V

ko : D(o,"+/.ar.ur.) (6.23)

J:L
,lV

: ar' + !t'jur,j:r
JV

: q" - Ð d. (-t'J t ¿" + |utlt) u2
j:7

where the definitions (6.21) and (6.22) are used.

Consider the identities valid for the terms in (6.18), the left-hand side can be written as

d"ELrd : !î.d-r1, Eto:1Ë
Po /-'o'o' 

"tu 
P- H

€aPa
D.(8.+L@ò')

- Do(E.) , - . D. (å (v''v.)): eoqoË t €qqq Dt
(6.24)

DI
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Partial derivative of the last term in (6.24) makes it possible to re-write the expression to yield

,.0.''(u'!^,,à(oò'):- D'(E-) D'(v')
Dt ,.e.=ffi I eopoYo rc.25)

Using the definition of the difiusion velocity , i.e. uL: vL -vo, the third term on the
right-hand side of (6.18) can be written

N

le.d.ut .e!- \e.d. (ur. + v") 'gr. (6.26)
j:7 j:L

N 1V

r. I @"e!")' vo * uD 1¿ut ) eL

Using the definition of the body force go : *DI:t p[g!., expression (6.26) becomes

j:r

JV

j:l j:r

The term div(eo (t,.r.)) in (6.18) can be written as

div (e. (t.lt.)) : Ya div (e.t.) I eotr (t'd.)

where partial differentiation is used and where do :gradvo.
Using the identities (6.27) and (6.28) in (6.18) one obtain

N

€aPa e.tr (todo) - div (e.q.)
N

*r, D @""t") . eL + Q. I €oporo
j:7

D.(v.)
Dt€aPa - div (e,t,) - €opogo - îo

\t.d."L'e!.: €opogo 'vo -t- t.D1¿rl") 'eL (6.27)

vo . div (r.t.) I eotr (t.d,) - div (e,q,) (6.2e)

(6.28)

(6.30)

+.eoporo¡¿opogo 'vo * r. D ç61") s!.
j:t

+vo .fo + 8, - €opaYa. 
D'!u')

DI

By collecting terms including vo, the expression (6.29) becomes

D.(8.)
DI

-va
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Noting that the momentum balance for the o-phase is, eopoqffi:div(eot.) l ropogo+îo,
i.e. see equation (4.24), the local form of the energy balance for the phase a becomes

D.(8.)
Dt

(6.31)

*r, D @"-L) .cL+ Q.t €oporo
j:L

Next the condition of the heat supply term Q. will be examined.
Consider equation (6.20) written as

€aPa : €otr (t.d.) - div (e.q,)
N

D.(tru)
DI

N

D.(8.)
DT

*+D
j:7

aD u'; )
Po Po

DLQ.)
Dt

(6.32)

(6.37)

Dt

where Cropo: pfoís used. According to equation (4.18) one can establish that

€aPa (6.33)

with f,. : *ut2 and observing that lo is the mass density weighted value of l'o, i.e. lo :
CLL"! on"õbtuirt

%P :Ð(,"n%P - dív (e.y'.tLuL) +rL(êLt do - r¡uò)

" " S P"(IL"L')
"ara 2) Z Dt

\-/¿
DL ("L") - div (e.f.|"tuL) (6.34),.d-t Dt

+ÐG"t: (¿L+æ.-cLê-))
J:L

Noting also that
DL ;o

uJd' or.(ut .ui") q__i PL (.L)
Dt -'"a Dt

(6.35)
DI

is valid, one can write (6.34), as

N ^zQ',"'J)- $ /- r,., DL @ - . 
\,.p.D+"-# : D ( r"d.-'-. uäÅia) - div (e.y'.|"tuL) ) {o.eo)

i:t 
-'Dt = : 

k\€a/'t+ 
--È--' 

/

ni¡,f (*+ u.- cLê-))
j:r

The term e.d.uL "J9 in (6.36) can further be written, using ui. :uL-vo, to obtain

j:7

N

j:7
Ð'"d-uL :\e-y'-ur-nL(-k)

DI

N

j:L
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Following the relation: "J9 - btP: (grad f,)rå, i.e. equation (2.2g), with 
D'j;å) 

-
zlp, the equation (6.37) becomes

N nt^(ut^\ å ; ; (nt-("t-) D.(vo) , , , 
'\p,"d"-L : 

Ð',n , (+# - (grad "ò-L) (6 s8)

: f'-n-, (%;J-'-/-o"r)
The term Dl:rr.d.u!". (d"rå) can, further, be identified as

¡¡N

le.d.uL. (d.rå) : le6lo!1.1u!1.¡,.d{.),*ui.¡* (6.99)
j:r j:r

jV

: tuDd'd' (u" ø ur')
j:1

FYom equations (6.39), (6.38) and (6.36) it is concluded that

¡/
,.p.Dl : D"d-ut'

o. (Ct ug2)

DI

N

j:r
N

(6.40)
j:7

-Dr" @""L)
D-(v.)

DIj:7
]V

-t'D d.d" (uLø 'å)j:r
N

- ! (ai" (r"d.l"*-'.))
i:L
N

j:7
+DG"t: (¿L+ ¿.- c'.ê.))

Due to the conditio" Drt, (ø..t):0, i.e. equation (2.77), it is concluded that the second

term on the right-hand cancels.
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Consider next equation (6.31) written as

- . Do(Er.) ,.p. $ n- (cLuL2) : , r, (l*, - .' 
\ \,'r.-# * 2 L. Dt : "" (, ["- 

- D@"-'-*"å)J a")raznl

-oru ( u. ( ,^ *; f ø,,,;'l) )\ \ '7----)l
*r- Ë @..L)'e!.+ Q-t eoporo

j:7

where the definitions (6.32), (4.23) and (6.22)is used. Combining (6.41) with (6.40), usingthe
condition DI:, @"-t ) : 0, yields

€aPa
D.(Er-)

DI
: eotr (t¡odo) - div (eoqro)

leoporo ¡ Qo

(6.42)

N
_D'-ut' d" d-e!-

j:7
N

-DG"o: (¿L+ æ-- cLê.))
J:L

Considering the term tr(t¡,d,) which can be introduced by the following identities by using the
relation: uL: vL - vo, i.e.

N¡¡¡/
tr | (tf ar") : tr ! (trigradvr,) : tr ! (trigrad (u'. a ".)) (6.43)

i--r i--r i:7
N1V

: tr ! (t'f,gradu',) + tr ! (t'Ja.)
j:r j:7
¡/

: tr | (trjgradur,) + tr (t1od.)
J:L

F\rrther the following holds

,,Ë (r,Jgadu,,) : di"Ë (t,J'å) - Ë"E .divt'. (6.44)
j:r j:7 j:L

That is, equation (6.43) can be written

IVNN
t' | (t'jaå) : di" I (r'"1''") - I'å ' divtå * tr (t¡'d-) (6'45)

i--t i:r i:L

38



The derived equations (6.42) and (6.45) combines to yield

D.(&.)
Dt

¡/ N
: r.t'D (trJar.) - div ! (trJrå)

j:7 j:r

leoporo + Q. - div (e.q1,)

€qPa (6.46)

(6.47)

-Ë''. (r"nttp - r-d.eL+e.aivtå)

1V

-DG"f GL+ c. - cLê.))
j:r

Usingthemomentumbalanceforthejthcomponent, i.e. e.f.DJP-:aiv(e.tå)+e.f.gl.+Tr.+
îi., i.e. equation (4.8), and the definition of ko i.e. ko: qr, + D[r tifl:uL, see equation (6.23),

one obtain

€aPa
D. (Et.)

Dt
: e,tr I (t'Jdå) - div (e.k.)

/V

j:7

*eoporo ¡ Qo
¡/

- D rr. (¡'" * r'.)
j:7
]V

D,G"t: (¿L+a.-c'.ê.))
J:7

The balance principle for the constituents within the a-phase must be consistent with the equa-

tion for the whole phase. Consider, therefore, the sum of the equations of (6.16), i.e.

]V DL(EL)
DI'-\d. : lt, (e.t}i d!.) - ! ai" (r.tL) (6.48)

j:r j:r i:r
]V lv

¡¡

+.€oporo+DAt +Døt"

N

j:7 j=r

]V

j:r

The term ,.Dî:, d.oLlPrL\ in (6.48) can be written as

. S, ryL(EL) " ^ 
p"(Ei.)

co Z_tYa Dt 
vara 

Dt
J:L

using the relation: 
+EL (êL + C" - CLê")

,. r.Ztp : 
F:, 

(r. n'+ - div (e.y'.ti.,,å) + rL @. t do - "Luò)

+ f arv (e.d.ELuL) (6.4e)
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that is equation (4.18), with l, : ¿;.
Combining (6.48) and (6.49) results in the expression

€qPq

€aPa

D. (Ei")
Dt

D. (Ei")
DI

f tr (e"tÏidå) - !ai" (e.lå) (6.50)

N

N

jV

¡/

j:r j:1
¡¡

€oporo +DAL +Ðnt"
j:L j:r

f 0," (e,d.ELuL)
j:7

EL (êk r do - cLê")

Using, further, equation (6.23) i.e. k.: D[, (qk+ d.ELuL) in io.fo), one obtain

!tr (e,tlidå) - !ai"('.k.) (6.51)
j:7 j:7

teoPoro +ia,.*ie,.
j:r j:r

-EL (êL + C. - Ct ê-)

A direct comparison between (6.51) and (6.47) gives the condition

1V

D(AL+ EL+'å (tå +tt) + @2+ æ. - cLê.) (1"'-' + uz)) : Q (6.52)

J:t

which is the proper expression that must be fulfilled in order to assure that the phase equations
to be compatible with the equations of the constituents within the phase.

In the same manner one can establish that the following condition

R

>, (Q"* üo ' io + êo (Lu', + tò) : o (6'53)

-\
should hold when comparing the phase equations with the whole mixture.

Combining (6.52) and (6.53) yields

RNR

tt (A'"* n'.+u5 (t'. * lL) + Gf +c.-cLê.) (L"'.'+ øÐ):DQ. (6.54)
a:l:j:L ' o
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We shall later need the expression for !f Di:, (At * ÊL) which becomes

f .tå (rt *¡1"\\,/
;-1

R

T
c:1

R

D
a:l
nt

a:7
n

D
a:l

RN

Dt (a'"* e'"¡
a j:L

N
(6.55)

DGt" + c" - cr.e-) |utj
N

j:r

j:7

N

Ð(u'"+ d.- cLê^) EL

uo .îo -Du. (|"2.+ n.)
R

a:7

7. Second axiom of thermodynamics

A form of the second axiom of thermodynamics in which all constituents and phases has the
same temperature will be considered. One postulate for the phase a is

N

6 €apoToYa at - 6Jan Jan

J*r.Ðy'.rr.du

t ds (7.1)
j:7

+

where 4o is the entropy density for phase a, hro is the entropy flux vector for the jth constituent
in a-phase, not necessarily equal to the heat flux vector and 7 is the absolute temperature.

The the entropy density for o-phase 4o is defi.ned to be related to the entropy density of
constituents in phase, as

(7.2)

(7.3)

and on the second term on the right-hand side of (7.1), as

1NN
T-: *D¿"nt":Dct-rLyd j:r j:r

Using the divergence theorem on the first term on the right-hand side of (Z.f), i.e.

tf
ö capo\oYa. ds : I div (eopor1ovo) du
Jan Jn

fuo,-å r+i o" : 
Ioo* (,' å txl), (7.4)
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the local form corresponding to equation (7.1), becomes

ð(r-port) 
>

1V

D
j:7

eohL
(7.õ)

(7.7)

))T

Consider the identity

and also the partial derivative

+r"\d.rL
j:7

div (eopoqov*) : 4odiv (eoporo) * eopovo'gradr¡o (7.6)

('"

N

¡l

j:7

rc"#P:"^**''v#
Combining (7.5), (7.6) and (7.7), one obtain

," (*# + div (p'v.) - ê.) - u. o.þ - e o p ov o' gr adr¡ o (7 8)

.* lË l+)) *,. in r-((ê.n))
\¡:r'' - // i:r

The balance of mass for the a-phase is: kP+div(eopov") : êo, which means that (7.8)

reduces to the form

ðn /å ¡'^n¿r\ J,.p.# ) -eopovo.gradr¡o- ot" (rÐ l# ) ) 
* '.D_rn L - (ê.,t)) (7.e)

Expressing the inequality (7.9) in terms of the material time derivative using the relation: * :
v'gradlo + +, with lo: r7o

+:va'*adrn** (7'10)

is yielded. That is the corresponding version of (7.9) is

,.,.Dff ) -div
hL
T + e.ly'.r;- (ê.n)) (2.11)t j:r

Another postulate for entropy for the phase a, than equation (7.1), will be considered in
order to examine the meaning of the propeúy hr.. This postulate is

(7.t2)

* lou.f n r^
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Performing the divergence theorem on the surface integrals, gives

fuou.d.nLui. 
. a" : fo* ,.Ðd.rlL"L du

]V

j:r
(7.13)

(7.14)

(7.15)

(7.16)

(7.r7)

(7.18)

and

l,*
N

j:r
r,D

Ntj:rçd

qL

T
di duVOr: I*

4.
T

By using the definitiorl vL - vo + ui. and. por¡o: DË, flnr. the term on the right-hand side

of (7.13) can be written as

div ('
N ¡/

"\d.nt "L
: div (eopoTov.) * div '.\d.nt uL

j:7 j:7

That is the expressions (7.13), (7.14) and (7.15) makes it possible to write (7.I2) ín its local

form

ô (e.p-n-) t"\d.nt uL
j:1

N

At

))

The partial otu*"""T:or'uororouo, 

- r¡odiv (ropouo) r eopovo.gradqo

and

ry¿:r.0.*+,ì.Y#
will be used. F\rrther, consider the relation between the material derivative and spatial deriva-

tives of the entropy density, i.e.

Dorlo 
- 1. --^r- , }no

Dt ro.gradqo+ # (7.19)

Combining (7.18) and (Z.tO), yields

&iP : 
"r-D# - eapavd'sradrloir.Y# (7'20)
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The expressions (7.17) and (7.20) gives together with (7.16) the inequality

Do\o
eaPa p¡

which is equation (4.18) repeated. With lo : To one obtain

Combining (7.22) and (7.25) yields the inequality

N oL (,tL)
DIo < ,.\d.

,.r.o-P : 
Ð(r"n'JP - div (e.f,t,.u,,) + rL (êt * do - "Luò)

-ed (7.21.)

(7.24)

(7.26)

(7.26)

where term êoTo - êo\o :0 has been added to the expression. This makes it possible to use

the mass balance equation for the a-phase, i.e. Ø5f-+aiv(eopovo) - êo :0, in order to reduce

equation (7.2I) to

,.r.# >

¡¡
+e"Ðd.rL- (ê"n))

J:I

A direct comparison between (7.11) and (7.22) immediately validates that the entropy flux hr.

is related to the heat flux eå, as

h!. : qL + y'.q7.Td. (7.23)

The entropy inequality, such as equation (7.22), is often combined with the energy equation
in order to obtain a more physical intuitive and instructive version of the second axiom of
thermodynamics. Consider fi.rst the inequality (7.22) re-written in terms of the material time
derivative of 4o following the motion of the jth constituent instead of the phase motion. The
relation between the time derivatives can be expressed as

,-p.D--P :ä(,"n'JP - div (e.f.q'.uL) +nL(ê!.r do- 
"'-uò)

j:7
+aiu (u.Ëç,)

\r:t/

-r, D d-rt +Drt" (¿t + ¿. - cLê.) + ((ê,ri.))
N

j:1

N

;-1
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This expression is multiplied with the temperature ?, i.e.

ça0 ,^i¿-oip*?div
j:r

¡¡N

(7.27)

-re"pd.rL +D=rrr, (¿'. + a" - cLê.) + ((ê"Tq.))

The second term on the right-hand side of (7.27) can be re-written by using the partial derivative

div (e.q'.) : a* (r.ff) : t0,,, (,"*) * ,.ft ' grad (r) (7.28)

The equations (7.27) and (7.28) gives

0 l TeoD¿"nL (nL)
DT

/V

i+ grad(")
j:7

å'r"r) +fai" ('"å"r)
¡/

(0'"*ø*) * ?D¿"
j:Ltj:r

*o*(,,å"r)

Pi (nt\
u'd,"3#4 : t (e*tïj dr-) - aiv (r.d") -t e.y'.rj. + QL + nL (7.30)

which is (6.16) repeated. Summation of the energy balance equations for all .l[ constituents
building up the a-phase is expressed as

(7.2e)
j:1

¡¡]V

-re.\d.rr.+\rnr.(cL+ æ.- cLê") + ((ê.Tn))
j:r j:r

The local energy balance equation for the jth component in the a-phase is

(7.31)

in which the whole equation has been divided by the temperature ?. The inequality (7.29)
divided by the temperature ? is

0(eo ä""P+fai"(""å"r) -,.å ffi s,uae) 012)

-r.f e.r,.*irr,.(¿L+ q- c'.ê.) + ((ê.Tn))
j:r j:7

IV
ea fr
T.Lj:t

1

-Ttd"'L (

1

r
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Combining the expressions (7.31) and (7.32) yields an alternative version of the inequality (7.22),

l.e

N

D',D¿"
RN

a:l j:l

oL(qL)
DI

,- ,.ft.grad (")

P"N;

àD">,#
a:L j:I

(7.33)

grad (?) (7.34)

(7.35)

a\d. oL(qL)
Dt -?Ð"'-#

J :1

tr
1

Nt
j=1
¡/

Dj:r
rr| (¿L + c. - CLê") - ((ê"Tn"))

Summing the equation (7.33) over all phases building up the whole mixture gives

T

NN
\- 3 \-¿L T L¿,4
a:7 j:L

ì
/

* (a, * Ê'")

DL(EL)
DI

-Drr'.(ag+ a.- c'.ê.) - ((t ê.Tq.))
]V

j:7

R

a=7

The expression for DÍ DË, (Qt * nt") i" (6.rs), i.e

Nt
J:L
Nt

J:L
Nt

j:7

Rt
a:7

R

D
a:1

Rt
a:1

Rt
a:7
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a j:t
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(¿1.+ a. - cr.ê-) |ut"2

(aL+ a. - cLê") EL

uo.Ûo -Du-(|u2.+ E.)
R

a:l



can be combined with the inequality (7.34), yielding

-t Ntj:r
R

D
a:7

R

D
q:L

-tr

N

€-Dd.T
j:7

oL(nk)
DI

R

a:l
va (7.36)

,.Ë ft .s,ua(r)
j:7

D'.D¡T'at
RN

a=7 j:L

+ t t (¿L + e. - c'.ê.) L"* + D u.+"'. + | e.ø- - Ð u.rr.
R1V

a:l j:7

RN

n

a:1-

R

a:7

R

a:l

+Dt -'" (rL+oL) +
a:t j:t

R

D', t-
a:t

RN+tD G'.+u.-cLê")E'.
a:I j:7
]V

-Drr'.(¿L+q-c'.ê.)
J:L

It is most often convenient to express the entropy inequality in other variables than the
internal energy E'o. Herc the Helmholtz free energy will be adopted A'.. The Helmholtz free

energy is related to the internal energy, temperature and entropy with the following definition

(7.37)

(7.38)

(7.3e)

(7.40)

AL: E'--T\L

Partial differentiation of the Helmholtz free energy gives

DL(AL) _ ÙL(EL) _rnL(nL) _.i pL@)

DtDt'DttdDt

wherc A'- is related to .4o with the definition

-NN
¿..: !D,¿",q2:DcL,qLp.f:t j:L

The term of interest in the inequality (7.36) therefore can be written

,pL(,t'") _ 
pL@L) _ _DL(AL) _.i pLQ)

- Dt Dt Dt 'ta Dt
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Using the definition (7.e6) and (7.40), the inequality (7.36) can be expressed as

-å'"å( .(ry+nLD#)) ' (7.4t)

i^if grad(")
a:7 j=7

-"(É"å"'o')
RjV

+ t t (¿L + c" - c'.ê.) l"t + D ¿-i"Z + \ e.A.
R

a:l

R

a:lq:L j:7

RjVtt "t" (rt"+ ar") +

.ÉË ça'.+e.-cLê.)AL
a:L j:l

in which the internal energy E'. in (7.36) is replaced by the Helmholtz free energy ,4.!.

