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Abstract

By using the mixture theory defined in continuum mechanics, together with
constitutive theory it is possible to derive classical and generalized forms of, for
example, Fick’s, Darcy s and Fourier’s laws, and conditions for phase changes and
chemical reactions. These conditions are very important in several engineering
disciplines. The report includes the necessary definitions and axioms needed to
derive the classical physical laws. The different mathematical steps performed to
reach different results are in almost every case shown explicitly.

1. Introduction

A review of the paper Macroscale Thermodynamics and the Chemical Potential for Swelling
Porous Media is performed in this article. The concepts described in the paper of Bowen, The
Theory of Miztures, is also included as an important background to the present work.

The presented material in this paper is stuff that the author has studied during preparation of
a doctoral thesis. Since no ‘simple’ text book treats the combination of the explanation of basic
definitions in mechanics and the more complicated mixture theory I thought that engineers with
basic knowledge in mechanics might be interested in having all the needed essential information
collected in one place. The drawback with having the goal that an ambitious student should be
able to follow the content in this paper is that the many mathematical steps tends to destroy the



simplicity of most of the presented results. On the other hand if successfully coming through
this paper the reader will obtain a solid understanding of the background to many common
theories of interests to engineers and will, furthermore, most probably develop thoughts about
how to apply them and how to develop them further.

The work is more or less identical to the paper Macroscale Thermodynamics and the Chemical
Potential for Swelling Porous Media. The difference is that an extensive description of all
essentials steps needed to receive the closed set of equations for the studied thermodynamical
problem are explicitly included in the review to be presented. Furthermore, is the background
leading to, for example, kinematic relations and different forms of balance principles included
to make this article complete, in the sense that all significant information about the theory in
question are included.

The paper consider, among different things, three different important issues

1. A novel definition of the macroscale chemical potential for a porous medium is introduced.

2. The properties of the novel macroscale chemical potential are derived by slightly expanding
the usual Coleman and Noll approach of exploiting the entropy inequality to obtain near-
equilibrium results.

3. A discussion of the applications of mixture theory to swelling porous media.

The modified approach using an appropriate definition of the chemical potential, one is able
to derive properties of the chemical potential which corresponds exactly with the properties of
the classical Gibbsian chemical potential. The motivation of the use of a new chemical potential
is illustrated.

2. Kinematics and definitions

The spatial position, or the place x, of a particle labeled X, is given by a function X, called the
deformation function or the motion. The motion is defined as

X = X, (Xa, 1) (2.1)

where X, is the material coordinates of the particle X, of the ath body or constituent in its
fixed reference configuration. At time t the spatial position x will be occupied by the particle
X, labeled with is corresponding material coordinates X,. Assuming that an inverse to the
deformation functions, i.e. Xa_zll,...,ER7 exists for all continuous bodies 1, ..., the motion of the
ath constituent could be described as

Xo =X (x,t) (2.2)

The velocity and acceleration of the particle X, at time t are defined by
x, = 0X, (X,,t) /0t (2.3)
x! = 82X, (X,,t) /Ot (2.4)



respectively. That is, the velocity and the acceleration are regarded as functions of the particle
X, having the material coordinates X, and the time ¢. This is the so-called material description.
Hence the prime affixed to a symbol with a subscript a will denote the material derivative
following the motion of the ath constituent.

Given (2.2), the velocity and acceleration of X, can be regarded as given by functions of
(x,1), ie.

x,, = x, (x,1) (25)
X = X! (x, 1 (2.6)
The velocity gradient for the ath constituent at (x,t) is defined by
am,(a)i
L, = grad x;, (x,t);  L(a)i; = (2.7)
am‘j
The velocity gradient can be decomposed as
L, = Da + Wa (28)
where D, is the symmetric part of L, defined by
1
D, == (Lo +LT 2.9
. (Lot L) 29)
and W, the skew-symmetric defined by
1
Wo =3 (La— L) (2.10)
Here D, is called the rate of strain tensor or stretching tensor and W, is called the spin tensor.
For a mixture, the R bodies1, ..., are allowed to occupy common portions of physical

space. Then each spatial position x in the mixture is occupied by R particles, one from each
constituent. Each constituent is assigned a density. The mass density for the ath constituent is
denoted p,. The density is a function of (x,1), i.e.

Pa = Pa (X,1) (2.11)

The density of the mixture at x and time ¢ is defined by

R
p=pxt)= Zpa (%, t) (212)

The mass concentration of the ath constituent at (x,t) is
Ca = Ca (X,8) = po/p (2.13)

Following (2.12) and (2.13), the mass concentrations are related by

xr

! (2.14)

a=1



The mean velocity, or simply the velocity of the mizture, at (x,t) is the mass-weighted average
of the constituent velocities defined by

pid
k=% (0,8) = 5 D0 s (x,8) (2.15)
a=1

The diffusion velocity for the ath constituent at (x,t) is defined by
ug = ug (x,¢t) = x}, (x,t) — %x(x,t) (2.16)

The diffusion velocity u, is the velocity for the ath constituent related to the mixture. It follows
from (2.15), (2.16), and (2.12) that

®
Zpaua =0 (2.17)
a=1
The velocity gradient for the mixture at (x,t) is
L = grad % (x,); L 0% (2.18)
g ) ) 17 axj .
The relation between L and L, is obtained by considering the identity
grad (p,u.) = u, ® grad p, + p, grad u, (2.19)
where ® denotes the dyad product. From (2.17), it follows that
R
grad Y p,u, =0 (2.20)
a=1
which together with (2.19) give the relation
® ®
Z u, ® gradp, = Z P, gradu, (2.21)
a=1 a=1
In addition, the expression
® ® ®
pL = Z p. L = Z P, Erad x = Z poerad (x), —ug) (2.22)
a=1 a=1 a=1

must be considered, in which (2.12) and (2.16) are used. The definition (2.7) together with the
expressions (2.21) and (2.22) give the relation between L and L, as

b
pL . Z (paLa +u, ® gra’d pa,) (223)
a=1

Any time-dependent vector fields, and in fact any time-dependent scalar, vector, or tensor
field T, associated with the ath constituent, can be regarded either as a function T';, (X, ) of the



particle X, (having the fixed material coordinates X,) and the time t, or as a function I, (x, %)
of the place x and the time ¢, provided that a definite motion x = X, (X,,t) is given. Again,
the prime affixed to a symbol with a subscript a will denote the material derivative following
the motion of the ath constituent. The material time derivative of T, is defined by

oo
@ ot
If the inverse to the deformation function X, exists, the arbitrary function I', can be expressed

by functions of (x,t). The definition (2.24) and the chain rule for partial differentiation together
produce

[Xa (Xq,t),t]; Xg = const. (2.24)

r
s = %—t (x,t) + [grad T (x, )] x}, (x, 1) (2.25)
which is the relation between the material derivative I, and the spatial derivative 6I'/dt. )
The derivative of I following the motion defined by the mixture, that is %, is denoted by T’
and is defined, in the same manner, by

I % (%,£) + [erad T (x,8)] % (x, £) (2.26)

As an example, considering the one-dimensional case: I' = I'(xy,t). Differentiation yields,
dl’ = (0T'/9z1) dxy + (OT'/0t) dt, by dividing the whole expression with dt, one obtain: dI'/dt =
(O'/0z1) dxy /dt + (O /0t) dt/dt. By identifying that OI'/0t = I and also that dz1/dt = i1 one
obtain the one-dimensional version of (2.26) as: I' = dI'/dt + (0T'/0xy) 1. '

Sometimes the material derivative following the motion of the o component, i.e. T, is written
as D, (T") /Dt and the velocity, as defined in (2.3), as v,. That is a common way of expressing
(2.26) is

Dgt() = ?(,% + [grad ()] va (2.27)

For example, the material time derivative of the mass density p/, can be related to the spatial
time derivative 8p,/0t by identifying T as p, to yield

Pa= %% +grad (p,) - %o (2.28)
It follows directly from (2.16), (2.25), and (2.26) that

I —T = (grad T) u, (2.29)

D (Fg‘) _ Da () _ (grad T )uj

Dt Dt ® e

The deformation gradients for the ath constituent is defined by
F, = GRAD X, (Xa8);  Frap = =208 (2.30)
a = a ast), (a)ik — 8X(a)k .



where GRAD denote the gradient with respect to the material coordinates X,. Note that F !
only exists if det F, # 0, which is the case because of the assumed invariability of A,. The linear
transformation inverse to F, is

_ — . 0X a)k
B =ared X7 (0) iy = e (2.31)
In accordance with (2.30) and (2.31) it is concluded that
0z;0X
FF;  =F'F, =1, ——_@k_g5. 2.32
a a ! 3X(a)k3:cj 3 ( )
Using the chain rule together with the definition of the velocity gradient as
! /
Loy = i _ O%ayi OX o (2.33)
(a)i 8(13j 8X(a)k 8Clﬁj '
and noting that X, is independent of the time ¢, it follows that
0@ \ Xk _ 1 1
By = <3X(a)k> Ox; = Flayintlans (2.34)
ie.
L,=FF;! (2.35)

which is the relation between the velocity gradient and the deformation gradient for the ath
constituent.