Consider next the equation (2.29) with lo:T,i.e.

DLQ) - n.(D 
-F srad t?l .u4 (7.42)

Dt Dt 
I órou \¿ / qø

Multiplying the whole expression (7.42) with f-rlr. and summing over all ,ly' constituents in the
a-phase, gives

N

Dø.r'.off: o-r-Dff nir-r'-rrad(") 'u', (7'43)
j:r r=t

The definition of the entropy flux hr, will also be used, i.e. equation (7.23) is

lnL:{.+ f.rf-Tú!. (7.44)

A summation of (7.44) is
NJV

f nå : ho - L,d.rtLr-L 0.45)
j:r j:7

where it is noted that ![, lnL:lno. Multiplying (7.45) with grad(") /? gives

1V¡¡

Doå' grad(") fT :lno' grad (") lr -Dd"rtr.ttr.' grad(T) (7.46)
j--r j:r

3 :1a:l

RI', î'
a:l
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Combining (7.43) and (7.46), further, results in that the inequality Q.al) can be written as

_ \-.
/¿"a

Nt
j:7

-tR

a:7

R

a:7

RN

DL(AL)
DT

R

a:1

.R

a:I

€oParla
D"(T)

DI

D.(A.)
DI

(7.47)

(7.48)

d"

Dr.h. 'srad (") lT - tr D r. Dt'.i aL
¡/

j:r
R

a:7

d

+ t D GL + æ. - c'.a.) È"'J + D, ¿.+"2

+\e.n.+Dê-A.
a=l j:7

R

a:7
RN

RN

R

a:l

+ I D"¿ (î," * u,") *
a:t j:7

R

D
c:1

Ttlø

Consider next

RIV
\- \-./¿/¿""
q:t j:l

+tt (¿L+a"-cr-ê.)A'.
a:l j:7

equation (4.18) with l.: AL which gives

: f '.c.' a Dt Z-¿ Z-¿
a:t j:t o:r, 

,u

+Itaiv(e"d.ALuL)
a:l j:I
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The inequality (.aT) combined with (7.48) yields

R

a:l
-D"o' D. (A.)

Dt

N

j:7

N

å D.e)._ Lrop.n"_È- >
q:l

R,

a:7

R

a:7

(7.4e)

(7.50)

(7.51)

(7.52)

R

Dr.h, .grad!) lT
a:7

/n
-t, f \-\r

RN+tt
a:7 j:L
-RN+tt

a:I j:l
RN+tt

q:L j:7

e.\t!ia5

(¿t + u.- c'.ê.) L"t +D,¿-L"Z+Ðê.A.

R

-t, (Tt-+ aå) + I,r" 'f.\,/ a:7

div (e.y'.A!$")

which is the version of second axiom of thermodynamics for the whole mixture expressed with
the material time derivatives following the motion of the a-phase. The inequality, such as (7.49),
is used when deriving constitutive equations. It is, however, of interest to make some further
manipulations.

Consider the term Do:,,"![, [e.tr (ti,då)] in the inequality (7.49). By combining the

equations (2.27) and. (2.23) it is clear that f[, er-d!- can be written as

DrLaL: €odo + !e',gradufij:r

Hence, one also obtains

R1V
: f, (ur.o, Ë,,* + f t,r,.g,"d'åtå)

.:r \ i:L i:L /
t t fier.dr.tr.
a:7 j:l

which is the trace of equation (7.50). The term DÍ:, (ttr.d, ÐË, tå) in (7.51) can by aid of

(4.23) be written as

f, ( u,.o,Ë.r) : i ( r,,.o* ( r- +i r.-;. "r) )o:1 \ i:t f ':t \ \ i:1 //
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The term Df;:rtrri.sradur"tr* in (7.51) can be written

É lËrre.graduirå) : É,. Ëtr (craduårå)
.:t \i:r / q:r i:l

(7.53)

(7.64)

That is, (7.51), (7.52) and (7.53) combined, yields

RN

\\tre.dLtL :
a:l j:I

R

tDr-f tr (sraduåtå)

treodo

¡¡

a:7

o:1 j:I

Noting, also, that the following identity holds

É.* (L,rn^"r)
R:t

a:l
\er./.A!.divur" (7.55)

N

+ t Dt¿ 'grad(er"d.Ar")
a:I,s j:7

which is obtained by taking partial derivatives. Further the first term on the right-hand side of
(7.55) can be re-written by the identity

RNR¡¡
y\e"d"A!.divnr,: D ro ! tr (sraduå (d"ALrÐ (2.56)
a:7 j:7 a:7 j:l

i.e. the expression (7.55) can be formulated as

j:7

]V RN

! ai" \er./.Al.ur" : D".!tr (sraduå (d-ALr)) (7.57)
a:7 j:7 j:7

-¡V

+ D D"'" ' grad (er.d.A!*)
R

a:7 j:l
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The expressions (7.54) and (7.57) is used in the inequality (7.49), i.e.

R

u.o.?uf _ f*r,r.o#,_D
q:L

n

q:L
f r,h. . grad(T) lT

R

o:1

R

g:7

(7.58)

(7.5e)

R

-\-.2
a:7

R
_\-

L
a:l
A+t

a:7
R+t

a:l
R+t

a:7

(,*.o, (,".ån"*."*))

r.It' (graduåtå)
N

j:7

D G2 + ô.r. - cLê.) È"t' + D u.t"". + D ê.A.
N

J:L

j:7 g:l

¡¡ R

r.It. (graduå (¿"d5t)) +\
j:r a:1

Collecting terms including tr(gradur,) and u', simply gives

R

NR

D'å F'"*a'") + Duo'io\,/

-D"o'D-(A.\ 3 D.(T) -
Dt - 2'-o''' Dt à

N

Dr'" .grad(er*d.A!")
j:7

a:7
R

q:L
I roho .grad(T) lr

-å ('-"d' ('- +þt -'"*"*) 
)

NN

- I ", ! tr (sraduå (tL - d"A!"r))
A:L

RN
j:r

R

+ I t ur,' grad (tL¿",q'" + i2 + t5
a:I j:t

)+)-uo.to
o=1

RjV R n
+ D t þ5 + u. - cLê-) l"'J + D ¿.ä"2+ t ê.,+.

a:l j:l q:L A:I

Finally consider the meaning of ho expressed in terms of the Helmholtz free energy A'o. The
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deflnition of the heat flux qo in the a-phase is

N

a, : I @. - ttfl -t + y'.Er.u!. + +d.u!:ûL) (z.oo)

J:T

which is obtained by combining (6.21) and (6.22). The heat flux q,. is related to ho, as

¡¿/V

Ðe": ho - Dd.nt r-L (7.61)
j:1 j:r

i.e. compare with equation (7.23). The equations (7.60) and (7.61) gives the proper expression
for ho, i.e.

ho : eo + !trj'r, +Ðd.nLr.L ->,d.ELuL + +\d."tJ-L Q.62)
J:L j:r j:r

This equation reduces when using the definition of the Helmholtz free energ¡ i.e. A'o : EL-T7L,
ancl one obtain ,u ¡r' .N

ho : Qo + ! trj ur, - D, d"'qL.l. + |\ /^"tlu. (7.63)
j:l j:I j:L

which is the proper identiflcation of the entropy flux included in the inequality (7.59)

8. General principles for developing constitutive relations

Here different theories will be discussed how to develop stringent physical assumptions concern-
ing material behavior for different material. However, the assumptions involved in determinìng
the material behavior for fluids will serve as an important example.

8.1. Introductory remarks

In developing constitutive relations several powerful theories can be adopted to make sure that
nothing unphysical sneaks into the model. Here some of the different approaches will be dis-
cussed.

In order, to understand these classical continuum approaches the concept of tensors must be

deal with. A brief discussion of the subject will be performed.

8.2. Vectors, first order Cartesian tensors

A vector is a 'geometrical' object representing physical properties such as displacements w,
velocities *, accelerations ji, forces, momentum etc..

The characteristic properties of a vector is that one must specify a direction and, furthermore,
one must use the parallelogram law when the sum of two vectors is to be computed. That is

if two vectors r and s are represented by a direction and length by two 'arrows' in a Cartesian
coordinate system, then these vectors are 'moved' in its corresponding directions so that its
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origins coincide and so that its sides is the sides in a parallelogram. The diagonal in this
parallelogram (from corner to corner) is the sum of the vectors r and s. This means, in general,
ihat this new vector has an new direction and length..

Another important property of vectors is that the length, e.S. lrl and lsl remains the same

if another origo and directions of axis is used to describe the vectors r and s. In other words,

lrl and lsl remains the same irrespectively of which Cartesian coordinate system one happens to
choose to represent the vectors. Indeed, the length of a vector is independent of any introduced
coordinate system such as cylindrical or curve linear systems and also independent of transfor-
mations between such different systems, here the traditional Cartesian coordinate system will
be considered by simplicity, without losing the generality of the concept of vector properties.

A Cartesian vector can also be seen as an 'arrows' between two points in (a rectangular)
space, say a andb, and the corresponding vector is then written as ab. It seems intuitively correct
that this 'arrow' between two points is physically independent of which coordinate system one

happens to used since the two points ct and b can easily be described (represented) in different
types of coordinate systems and therefore summation of different vectors in such coordinate
systems can also be defrned.

We now starts to reach the physical relevance for the introduction of so-called first order
tensors. Above the phrase 'physically independent' was used, this means, Ioosely speaking,
that a physical event such as acceleration of a body in space, do not care about any coordinate
system which has been introduce (by someone to relate the numerical value of this acceleration).
Naturally, we often want to relate a physical phenomenon to a certain coordinate system, but
indeed, from a purely physical point of view is seem unnecessary to even specify a coordinate
system since the physical events that we which to study acts independently of them. The so-

called tensors is introduced without any attention to any special coordinate system. However,
for example, the first order tensor (a vector) includes three pieces of information corresponding
to directions in space (not necessary three perpendicular Cartesian axis 11, n2 and ø3), this
mean that a first order tensor can be bound to a coordinate system whenever one which to do
so. When, for example , describing the physical balance laws, e.g. balance of energy and balance
of momentum, one often use this 'coordinate free' tensor description since these physical balance
principles has nothing to do with which type of coordinate system we happens to relate a physical

balance principle to.
Why not always introduce a coordinate system in advance and, moreover, why not choose a

simple Cartesian coordinate system when describing physical events? It turns out that there is
several reasons that motivates the use of a'coordinate free' tensor description. Perhaps, the most
important issue is that the tensor description opens up possibilities to study the reasonableness

of different material assumptions in a very stringent way. This steams from the fact that tensors

take certain different 'values' when they are described in different coordinate systems. By rather
intuitively argument it is tempting to postulate that the general behavior of the response of a
material during, for example, mechanical loading should be independent of the orientation of
the observer. That is one want to assure that two different observers having different coordinate
systems to relate the same physical behavior can communicate and agree that they observe

the same thing. In general one need a transformation to relate what the two observers record,
i.e. they communicate through a proper transformation and the same transformation is the
guarantee that the two observers can agree that the record the same physical event. If the same

two observers attached to different coordinate systems cannot under any circumstances agree how
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the real physical event should be transformed between them something unphysical takes place
since the physical event is independent of any coordinate system. For example, an introduced
material assumption which results in that a simulated response cannot be interpreted correctly
by two observers attached to different coordinate systems. i.e. a proper transformation between
them cannot be obtained, then the material assumption must be considered to be irrelevant and
cannot therefore be used.

Another, useful, feature of (second order) tensors is that certain mathematical operations
among the (nine) component in such a tensor results in a scalar property which is invariant. An
invariant is some kind of physical property which is completely independent of which coordinate
system attached.. That is, not even a transformation between two observers is needed since the
same number is recorded in both coordinate systems. Invariants is very useful when establish-
ing relevant material assumptions since it describes a fundamental process which is completely
independent of how the observer is oriented relative to the process. An invariant measure can,
for example, be a volume change (a scalar number) or a hydrostatic mechanical pressure.

When using tensors to describe physical events one certainly expect that when attaching a
certain coordinate system to it, lets call this coordinate system O, a known physical event such

as a known acceleration of a body can be described with three numerical values. But, on the
other hand, if one of some reason want to observe t}re same acceleration from another coordinate
system O* (which, for example, has another origo and directions of the axis than compared to
the O-system) one will obtain three numerical values which (in general) differs from the values

recorded with the O-system as an reference to the event. In the next section it will be shown
how the three numerical values in the two different frames can be related to each other, i.e. a

transformation between the values in the O-system and O*-system will be explained. It should
be observed that the real physical event is independent of both the O-system and the O*-system
as we have introduced them only to record the event relatively to some arbitrary reference.

Indeed, the transformation rule of a vector between to different coordinate systems, say O and
O* can be used as an definition of a first order tensor. Or, perhaps, more correctly a column
matrix including three pieces of information is a first order tensor if a given transformation
rule gives a ne',¡/ column matrix including three pieces of information which can be correctly
represented in another coordinate system (this 'new' coordinate system is given explicitly from
the transformation).

8.3. Point transformation, change of coordinate system

In order to obtain a transformation of properties such as a vectors between different coordinate
systems the transformation of points between coordinate systems will be discussed. A point
transformation between two Cartesian coordinate systems can be expressed, with a general
relation, as

x*:c(¿)+e(¿)x
where c (ú) represents a translation and Q (t) is a rotation.

The rotation Q (t) is always orthogonal i.e.

QQr:t

(8.1)

(8.2)



or equally

e-1 : er (8.8)

Consider a point vector, i.e. a vector between to points a an.d b in space given by

r :ab (8.4)

i.e.
r: xo - xb (8.5)

where xo are the coordinates (place) for the point o and xb for the point b described in the
x-frame. This the same vector observed in another coordinate system x* is

r*: x*o - x*b (8.6)

vr'here x*o are the coordinates for the same point a and x*ö for the same point b in the x*-frame.
According to the point transformation (8.1) one obtain the following relation between the

same vector recorded in the x-frame and in the x*-frame, one obüain

x*o : c(r)+e(ú)*"
x*ö : c(r)+e(ú)*o
r* : x*o-x*ó :c(¿) +e(ú) xo -c(t) -e(t)xb
r* : e(¿) (*"-*o) :e(¿)t

That is, a vector transforms between two Cartesian coordinate system as

r*:Q(t)r (87)

This can also be seen as an definition of a fi.rst order (Cartesian) tensor. Note also that a vector
is independent of the translation c (ú) which corresponds to the definition of a vector only having
a direction and a length, i.e. no information is included telling anything about its actual place
in space.

AII introduced physical vector properties in the balance principles are frrst order tensors, i.e.

1*:Q(ú)x; >c.:Q(ú)x; b.:Q(¿)b; q.:Q(ú)q (88)

A second order tensor is a linear combination of two frrst order tensors s and r, e.g. U and
IJ* is a second order tensor if

s: IJr; s* : IJ*r* (8.9)

The transformation rule for the second order tensor follows by considering the transformation
rule for the first order tensors r and s, i.e.

s.:Q(ú)s; ¡.:Q(ú)r (8.10)

Insertion of (8.10a) and (8.10b) into (8.9b) yields

Q (¿) 
" 
: U.Q (f)r (8.11)
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MultipÌying both sides with Q (t)r, i.e.

Q (ú)'Q (¿)' : Q (¿)r U.Q (ú)r (8.12)

and using that the rotation is orthogonal, i.e. (8.2) is

Q(¿)'Q(¿): r (s.13)

Insertion of (8.14) into (8.12), gives

s : Q (r)r r.q (t)r (8.14)

Comparison with (8.9a), yields
u : Q (¿)t u.Q (¿) (8.15)

which is the transformation rule for a second order tensor.
That is, all introduced physical second order tensor properties in the physical balance prin-

ciple descriptions are transformed according to (8.15), e.g.

T : e (ú)t T.e (ú) ; L: e (ú)t L.e (¿); (8.16)

D Q (¿)t D.Q (ú); w : Q (ú)t w.Q (ú) ;

At last, it is mentioned that all scalar properties are independent of different frames, e.g.

0* :0; p* : p; e* : €i (8.17)

That is, no transformations is needed for scalar properties when the coordinate system is
changed.

8.4. Observing a physical event in two different frames moving relatively to each
others in the time domain

Given a deformation function a, a change of frame is a mapping that yields a new deformation
function a*, defined by

x" (X,t): c (¿) + Q (ú) x(X,t) (event) (8.18)

which follows from (8.1) where c (ú) is an arbitrary time-dependent vector representing a transla-
tion and Q (¿) u time-dependent orthogonal linear transformation representing a rigid rotation.
Physically, a and a* describe the same motion, but mathematical a* is the motion obtained
from a by the superposition of a time dependent rigid transformation. It is important to stress

that (8.18) represents a transformation of points and does not alter the reference configuration,
i.e. X is the 'name' (this 'name' is actually the initial (reference) coordinates X at some time
Ievel ú") of a particle in its reference confrguration which is independent of the transformation
(8.18).

The sequences of position vectors x* following the motion with reference to the x*-frame can
be written

¡* : a* (X,ú) (8.19)
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and the same motion recorded by sequences of position vectors x in the x-frame can be written

¡: a (X,ú) (8.20)

Observe, that ihe reference position X is the same for the motion observed in the different
frames.