Another property of the deformation gradient of the ath constituent will be examined, namely
the relation between determinant of, i.e. detF, denoted J 12 and deformation gradient F,. Recall
that the deformation gradient and the inverse to the deformation gradient can be written as

00X,
8$k F—l :XKIC — (a)K

. 2.36
8X(a)K, e ’ oz, ( )

Fo=apx =

where indices after comma indicate partial differentiation with respect to X(q)x when they are
majuscules, and with respect to zx when they are minuscules. The determinant of F, can be
obtained by the permutation symbols eg s and egim, as

J(P;) =g, x| = %EKLMeklmxk,Kml,Lxm,M (2.37)
where ex s and e, are; (i) zero when at least two indicies are equal; (i) 1, if the sequence of
numbers k, I, m is the sequence 1, 2, 3 or an even permutation of the sequence; and () -1, if the
sequence of k, [, m is and odd permutation of the sequence 1, 2, 3. Hence, ej23 = e312 = e312 = 1,
€132 — €213 — €391 — —1, all other Ellm = 0.

Each of the two sets of equations in (2.36) is a set of nine linear equations for the nine
unknowns zx x or Xk k. A unique solution exist, since the Jacobian of the transformation is



assumed not to vanish. Using Cramer’s rule of determinants, the solution for Xk, may be
obtained in terms of zz x. Thus

cofactor = 1
Xrk = —FkE = 5 €K LMCkImTL,LTm,M (2.38)
Sy 2J(a)

Differentiating (2.37), yields

aJfy 1

Era 5 6K LM EkimTl,LTm, M (2.39)
that is, the important identity for the Jacobi is obtained by combining (2.38) and (2.39), which
gives

oJF
(@) _ _ 4F
Tonr cofactor T,k = Jigy XK,k (2.40)
or, equally v
aJ
(@) _ yF -1
oF, (a)Fa (2.41)

For certain problems it is convenient to introduce the vector w, denoting the displacement
of particle X, of the ath body from its place X, in the reference configuration to its place
x = X, (X,) in its deformed state:

w, (X,) = X, (X)) —Xe (2.42)
ie.
w, (Xg) =x (X,) — X, (2.43)
Differentiation yields
c'):vi 8w(a)i
dﬂi‘i (X(a)) = aX—(a)jdX(a)j B <(51;j + BX(a)j> dX(a)j (244)
that is 5 5
LR S (1 (2.45)

=045 +
0X@;  0X(ay
The displacement gradient H, is also introduced as

8’w(a)i
90X (a)j

Ha = GRAD Wa, H(a)ij = (246)

This definition together with (2.45) and (2.30) give the relation between the deformation gradient
F, and the displacement gradient H, as

F,=1+H, (2.47)

One of the strain measures is the Lagrangian strain defined as

E, = % (FIF, - 1) (2.48)



which may be expressed in terms of the displacement gradient H, as

E, = - (FIF,-1)

((I+ H,)" (I+H,) - I) (2.49)
1
2

where (2.47) was used. The Lagrangian strain measure has the benefit of giving zero contribution
of strains during rigid body rotation. However, the linear strain measure

1
e =7 (H, + H;) (2.50)

(H,+H}) + -H H,

T SRR O

is often adopted.

In solid mechanics one is often interested in calculating the displacement of a body from its
initially undeformed state. In order to do this one must introduce the concept of strains (and
stresses). The strain is a relative measure of the length change between two neighboring point
with regard to its initial undeformed length.

The classical linear strain measure, i.e. e = %(H—{—HT) where H is the displacement
gradient, gives unphysical results when rigid body rotations occurs from the initial configuration
and when large deformations is considered. Due to this fact one is interested to define a strain
measure that gives zero contribution to strains during rigid body rotation and also a measure
which makes it possible to study bodies with arbitrary large deformation.