The velocity j<* and acceleration ji* observed in the x*-frame are by definition time deriva-

tives of the motion, i.e.

i<* : ôx* (x,t) lðt (8.21)

x* : ô2x* (x,t) lôt2 (8.22)

and in the x-frame the velocities is defined as

*.: ðx(x,t) læ (8'23)

x: ô2x(x,t) lô* @-24)

Noting, that c (t), i.e. the translation and Q (t) i.e. the rotation, in general, must be allowed to
change with time. This corresponds to

x. (X,¿) : ô(ú)+ Q (¿)*+ Q þ)y(x,t) (8.25)

or equally
*. (x,¿) : ð (¿) + Q (ú) * + Q (ú) x

where (8.20) has been used. Note that, the x-frame is moving relatively to the x*-frame.
Indeed, a transformation of a first order tensor is deflned as in (8.8a), i.e. for the velocity

which certainly is a tensor one have x* : Q (ú) x, but the reason for the expression (8.25)

and (8.8a) being different is that the condition for i<* in (8.25) is that the two different frames
considered is allowed to 'move' relatively to each other with a speed given by ô and Q. This
means that the transformation rules which defined the first and second order tensors, discussed

in the previous section, is 'time independent'. That is, a tensor itself is not affected by the time
aspect, the only restriction on a tensor is that a physical correct interpretation of ìt should be

obtained (at an instantaneous time level) in two frames and the two different interpretations
of it should be related through the transformation rules (8.8a) (fi.rst order tensor) and (8.i5)
(second order tensor). However, the transformation (8.25) tells us that observers attached to
two difierent frames which moves relative to each other with a given speed (here, speed can
be referred to a time dependent translation and rotation), will measure two different velocities
which not communicates with each other with the transformation (8.8a). Therefore, such time
dependent properties are said to be a frame-different tensor. A frame-indifferent tensor (such as

the heat flux vector) is then a property which can be measured by to observers moving relatively
each other, these to measurements should then be related by the standard time independent
tensor transformation (8.7).

The acceleration x as observed from the x-frame (note that, the x-frame is moving with a

speed relatively to the x*-frame) is transformed to the acceleration ji* in the x*-frame, as

)i. (x,ú) : ö(ú) + Q (¿) j¿+ I (¿)x+ Ö(¿)x(x,ú) + a(¿)*
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)i* (x,¿) : ö (ú) + a (¿)i¿+2Ö (t)* + Q 1r¡a 1x,r¡ (8.27)

The deformation gradient is transformed as a vector, i.e.

F. (X,¿) : Q (¿)F (X,ú) (8.28)

This will be shown below, and the velocity gradient is transformed between two different frames,
AS

tr+ - p*p*-l : Q (ú)rQ (ú)t + I (ú)Q (¿)t (8.2e)

where
L* : D* + W* (8.30)

The transformation (8.29) will also be shown below.
The second order deformation gradient tensor F transforms like a vector under change of

frame at time ú. Assuming that the two frames had the same orientation at time úo when the
neighborhood of a point was in the reference configuration so that d,X* : dX at t"

d,x* : F*dX*: F*dX; dx:FdX (8.31)

i.e. from (8.7) and (8.31b) one obtain

dx* : Q(¿)d"
: Q (¿)(Fdx)
: (Q (¿)F)dx

(8.32)

thus by replacing dx* by cl,x* : F*dX, yields

F*dX: (Q (¿)F)dX (8.33)

i.e.
(F.-Q(ú)F)dX:o (8.34)

since dX can be chosen arbitrary the expression (8.34) becomes

F* (X,¿) : Q (¿) F (X,ú) (8.35)

which is the result to be derived, i.e. expression (8.28).
In order to show how the transformation of the velocity gradient (8.29) can be obtained,

consider the material time derivative of (8.35), i.e.

r.1x,t¡ : Q (ú)É 1x,r¡ + Ö (ú)F (X,¿) (8.36)

F\rrthermore, the inverse of the deformation gradient F-1 can be transformed as a vector in the
same manner as F being transformed, that is

F*-1(x,ú) : n'-tQ (¿)r (8.37)
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Since we have

F*-1 (x,¿) : a (¿)F-l (x,ú) : Q (ú)-'Q (ú)F-'Q (¿) : r-'Q (¿)' (s.38)

where (8.2) and (8.3) has been used. Noting further that L* can be expressed in terms of the
deformation gradient and its material time derivative, as

L* : È*F*-1 (8.39)

and in the same manner in the x-frame, as

L : FF-t (8.40)

Noting, that the following, also, holds

F*F*-l :1; FF-l :1 (S.41)

Using, the expressions (8.39) and the transformation rule (8.36), gives

L* : È*F*-' : (e (t)r + A (r)F) F-'e (¿)r 9.42)

l.e.
L* : É*F*-t : e (ú)r'r,-te (¿)t + Q 1r;rr-1q p¡r (8.43)

by using the expressions (8.41b) and (8.40) gives the transformation for the velocity gradient

tr* - p*px-t : e (ú)re (ú)r + Q (ú)e (ú)t (8.44)

Which is the expression presented in (8.29).

8.5. Objectivit¡ or frame-indifference

A scalar þ and a vector (or equally a first-order tensor) r is said to be object'iue or frame-
indifferent if the tensor transformation is independent of the rate of change of relative translation
ô (ú) and rotation Q (t) Uet-een two different frames moving relatively to each other. That is,

frame-indiflerent tensors in this case denoted þ and r should be transformed as

d* (**, ú) : ,þ (*,t) (8.45)

r* (x*, ú) : Q (ú) r (x, t) (8.46)

For example, the time ú is objective since ú : ú*. The transformation (8.46) follows directly from
the point relation between the two frames in equation (??). This is due to the translation c(ú)
not contributing to any change of vector properties (or equally a line between points in space)

transformed between different frames. However, the translation c (t) do effect the transformation
of points (but, again, not vectors between poini).

Constitutive equations 'must' be invariant (objeciive) under changes of reference frame. If a
dynamic constitutive equation with a motion and a stress tensor satisfied in one frame, lets say
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in the x-frame, one have x : X(X,ú) and T (X,ú) it must also be satisfred for any equivalent
process in the x*-frame. This means that the constitutive equation must also be satisfled by the
motion and the stress tensor given by

x* : X* (X,t¡ : c(t) + Q (l) a (X,t)
r* : r* (X,r; : ôi;l t øíid, a;É (8'47)

which follows from the expressions (??) and (8.15) (where the arbitrary tensor U is identifled
as the stress tensor T).

The velocity gradient L is a second order tensor, but is the velocity gradient L a frame-
indifferent tensor property according to (8.a7)? Actually, the physical property L is not a

frame-indifferent tensor since it was shown that L* is related to L as

L*:F*F*-t: Q(¿)LQ(¿)r +a(¿)Q(ú)t (8.48)

which is (8.29) repeated. That is, the term Q (¿) Q (¿)t is not 'allowed' when a property is to
be frame-indifferent. It is noted that the transformation between L* and L is dependent of
the rate of change of a 'hypothetical' rate of change of the relative rotation between diflerent
frames. Due to this fact, one usually, avoid to constitute the stress as a function of L since it is

supposed that a 'hypothetical' relative rotation of two different frames with attached observers

should not affect the material behauior itself in terms of a response..

It has been discussed earìier that the velocity gradient can be decomposed into a symmetric
part and a skew symmetric part as

L:D+w (8.49)

Where D is the symmetric part of the velocity gradient is defined as

D :å (t + L') (8.50)

and the skew part is defined as

w:å (r, - r,t) (8.b1)

Is the symmetric part of the velocity gradient, i.e. D, a frame-indifferent tensor property
according to (8.47)? By using (a.f0) and the transformation rule for L, i.e. equation (8.29), one
obtain

D* +L. + +L.r (8.52)

åq (¿)Le (ú)' + åa (¿)Lre (¿)r + å8 (¿)e (¿)' + å (ö (ú)a (ú)')

l.e

(8.53)

Moreover, from (8.2) we have

a(ú)a(¿)r-1:o (8.54)

D*: Q (¿)DQ (¿)' + åQ l¿lQ (ú)' + å (Ö (ú)a (ú)')
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differentiation of (8.S4) with respect to the material time derivative, i.e

a(¿)a(t)r-r:o (s.55)

This expression can be written as

q(¿)q(¿)'+a(ú)Ö(¿)':o (8.56)

where partial differentiation is used. A pure mathematical rearrangement with help from the
mathematical rules for the transpose operator, gives

(e rrl o (¿)') : ((n (r)') ö (,)') : e (¿) a (¿)' (8 bz)

The expressions (8.56) and (8.57) combines to yield

e(¿)a(¿)': - (Ofrla(¿)') (8.58)

It can be noted that Q (¿) Q (¿)t is skew symmetric and more important, by using (8.58) in
(8.53) one can obtain

D*: Q (¿)DQ (¿)r (8.5e)

which is due to

åq(¿)e(ú)'*å (ö(,)q(r)')' : -å (A(¿)a(ú)') +å (a(,)q(r)')' (860)

0

Hence, the symmetric part of the velocity gradient D is an objective tensor or equally a frame-

indifferent tensor.
In fluid mechanics one usually prefer to choose the stress to be a function of D rather than

of L. This is due to the symmetric part of the velocity gradient D remaining unaffected by the
time aspects of two different observers attached to two different frames moving and rotating
relatively to each others. That is D is a frame-indifferent tensor.

8.6. More about frame indifference an constitutive equations

The important physical message of the frame-indifference when establishing constitutive func-

tions is that the response function f should be independent of which time dependent frame one

happens to choose.
Consider, for example, a stress T which is assumed to depend on the symmetric pari of the

velocity gradient D, the spin'W, the density p, the temperature gradient g, the velocity x and

the place x
T : f (D,'W, p, g, x, x) (8.61)

where g :gradd. The same physical event in terms of stresses must be obtained in the x*-frame

T*: f (D*,'w*, p*,g* ,**, x*) (8.62)
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Not that the response function f must be independent of the transformation, indeed, it is

independent of any introduced coordinate system. Loosely speaking, this means that if the
stress can be determined with a (hypothetical) experiments with the x-frame as an reference,

then it should also be possible to observe the same physical process having the observer attached
to the x*-frame. This means, further, that the material itself is subjected to a stress (determined
by the response function f) when a hypothetical motion is given (this motion is really the same for
two different frames, but the motion is recorded by two different observers one of them attached
to x-frame and the other to the x*-frame), it then seams natural to assume that the response
function f is independent of how the two different observers like to interpret physical events

to their attached frames. Due to this, the assumption behind frame-indifference of constitutive
equations is also called'isotropy of spacq yet another illustrative (alternative) name is material
objecti,uitE. Indeed, the concept of frame-indifference are so obvious to our physical intuition
that we do not even recognize in most cases that we are applying a very useful general principle.

The objectivity principal gives the transformation rule

T* : Q (¿)TQ (¿)t (8.63)

for the stresses as observed from two different frames moving relatively to each others.
From (8.48) one obtain

L* : D* *'W'* : a (¿)ra (¿)t + q (¿)q (¿)t (8.64)

and from (8.59) one obtain

L*: D* +\M* - Q(ú)DQ(¿)t +Q(¿)wQ(¿)t + Q(¿)Q(¿)' (8.65)

slnce
w* : Q (¿)wQ (¿)' + ö (¿) q (¿)' (8.66)

The density transforms as

p*:p (8.67)

and the temperature as

0* :0 (8.68)

hence, g :gradd, transforms as

s.: Q (ú)e (8.6e)

The velocity x transforms as

x*:ô(ú)+a(ú)x+Q(¿)*

and the point relation is
x*:c(¿)+e(¿)x

The constitutive relation (8.59) can the be written

T* : f(a(ú)DQ(¿)r,Q(¿)wQ(¿)' +8(Ðq (t)r,p,
Q (¿)s, ¿ (¿) + Q (¿)" + Ö (¿)x, c (r) +Q (¿)*)

(8.70)

(8.71)

(8.72)
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where the above transformation rules, given above have been adopted.
By testing a given value of the otherwise arbitrary rotation tensor Q(ú), conclusions can be

drawn concerning if the frame-indifference is fulfilled. Choose, for example, Q (¿) : 1, Q (ú) : 0,

insertion of this choice into (8.72), gives

T* : f (D, w, p,g,ô (ú) + *, c (t) +x) (8.73)

Since ô (t) and c (ú) musi be allowed to be chosen arbitrary one concludes that the constitu-
tive relation f (D,W, p,g,*,x) must be reduced to f (D,W,p,g) in order to fulfill the frame-
indifference postulate. That is (8.72) is reduced to

T. : f(Q (¿)DQ (¿)', Q (¿)wQ (¿)' + a (¿)a (t)' , p,Q (¿)s) Q.74)

Next, choose the otherwise arbitrary rotation to the value Q (¿) : f

T* : f(D,tv + Ö (t), p,e) (8.7b)

which says that the response function f cannot depend on W, since Q (ú) is completely arbitrary,
i.e. f (D,W,p,g) :f (D,p,g). Thatis,therateof rotationof aframe(whichhasnotingtodo
with the actual motion of the body) is not allowed to effect the response function f.

Another, often used, argument which perhaps is more illustrative is to set Ö (¿) : -'W and

a(ú) : l which yields T*: f(D,O,p,g). By using this choice of rotation and rate of rotation
of the observers frames it is, again, clear that f cannot depend on the spin W when not aÌlowing
for any dependence of Q (ú), i.e. when adopting the frame-indifference principle.

Another important ìssue is to show that velocity differences or equally relative velocities
fulfill ihe frame-indifference postulate. Consider two velocities *j and *f; which transforms as

*;:ö(¿)+Q(ú)*"+8(ú)x (8.76)

and
*;: ¿(¿)+ Q(t)x6+Q(t)x (8.77)

The difference of the two velocities denoted xj-, can according two (8.76) and (8.77) be trans-
formed as

*ä-¿:*; -*ä: Q(¿)(*" -*¿) : Q(ú)x"-a (8.78)

which is the desired property and it is concluded that xo-6 is a frame-indifferent property.
The stress could therefore, for example be constituted as T : f (x,-¿) since T* : f (x;-6) :
f (Q(ú) x"-¿). It should be noted, however, that other postulates, such as the second axiom of
thermodynamics, may be in conflict with such constitutive assumptions. This subject will be

discussed later.
Spin tensor

wä:Q(ú)w,Q(¿)'+Ö(¿)q(¿)' (8.7e)

wä: Q(¿)w¡Q(¿)'+ q(¿)q(¿)' (8.80)

wä_¿ : wå-wä : Q (ú) (w,-w¡)Q (¿)r : Q (ú)w"-¿Q (ú)' (8.s1)

which means that the difference of spinn as defrned above is a reference indifferent property.
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8.7. The Rivling-Eriksen tensor of second order

Consider the constitutive assumption for the stress as

T: f (grad*,gradx) (s.az)

Denoting the symmetric part of the velocity gradient in the fashion of Rivling-Eriksen, i.e.

Ar: L f Lr :2D (8.83)

From earlier we know that the part of the velocity gradient denoted D is symmetric and frame

indifferent i.e.
Ar : AT; and A{: Q (¿)A1Q (¿)r (8.84)

Referring to the material time derivative of the rotation times rotation ur, Q 1t; Q (¿)r : O,
that is, one obtain

L*: Q(¿)rQ(¿)'+Öl¿lq(¿)': a(¿)ta(t)r +o (8.85)

Again, it is shown that the velocity gradìent is not frame indifferent.
Since Q (¿)Q (ú)r : 1 we can identify í-l as

Q(¿)q(¿)'+a(¿)a(¿)': o (8.86)

1.e.

O: -C)r
Assume a second property related to gradü, i.e.

Az:Ar+A1L+LrAr

(8.87)

(8.88)

A transformation vields

Àî: ö (¿)A,e (¿)' + e (¿)A'e (¿)' + e (¿)41Ö (¿)r (8.8e)

With further arrangements one obtain

AiL- : Q (¿)A,Q (ú)' (a (ú)LQ (¿)' + Ö (ú)a (ú)')

: Q (¿)ArQ (¿)' Q (¿)rQ (¿)' + Q (¿)ArQ (¿)' I (ú) Q (ú)'

: Q (¿)A1rQ (¿)' - Q (¿),r'8 (¿)'

Noting also that

L*'Ai

(8.e0)

(8. e1): (o{r)r,'o(¿)' + 8(¿)q(¿)') a(t)n1e(t)r
: Q(¿)rrQ(¿)' Q(¿)t,Q(¿)' + Q(ú) a(¿)' Q(¿)A1Q (ú)r

e (¿)LrA1e (ú)' - I (¿)¡'Q (¿)'
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This derivation leads us to the conclusion that

A; : Ài + AiL- + Lr.Ai (s.92)

i.e.

^î : ;l:ìä:Í,;,;iÍllÏ:[];.Q(¿)LrA1Q(Ú)r 
(8e3)

That is, the property A2 is frame indifferent. Flom above we have

Aä : Q (¿)ArQ (¿)' (8.e4)

The second axiom of thermodynamics, however, may not necessarily be in accordance with this
type of frame indifferent assumption.

8.8. Fþame indifference of the convective stress tensor

Consider the rate assumption for the stress tensor as

T:f(T,D)
A frame indifferent behavior must result in that a different fame denoted bV (*)

t*: f (T*, D*)

The symmetric part of the velocity gradient and the stress tensor are transformed as

D* : Q (t)DQ (r)r ; T* : Q (¿) TQ (¿)r

It is noted that t* does not represent a isotropic function in space, i.e.

t* : Q (ú)Te (¿)' + a (¿) ia (¿)' + a (¿)Ta (ú)'

Introdrrce the convective definition of the rate of the stress tensor as

t : t - wr * TW;'i.:'i.-w*T*+T*'w*
where W : + (L - tt) . FYom above chapter it has been derived that

w* : Q(ú)wQ(¿)' + 8(¿) q(¿)' : a(¿)wa(¿)' +o
where fl : -f)T.

The transformation rule is .i*: e (¿)tq (¿)'

1.e.

'i* : t*-'w*T*+T*'W*
: ö (¿) rq (¿)' + a (¿)ta (¿)' + e (ú) T8 (ú)r

+ (a (¿)we (ú)r + a (¿)a (¿)') e (¿)re (¿)r

+a (¿)rQ (¿)' (o rrlwo (¿)' + I (¿)a (ú)')

(8.e5)

(8.e6)

(8.e7)

(8.e8)

(8.ee)

(8.100)

(8.101)

(8.102)
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Noting that Q (¿)t Q (¿) : I, reduces the above to

f'* : ö (¿)rq (¿)' + a (ú)ta (¿)' + q 1t¡rQ 1r¡r (8.103)

+Q (¿)wrQ (¿)' + Q r¿l q (¿)' Q 1r¡rq 1t;r
+Q (¿)TwQ (¿)' + Q (¿) TQ (¿)'8 (ú)Q (¿)'

Using also that Q (ú) Q (ú)t : -Q (¿)Q (¿)t and again that Q (¿)t Q (¿) : I, one obtain'

ö (¿)rq (¿)' + a (ú)fa (¿)' + e (¿)T8 (¿)'

+Q (¿)wrQ (¿)' + Ö (¿)rq (¿)'

+Q (¿)rwQ (¿)' - Q (¿) TQ (ú)'

(8.104)

That is

'i" a (¿) ta (¿)' + Q (ú)wrQ (¿)' + q p¡ rwq 1r¡' (8.105)

: a(r) (t+wr+rw) e(ú)'

The important conclusion is that when defining the material functions and the convective stress

tensor as shown above the properties are frame indifferent.

8.9. Rate dependent vectors

Consider a situation were, for example, the heat flux vector is transformed as

q.:Q(¿)q (8.106)

and where the material time derivative of the same property becomes

d.: Q(¿)q+a(¿)q (8.107)

That is, the property q is not frame indifferent. Therefore it is tempting to assume the following
convective rate dependent assumption, that is

å: q - Wq; q*: q"-W*q* (8.108)

The proper calculation gives

q* : q*-\M*q* : ö(¿)q+e{r)a- (e(ú)we(¿)' + ö(¿)q(¿)') a(r)q (8.10e)

: q(¿)q+ Q(ú)q- Q(ú)wa(¿)' Q(¿)q- a(ú) a(¿)' Q(¿)q
: I (¿)q+ Q(¿)q- Q(¿)wq- Ö(¿)q
: a(ú)(q-wq) :Q(¿)å

Other types of assumption may be used. Consider for example ihe following

.i*
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T, : f, (q ø q) : r" (q"qï) ; qi : Q'9'i gir : qIQÏ
qîqîr: Q,q,qIQT; q*øq*: QqøqQr

Or as time dependent vectors, such as

qøå:(q-wq)ø(q-wq)

where
t : f - wr + Tw+ (q- wq) 8(q- wq) ;

and

.i*: t*-'w*T*+T*'w* f (ö--w*q.)ø (ö.-w*q*)

(8.110)

(8.111)

(8.112)

(8.113)

(8.114)

8.10. Material symmetr¡ material isotropy

The material isotropy which is to be discussed here should not be mixed up with the frame-
indifference postulate. The important difference is that when studying the consequences of
frame-indifference two observers are moving with a speed relatively to each others and therefrom
observe the same physical event When chang'ing the frame the reference configuration is the

same .for both frames and the reference confi,gurat'ion is kept constant. When, on the other hand,
studying material symmetry properties, such as isotrop¡ one which to study what happens

with the material response function when having one single fixed coordinate system and let
the material body rotate by 'testing' di,fferent reference configurations. If different d'irections
of a hypothetical applied 'load' gives the same response in terms of, for example, stresses, the
material is said to be isotropic. This special case can be studied by imagining having a fixed
applied 'load' (and a fixed direction of the load) on a material and then rotate the material
body.

The stress determined with a certain reference conflguration a is the expression

T: fx(D,p,s) (8.115)

When rotating the material and assigning the 'new' positions in the material with a new reference

configuration ! (still subjecting the material to the same physical properties D, p and g with the
same direction and magnitude as in the reference configuration a) the stress may not necessarily
be the same. The stress obtained if rotating the material is denoted t and is given by the
material function f2 in the reference configuration !, as

f : rt (D, þ, Ê) (8.116)

The objectivity or frame indifference, discussed in previous sections, stated that the actual
(or measured) material response is independent of the coordinate system we choose, and also

independent ofthe rate ofchange ofthe rotatio" Ö (¿) and translation ô (ú) describing the relative
rate between to frames. Applying this theory, also, for a case where the material is subjected
to a rotation interpreted by letting the material having different reference configurations for
different rotations, one may write

î : Q (¿)TQ (¿)t (objectivity) (8.117)
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and for the symmetric part of the velocity gradient D, frame-indifference (or objectivity) gives

Ô : Q (ú)DQ (¿)t (objecrivity) (8.118)

The temperature gradient transformation is

ê : sQ (¿)r (8.119)

Using the objectivity principles (8.117), (8.113) and (8.119) the relation (8.116) can be expressed

AS

f : fr (o, þ, e) : fî (Q (ú) DQ (t)' , p,cQ (ú)r ) (8.120)

Due to (8.117) and (8.115), the expression for f can also be expressed as

î : e (¿) fx(D, p, c)Q (¿)r (8.121)

Combining (8.120) and (8.121) yields

f,t (Q (¿) DQ (ú)t , p, BQ (¿)t ) : Q (¿) f, (D, p, e)Q (¿)t (8.122)

The special symmetry condition to be considered here is isotropy which implies that

fx(D,þ,Ê) : fr(O,Þ, s) (8.123)

The physical interpretation of (8.123) is that the material response (in terms of stresses) is the
same for different direction of the material for a given applied fixed 'load'.

Using (8.120) and (8.122) it is seen that the relation between f1 and f, transforms like a

objective tensor
f*.(ñ,þ,s) : Q (ú) f*(D, p, c)Q (ú)r (8.124)

This follows also directly from (8.115), (8.116) and (8.117). The combined requirement from the
frame-indifference, i.e. (8.120) andthesupplementary, assumed, conditionof materialsymmetr¡
one obtain

fr(ñ,þ,e) : Q (ú) fx(D, p, c)Q (¿)r (8.125)

or, equally

fr(Q (ú)DQ (ú)r , p,sQ(¿)t ) : Q (¿)fx(D,p, c)Q (¿)r (isotropy) (s.126)

That is, the material response for a given load is independent of the orientation of the body.
It should be mention that it is often explicitly assumed that a fluid is isotropic.

8.11. Invariants to symmetric tensors

Symmetric tensors such as the stress tensor T includes components which can be combined
with certain mathematical operations to yield a scalar number. Some special combinations
of components in a tensor results in a scalar number which remains the same if the same

mathematical operation is performed with components in a transformed tensor T*. Such a
special scalar number is called an invariant. Here a discussion will be performed were ìt will be

shown how some of the most important invariants can be obtained.
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Consider the traction vector t which is obtained by the linear equation

t : Tn (8.127)

where n is the out-ward directed normalized vector to the surface on which the traction act.
The stress component normal to the studied surface can be obtained as nTt: nTTn :Tnn,i.e.

Tnn: rtTt (8.128)

In the same manner the shear stress Ç- is obtained by the projection

Tn*:rrtTt (8.129)

A special case where t is colinear with n, i.e. the case when the direction of n and t is the same

the length of the vector t can be related to n by a scalar number À, as

t :Àn (8.130)

From (8.128) onc obtain
Tnn: rrTt : nTÀn :À (8.131)

since n is a normalized vector.
Hence, the relation between the traction stress t and the stress tensor T, i.e. the expression

(8.127) and the relation for the magnitude of the traction stress t in the direction normal to the
studied surface, i.e. expression (8.130) gives the following requirement

Àn : Tn (8.132)

l.e.
(T-ÀI)n:O (8.133)

This is the eigenvalue problem or the characteristic equation for the stress tensor T.
If a nontrivial solution n is to exist, one must require

det (T-ÀI) :0 (8.134)

furthermore, it is possible to show that for symmetric tensors all eigenvalues are real numbers,
l.e.

T symmetric ---; all eigenvalues are real

Writing the stress tensor T in a Cartesian coordinate system as

T-

when the expression (8.134) can be explicitly obtained as

Tn-À Ttz Tn
Tzt Tzz-\ Tzz

Tst Tsz ?es-À

Tn Tp Tn
Tzt Tzz Tzz

Ty Ttz Tss

(8.135)

(8.136)det

(7rr -À) (Tzz- \) ("ss-À) +
T12T2yT31 lT6T21Ts2
([¡r-À)TztTsz -TtzTzt (f¡s-À) -
T6 (T¡2-À)Ts1
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Consider, for example, a stress state given as

The eigenvalue to this special stress state is the determined as

(8.137)

det
1-À 0
05-
-44

À :-)3+9À2+9À-81:o (8.138)

: -À3 + 0ì2 - þz\* Êz: o (8.142)

-4
4

3-À

Solving the obtained cubic equation one obtain the roots

Àr:9, Àz:3, Às:-3 (8.13e)

which corresponds to the so-called principle stresses Tt : \t, Tz : Àz and ?s : Às at a given

direction n which can be determined by insert the values À1 , 2 and À3 into (8.133) and also

using the fact that the lengih of the vector n is equal to one.

The principal stresses is

lT, o o-l
T.P:l o rz o | (8.140)

L0 0 "'l
where T*p is used to denote the principal stresses which coincide with the principal directions
which can be determined from (8.133). For the special stress state for T in (8.137) the principal
stress,hence,becomes 

lg 0 0_l
T.o:lo 3 o I t8.141)

L0 0 -3 I
It turns out that the numbers determined from the equation (8.138) i.e. the numbers 9,9, 81 in
this example, can be calculated in a very systematic manner for arbitrary stress states, consider
the equation (8.134), i.e.

det
T¡¡-\ Tp Tts
Tzt Tzz-\ Tzs

Tn Tzz ?ss-À

where B1, B2 and Bs arc the numbers to be calculated in an alternative manner compared to
the method shown in (8.136). By algebraic operations it is possible to show that 81, B2 and Bs
are given by

þt: trT (8.143)

ßz: L(t't)2 - Lr' (8.144)

És : det (T) (8.145)

This means that (8.142) or equally (8.136) can be expressed as

-À3+rrTÀ2-(å{r.r)'-+r'))+det(T):o (8.146)
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In the example studied where the stress state is given by (8.137) on obtain

þt:trT:l*5-l- 3:9 (8.147)

þr:L1trr)2 -tr':LQ)',-LO+16+ 25+76+16+16+9) : -9 (8.148)

þs: det (T) : t (15 - 16) + (-4) (-zo¡ : -31 (8'149)

That, is an alternative way of determining the constants in, for example (8.138), is obtained,
from which the principal stresses can be calculated.

It is noted that the characteristic equation satisfies its own solution which means that inser-
tion of the calculated principal stresses into (8.146) results in

_rl + ftTr! - (å {t'r)' - +r')"r + det (r; : 0 (8.150)

-e3+(e)e',-(-e)e+(-81) : o

where, again, the example of the stress state given in (8.137) is studied. The principal stress

component 7z is in the same manner obtained as

_rt + nTTl - (å {t'r)' - +r')"2 + aet 1r¡ : 0 (8.1b1)

-33+(e)3',-(-e)3+(-81) : o

To show the remarkable properties of the þu 0z arrd B3 values, consider a rigid body rotation
around the x3-axis, of coordinate points in which the rotation is described Q(ú), as

Q(¿):
cosP -slnP
sin rp cos p

00 il (8.152)

(8.153)

(8.154)

(8.155)

where g is the angle between the 11 and øf-axis and also between the 12 and rfi-axis
The stress is then transformed according

T* : Q (¿) TQ (¿)r

when the two systems x and x* are studied, se previous sections, i.e.

f cosg -sing 0 I I 
"tr 

Tn rr¡ I I cosp sinrp
1*: I sing cosg o I I At Tzz rr" I I -sinrp cosg

I o o 1lLr" rn A'.1 L o o il

ilil

As, an example, the rotation g : 45o of the axis will be studied, this choice gives the stress state
evaluated when recording the stress state given in (8.137) in a different angel (or in a different
frame), one obtain

T*
Il^/,

,/trl
0

-tl'/,
1l\/,

0

0
1

-5

1

0

-4

l

72

o -4 I i rl/, tl,/,5 4ll-rt,tz rl,/,
4 3lL 0 0

3
o

-5.6569

0

o

3

0

6569
0
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It turns out that the By B2 and B3 values remains unaffected by the rotation, in the example,
while the components in the stress tensor is not, e.g. compare (8.137) and (8.155).

By calculating trT*, T*2 and det (T.) for the rotation in the example studied one obtain

0t : trT*:g (8.156)

þr: T (trt.¡2 - |r*2 : -9 (8.152)

þs: det (T.) : -8t (8.158)

That is þu 0z and B3 values remains unchanged. Indeed, any arbifuary rotation can be tested
and stiil the Br, B2 and. B3 remains the same. Due to this fact the values ftT, | (trf)' - TiI'
and det (T*) are called stress invariants. It should also be noted that all symmetric tensors have

the same properties when it comes to the invariants. As an example trD, |1trO)2 - |D2 and,

det (D) will always remain unchanged by a transformation given by D* : Q (ú)DQ (ú)r.

8.12. Isotropic material functions and the representation theory

An isotropic material which response for a given load is independent of the orientation of the
body, can be formulated as

f"(Q (¿)DQ (¿)t , p,EQ(¿)t ) : Q (¿)fx(D,p, c)Q (ú)r (isotropy) (8.159)

where also the objectivity requirement holds, i.e.

D*: QDQr; T*: QTQr (8.160)

The isotropic condition will be written, as

T: f- (D); T*: f- (D*); (8.161)

which indicates that the material response function f- is independent of the orientation.
Imagine a case where only principal directions in D are active, but nothing is known about

the stress state, this case is illustratcd as

D-

Let us assume that the x*-system is obtained by a 180o rotation about the ,t1-axis, when the
transformation Q, i.e. the rotation matrix, is given by

Q:QT:

Tu, -Ttz -Tn
-Tzt Tzz Tzs

-Ty Tsz Tss

Tn Tn Tts
Tzt Tzz Tzs

Ty Tez Tss

D1 0

0Dz
00

T_

0

-1
0

(8.162)

(8.163)

t:
0

0

-1
Using the transformation rule T*: QTQT, yields the 'new'stress state and principal directions
for the symmetric part of the velocity gradient, as

T*: (8.164)
00
D20
0Ds
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One obtain D* : D and it follows from the angular momentum that T* is symmetric. Conse-
quentl¡ one obtain D* : D and it follows from (8.161) that also T* : T. Hence one must have

Ttz : Tn : 0 and also ?21 : Trr : 0, which is obvious when (8.162) and (8.164) is compared
together with (8.161).

Assume next that the x*-system is obtained by a 180" rotation about the ø2-axis, when the
transformation Q, i.e. the rotation matrix, is given by

Q:QT: (8.165)

and using the same argument as above, it follows thatT2s:0 (and also, ?32:6).
Consequently, it has been shown ihat if D is diagonal, so is T. This means that the a,ssump-

tion of material isotropy means that the principal directions for D and T coincide.
Studying the material response function (8.161a) in a coordinate system colinear with the

principal direction of D, only the principal directions of T need to be considered

Tt : ht (Dy, D2, D3) ; Tz : hz (D1, D2, Ds) ; Ts : hz (D1, D2, D3) (8.166)

where lz1, h2 and hs D.te some functions related to a certain material.

rt:ht*Hr,*L#,rf*äffiol*.. (8167)

this is, for simplicity, rewritten as

Tt:bttbzDt+hD?+bAD?+... (8.168)

The eigenvalue problem for the symmetric part of the velocity gradient is similar to the eigenvalue
problem for the stress, therefore one can write

-D? + þtD? - þzDt-r 0z: o (8.169)

where B1 , B2 and B3 arc invariants.
Expression (8.169) can by purely mathematical arguments be rearranged as

Dl*, : pro?*o - prDl*o + 1sDT (8.120)

where p is non-negative integers. For example, consider expression (8.168) written as

Tt : bt I bzDt + hD? + b4D? + bsDt + (...) (3.171)

Using (8.170) with p :0, gives

Dl: pLD? - BrDl + Êz @.r72)

and with P :7, one obtain
Dt: ppl - þrD?-r þsDt (8.173)

-1
0

0

0
1

0

0
0

-1
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Inserting, the expression for D! given from (8.173) into (8.171), yields

T1 : \!b2D1+hD?+b4D? (8.174)

+b5 (ppl - 1zD? + þsDt)

then in the same manner) replacement of Df given from (8.172) into (8.174), yields

T1 : hrbzDt+hD?+b4(pp?-Brol+02) (8.175)

+bs (t3t (Brp? - þrDT. + þs) - 1zD? + þsD')

That is, terms of a higher order than Dl can always be eliminated by repeated use of (8.170).

It is therefore concluded that the most general relation between ft and D1 is

Tt : et I ryDl -f slDl

Likewise, making a Taylor expansion of the function h2 in (8.166b) about D2 : 0 and for hs

about D3 : 0 in (8.166c), one obtain

T2 : pz -f r2D2 -f s2D2, (8.176)

Ts : pz + ,"BDJ -f ssDl

Therefore it is possible to write T : f (D), as

T:P+RD+SD2 (3.177)

or in matrix format, as

(8.178)

consider 
r: f* (D); where - (D) : p + RD + sD2

The objectivity and material isotropy gives

Q (ú) f- (D) a (¿)' : f- (a (ú)Da (ú)r)

By transforming this condition as

(8.17e)

(8.180)

e (ú)' e (¿) r- (D) a (¿)' e (ú) : e þ)' t* (O frloO (ú)') a (¿) (8.181)

one obtain
r- (D) : e (ú)'r- (a (¿)De (¿)') q (¿) (8.182)

Combining (8.179) and (8.182) gives

p + RD + sD2 : Q (ú)'r- (a (¿) Da lrl') O frl (8.183)

0 0l f r' 0 0l

'å å]'':LB "d lJ
lpr o o'lp:l 0 pz 0 |

lo o o'l
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Rearranging this with aid of Q (ú) one obtain

f- (a (¿)DQ (ú)') : p + RQ(¿)DQ(¿)'+sQ(¿)D2Q(ú)r

It is concluded that the following holds

p + RD + SD2 : Q (¿)' (p + RQ(¿)DQ(¿)'+SQ(¿)D'zQ(¿)r) Q (ú) (8.185)

Þ+no+SD2:o (8.186)

where

Þ :p- e(¿)rpe(ú); R:R-e(ú)rRe(ú); S : s- Q(¿)rsQ(¿) (8.182)

The properties P, R and S must behave objective i.e.

p: Q(ú)TPQ(ú); R: Q(¿)rRQ(ú); S: Q(ú)TSQ(¿) (8.188)

The only isotropic second-order tensor is kI where the factor k rnay depend on some invariant.
That is

P :orl; R:ozr; S :osl (8.189)

where a1, a2 and @3 may depend on the invariants of D, e.g. trD.
From (8.189) and (8.179) one conclude that for an isotropic material the stress must be

related to D in the following manner

T:olr+.o,zD+osD2 (8.190)

which is a non-linear condition.

8.13. Principle of equipresence

The principle of equipresence states that all constitutive variables should depend one the same
properties, as long as the other principles, such as the second axiom of thermodynamics, allows
for such a dependency.

8.14. Restrictions imposed by the second axiom of thermodynamÌcs

The second axiom of thermodynamics imposes restrictions on the choice of constitutive functions
and is, perhaps, the most helpful principle when it comes to develop stringent continuum models.
The second axiom of thermodynamics, or equally the entropy inequality will be used to develop
equilibrium, non-equilibrium and near-equilibrium conditions for a mixture. The mixture will
be restricted in the sense that only two phases are considered, a solid and a liquìd phase, being
built up by ly' number of constituents.

(8.184)
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9. Constitutive functions

A case where two phases, i.e. a liquid phase I and a solid phase s will be considered. Both
phases contains ly' constituents.

The Helmholtz free energies for the solid phase and the liquid phase are the assumptions

A" (7, p",Ci",E") ; o, (r,p,,Ci ,8") (e 1)

The classical format of the pressure po in the a-phase and the definition of the Gibb's free

energy tensor G, will be used, i.e.

aA..
ôPo'

Go:AoI-p;Lt-

The classical effective stress tensor t! for the solid phase and the so-called hydration stress tensor
t¿" are defined by the Helmholtz free energies Ao for the phases, as

Po: P2. (e 2)

(e.3)

(e.4)

(e.5)

(e 7)

(e.8)

t3 : r"F"ffir'|;

E":;(r,f r," - r)

which has been derived in equation (2.116).
Using next the identities give by equation (2.29), i.e

will be adopted, e.g. see equation (2.69).