Consider the relation between the current place x of a point in a body and the reference
configuration X and the displacement w, i.e. equation (2.43) repeated

x(X)=X+w(X) (2.51)
The differential d will be used denoting, for example, a differentiation like

d(x (X)) dx

2 2 (2.52)
ie. 5
x
d(x(X)) = ﬁdX (2.53)
By inserting the expression for x in (2.51) into equation (2.53) gives
X +w(X)) . 0X ow(X) . ow (X)
d(x(X)) = X dX _B_de+ X dX = I+ X dX (2.54)
From (2.54) and (2.52) one obtain
Ox ow
8_X = <I+8_X) (2.55)
Recall that the deformation gradient is defined as
F = GRAD (x) (2.56)



where GRAD is used to symbolize that the differentiation is with respect to the initial configu-
ration X, i.e.

i dx du
o o
F=| 3% ax: x5 (2.57)
By dxa E
axXy X Xy
The displacement gradient H is defined as
HL = GRAD (w) (2.58)

where the super-script denotes ‘Green-Lagrange’ which will be included to emphasize that the
displacement is differentiated with respect to the initial configuration X, i.e.

Ow;  Ow Sw
c-r_ | Sob Br 3us
H"™ =1 95 7% 3% (2.59)
Quwy  Jwy Jwy
59X, 0X; 0Xa
Hence, (2.55) can be written as
F= (I + HG—L) (2.60)

Consider two points in a undeformed body the vector located between these two points is the
vector dX having the length dS in the same manner dx and ds are considered in the deformed
state between the same points. The relation between dX and dS and also between dx and ds, is

|ldx| = ds = Vdx-dx; |dX|=dS =VdX-dX (2.61)
And the quadratic length in the deformed and undeformed state, therefore is
(ds)? = dx-dx; (dS)? = dX-dX (2.62)

The ‘Green-Lagrange’ strain measure eg_j, defined in the direction defined by dX/dS, i.e. in
the initial undeformed direction, is

(ds)? — (dS)?  dx-dx—dX-dX

2(dS)? 2(dS)? (2.63)

€Gg-L =

This can be compared to the linear strain measure ¢, i.e. € = (ds — dS) /dS. This means that
the relative length change should be about 1.05-1.1 before any important differences between
the linear strain measure and the ‘Green-Lagrange’ strain measure is obtained. The benefit of
using the non-linear strain measure in (2.63) is, however, that this strain definition gives zero
contributions during rigid body rotation. This will be shown later.

From the definition of the deformation gradient F and from (2.55) is concluded that

dx = FdX = <I +HEL) X (2.64)

10



This means that the ‘Green-Lagrange’ strain measure eg_y, defined in (2.63) could be written

as
_ (ds)* —(dS)® FdX FdX-dX-dX

EG— 2.65
T T 0 (as)? 2(dS)? (&)
Using the following two identities
dX dX X dX
l-——.— = l— . JES—
2xgShwelisl  Exgl) ( dS> (2.66)
dX | dX dX [, o dX
—sF—=— .| 3F F— 2.
F ds 2" dS  dS <2 F as (2.67)

it is concluded that (2.65) can be written as

2 2
(ds)” — (dS)" _ dX <(% (FTF — 1)) d_s'> (2.68)

EG-L = 2(dS)2 ds

which shows that the strain measure eg_y is defined in the direction given from the vector
dX/dS in the undeformed configuration.
The ‘Green-Lagrange’ strain tensor E¢—L is introduced as

EC~t=] (FTF -1I) (2.69)

which is the term in the brackets of (2.65). This is a generalization of the strain measure eg—r,
that is , EG—L holds for all directions of interest.

The term FTF is often denoted C referred to as the right Cauchy-Green tensor, this tensor
was used by Green in 1841. That is, C is defined as

C =FTF Cachy-Green tensor (2.70)

The ‘Green-Lagrange’ strain tensor E¢—L can be formulated solely in terms of the displace-
ment gradient instead of with the deformation gradient. Using the expression (2.69) and (2.60)
one can write

ECL = L(FTF-I)=1 <(1 + HG—L)T (1+m5F) —I>
= }(m+mC L (EeE) + (BOE) (BO) 1) (2.71)
= (O (EOE)) 4§ (HOF)T (HOH)
That is, the ‘Green-Lagrange’ strain tensor EG~7 is given by
EC~L = § (HO 4 (HO5)") 44 (HO)" () (2.72)
where the last term on the right hand side is the non-linear contribution to the strains when

using the ‘Green-Lagrange’ strain tensor. It should be observed that the displacement gradients
are with respect to the undeformed configuration X.