The material time derivat ive of. A¡ (r, Or, Cl ,8") can by differentiation be expressed as

DtAt _ \At DI * TAt Dtpt * ts 9A,. D_,Ci + t,, ( ôA¿ D¿E" \--f : ôr Dt * a^ rx ?:, ací Dt ' (a* Ë ) (e'6)

where the Green-Lagrange strain rate is given as

D"E" 
- Fïd"F"

Dt

FÏõAt
AE-

tt, : p¿I. 
"

F\rrther, the chemical potential scalar þlo will be defined by the derivative

The Green-Lagrange strain rate, i.e

ôAo

adit!.

D"f Dl
Dt DI

u" .gradl; '# - 
oå :u¿ 'gradl

That is the equations in (9.8) verifres that material time derivative of an arbitrary property I
following the motion of the liquid and the motion of the liquid phase are related by

DI D"l
; : -i; + (,r¿ - r") .gradl (9.9)
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With the property f identified as l: E", the equation (9.9) becomes

DLE" D"E"
; : --l * gradE" .(r¿ - r")

The hydration stress tensor t! can by the definition (9.3) be written as

e;'å*i :F;'F"#"ï:ffi"]
when multiplied with deformation gradient F;l and noting that the relation F"F;1 : F" 1F, :
I holds, i.e. see equation (2.32)

The last term present in (9.6) can be formulated as

Fïd"F" : r';tltl¿"F" : 
årlo,

(e.12)

by using the relations (9.7), (9.11) and F;1F" : I.
The relation (9.10) multiplied with ôALlô8, becomes

#'+ : H'++ (ffis,,ae") (,,, -,,")

Taking the trace of this expression and using (9.12) yields

" (H"+) : å,, 
(r:d") * " (#:r,udE") (,¿ -,")

That is, the material time derivative for,4¿ in (9.6) can by (9.14) be written as

DtAt ïAt DI , ôA¿ D¿p¡ , F a¿,, O,Cl
Dt arDt-AnDt-4ad,o,

+1t, 1t!a"¡ +t, (#c,uan")' (,.¿ -'")
The material time derivative for A" (7, p",Ci",E") can by difierentiation be formulated

ôA¡ D¡8" ôAt
ôE" Dt ôE"

D"A"
DI

(e.10)

(e.11)

(e.13)

(e.14)

(e.15)

(e.16)

(e.17)

aA" D"T ôA" D"p" , {1 aa" a"cg
ar Dt'ap"Dr'LaC" o,

/ aA" D"E" \*" \,rn * 7

where it is noted that the last term in (9.16) can be written as

#+: ffi"îo"F" - F;'*t;d"F" : *"o"
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where the same procedure used in receiving (9.12) was adopted. That is, (9.16) can also be

formulated as

D"A"
Dt

AA" D"T ô,4" D"p" , '5-vi

ar Dt-aan7-4
+1t, (t:¿")

P"

aA" D"cr"

ôd" Dt
(e.18)

With the thermodynamic definitions for the pressure in the two phases, í.". po : p2. uQÁ-, the
proper function for D¿A¡f Dt, corresponding to the constitutive function (9.3b) is

# : #'#.#H.Þ:: i'r'# (ele)

+1t, itla"; + t' (ffic,udE") . (,, -,,")
And the function fot D"A"f Dú, corresponding to the constitutive function (9.3a) is

D"A" AA" D"T * p2 D"p" * ts ¡,iD"C! 19.20)Dt ar Dt-p?Dr-k*u ot \-'l
Ii-tt (t:d")

The functions (9.19) and (9.20) will be used when examining the entropy inequality as expressed

in equation (7.59).

10. Classical properties of the chemical potential

In classical Gibbsian thermodynamics, the chemical potential is defined to be the change of the
total extensive Helmholtz potential, ,4., with respect to the number of molecules of constituent
j, nr, keeping temperature, volume, and the number of molecules of all other constituents fixed,
í.e. ðAlðni lr,v,n. The following properties holds in this classical format.

1. It is a scalar quantity representing the amount of chemical energy required to insert/remove
a molecule of constituent f (by definition)

2. At equilibrium, the chemical poiential of a single constiüuent in different phases is the
same.

3. The chemical potential is the driving force for diffusive flow. In particular, at equilibrium
the gradienb of the chemical potential is zero.

Note that the above properties do not imply that at equilibrium the chemical potentials of
two different constituents are the same. It is especially important that property 3 holds, as it is
the property used to indirectly measure the chemical potential.

Later the difference of the tensorial chemical potential, introduced by Bowen, and the classical
scalar chemical potential will be pointed out.
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11. Adding a virtual force in the inequality

A method where one add terms to the entropy inequality which is equal to zero will be adopted.

The mass balance equation for the phase a, i.e. equation (3.9), the mass balance for the jth
constituent within phase a, i.e. equation (3.35), and the condition for the diffusion velocities
for constituents, i.e. equation (2.17), will be used. The virtual force adopted is

Â¡ o: D À. (%g¿ teopodiv('.)- ê.)

DI DT
u¿ 'gradl

(11.1)

(11.3)

+tI^'"
a:l,s

/V-1

q:I,s j:l
€aPa

D- (CL)
DI t div (e.y'.u!.) - êL - C. + Ct ¿-

eott+ t
q:I,s

ry t grad(d.ur.)
j:r

where Ào, À1. and If are the so-called Lagrange multipliers.
The terms in (11.1) will be re-written to fit the inequality. Consider the partial differentiation

of the first term of the flrst row of equation (11.1), i.e.

D.(e.p.) _- D.(p-) -^ Do(ro)
Dt - -."-ffi + p.--ffi (11.2)

The equation (2.29) are used for the solid and liquid phase as

t# - r; :u" .gradr;

Setting l: €¿ these equations combines to yield

DÉL Ds€t
(11.4)Pt nt : Pr-Dl * h6x -..") 'grade¿

where the whole expression has been multiplied with p¿. The first term of the flrst row of
equation (11.1) involving the derivative of eo can be written

D ^.p.P-P 
: x,p,D# ¡ s"e"# (11.5)

a:l,s

Combining (11.4) and (11.5) gives

D ^.r-'-P 
: x,n3fi-l Àtpt (r¿ -,r") .grade¿ ¡ x"n"D# (11.6)

a:l,s

Note also that the volume fractions for the two considered phases are related as: e" * et : l,
hence, the material derivatives following the motion of the solid phase must be related as

D"€" D"eL
(11.7)

DI DI

DI Dt
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The expressions (11.6) and (11.7) combines to yield

Do ,.)t
a:l,s

D"et , D"et: P, Dt t P¿ (u¿ - u"J 'grad€¿ - P' ntPo Dt
(1 1.8)

Consider next the term div(vo) in the frrst row of (11.1). This term can be re-written with
the identities

div (v.) : tr (gradvo) : trdo (11.9)

where the velocity gradient do is defined as do :gradvo. That is the sum involving div(v,) in
the first row of (11.1) can, therefore, be written as

p-"\"'o'div(v') : .Ðr^"tt(gradv' 
(t'p'r)) (11'10)

| .l.tt (d. (e.p,r))
a:I,s

The last row in (11.1) can be re-written with the identity

(..{ \ /N \

e.tr I tf lc.ua (d,"t)l : ,*t (f d.graa (''.)rf ) (11.11)\-ã ""'l \ír- "l
-¡ur..Ilgrad(d")

The term \!.div(e.f.ur.) in (tt.t¡ can by usìng partial derivatives be written as

\!.div (e-y'."å) : \!.e.f.div (tå) + 
^!."L'grad(e.d.) 

(11.12)

Further, the frrst term on the right hand side of (11.12) can be replaced by the identity

\!.e.f.div (rå) : Àr.tr (gradui (t"d.I)) (11.13)

I.e.

\!.dív (e.f."å) : À'.tr (graduå (t-d.r)) + \!.u!.' grad' (e-y'.) (11'14)

The identities (11.8), (11.10), (11.11) and (11.14) are used in the virtual force equation (11.1)
to obtain the alternative version
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1\¡ D^'
a:I,s

N-1

D. (p.) * tr (d, (e.p.I)) - ê.
DI

t, (1 1.1 5)

+IÐI'" €aPa
a:l,s j:7

N-t

a:I,s j:I

+ tr (sradui (r.d.t))
D. (ct")

DI

+ D D 
^1" 

(ur. grad (r.d.) - êL - c. + ci.e.)

.à ('",' (ångrad (u")"y) . '¿ rys,'a 1ø.¡)

This equation will be added to the entropy inequality given by (7.59), which is possible since
the expression (11.1) always is identical to zero.

L2. T}ne entropy inequality for the two phase case

Before proceeding with the method of deriving constitutive equations for the studied two phase

system containing l/ number of constituents in each phase, al important assumption will be
made. It will be assumed that the momentum supply terms T¿ and T", i.e. the momentum
supply to the liquid and solid phase, respectively, is related as

f,: -î" (12.1)

It must be carefully noted that this relation do not steam from the derived conditions for the
exchange terms in the mixture. The condition in (12.1) should rather be seen as a super imposed
assumption.

Due to the assumption (12.1) the terms in the entropy inequality (7.59) involving uo, simply,
becomes

I r. .to : (u¿ - u") .î¿ (12.2)
a:I,s

By combining the entropy inequality (7.59) with the virtual force equation (11.15) and also using
the assumption (72.2) and the definition (7.63) one obtain the following condition
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t

-erpt

DoTeaPa\afi (12.3)
a:l

-etpt (#'#.#"#.Þ:l ,,'#)
(ffi*'"at") .{', -'"))

*'Å; (\tpt -)"p") * (,r¿ - u") ' p¿grade¿

- (t¿ - u") .f¿

( a¿," r", o
-e"n" 

\ a" th +;?t#.Þ: i":"o#* **(';o"))

(1t,1tla"¡ + t,

+ | '. D tr ((sraduå) (tL + 
^!.d.r 

- d.ALr+/.ry))

*tre¿d¿

ftre"d"

tr +D drrrl ø ui + \¡p¿

1V

j:r

^r

J:L

ì

t" +Dd$" I u'" + À"p"r

o:l,s j:7

N

+ ! D '', (- (tl + îå) - sraa (er.d.a!ò)
.7-¿;7:t \ \ /

]V

+ D D',. ' ()'.graa (r.d.) + rfsrad (y',))
a:l,s j:\

N N-1

D
a:I,s

Drr,.(at +4)ä-L+ t D^," (-¿'"-e"+cte.¡
j:r

¡¡

a:l,s

grad t ("" + | tf ur. - | 1".t" (u" - äd""?,])T

N

j:r

a--I,s j:!

]V

j:7
R

E:L

>0

-Du'A'+ I À.e.
D. (p-) ê' \

Dt -¿)
a:L,s

]V-1

(,-,-+tÐr'" D" (ct")
DIa:I,s j:7
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This inequality will be re-arrange in order to fit the purpose of validate different constitutive
functions and in order to derive equilibrium and non-equilibrium conditions. By collecting terms
associated with the material derivatives D-(p.) f Dt, D.(Ct") lnt, D.TlDt and D"e¿f Dt and

with the terms tre¿d¿, trerd", (u, - rt"), gradul", ui", êlt, ôto, ê¿ arrd grad(?) in (12.3), one obtain
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DoPo

DI

N-1
^ t

a:l,s

\ _ ^Pot\aea ça

Po

D.CL
DI (r-p.\!, - €.p.ir!.)

a:I,s j:l

a:I,s
-t D-T / ô4.\

eoPa-fr¿ (r" * Af )

(12.4)

+tt

*tre¿d¿ (r, *iol,.lø u/ +,l,p,Il
\¡:'/

*tre"d" 
t" 

. 
åOru'" 

ø ur" t À"p"r-91., - rr)

* ('¿ -.,"¡ . (p,g,u de¿ - e¡p¿tr (ffir'"du") - a,)

*ryi (\tpt - \"p")
]V

+ t '. )ìt' ((sraduå) (tL + 
^Ld"r 

- pl.ALr+d.ry))
q:I,s j:7

.à D.'" (- (tl *fl") - s,"a(ei.d.ai.))
N

/V

a--l,s j:t

¡/

a:I,s j:7
N-1

j:7

+ D Drr. . (.rr,grad (t.d.) + e.Ifgrad (på))

- t Dr'" - (¿L+ a") à-'"

- D ut(^l - 
^:) 

- D æ.(^l - 
^¿)

1V-1

j:r

-eI
/ ¡v-t \

(i, - .r" + | (c3,r!" - ci 
^1) 

+ Ar - A")

jV Ngrad

T D ø + | tf -'" - D d.uL (u" - L d""",]) I 0
q:I,e J:L j:7

This expression is suited for evaluating equilibrium and non-equilibrium results. This will be
the subject for the next sections.
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12.1. General non-equilibrium Results

The special form of the entropy inequality (12.4) must hold under general variations of state
variables. This results in that some properties must be related to each other in a special
way. Here it will be shown how such relations can be developed under the conditions that
the Helmholtz ftee energies of the solid and liquid phase are given by the material functions

A"(T,p,,Ci,,E") and O,(r,pr,Ci,E"). The so-called Lagrange multipliers introduced into

the virtual force equation (11.15) will also be defined by the procedure to be described.
Let the following properties be arbitrary defining a non-equilibrium state

DoT . Dopo. D^Ar
Dt , Dt , 

"-ff, do; gradufi; (12.5)

The part of the inequalíty (12.4) involving the term D.Tf Dtis

^ - sD4,^" (94e+nl>o 
G2.6)lrDoT-- 

k"-5;capa \ôT -,,.)_

That is, íf D.TlDt is arbitrary, according to the general non-equilibrium state defined in (12.5),
the inequality (12.! gives that AA"IAT andqo for the two considered phases must be related,
AS

D'-r-(#.r-):o G27)
q:I,s

The part of the inequality (12.4) involving the term material time derivative of po is

l\n^p-: D'#
a:l,s

(12.8)

In a general non-equilibrium state D*pof Dt is arbitrary, hence the Lagrange multiplier Ào must
be defined, as

\o: u (12.g)
Pa

The term in (2.\ involving D.Cr*lDt is

Ln*cL: t Ð#(r.p.\!.-e.p.ttL)>0 (12.10)
a:I,s j:L

For arbitrary choices of D-Cr.lDú the Lagrange multiplier Àro is given, as

^L: 
ttt (12.11)

The part of the inequality (12.4) including the (symmetric) velocity gradient d¿ for the liquid
phase, is

(,,^, -'"ou) .o

Â¿, : tre¿d¿ +\eí-i ø:ui + À¿p¡
j:r(,

ì
>0 (t2.t2)
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which by aid of (12.9), i.e. À¿ : Hlh, can be expressed in terms of the hydrostatic pressure p¿

instead of the mass density h, i.e.

(12.13)

That is, deflning a non-equilibrium state in which d¿ is arbitrary, gives the definition for the
stress tensor for the liquid phase t¿, as

t¡: -p¿r-\d,-i ø-i 02.14)
j:1

The term in the inequality including the (symmetric) velocity gradient d" is

/¡v\
Äa, : tre¿d¿ It,+D,pí-íøu/ +o,r I ì o

\i:'/

/¡v\
Â¿, : tre"d" lr" *ir,"ul øu{ r \"p"r-9!t! -t; ) ¿ o (12.1b)

\;r€3/
Using (12.9) with o : s, i.e. \": p"lp". The expression (12.15) can be used to define the stress
tensor for the solid t", for arbitrary d", as

lår :,4å¡r - frr:

t": -p"r +?r'"+t; - !4nr" ørr" (12.16)
€s j:l

The term in the inequalíty (12.4) including graduro is

N

^g,,a,{ 
: D'. Dtr ((sraduå) (tL + 

^Ld"r 
- d.ALr+d.ry)) (r2.t7)

a:l,s j:l

For arbitrary choices of gradu," one obtain the definition of the stress tensor for the jth con-
stituent in phase a, t1o, as

tL: d.ALI- i,!*d"I-d"ry (12.18)

where the condition \!.: þr., i.e. (12.7I), is used. Consider the stress tensor for the l/th
constituent which is

t! : pIAIt- p! p.Nt-pyry (12.1e)

By identifiiing the Lagrange multiplier If as the chemical potential tensor p! and also relating
the chemical potential for the jth constituent in a-phase,þL, as relative the l/th constituent,
l.e.

fJ = pJ; ttt l: t"t - p! (12.20)

FYom (12.20) it is concluded that plI:0, which means that the Lagrange multiplier If can
be identified as

(12.21)
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where (12.19) is used.
From the choice of identifying If and þ!.I, as described in (12.20), the defrnition of the

stress tensor for the jth constituent in phase a, uo, can be formulated, as

tL: d-AkI - d. A"!- - py) -d.p! (12.22)

According to (12.22) the chemical potential tensor pro becomes

,,r - Ar-I - 4tt- (12.2s)lLa - 
P"'

which is the chemical potential tensor as defined by Bowen.
Consider next the definition (12.23) multiplied wíth Cr. and summed over all N constituents

in phase o, i.e.

NNNni

Dc'.*t :Dc'.oLt-D3r'" (t2.24)
j:L j:r j:l vo

Using the definition (7.39), i." Ð[, Cr.AL: Ao and. the definition for the stress tensor for
the a-phase, i.e. equation (a.n) in which the terms involving second order diffusion velocities
are neglected, one obtain

1V

f "t 
rt : Aor- *r.: c. (12.26)

j:1

which is the definition of the Gibbs free energy tensor, e.g. see equation (9.2b) .

L2.2. The non-relative chemical potential

Consider the following derived expressions or deflnitions

¡¿N
t,: f tr, -\(64ø4) G2.26)

j:t j:l

tL: d.ALr - i'Ld"r-d"ry (12.27)

t¿: _p¿r_ \,elu!, ø.ut, (12.28)
j:L

N

t" : -p"I* *.:+t: - Iy'"u," ø,t," (12.29)
j=1

râ' :.4ålr - *,J (12.30)" pt:*
which is (4.23), (L2.79), (12.14), (12.16) and (1.2.27) repeated. Consider the elimination of

DI:r\, to and If from the above expression. Combining (12.26) and (12.27) gives
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to D,@"lt",- pt ¿.1-¿.r!)
j:r

(12.31)

(t2.32)

(12.36)

- ! (d"..å ø,'å)
j:7

Further, by combining (12.31) and (12.30), one obtain

to i ( nort - i,Ld.r- d"af I + ?rtr)=\

d ** _ S/^,,
ol 

-, 
fr\,,'+it 

- ¡'ipir pidf t) + nt (12.33)

Using the defi.nition (7.39), i.e. p¿A¡: DË, plrAi, and, dividing the v¡hole expression (12.33)
with p¿, one obtain

ñr / ¡v -\
-frtY : (a, -l¡lcl-o. .'*)r Í2 14)

where (2.13) has been used, i.e. Cl : pl lp,
The corresponding reÌation to (723Q for the solid phase s, is obtained by combining (12.32)

and (12.29), i.e.

p"r + !tt"+ r: : 
Ð(n^ft - 

i,!"d"r- d"Alr + 4tI) (12.35)

Using the definition (7.39), i.e. p"A": Ð[, f"A!", anð, (2.13), i.e. Cr": d"lp", dividing the
whole expression with ps, one obtain the expression

-\(¿-'-ø-2)
j:7

For the liquid phase, equations(12.32) and (12.28) give the expression

-fr,r.I(î0"*,;) þ-- iu",-o'.ä) '
The the left-hand-sides of expressions (12.34) and (12.36) tells us that equations (12.34) and

(12.36) are scalar multipliers of the identity I. \Mith this as a motivation, define the scalar
chemical potentials 

l
¡1,!rI:A!rI-1t1, (12.37)

pi
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and

,,"t =ar"t_.)tt * *(i.: *.:) (12 88)

where the notations ¡,rl and, ¡L,r"has been used instead of. þi anð, pr" to distinguish it from Bowen's
tensorial chemical potential. Multiplying (12.37) and (12.38) with Cr. and summing on j gives

the relation analogous to(12.24) is obtained. For the Ìiquid phase one obtain

N

Dc',ri:\ciait-\9iu
1L

Æ

which by the definitions poAo :
(12.39) can be written as

j:1 :i:7

(2"

(12.3e)

(12.44)

DI:, d-AL, Dl:t øl - po and' Ci. : d.lp., the expression

N1¡y'

Dc{ rl:t,-;Drl 02.40)
i:l ' ' i:l

the following definitions concerning the property t/ will be made

tr, : -f,I; and ltr, : _pJ (12.41)
j:r

which partly, also, can be seen as a consequence of ¡,f, being a scalar property. By combining
(12.40) and (12.4I) it is concluded that

N

Dcip!,:'q,+U G2.42)
j:l Pt

If expression (12.42) for the scalar chemical potential for the liquid phase pf , should be valid
also for the solid phase, the somewhat general relation

N

Ðct rL:'qolry : Go (12'43)
j:L

which is the classical Gibbsian thermodynamical definition, i.e. compare with the tensorial
definition (9.2b), should hold. In this case the definition of the pressure of the constituents in
solid phase f, must take a different form than the cìassical defi.nitions shown in (12.41). To
show this consider (12.38) multiplied with Cf and summed on j, i.e.