11



By simply ignoring the non-linear contribution in (2.72), one obtain the classical linear strain
measure e L still with respect to the undeformed configuration X, i.e.

ek = L (HOH) + (HOH)) (2.73)

Example 1. Consider a case where the motion is known in before hand for a rigid body.
The body will be subjected to a rotation in the x; — o plane from its initial configuration X
to its deformed state x. Such an rotation can be described by a relation

x=QX
where the rotation matrix is Q

cosp —sing 0
Q=] sing cosp O
0 0 1

where ¢ denotes the angle, i.e. the magnitude of the rotation from its initial configuration. That
is, the place x can be related to the initial fixed configuration X for a rigid body rotation, as

1 cosyp —sinp 0 X1
29 | = | sing cosp O Xo
3 0 0 1 X3
ie.
7 = Xjcosp— Xgsing
o = Xjpsing+ Xocose
3 = Xg

Recall that the deformation gradient is defined as F =GRAD(x), i.e. F;; = 0x;/0X;. The
terms of interest is therefore: Oz1/0X1 = cosyp, 0z1/0X2 = —sing, dxg/0X; = sinp and
O0z2/8X, = cosy. This means that the deformation gradient for a rigid body rotation takes the

form
cosep —sinp 0

F=| sing cose O
0 0 1

Using the definition of the ‘Green-Lagrange’ strain tensor, i.e. E9~F=1 (FTF —I) one obtain

cosp —sing 0 cose sing 0
E¢L = 1| sing cose O —sing cosp 0
0 0 1 0 0 1

1 00

-210 10

0 01

12



i.e.

000
ESL=|10 0 0
0 0 0

This means that the ‘Green-Lagrange’ strain tensor gives the correct response during rigid body

rotation since no strains develops in this case.
For the linear strain measure i.e.

Ol =1 ((HG—L) n (HG——L)T) =1 <(F 1)+ (F— 1)T>

one obtain
cosp—1 —sinp 0 cosp —1 sin ¢
el =1 sing cosp—1 0 |+3]| —sing cosp—1 0
0 0 0 0 0
ie.
cosp—1 0 0
e L = 0 cose—1 0
0 0 0

This means that important errors is introduced when using the linear strain measure when the

rigid body rotation significant deviates from zero.

2.1. Euler-Cauchy strain tensor

In this section the a strain measure which is related to an evaluation of the strain at the current
place will be derived. In the previous section the ‘Green-Lagrange’ strain tensor was discussed
which relates the strain state to its initial undeformed state. The ‘Euler-Cauchy’ strain tensor to
be derived here the current place is used as reference when calculating the strain. The derivation

follows the same concepts as in the previous section.

Consider the relation between the current place x of a point in a body and the reference

configuration X and the displacement w, i.e. equation (2.43) repeated

x(X)=X+w((x)

N X = x (X) —w (x)

a differentiation expressed as

X
dX = —
ox dx

will be performed by inserting the expression for X in (2.75) into (2.76), as

dX

ox ox ox ox

From (2.77) one obtain

13

_ 0 (x(X)-w (x))d}c =Q)de_ ow (x) = (I— ow (x)) dx

(2.74)

(2.75)

(2.76)

(2.77)



oX ow
== <I—a> (2.78)

Recall that the inverse of the deformation gradient is

F~! = grad (X) (2.79)

ie.

F' =

(2.80)

Q)

x

The displacement gradient HZ=¢ will be defined as

-
Q|

xT

~
o]
8

w

HZ=C = grad (w) (2.81)
ie.
dwy iy duy
oy ) dig Ay
vt wo 1we W
H = | 9z1 Gma  Gma (2.82)
g dwy duws
Ay g Oxs

where the difference between HE~C compared to HE L should be clear.
Hence, equation (2.78) can be written as

Fl= (I . HE—C) (2.83)

Consider, again, two points in a undeformed body, the vector located between these two points
is the vector dX having the length dS in the same manner dx and ds are considered in the

deformed state between the same points. The relation between dX and dS and also between dx
and ds, is

|dx| = ds = Vdxdx; |dX| = dS = VAX-dX (2.84)
ie.
(ds)* = dx-dx; (dS)® = dX-dX (2.85)

The ‘Euler-Cauchy’ strain eg._¢ is defined as

(ds)? — (dS)?  dx-dx—dX-dX

EE—C = == 2.86
b 2 (ds)? 2 (ds)? (2:86)
in the direction defined by dx/ds. Using
dX = Fldx = (I = HE‘C> dx (2.87)
to rewrite (2.86) by replacing dX by F~1dx, as
ds)? — (dS)? dx — Fldx - F1d
S (ds)” — (dS) _ dxdx —F "dx x (2.88)

2 (ds)? 2 (ds)*
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This can be brought to the form

e % = % : <(% (-@EY"F)) %) (2.89)

if the following two identities is used.

dx dx dx dx
172222122 (122 2.90
2ds ds  %ds ( ds) (2.90)
dx dx dx s dx
18X 1m1 _ 11 -1
F 7 5 F T o (2 (F ) F _ds> (2.91)

In the same manner as the ‘Green-Lagrange’ strain tensor was introduced the ‘Euler-Cauchy’
strain tensor EZ~C is defined as the terms in the brackets of (2.89), i.e.

E“-C= (1-(F )" F) (2.92)

where the inverse to the deformation gradient is F~! = <I +H? _C). The term (F—l)T F-!

is often denoted B~! where B is referred to as the left Cauchy-Green tensor, introduced by
Cauchy in1827.
Since the inverse to the deformation gradient is F~! = <I+ HE'C) the ‘Euler-Cauchy’

strain tensor E¥~% can be formulated as
BP0 = J(I-(F ) F) =} <I— (x- HE‘C)T (x- HE—C)>
. _onT _enT -
3 (1- (-0 (859) 1+ (B79) " (H7O))) (2.93)

= (7O (179" - § (E50)" ()

BP-C — § (504 (55-0)") -  (55-0)" (50 91

where the displacement gradient HE~C is with respect to the current deformed place x.

One possibility, is to use this type of strain measure together with updating of the mate-
rial coordinates in every calculation step. It should be noted that calculations which involves
non-linear strain measures, e.g. E¥~¢ or E~L must be solved numerically with equilibrium
iterations in every computation step in order to search for equilibrium.

2.2, Strain rate

Often one is interested in developing equations in a so-called rate form, for example, the stress
rate can be a (constitutive) function of the strain rate. These type of relations are often adopted
in a step by step calculation in non-linear problems.

It will be shown later that some problems is related to the rate form of the strains. This
problem steams from the fact that an observer recording the strain rates, for example between
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two points in a body, will record different strain rate depending on which frame (or coordinate
system) this observer happens to relate the measured strain rates to. This is in general an
unacceptably effect. Physical properties which is independent of the (observers) coordinate
system chosen is said to be frame-indifferent. In continuum mechanics one only use to relate
physical properties to each other if the can be shown to behave frame-indifferent, which seems
reasonable. Frame-indifference will be discussed in more detail later.

Furthermore, it is of interest to compare the choice of kinematic definitions and the con-
stitutive relations introduced in solid mechanics and in fluid mechanics. Usually, the stress is
assumed to be a function of the velocity gradient when dealing with fluid mechanical problems
and when a stress state in a solid is studied the stresses is most often assumed to be a function
of the strain or of the strain rate (or both). Here the kinematic relation between the strain rate
and the velocity gradient will be shown for the ‘Green-Lagrange’ strain rate measure. Therefore
the results of the discussed topic in this section may be used as a link between the kinematical
definitions used in classical solid mechanic problems and in fluid mechanics.

Consider, again, the length ds between two points in the undeformed body and the length
dS in the deformed body (between the same to points), i.e.

|[dx| = ds = Vdx-dx; |dX|=dS = VdX-dX (2.95)

That is,
(ds)? = dx-dx; (dS)* = dX-dX (2.96)

By differentiating (ds)2, using a dot denoting the material time derivative, one obtain

(ds)? = Txdx=dx - dx+dx-dx = 2dx dx (2.97)

where it also should be observed that the time derivative of dS, i.e. the length in the undeformed
reference configuration is zero, due to dS being constant.

Further, the relation between the distance vector dx between two points in the deformed
state and in the undeformed reference state dX is given from the deformation gradient F as

dx = FdX (2.98)
Differentiation gives
dx =¥dX +FdX; dX =0 (2.99)
ie. )
dx = d% = FdX (2.100)

where it should be noted that dX is constant.
The velocity gradient L describes the relation between the distance vector dx between two
points in the deformed state and its corresponding rate of change of length, i.e. dx

Ldx =dk =dx (2.101)
It is concluded from (2.100) and (2.101) that
d% = FdX = Ldx (2.102)
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That is, L = FdX/dx, or L = FF—l, which has been shown earlier.
By replacing dx in (2.97) by the expression given by (2.101), one obtain

(ds)® = 2dx- (Ldx) (2.103)

Recall that the velocity gradient L can be decomposed into a symmetric part D and by a
skew-symmetric part W as

L=D+W (2.104)

where
D=i(L+L"); W=1(L-L") (2.105)
This fact that W is skew symmetric i.e. W = —WT, means that all diagonal element is zero.