NNNnó

D c'" rit :\ c'",+t"t- I îrg *
j:L j:r j=t Ps

\- c,3

f'- o"
n.;)

Using the same definitions used to receive (12.40),i.e. poAo: DË, d.AL,DI:r¿.- poand.

Ct : d.lp., one obtain

N /w \
Dc'"rt"r:o"r-: lDrg -;r,"_ tZl G2.45)
j:r '" 1j:r /
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That is, by ignoring the second order diffusion velocities in the definition (4.23), and defining
the pressure of the constituents in solid phase p", as

-P"I: t" - 9!{" - t3 G2.46)

the classical result (12.43) is valid. Further, due the expression (12.44) and (72.46), it seems

natural to define the partial pressure 1", as

-ú¡: tr" - a4 ( zt, - tt\ (12.47)"" \r" "" "" )
By comparing expressions (12.41) and (12.47) with its corresponding definitions (12.37) and
(12.38) it is directly concluded that

(t2.48)

where C!lf" : 7lp" was used when combining (72.47) and (12.38) for identifying the validity
of Q2.a8) for the solid phase. Not that (12.48) shows consistency with (12.43).

By comparing the two definitions of the scalar chemical potentiaÌs, i.e. (12.37) and (12.38),
with Bowen's tensorial chemical potential one arrive at the following relationships

pltI: p!¿ (12.49)

(12.50)

It is also noted that when the definition iL!-: AA-lACi.,i.e. (9.4), and expression (12.20b) is
combined with (12.49) or (12.50), one obtain

i,Lr=Ô=4:t= pL- p! : Q"!-- p,y)r (12.51)
ACL

where it is noted that the termlf p"(e¡le"tt"+ t!) vanish when (12.50) is combined with (9.a)
and (12.20b).

12.3. Equilibrium Restrictions

Before considering the equilibrium restrictions imposed by the entropy inequality, it is necessary

to re-write the term in entropy inequality associated with u'o, j:7,...,.Òy', in terms of indepen-
dent variables uro, j : I,...,¡f - 1. To do so, consider the terms ìn inequality (12.4) associated
with ur., written as

N N-1

D t. .wi : I rr, . wå + tf . *J 02.62)
j:l j:r

where wro is a vector representing the coefficient of ur. in (I2.4). FYom (2.17), it follows that

N N_l

lCt;"l.: gt D Ct .L: - CJ'åv (12.53)
j:7 j:7

p'-:AL+fÅ; a: sT,

(;':*';)pl"t - pi:*
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where the definition CL: d-l p- is used. Therefore the expression for uf becomes

..N - -F "i..,uo __ 
?="y"

Combining (12.62) and (12.54), yields

(r2.54)

(12.55)
N ¡¡-l

Drå *å : D t'..wr. -
j:L j:r

I'"

CL_d.
c!- pX

1V-1

.wf

j:7

where it is noted that Cr"lC! also can be written as

(12.56)

since C{ : d.lp.. Noting that the Lagrange multiplier Àro according to (12.11) is identified as

\L : irL, the vector w,o representing the coefficient of u'o in (12.4), can be identified as

wt : - (t," *ut") - srad,(e.y'.A!-) + irLet"a(r-d.) G2.57)

_.6.rlgrad (y',)

Using (12.21), i.e. If : AII - t! I pL the sum of w'o can be expressed as

N-l N-1 N-l

D*r, : -D(tr"+îå) -!s'ua(e.d.A!-) (12.58)
j:t r=r' ' j:r

JV-1

+ | i'Lsr"a (r.d.)
j:7
N-1

* I '. (.4YÐ grad (p,)

Parti al differentiatio r of div (e. f.¡.r'. I) gives

IV-1 N-1

! ai" (u-d.itLt) : I ilLsr"a(t.d.) * u.¿graa(i,L) (12.5e)
j:r j:7

j:r
N-1

D
j=L '" (;b.') grað, (d.)
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That is, the term þr.grad(e-d-) in (fZ.Sa), can be written as

N-1 N-1

D lrLet"A (t.d.): ! aiv (t.d"irt l) - ,.4grad (irL) (12.60)
j:L j=7

The equations (12.58) and (12.60) combined gives

lv-1

N-1

¡/-1t
j:1

- D (tl *r'") - ! s'ua (,.d.A!.)
j=r j:7

N-1
wJ.

ry g'ad (y',)

(12.61)

(12.63)

(12.65)

+ ! aiv (r.d"irLt) - t.¿srad(ÞL)
j:7
jV-1

* D ', (/yÐ grad(d")
j:r
N-1

D
j:7

/t
" (.;T

N-l ni
S- trä
,LnN-
j:7 "a

Ilom (2.14) it is concluded that the concentrations CL, j:1,...,N- 1, are related as

1V N_1

Dct : t, D ct":7 - cY (12'62)
j:L j:7

That is, the term CLICY in (12.55) can be written as

1

c! -1

The term DË;t Cr.lCÏw! needed for evaluation of expression (12.55) can be written as

*(ol'Y) g'ua (nJ)

N-1 ,i

_\-Øo

?-- oI

.8fr
]V-l ;

-ç'øt
,"- of

(ty * uY) - Ekr,"o(,.oIA!) 
(12.64)

e" (alr)g'ra (nJ)

where p] : 0 is used which is a consequence of equation (12.20).
The term 4lp{grad(r.p! A!) in (12.6\ can be re-written with the identity

frs,ua 
(u.p! t!) : fr".(/yr) grud (nJ) -t f*srad (r.AI)
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F\rrther, by using py : d.CY lCr.,i.e. equation (12.56), the last term on the right-hand side in
(12.64) can be written as

-fr'-(å"t) g'ua(rr) : -W (#.1,) "*(#) (1266)

-W'-(¡b.') ""^(h)
Combining (12.65) and (12.64), yields

E&-r : ä & er*uå') - î d-r'^o("-A!) (12.67)

(12.6e)

(t2.70)

:ì #"#r'ua(nå')
where Cr-lC! : d.lp! is used. Note also that the following identity holds

N-1 1V-1 1V-1

j:r

j:rj:7
1V-1

j:r

^r-1

\ e.Algr"d (d") + | d.sr"d (e.A!) : t aiv (e.d.AYr) (12.68)
j:r j:7

By combining (12.61) and (12.67), yields

ï*r Þ, #*r
N-1 1V-l

- D (tl *r'") - D e'ua (r.d.AL)

+ ! ai" (t.d.itl.t) - e.¿.srad(ilr.)

+ ! '. (AyÐ grad(d.)
J:|
,¿V-1

- t'" (rb,}) grað'(d')
j:7

. i #(ry * ai) + î n*uo (,.A!)
:i=t " a i:l

.Þ:: 
&,.H,,u¿(på,)

Consider the terms involving tf in 1|Z.OO) denoted w'orr, as

Þ,'*- 
: 

Þl &'-#,,'ua (på') :ì'" (;b-*) g'ud (y'-)
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That is, expression (12.70) can be written

(r2.71)

Using pf : C! d"lCt", i.e. equation (12.56), the expression (12.7I) can be brought to the form

E*r, 
: ('"#) Effi"* (på') - **¿ (/.))

Þ- 
*t, : ('"#) E ffi"" (#)- *,"a (d)) (r2.72)

frr,^o (*cl (c;f'): ¿þs,ua 
(d.c!) - ::'-f^Ïrrgrad (c{) (t2.Tz)

cy lct")

i.e.

ftr,uo(e"c: 
(cLf'): 

¿þs,ua 
(d-c!) - frs,,a(cL) 02.74)

By differentiation of the first term on the right hand side of (12.74), one obtains

ftr,^o(e"c! (cLY') : g.ud(y',) +frs'"a(c!) (12.75)

-ftc,^a (cL)

Combining (L2.76) and (12.72), gives

N-l N-L /

Þ, 
*r,* : (e,tf) 

Ð (,ærgrad (cf) - zþ**o (cå)) G276)

where (12.56), i.". d.: CLp! lC! is used. Note, also, that the identity

ffir,^o(c!) -¿þ**o (cL):-grad (#) G2.77)

holds, i.e. the expression (12.76) can be written

Þ:' 
*,r: (e.rr)Þ= (-"". (#)) í278)

Differentiation of the first term on the right hand side of (72.72), gives
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Using (12.78), valid for the terms associated with terms involving tf in (12.69), one obtain

N N_1

D'r. .wL: I'r,' (-s'ua (e.d.AL) - (t," *uå))
j:L j:r

(r2.7e)

+ D'å .aiv (e.d.AYr)
N-L

j:r
N-1

:i:L

N-1

j:r

+ D rå . (div (e.f.þt t) - e.d.sr"a (itt ))

.Þ:: -L &(trnuv)

- I r'. .eotlgrad CL

cy

where also the identity (12.68) is used.
Consider next the momentum balance equation for the jth constituent in o-phase.

, Dt- ("t"\,,d*"-l-: ¿iv (e,tå) + e,d*eL+it" + ¡L (12.80)

At the equilibrium situation considered the acceleration Dr.vr"lDú is zero and that the gravity
is, further assumed to be small, i.e. e.f-g!-:0. That is at equilibrium the following condition
is assumed valid

- (tl *uL) :div (e,t,,) (12.81)

The two last rows in(12.79) will be denoted w'iru and is given as

d.ry : # (rf* uå') - eorfgrad ffi) G2.82)

ar: -&o*(,,tY) - eotlgrad (#)
where (12.72) has been used with j : ¡¿. The expression (12.82) can be re-written be the
identity

ar 
gr 

"d 
( %\: -div (,^tY *ú\ (12.88)-ftaiv (t"tÏ) - t'tJL- 
\0å" / \-'"" p! )

wherc p!1y'.:CY lCt is used. hence the expression for ![, :uj-.*L becomes using (12.79),
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(12.81), (12.82) and (12.83)

1V

I'å .*L : I 'å 
. (-aiv (e"f^A!.I) a ai" (e.tå)) (t2.84)

j:r
N-1

¡r'- 1

j:1

+ D'å . (div (€"d.ttLI) - r.d.e'.d (på))
j:r

Ðu,. 
div (,*f fr)

The equilibrium condition for w[ can be evaluated from this expression since the diffusion
velocities !L, i :1,..., N - 1 are independent variables.

The equilibrium condition to be studied is defined when the following properties vanish

D"€t
fi; (u, - u")i uL; ê!t; êt; do; grad? (12.85)

For the uL, i:1,...,N- l independent variables in (12.84) it is concluded that

dive.f. (oo"r- (A!. - Ay)* (h-#)) : ,.n ,ud (i,!.) (12.86)

is a equilibrium result when u,. vanish in the inequalify (I2.4).
The term involving D"e¡f Dt in the inequality (12.4) is

^ D"€tlvu,:"Ë(\pt- À"p") ) o (12.87)

If D"etf Dt vanish at equilibrium, the following relation must hold

tPt : \"P"

Using further the non-equilibrium result Ào :po/ po, i.e. (12.9), gives the condition

(12.88)

(12.8e)

The terms associated with (u¿ - u") in the inequality (12.9) is

+ I'å -aiv (e-d.Aïr)
j:L
1V-1

Âr,-',:(u¿-u")

At equilibriu- (r¿ - u") must vanish, so that

t¿ : p¿grad e¿ - e¿p¡tr

(o,s,ua,, - €rpfir (ffi*'"at,) - *,) - o (12 e0)

PI:PS

gradE"
ôAt
AF^

(12.e1)
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holds.
The terms associated with ê/ in the inequality (12.4) is

Lui: èi (^l - 
^:) 

- o O2.s2)

Noting that À', : pr, holds at a non-equilibrium condition, e.g. see equation (12.11), and that
ê/ vanish at equilibrium. The expression (12.92) gives the condition

(12.e3)

at equilibrium
The term DË-rt ôL (^i - .lr")ana 

^L 
: tL Lhe êr. vanish

The terms in the inequality (12.9) associated with ôr. is

I\¿,_:A(^l-r:) > o G2.s4)

which gives an identical condition as illustrated in (12.93), ¡.". iti: pr". Since the chemical
reactions ôr. only is connected to reactions within the two considered phases and not between
phases, the expression (12.94) will be separated into two terms, as

¡/-1 N-1 ¡r'-1
¡,1, +^3¿ :LuL(^l-^:) :Duí^í - f æ",r1 >o (12'e5)

c-n 
j:l j __t j: I

which with 
^l 

: itl and Àr" : pr" gives the conditions

N-1 N-1
Y 4 r'i >o; and )- A¿i > o (12.e6)

'/Jþ'Þ-
F-t j:r

for the two different phases. Making the assumption that only reaction involving two constituent
in phase a can occur at a time level. Let p,!. and pL be the chemical potentials for the two
reacting constituents in a-phase, where z I j . I" such a case the relation between êro and ô'o ís:

ôL: -ô'o. That is, when making the above restrictions (12.96) can be expressed as

a (øl - tui) > o; and c" (P'!" - i'Z) > o (t2.s7)

The expression (12.97) gives the condition

(12.e8)

at equilibrium, i.e. when { and ôr" vanish. If considering reactions which involves more than
two constituents within the phase, the conditions in (12.98) are noted not to be valid.

Consider next the condition in the inequality (72.4) in the case when ê¿ vanish, i.e.

N-1
ttu,:pì,-p-2 +\ ('løl-cii"i)-t At-1" ) 0 (12'ee)

J_L

pí:ø"

it!" : ir!"and-; -;pí : lLí
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where Ào : po/po, 
^!, 

: itl and Àl : //" are used.
The following defi.nitions will be used

fJ : Af r - 4r#, þr-: Ar.r - Itt- (12.100)q a pt: *' ' u pL

and
p!:-t!; ptl: t"L- p! (12.101)

which is (12.27),(12.23), (12.20a) and (12.20b), repeated. The third term in (12.99) can by
(12.101b) be re-written as

¡/-1 ¡¡-1 N-l N-1

D cí pi, : D ci (ri - ,f): t cl pi - Ð c{ *y (t2102)
i--I i:I i:r i:l

N¡¡: Dq *i - c{o pl -Dcí ry + clo pl
j:r j:r

Using the relation ÐI:rCí: 1, i.e. equation (2.I4), the expression (12.102) becomes

jV_1 N

D, cí pit :Ðq ,i - ,Y (12.103)
j:7 j:r

That is, when ê¿ vanish the expression (12.99) gives

U+At
Pt

I Cl p!, +ril : (t
:i:r

P-2 + A"
P"

r- t Cr"p.t"+ p! (12.104)
N

j:r
at equilibrium, where (12.99) and (12.104) are used.

A more physical intuitive interpretation of (12.91) can be obtained by considering the mo-
mentum equation for the a-phase, which is given by (4.24), i.e.

D. (v")
"*p."-fiv 

: div (e,t") i eopogo¡i, (12.105)

At equilibrium Dovof Dt: 0, hence

t¿ : -div (e¿t¡) - e¡p¡g¿ (12.106)

is the equilibrium version for the liquid phase momentum equation. Combining (12.91) and
(12.106) gives

div (e¿t¿) - €tprsr - p¡grade¡ - etpfit (ffi"*u") G2.107)

The definition of the stress tensor for the liquid phase, i.e. t¿ : _p¿I- DË, druí øu/, given

from equation (4.23) and (12.74), is at equilibrium given as: t¿ : -p¿I, which means that
(12.107) can be expressed as

div (e¿p¿I) - erptgt - p¿grade¿ - e¿p¡tr (12.108)gradE"ôAt
ôF*
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Noting, also, that the following identity holds

div (e¿p¿I) : et1tadpt I p¡grade¿

That is, by combining (12.108) and (12.109) one obtain

(12.10e)

(12.113)

(12.110)

which is an alternative version of (12.91).
The condition for the terms involving the property grad? is

^grad-/NN\Âgra<rr : - ã:t D I n" + ltf 'r" -f e"-'"(u, - L¿."';)l >o (r2.r11)- I 
"="\ 7t j:1 /

The properties grad? and ur" vanish at equilibrium, therefore (12.111) gives that

q¿ + q" :0 (12.112)

is an condition defined by (12.85) and (12.4).

L2.4, Cornparison with classical equilibrium results

Consider again the equilibrium result (12.110), i.e.

sradp¿ - ptst: -,0," (Htruao")

$ad¡1 - ,,gr: -p¡tr

: e.d.srad (iL!-) (12.115)

gradE"
ôAt
ôF* )

which shows that the fluid in consideration is in contrast with the classical equilibrium result,
i.e.: gradp¿ : ptgt. A normal fluid satisfying gradp¿ : ptgt is called a bulk fluid and the fluid
described by the equilibrium condition (12.113) can be referred to as a vincial fluid.

Consider, next, a combination of the equations (12.18), i.e.

tL: d.A!-I - it!.d.I-d.ry 02.114)

and (12.86), i.e.

dive.f. (rt"r- (u.- AÐr+ (h ty
-py

which yields

díve.y'o(o*t - "y - #) 
: r.d.s,ud(i,!.) (12.116)

Using the definition IJ : AfI- t! lp!,i.e. (I2.2I), the equìlibrium condition (12.116) reduces
to 

grud (i,L) : aiu (t"i. - t"y)- grad ArL - t"!) : o (t2-tr7)
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where (12.20b) and (12.51) are used. This resembles the classical Gibbsian result stating that at
equilibrium, the chemical potential is constant, but it is expressed only in terms of the relative
chemical potential.