Insertion of the expression (2.104) into (2.103), gives

%(33)2 = dx (Ddx) + dx- (Wdx)
= dx ((3 (L+LT))dx) +dx ((§ (L—L")) dx) (2.106)
dx- (Ddx)

where the definitions in (2.105) is used. It is observed that 2dx- ((3 (L — L)) dx) = 0, due to
‘W being skew-symmetric. The rate of change of the cubic length obtained is

1(ds)® = dx- (Ddx) (2.107)
Consider, the ‘Green-Lagrange’ strain measure eg_r, in the direction defined by dX/dS, i.e.
(ds)® — (dS)®>  dX [, o dX
=t 2 ((L(FTF -T)) = 2.108
EG-L 2(d5)2 ds (2( )) ds ( )
where the ‘Green-Lagrange’ strain tensor E¢~F for arbitrary direction is
EC~ L= (FTF -1I) (2.109)
Combining (2.108) and (2.109), yields
(ds)* = (dS)®> dX [_o_pdX
== (ETT"— 2.110

The ‘Green-Lagrange’ strain measure eg—y will now be differentiated with respect to time
(material time derivative), as

Eo_L = ((ds)2 . (dé)z) /2(d8)? = % : (E.G—L%> (2.111)

Since dS and dX are independent of time, expression (2.111) reduces to

to L =1(ds)? = dX. (EG'LdX) (2.112)
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But, it was also shown in (2.106) that

%(33)2 = dx- (Ddx) (2.113)

Now using dx = FdX to replace dx in (2.108) to yield

%@T)Q = (FdX) - (D (FdX)) = dX: (F"DFdX) (2.114)

By combining (2.112) and (2.113) the relation between the symmetric part of the velocity gra-
dient D and the rate of change of the ‘Green-Lagrange’ strain tensor EG~% is obtained, i.e.

dX- (FTDFdX) = dX - (B9~ dX) (2.115)
Since dX is arbitrary one conclude that
EC~L = FTDF (2.116)

where it should be noted that the dot denotes the material time derivative, i.e. this time
derivative is ‘following the motion’ of the body exhibiting strains. The result in (2.116) are due
to E. and F. Cosserat in 1896.

By using the right Cauchy-Green tensor, i.e.

C=F'F (2.117)
and noting that
ECL =2 (FTF-I)=4(C-1) (2.118)
when it is clear that the following holds
EC-L =1¢ (2.119)

Recall, further, that the deformation gradient F and its transpose can be expressed with its
corresponding displacement gradient HE L, i.e.

F=(1+H5); FT = (1+ (HOY)) (2.120)

If the displacement gradient HE—L is very small, the approximation for KG—L is

8’wi

BX,

E¢L =FTDF~IDI=D; if « 1 (2.121)

Observe that D is shown to be frame-indifferent, see previous sections, however, ECLisin gen-
eral not frame-indifferent. Methods to tackle this dilemma, valid when significant displacement
gradients is observed within a body will not be discussed in this work.
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3. Two phase, N-constituent, structure of balance law’s

In this section mass balance equations for constituents appearing in different phases will be
studied at macro scale. The consequences of requiring the sum of the mass balance equations
for the individual constituents to be equal to the mass balance for the phase will be derived.
The balance equations for the phases should, further be equal to the balance equation for the
whole mixture.

Mass balance for constituent j in phase « is the postulate

2/ Eapldv = —% Eapl Vi, - ds—|—/ (&, + &) dv (3.1)
ot Jn R ®

where e, is the volume concentration of the o phase, p/, is the mass density concentration of
the jth constituent in phase o, vJ, is the velocity of the jth constituent, the mass exchange of
jth constituent between phase boundaries is denoted &), and the chemical reaction of the jth
constituent within the phase is denoted &,

Using the divergence theorem on the first term on the right-hand side of (3.1) gives

j{ eaplVy - ds =/ div (Ea,oévfx) dv (3.2)
oR ®

Combining (3.1) and (3.2) yields the local form of the balance of mass of the jth constituent in
phase «, i.e.

8 (eart

— +div(eaplvl) =&, + 8, j=1,.,N, a=ls (3.3)
The mass balance for the phase « can in an identical manner be brought to the local form
0 (Eapy ) N
% +div (eapaVa) = éa (3.4)
where é, will be defined as the net gain of mass between phases, i.e.
N .
e, =é, (3.5)
j=1

where N number of constituents are considered. This means that the chemical reaction &, do
not affect the mass exchanges between phases.

The equations (3.3) and (3.4) can also be written in terms of the material time derivative
instead of the spatial derivatives. Consider the relation (2.27) between the two derivatives, i.e.