Consider now the non-relative definitions of the chemical potentials corresponding to the
relative chemical potentials in (12.93) and (12.117). The derived expressions (L2.25), (72.14),

(12.16), (12.104) and (12.93) will be used, which are given as

N

t't rt : Aor- lt. : G' (12'118)
j:r Po

t¡: _p¡r-lol:u!, ø-t, (12.119)
j:7

t": -p"r+ 3*i + t; - !y'",r'" ø 
'r'"Çs j:l

(12.r20)

(12.t2r)

-i(f:,','l*'r) + t'{ :å (*" +t: - þn-r*'*) 
*'v

u+A, r-tclpl+u,f: b+A" I-tcr,ttr"+p!
Pt P" :i:7

/V

j:7

ití : it!" (12.122)

where it should be noted that (12J,21) and (L2.L22) are equilibrium results.
For the liquid phase combine (12.118) and (12.119) in order to eliminate the stress tensor t¿,

i.e.
N/N\

Ðci ,l : ALr t * (r,, +\ oi-í * 'í ) G2 t23)
i=l "\ i=I /

Eliminating stress tensor t, in solid phase combine (12.118) and (12.120) to obtain

N/¡¡\

>,"lrt": A"r+ + f 
p"r- ?{"-t: + i¿","s4 I G2.r24)

i:1 P"\ es- 7= /

Combining (12.t23) and (72.124) with the equilibrium condition (12.121), gives

(r2.r25)

Note, further, that at equilibrium the diffusion velocities u/ and u{ vanish, and that itLI: t"t -
pY, i.e. (12.101b) together with (12.122), gives

itll: pl - pT : ir!"I: t"t" - p! (12.126)
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That is, t"l. - t"t": pf - pfl. Hence, by (I2.I25) and(72.126) it is concluded that

py -ry:*( Ett

-t: + t:
cs

(t2.t27)

(L2.t2e)

(12.130)

The equivalent expression for the scalar chemical potential can be obtained by considering

ttll: plL G2.128)

p!"I - t"l":

i.e. (L2.49) and (12.50), combined with (12.727), to obtain

1

P"
(*', *.;)

t"!t : tt!"

which is the classical Gibbsian result stating that the chemical potentials of a single species in
two phases are equal at equilibrium. It is, however, concluded from (tZ.tZ7) that the tensorial
potential does not recover the classical result when the solid phase is stressed.

The absolute form of (12.777) can be derived by considering the constitutive function for

Á¿, which is ,4r (r, pL,Cl ,E"), ,"" (9.1). The gradient of At (r, pt,Ci ,e") is by the chain rule,

glve a,S

grad,A¿ : ffis,uar+ffis,udn,+Ï ffis,^aci (12.181)

l:I

/ôA, \
+tr (ffisradu" )

where the third term on the right-hand side of (12.131) only is summed orl i - 1, ..., ¡f - 1,

due to the summation from 1 to -ò/ not is independent since DI:tCí: 1. Considering, further
(12.51) with j : l'l, i.e.

i,!r= ffir= tLY - p! : (p! - pY)r: o (r2.ru2)

which justifles that (12.131) can be written as

grad.A¿ : ffisruar+ffisruao,.Ë p,!,gradCf (12.133)

/ôA, \
+t' (ffis'adu" )

Observing that the relative chemical potential p/ and the.pressure in the liquid phase pt are

given by the deflnitions (9.2a) and (9.4), i.e. plt: ôAtlõC?t, andp¡: plaA¡lôp¿. Recall, also,
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that under the equilibrium conditions studied the property grad?, in (12.133), vanish. Hence,

at equilibrium (12.133) can be written as

N

sradA¿ : \gradp¡+ | øf srad Ci + t,pt Et
Note also that (12.43) with o : 1, i.e.

/,:Sclui-Uttt _ 
.l
i=L 

L'L 
Pt

can be used to obtain an expression for the gradient ofA¿, as

srad.A¡- -grad (Ð .å*,"0 ("irl)
j:1

(ffi"*'") (12.134)

(12.135)

(12.136)

By using the identities

-o,^¡ l&l : )gradp,- lgrudrr (12.132)
''-"\p,)- pio---'tL pf

and
NjV¡¡

Is.u¿ (ciri) :\cluaapi +D¡t!,gradcf (12.138)

:j:L j:r i:r
the term gradA¡ in (12.136) takes the for

gradA¿ : 
ftsrudnL 

- lgradnt (12.139)

N]V
+\Cf gradp, + plt\uad7l

j:r j:r

Combining (12.L34) and (12.139) one obtain

t, (ffis,u,an") : -lg,udnt+fcig,uapi (12.140)

J-r

Using, further, the equilibrium condition (12.110), i.e. gradp¿ - ptgt: -p¿tr(ÔA¿/ôE"gradE")

fcis,uapi: r. (#r.udn") t lg,adp¿: g, (12.14r)

which is the Gibbs-Duhem relation for the liquid phase. In order to obtain a sharper result
for (l2.ll7) consider the scalar version of (72.777) multiplied with Cl and summed over all
constituents, i.e. 

N n,

lclgraa(pl):lc/graa (ui - ui):o G2.t42)
j:r j:l
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Le.

\ClgraaL'í :ÐClgradp{ : g.ad¡rfl (r2.t43)
j:r j

By combining (I2.7a3) and (12.141), one obtain

gradPfl : g' (12.r44)

Using this expression with (12.117), i.e. grad(Uî - Uf):0, gives

s.ua (øí) : s,

F\rrther, by using pl: p2, i.e. (12.130), and (72.1.45) results in

t'"a (øí) : grad A'!") : e

where the body force g is identified as the gravity which is assumed to be the same for all
constituents and phases, i.e. Bå : Ba : g. The equilibrium condition in (72.746) is a sharper
result than (I2.ll7) and shows consistency with the classic Gibbsian result stating that in
absence of gravity the scalar chemical potential is constant at equilibrium. By combining the
condition (12.146) with the relation between scalar and tensorial chemical potentials for the
liquid phase: ¡1,!,I : plt , i.e. equation (12.49), and with the corresponding condition for the solid

phase: p|I- ttr":|1p"(tL"e¡f e" *t!), i.e. equation (12.50), one obtains

div¡í,: C (12.147)

div¡,'":g-div (å (*., .rr)) (12 148)

The condition (12.146) confirms that in absence of gravity the tensorial chemical potential for
the solid phase, as defined by (12.23), is not constant at equilibrium.

12.5. Near-equilibrium theory

To derive near-equilibrium results, the coefficients of the variables listed in (12.85) in entropy
inequality (12.4), are linearized about the variables

D"€r
ff; (u, - u")i :uL; ê!t; êt; d.; grad? (12.1,49)

since they vanish at equilibrium. The approach of linearizing only about the one variable
which gives a positive quadratic form in the entropy inequality. Consìder z which is one of the
variables which vanish at equilibrium and the function / is the coefficient of z within the entropy
inequality. The linearization procedure is then given by

fn"q=f"q|Cz (12.150)

(t2.t45)

(12.146)
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which is an approximation for the near equilibrium value of /, where C is the linearization
constant.

Consider, frrst, the condition when ê¿ vanish at equilibrium, i.e.

,pr: ps (12.151)

The near-equilibrium result, hence becomes

Pt - P": f-O#

where (12.149) is used with f.n : pt - ps, z : D"e¿f Dt and C : þ*
When (r¿ - r") vanish at equilibrium) one obtain (12.91), i.e.

(72.r52)

î¡: p¿grad.€¡ - e¿p¿tr (ffi""at") (12'153)

The near-equilibrium result is obtaìned by identifying z and C as z: (t¿ - u") and C : Rt,
l.e.

p¡grad,¡ - e¿p¡tr (ffir'.at") - a, : ft¿ (u¿ - u") (t2.r54)

The linearized version of the equilibrium condition it!, : it!", i.e. equation (12.93), becomes

Fi-ltt":KtêL; i:1,...,1ü-1 (12.155)

where Kr is the linearization constant.
When ô,o vanish at equilibrium, the conditions tt!, : it', and' ¡'r'!" : þ'" was obtained, see

equations (12.98a) and (12.98b), hence the linearization process gives

Iti - Iti : wl ¿!L; and irl" - ir'" : w! c" (12.156)

wherc Wf and W! are the linearization constants for the reaction between two constituents in
the liquid phase and the solid phase, respectively. Note also that j I i'.

In the above near-equilibrium results the term f "q 
ís zeto. This it not the case for the coeffi-

cients for ur. which includes an equilibrium condition. For this case it is, therefore, necessary to
do some further manipulations. Consider the property *L which is the terms associated with
ur. in the entropy inequality (12.4), i.e.

¡¡-1

D *,, : - (tl *ut") - srad,(e.y'.AL) + ir!-er"a(r.d-) 02:57)
j:1

+e,rfgrad (y',)

where second order terms of the difiusion velocities are ignored and where (12.11) has been used,

i.e. À', : !r.. Using the definition of If , i.e. equation (12.20a),and adding DËr tå (¿.¡t!grade.)
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which is zeroby the constraint (2.I7), one obtain

d.. (p,".grad (r"d") - pf grad (t.of) - grad (r-d.aL)) (12.158)

*'å (- (tr" * tt ) + e.p.N srad (d.) + y'.¡1,! srade.)

where the summation is from j : 1,...,N. Note that the identity

p"lgrad(r.p!): eoplsrad(d") + f.p.lsrade- (12.159)

holds, i.e. (12.158) is reduced to

N

D*', 'uL: ú.' (p}-graa (e.d.) - grad (t.d.AL) - (t'" *u,")) (12.160)

.t-L

Consider, further, the momentum balance equation for the a-phase, i.e. equation (4.9), and
assuming ihat the inertial terms is negligeable near equilibrium, i.e. (4.9) reduces to the form

- (tl *rL):div(e,tr") +r.d.e!. (12.161)

By combining (12.160) and (12.161) the result rs

IV

D *'" ' uL : uj. ' (¡t}.grad' (r.d") - grad (r.d.AL) + div (e.tr") + ,"d.eL) G2.162)
j:L

Hence, according to the linearization procedure illustrated in (12.150), one obtain

(pLerua (r.d.) - grad (r"d"AL) + div (e.t'") + ,.d.e!.) *"n (12.163)

: (p'-erua (t"d") - grad (t.d*al-) + div (e,tr,) + ,.d.eL) .o f Rr,u',

where z: uå and the linearization constant is given by Rå: uå, where the matrix Rlo, must
be positive defrnite.

The expression (12.163) can be rearranged further. Note that the chemical potential tensor

¡.1,, is defined as

pL : Ar.r - Itt" (t2.t64)
Pq

which is (12.23) repeated. By multiplying the defrnition (12.164) by e.d. and taking the diver-
gence of the whole expression one obtain

div (e.f.A!.I) : dil (t.d"pL) + div (e.tr.) (12.165)

The flrst term on the right-hand side of (12.165) can be re-written by the identity

div (e.f.¡í-) : t.d.diu (pL) + ¡ligracl. (t.d.) (12.166)

¡¡

I*å ,rå :
;-1
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Combining (12.165) and (12.166) gives

p,israd, (t,d.) - grad (e"d"Ak) + div (e.tr") : -r.údi" (p!.) (12.167)

where it is noted that div(e-f-Ar,I) :grad( e.pLAL). The terms of the left-hand side of (12.167)
is identical with the terms in the near-equilibrium equation (12.163), i.e. combining (12.163)
and (12.167) gives the result

(-e.f.div A"t ) + r.d.g!.) -"n: Çe.y'.di" (uL) + r,d-s!.).n + R'.u', (12.168)

By considering the equilibrium result (12.147), for the liquid phase, i.e.

ar"(rí) :s (12'16e)

it is noted that the flrst term on the right-hand side of (12.168), with a: l, vanish. That is, by
combining (12.168) and the equilibrium condition (12.169) and using gL: go: g, one obtain

(-r,clai" (*i) + etorte) 
^.r:Ft,|u't 

G2.t70)

which is a generalized version of the classical Fick's law. The generalized Fick's law will in this
case be written as

R/u/ : -erprr (div (rl) - -) G2.171,)

The equilibrium condition corresponding to (12.169), for the solid phase, is given by

(12.t72)

which is equation (I2.I48) repeated. Combining (L2.172) with (12.168) using gL: go: g and
setting o: s, gives

aiv (ø,") : g-div (* (-t. i.:))

" (å (" * i'r))) .'(-e"y'"div (pt") + ,"d"g) n"n -, "d"

+R'"u'"

(-e"y'"div A"!") + t"d"g) n.n 
: e 

"d"dív ("n**

-dio
b "d"g

(t2.173)
eq

re
1

))//eq
+ Riur" (1.2.174)

P"

Therefore, the near equilibrium theory gives that the diffusion velocity for the jth constituents
in solid phase is

R"ur": -e"f"(divA"t")-g) -e"y'"div (!(t: ' t'*'\\ 'r2.tl5)6) csPsurv 
\p" \"" 

, 
e""" ) ) 

,

which, also, is a generalized version of the classical Fick's law valid for diflusion of constituents
in a stressed solid.
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Next ühe interest will be turned to the derivation of a modifled expression of the Darcy's
Iaw. Consider the equilibrium condition (12.110) with g/ - g, - g, i.e.

-EractpL - 0," (Hs,udo") t pts:O ( t2'776)

which is an alternative version of (12.91). The equilibrium expression (12.91) is associated the
variable (n¿ - u") which vanish at equilibrium, see also the entropy inequality (12.4). Hence, by
Iinearizing (12.176), according to (12.150) with C: (u¿ - u"), one obtain

Ã¿ (t¡ - u") : -gradpt - pttt gradE"
ôAt
ôE"

lpß (12.177)

In addition to the pressure gradient this generalized form of the Darcy's law includes a term
accounting for flow of liquid in the solid pore structure induced by strains in the solid phase,

the magnitude of this flow is, of course, given by the constitutive function for A¡(7, p¡,Ct¡,8").
Finally, the Fourier's law will be examined. Consider the equilibrium condition (12.112), i.e.

q¿+qs:O (12'178)

The terms associated with this condibion in the entropy inequality (12.a) is grad?, hence the
linearization according to (12.150) becomes

9¿ * 9" : Àgrad? (12.179)

which is the classical Fourier's law, in which the constant À must be positive definite.

13. Internal variables

Internal variables are frequently used in different applications, such as in plasticit¡ creep and

thermo-elastic models. The internal variables denoted H¡", k : l, ...2, wlnerc Z is the number of
introduced variables, are introduced in the constitutive function for the Helmholtz free energy

for the solid and liquid phase, as

A" (7, p",Ct",ø", Hn) ; At (r,or,C! ,n", n*) (13.1)

With reference to the material time derivatives of ,4." in equation (9.20), and At in (9.19), one

must add the following Z terms

"4:#o-!^ * . (13.2)Dt ôHn Dt

and
(13.3)

F\rrther, it is noted that the Helmholtz free energy for the two considered phases are included
in the entropy inequality as, for example, presented in (7.59). The terms that must be added

DLA: ôA¡ D¿H¡" 
,

Dt-THrDt-
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in the inequality, due to the inclusion of fI¿ in the constitutive functions for the Helmholtz ftee
energy for the solid and liquid phase, are

^
(13.4)

That is, the nature of these terms must be examined and arranged so as they satisfy the above

condition.

14. Different versions of the energy equation

In the method of using the Helmholtz free energy as a constitutive function it can be an advantage
to re-write the energy equation in terms of the chemical potential tensor and the Helmholtz free

energy or with the Gibb's energy tensor and the Helmholtz free energy, instead of usìng the
internal energy as used before. Consider the energy equation for the jth constituent in phase

a, i.e.
'Dj(njl -',.d""3# : tr (e'tTjd") - div (t"qå) -f e-f.rr. + QL + nt (14'1)

which is (6.16) repeated. The energy equation for the inner part of the internal energy of the o
phase is according to equation (6.47) given as

-- ô,4¿ DtHn
\ 

--!

4au*Dt '

o:¿, s

e.tr )ì (t,"IaE) - div (e.k,)

>0

€aPq
D.(Er.)

DI
(1.4.2)

(14.3)

(14.4)

j:r

lTr- + îL)- D'"
j:7

-DG"f GL + ¿. - c'.ê.))
j:7

where it is noted that ko is defined as in equation (6.23), i.e.

Poro I Qo

ko I (o'" + d.EbrL)
J:L

t. + ltriur.j:r

q.-Ðd.(-t'J t¿+ |uft)4
j:1

The defined relation (7.37) between Aro, EL, T and r7', is

A!': E' -fnL
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Combining (14.3) and (14.4) gives

ko D (o'" + /"nr¡í.) (14.5)
j:r
NNN

: Doå +Ð d"ALrL +\ d.rnLuL
i:r i:7 i:7

The entropy flux hr. for the jth constituent in phase a is defined in (7.23), i.e'

ht : qL+ y'-nr.Tu1. (14.6)

The entropy flux ho for the phase a is the sum of the equation (14.6) written as

NN
h,:tqå+td,n'.ruL G4:)

j=7 j=7

The Gibb's energy for the a phase is given by the definition (9.2b)' i'e.

Go: AoI - pãrt- (14.8)

By using (14.4) and (6.19b) the inner part of the Helmholtz ftee energy can be related to the

inner part of the internal energy density Ero, ffi

(14.e)
-N

Ato: t t d-AL: Ew -Tqo
Po --J-r

The material time derivative of (1a.9) is

D.(Et.) :D.(Ato) -rDo(rt) -_ D.(T)
Dt _ Dt -'- Dt - ,to--Dt--

The term div(e.k.) can accordingl'o (14.4) be expressed as

¡/
div (e.k.) : div | (t.qå)

J:L
¡/IV

+div ! (e.d.ALuL) + div | (e. d.rn';uL)
j=7

The term r. DË, 4LDL (AL) f Dt can using the relation

(14.10)

(14.11)

(14.12)€ePo
D.(1.)

DI

j:7

DL(IL)
DIe.do - div (e.d.lbl.)

+Drr. (êL+ c.- cLê.)

¡/t
J-

N

j:7
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that is, equation (4.1S) with lo: AL, be written

,.o.ry+fai" (e.f.A!;tr.) : ,.inoJp
j:l j:r

+ALGL+ î!.- CLê.)

Hence, by combining (I4,2), (14.10) and (14.11) one obtain the energy equation

D. (At.)
DI

D. (n.)
Dt - €oPoTa

D"(T)
DI

Do

(14.13)

(14.r4)

(14.15)

€aPq -eoPoT

j:r
N

J:L

leoporo ! Qo
/V

j:7
¡/

- D'r. (fr" * ur")

j:r
1V

j:r

- €oPo\o

j:r

*e.rr )ì (t#då) - div | (e.aå)

- div \ e - f.ALuL - div I e. f.T r¡r.ur.

-DG"f @g+ u.- cLê.))
j:r

Using, further (14.11) in (14.14) the following result is yielded

N- 
, ot* (l¡)t'\e"--:; : -A!. (ê!. + d. - cLê')

j:r

-eoPoT
/V

j:r

i:1
Ieoporo ¡ Qo

JV

N

j:r

D. (n.)
DI Dt

re.rr)ì (trJdå) - drvf ('.øå)

-div ! e-¿frli.ui.

-f.'å (r*+t'"\\./j:7

-D(ä"': (êL+c.-cLê.))
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It is noted that hr. : qL+ d.rtLTuL by definition (14.6), therefore one can conclude that the
terms including the divergence operator in (14.15) can be expressed solely in terms of the entropy
flnx hr'' as 

-di"Ë þ.tL)- o*Ë e.y'.Tqi.u!.: di"Ë þ.h,-) (14.16)
j:t j:1 j:I

The proper equation for calculating the temperature 7 in the energy equation, therefore, be-

comes

D.(T\
eapaTa-j¿- -AL (êL + C- - Ct ê")

- ^-D'(rt.) -- S rDL(AL)-€apat Dt - ea 

kga Ln

N¡/

*e,tr )ì (tJ at") - div | (r.h'.)
i=7 i:r

lleoporo ¡ Qo

- D'å F'"*r'")
N

-DG",: (et + e.- Ct-ê.))
j:r

which is (14.15) and (14.16) combined.
Next, the energy equation expressed in terms of the chemical potential tensor will be derived

Consider the partial derivatives of DL (d.Ak) lOt, i.e.

nt-(e.d.AL) _ (14.18)
Dt

o nL (lL) n¡ DL (r"d,)
.^l:ÇaYa 

Dt 
I tLe 

Dt,

The mass balance for the for the jth constituent in phase a is given by (3.39), i.e.

DL (:"d.) : ê,. + do _ e.f.divvr_
DI

Combining (14.18) and (14.19) gives

Ot (e.oLAL) _ ,.d^o--P + AL(êL+ c.- e.y'.divvr.) (14.20)

(14.r7)

(14.1e)

DI
The last term on the right-hand side of the above expression can be re-written by the identity

e.A!.y'.divvj.: e.d.ALtr (gradvå) : e"d.ALtr (d!-) (14'21)

where it is recalled that d,. :gradv,.. Hence (14.21) can be written as

DL(,.d.AL) (t4.22)
DI ^ 

Dt- (A!_): ,"d."-uË- + AL (è!. + ô*)

-e"y',A!^tr (dt*)
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Recall that the deflnition of the chemical potential tensor p,r. f.or the jth constituent in a phase

is given by (12.23), i.e.

(14.23)

This means that the term eoy'oAiotr(dr")in (14.22) by the condition

e*y'.A!.I: e,d.pL I eotlo G4.24)

can be expressed in terms of p)- and tr.. The condition (L4.24) and equation (1,4.22), gives

Dr" (e"f.At ) _ (t4.25)
Dt ^d.o# + dt (et ¡ u-)

-e.d.t (p!.¿L) - eotr (tt at )

By eliminating the sum of the j:1,..,N number of terms €.ii.Di.(AL) lDt in (14.17) using
(14.25) one obtain

ALTttL - 1r'"
la

N 1VD*(T)
eopoTo-fl1- -'* )ìt' (d"pLaL) +DALC,.ê. (t4.26)

J:L

^D. (n -)- €opat Dt
(e.d.AL)

:1

DL

j
Ntj:r Dt

-div! (e"hL)
N

j:t

*eoporo J Qo
]V

- I rr" (¡'" * rt")
j:r

1V

-DG"* GL + c" - c'.ê"))
j:7

which is the energy equation expressed with the chemical potential tensor p'o

15. Electric charge balance

In some cases one is forced to add variables to the normally introduced state variables used in
continuum mechanical theories. An important case is phenomenon where electro-magnetic fields
are of importance.

Consider the electric displacement vector j and the charge density r which must be balanced
AS

rî
0: - d ;. ds* | rd,u (15.1)Jan" Jn
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which is the postulate for the charge balance for a mixture of charged constituents. Using the
divergence theorem on the first term on right-hand side of (15.1), i.e.

f f .. . ,

fuoi 
o": Jodividu (15.2)

the local form of charge balance can be written as

-divj :¡ (15.3)

This expression will be used when considering diffusion and sorption of charged constituents in
a porous medium.

16. Selected one dimensional examples

Assume incompressibility for the solid phase, i.e. D"p"f Dt :0.
The deformed volume dV* can be related to the reference volume dV ín the reference con-

figuration X by considering the triple product of the side vectors ôxf ðX¡", as

dv* : (# #"fà)*:a"t(ffi)av (161)

: det(GRADx)aV: det(F) cIV: JFLV

where .IF : det (F) is the so-called Jacobian. Hence, the volume fraction in deformed state el
and in reference configuration €s can be related as

J"F
(16.2)

The derivative ðe"f ôP", where J"F : P", will be needed v¡hich with e" : eIP" 1/', b""o*",

ôe"

a Q!)' #: -|e!n;srz : -l,r(v"')-' (16.3)

(16.6)

The relation (12.50) is

(16.4)

In order to compare pr" and ¡ll" at equilibrium, consider the following definition of scalar difference
of potentials

(16.5)

rf"r: pr". 

^t 
(.t * it:)

Combining (16.4) and (16.5) gives

tp,":_åå (

Lpt" : ttrr," - ,t"

trt! + lt*i)es /

t74



Using the definitions for t!, t! and E", which are given by (9.3a), (9.3b) and (9.5), i.e.

t7 : ,""" ffi"T' tt" : pp "ffirr" ; E" : ;(C" - r)

3e"p"
2et o,

-- ",,tr
3e"p"

Iet o,,,tr

: (',T,)

ffic"

(16.7)

(16.8)

(16.e)

where C" : FÏF", one obtain

Lp!" :

c"

-å"(ffi"")
-3"(ffi'")

)

)
ôAt
ôC"

where (16.7) and (16.8) has been used. The following identity will be of use

tr1

;
.)

a rrïr

ôC"

2

c"

where J,f,, is the determinant of F", see equation (2.37). The derivation of relation (10.0) can

be performed by considering an arbitrary second order tensor A and its inverse A-1. Assuming
that the determinant of A is different from zero, the following relation is obtained

aJ^
aÃ: JAA-1 (16'10)

where JA : det A. By identifying A : C" one obtain

AJC
ðc" J"c;t (16.11)

where ,Ic : detC. By examining the definition of F" :.xk,r< and the determinant of F", i.e.

lrn,xl, where indices after comma indicate partial differentiation with respect to X1o;r< when
they are majuscules, and with respect to ø¿ when ühey are minuscules, the following relation is

obtained

/81 : d"t c" : lr¡",6r*,r,1 : lr¡",¡71' : (tl"r)' (16.12)

where C" : FTF", i.e. (2.70) has been used. That is, the Jacobi J,!, is related to Jf,,, as

,8, : (rö,)'. Thr, means that the relation between C" and C;l can be expressed in terms of

the Jacobi of the deformation gradient, i.e.

, 
få:)' 

_ (rö,), ";, (16 18)

which is (16.11) and (16.12) combined. By multiplying this equation with C" and taking the
trace of the whole expression, one obtain

"({,$'") :tu((/ë)) c;'c") :'(',ï,)' (1614)
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where the identity C;tC" : 1, which follows directly from C" : FTF" and F;1F" : 1. That
is

I /ail, \ , _.,2
;" [aË""J 

: (rrir) (16'15)

which is the equation stated in (16.9).
Using the chain rule and the identity (16.9) and the conditions (16.2) and (16.3) one can

establish the following relations

3,'( (16.16)

,,'(( aA-

, (r,:,)
,(tî",)' :*:r(ti",)'H\ / ô (Jë')

_eiô4._-ôAo
J,f,, ôe" - "" ôr,

ôe"

ô (r,X,)

where e¿ -F €s : 1 also has been used. Combining (16.8) with (16.16) yields

Lt"!" : -'.94 - 
eth o,At 

(16.12)
" ôr, p" ôet

which is a simplified one-dimensional relation ship between the tensorial and scalar chemical
potentials. The terms on the right hand side of (16.17) represent the one-dimensional version of
the effective stress tensor and the hydration stress tensor, respectively.

Example 1: Classical State Fluid Column Problem. Consider a static column filled
with an incompressible (i.e. D¿p¡f Dt: 0) fluid. The fluid is assumed to be composed of a single
constituent. In such a case one have G¿ : At*ptlh and p,¡ - ptI:(pln+ A¡)I, i.e. one have
for this situation Gt : þ\. In this example, therefore, the classical scalar chemical potential is

identical to the Gibbs free energy scalar of the fluid. We gravi-chemical potential Gfl is defined
in terms of G¿ as

Gf :Q-rþ (16.1s)

where ry' is the gravitational potential, i.e. g:grad(r/). The gravitational potential in (16.18)
plays the same role as the effective and hydration stresses in (16.17). Orienting the one-
dimensional coordinate system in the static column from top to bottom and referring this
direction as the a-axis, setting g:gi" where i, is the unit vector along the z-axis. Hence

,þ : gz (16.19)

where at z : 0 the gravitational potential T/ is set to zero. This means that, in this case,

the gravi-chemical and chemical potential (or equally, in this case, the Gibbs free energy) are
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identical at the top of the column. From (16.18) and (16.19) it is concluded that

G¡ - Ge, : gz (16.20)

Since the considered single constituent fluid is assumed incompressible, the condition in (12.133),
l.e.

grad.A¿ ffisruar + 
ffisruao, 

+ Ë ¡1,!,srað,Crt (16.21)

.1-L

/0A, \
+tr 

[ffisradE")
reduces to grad, ¿ :0 at isothermal conditions. Thus, taking the gradient in (72.43), i.e. the
gradient of

N

Dcl rl:tLtu : GL 06'22)
j:1 PI

and using the equilibrium expression (12.141), i.e.

f cig,uapi : 
" (Hr,,do") + ls,adp¡ : s, (16.23)

=. \u

gradG¡: Lgrudç,¿: g
pt

yields

(16.24)

By combining (16.2Ð with (16.20) one obtain

gradGst : g (16'25)

The results in (16.20) and (16.25) shows that Gfl is constant throughout the length of the column
while G¿ must increase linearly as the z increases. Noting that the Gibbs free energy scalar G¿

and the scalar chemical potential is identical in this example, it ìs concluded that the chemical
energy required to place a particle in the bottom of the column is greater than the chemical
energy required at the top of due to the gravitational potential.

Example 2z TerzaglrJ's Consolidation Problem. In this example the influence of the
effective stress tensor on A¡;1" will be studied. A one-dimensional version of the Terzaghi's
consolidation problem for a non-swelling elastic medium will be considered. In the formulation
presented so far this situation can easily be obtained by setting tl : 0. A isothermal conditions a

porous elastic column is considered, bound by the sides and on the bottom by a rigid, adiabatic,
impermeable wall. At the top, a load is applied and the bulk water is free to drain. The initial
equilibrium configuration will be considered and each phase contains ly' miscible components.
By neglecting the dependency of A¡ oî e¿ in (16.17), one obtain

r'p1: _.r"# (16.26)
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A system with constant volume fraction e¿ and a case where the system initially is free from
stress is considered. It is, further assumed that the porous medium is linearly elastìc and the
gravitational effects are neglected. The proper constitutive function of A" is for this case

A":|GL-¿L)' 06.27)

where C is a material constant representing the compressibility of the solid matrix. Using
(L6.26), (L6.27) and e¿ - -es one obtain

(16.28)

where a linearization about equilibrium defi.ned as €¿ : e¿, has been performed, so that C : e"C,
where e" is the constant volume fraction of the solid matrix in the reference configuration. In
addition it is possible to derive the linear relationship between the effective pressure p! and the
volume fraction e¿. The effective pressure is defined as p'" : {trt3, hence, by (16.6) with t! : g

and by (16.26) one obtain

. 1 .. AA"
o" : ttrt! - -r"p"6î - -C* p" (r¿ - ri) (16.29)

which is similar in form to the one heuristically proposed by Terzaghi.
The conclusion from this example is, among other things, that as the overburden pressure

on the column is increased, e¿ decreases, and since ¡-r.r" is constant at equilibrium when the effect
of the gravity is small, according to the derived equilibrium condition grad¡,tr" - B, i.e. equation
(I2.L46), ihen tr¡-r,r" increases. The fact thattr¡1,r" increases during the described conditions can
be confirmed by equation (16.28). Hence, the chemical energy required to insert a solid particle
into the compressed system is greater than at the unstressed initial state.

Example 3: Swelling Pressure Experiment. In order to study the influence of the
hydration stress tensor t!, on the chemical potential A¡-r.," defined in (16.5), the classical reverse

osmosis swelling pressure experiment will be considered. A saturated mixture of clay and ad-

sorbed incompressible fluid is separated from a bulk (non-adsorbed) fluid by a semi-permeable
membrane which only allows fluid to pass. An overburden pressure is applied to the clay mixture
and the shrinkage due to the loss of fluid is recorded. As in example 2, the gravity is assumed

small as compared with the applied external pressure and each phase is assumed to be composed
of the same ,^/ miscible components which concentration within a phase may be zero. It assumed
that ihe clay minerals consists of flat plates and the clay medium is such that the flat plates
are parallel so that the effective stress tensor t! is negligeable. Consequently, equation (16.17)
is reduced to

Lp!" : -etPL 
a-::I 

(16.80)
P" ôet

that is á" is assumed to be independent of e¿. As is seen from example 2, the equation (16.28)
shows that Apr" is proportional to the volume fraction e¿. In this example, however, it will be

shown thai Apl" will appear as being inversely proportional to the volume fraction e¿. Assume
that the macroscopic solid phase stress tensor in the clay mixture is negligeable, i.e. t" : 0 so

Lpl"

-Ce" (et - Et)

1,....¡ i C A (el -2epL+e?)

x -C (e¡ - e¿)
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that all overburden pressure is supported by the adsorbed liquid. It is recalled that the total
stress t is given as; t :6"t" I e¡t¿. By using the assumptions t! : 0 and t" : 0, the equation
for the solid phase stress tensor (12.15) together with the equilibrium condition pt : p", i.e.

(12.89), reduces to
pJ: ?{" (16.31)

which leads us to the conclusion that the pressure in the adsorbed fluid is balanced by the
hydration forces. If this not was the case all the fluid would pass through the membrane
with minimal applied pressure. Taking the trace of (12.15), using the deflnition (9.3), i.e.

tI,: pF"#Fl, one obtain

rr (p¿r) : t, (at:) : t, €IPr p 
"

0At Fl (16.32)

(16.33)

(16.34)

(16.35)

(16.38)

ô8"

using E" : +(C" - I) and C" : FlF", one obtain the following relation between p¡ and A¡

rr (p¿r) :,, (?""ffi";) :,, (*'#"")
From (16.16), one have that

C
ôAo
ac"

tr2
õù

e
0Ao
ar,

Combining this expression with (16.33) the following is yielded

tr(p¿r) :"(TrHc") : s,,p,ffi

which also can be expressed as

AA^ Iet / ¡\pt: qgË: i=tr (t!) (16.86)

where (16.32) is used. Moreover, in this example, by design one have that the concentrations
of all constituents in solid phase are constant. At equilibrium, which is the case studied, the
condition in equation (12.146) is valid, i.e. grad¡-i/ : g. With the assumption that g is neglige-

able ¡L,l is constant in the spatial domain. Furthermore, in this case, the Gibbs free energy and
chemical potential scalars are identical, hence, the relation

/V

DcLrL:lo*u : ço (16'37)
j:1

which is (12.43) repeated, gives together with the condition that the concentrations of all con-
stituents are constant, that the Gibbs free energy G¿ must be constant, i.e.

Gt: Ar lU : const
pt
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Since, the adsorbed water was assumed incompressible,i.e. D¡p¡f Dt:0, and since (16.38) can
be written a^s

(16.3e)

That is, one obtain the relation

ôet h ôet

The equations (16.40) and (16.36) combined, gives

(16.40)

(16.41)

Upon integration and using that when e¿ :1, the pressure in the adsorbed fluid, p¿, is equal to
the bulk fluid pressurel pl ) one obtain

ôGL ôAt 7 ðpt__ - nt^det det Pt d€t

0h 1 }pt

'" (#) - -he :'(å)

õp,
Pt: -el-;-o€I

1,"'# (16.42)

(16.46)

or, equally

(16.43)

This means that the pressure p¡ atdp¡ arc related by the volume fraction e¿ as

pt: U G6.44)
€I

Combining (16.40) and (16.30) and eliminating p¿ using (16.44) gives

'I

ä"*," - p!" : Lp!" : -l: -?* (16.45)

It is observed that Ap{ is never zero due to the assumption that there is always some

hydration force between the adsorbed liquid and solid phase. Contrary to the Terzaghi problem,
this example shows that increasing the overburden pressure) which causes s¿ to decrease, results

in a decrease in the magnitude of the term trp{ when it is also assumed that ¡.tr" is constant at
equilibrium when the effect of the gravity is small. Hence, according to the example it is easier

to insert a solid particle into a compressed swelling media. Thìs can be physically attributed
to the stronger adsorption forces in the compressed system due to the closer proximity of the
liquid and the solid phases.

An geometrical interpretation of the problem can be performed. Consider a separation of
platelets, denoted by À, having a thickness À". The volume fraction €r ca,î then be written

€t
)

À+À"

The needed derivative ôplô), can be expressed by the chain rule as
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ôpt ôet )pt
ôÀ )et

À"

À" ôp,

(À + À"¡2 ôe¿

Pt À"

ôÀ

()+À"¡2 e¿ - (À+)")2
\"pt

(,r2 +.r".r)

where (16.46) and (16.41) are used. The thickness of the platelets are, further, assumed to be

constant. The separation between platelets can, hence, be expressed as

/ À' .\ ôpr(;. x)ffi:-n' Q647)

At high moisture contents the following approximation can be used

)^',.. 
; 

(16.48)

That is
\2 ôp,

^"i; 
= -p, (16'4e)

The integrated version of (16.49), valid at high moisture contents, is

opt

- 
- -As

Pt

À ôÀ

T,l"
(16.50)

where bulk fluid pressure, p/, is set to zero when the platelets are in contact with each others,
i.e. when À : 0 or equally when no moisture is present in the system. Evaluation of the integrals
in (16.50) gives

. /pt\ À" /^") 
(16.b1)," 

\*/ 
: T' or pr: pÍ 

""o \TZ
By using (16.45) one obtain the expression for Apr", as

Lp!":-i *'(+) (16 b2)

which is an alternative expression of (16.45) incorporating a certain geometry of the platelets of
the solid phases.

L7. Conclusions

A review of the article; Macroscale Thermodynamics and the Chemical Potential for Swelling
Porous Media, by Lynn Schreyer Bennethum, Márcio A. Murad and John H. Cushman, has

been performed.
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A novel definition of the macroscale chemical potential is introduced. Unlike Bowen's ten-
sorial chemical potential, this new chemical potential is a scalar which satisfles three properties
consistent with the classical Gibbsian chemical potential for a single phase medium.

The properties of the chemical potential satisfi.es the following three conditions: (1) it is

a scalar, (2) at equilibrium, the chemical potential of a single constituent in different phases

is the same, and (3) the chemical potential is the driving force for diffusive flow (generalized
Fick's law). These properties were obtained by exploiting the entropy inequality and using a

generalized Gibbs-Duhem relation. It is noted that Lagrange multipliers were used to enforce
the gradient of the relationship between the diffusive velocities. Near-equilibrium results were,
further, obtained by linearizing coefficients which were not necessarily zero at equilibrium.
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