Do (€apa) _ 90 (eaps)
Dt ot

where D, (eqp,,) /Dt is the derivative with respect to the motion of the phase o. Combining
(3.4) and (3.6), gives

+ vq - grad (gap,) (3.6)

Da (Eapoz)

Di " Ve grad (eqap,) + div (apaVa) = éa (3.7)

19



Using the identity
div (eapyVa) = €apediv (Vo) + [grad (€apy )] Vo (3.8)

gives the alternative version of (3.4), i.e. by combining the identity (3.8) with (3.7) one obtain

Da (Eapa)

5 + eapodiv (va) = éq (3.9)

The definition of the phase velocity v, is
- = Z pLvi (3.10)
a =1

The phase density p,, is in the same manner defined as

N .
W (3.11)
=1

In order to study the structure of the mass balance principals a summation of the N number of
constituent equations building up phase o will be performed, i.e.

o~ [ 0(earl) P’) :
Z <pr o +d1V (EQP‘ZXV ) - élZ! - éé) = 0) .7 = ]-7 ,N (312)

Jj=1

Due to (3.10) and (3.11) this equation can be written as

0 (Eapa)

— 5 +div(eapava) Z i=1,..,N (3.13)

Jj=1

That is, by comparing (3.12) and (3.13) it immediately follows that

N
> (@ Z (3.14)

Jj=1
if one requires that the sum of the constituent equations should be equal to the phase equation.

It is also noted that .
Z & =0 (3.15)

J=1

('0)

The local mass balance for the whole mixture is the postulate

d(ep)

5 T div(epv) =0 (3.16)

or equally

9(p)

. +div(pv) =0 (3.17)
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which gives the proper interpretation of the volume concentrations, i.e.

R
Y ea=e=1 (3.18)

a=1

The definition of the velocity of the mixture is

N
S pava=5 2 DoV (3.19)

a=l,s a=l,s j=1

1
V=~
P

where also (3.10) is in use. With (3.11) the definition of the mass density of the whole mixture

becomes N
=Y = 50 520)

a=l,s a=l,s j=1

Summation of the R number of phases is

L 9 (eapy)
Z < ;tpa + div (Eapava) - éo‘) =0, a= 1y, R (321)

a=1

Using (3.19) and (3.20) gives

@ +div (epv) — Z €o = (3.22)

a=l,s

By comparing (3.11) with (3.17) gives the conditions

R
Z EaPy =EP =P (3.23)
=1

and
> ta=0 (3.24)

a=l,s

which is the consequences of requiring the sum of the phase mass balance equations to be
identical with the balance principal for the whole mixture.

In different applications it is more convenient to adopt the concentration of constituent j
in phase «, denoted CY, instead of the mass density concentration. The concentration CY, is
defined as

Ci= i/ (325)
That is, the concentration C7 is related to the mass density of the phase «. It immediately
follows that
Yoi=—3p =1 (3.26)
j=1 Pa 535
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where (3.11) is used.
The definition of the so-called diffusion velocity u/, of the jth constituent in phase « is

W, = v, — v, (3.27)

Combining (3.27) with the mass balance equation expressed in terms of mass density concen-
trations, i.e. (3.3) one obtain

0 (f;%fa) +div (eaplul) + div (eaplve) =&, + 68, j=1,.,N (3.28)

Noting that by use of the definition (3.25) the first term on the left-hand side of (3.28) can be

written as 3( ) ) 3 (C' ) ( ) 5 (C’)
P&Ea . épasa a7l 8 paEOt };
o6 - e " Ce g Thafagy

where standard partial derivatives is used. Further the second term on the left-hand side of
(3.28) can be written as

(3.29)

div (eaplva) = div (6aClpaVa) = CLAIV (EapyVa) + €aPaVa - grad (C) (3.30)
Using (3.29) and (3.30) in (3.27) yields

i [0 (pata)
| e
%

EaPoVa - grad (C1) = —div(eaplul) + &) + &,

a(c)

ot (831)

+ div (Eapava)] 1 Pafa

From the balance of mass of the phase o, i.e. equation (3.4), it is concluded that

C

d .
[('”T‘f“) +div (eapava)J =Cig, (3.32)
That is, combining (3.31) and (3.32) gives the mass balance for the jth component in phase «
expressed in terms of the concentration CY instead of the mass density concentration pl, one
obtain

J ' . . . .
Eapaa (act’a) +div (eapl ) + capoVa - grad (CL) = &, + &, — Che, (3.33)

By noting that the material derivative %)- is related to the spatial derivative %tl through the
velocity of the phase o as: %l = %9 +[grad ()] v, one can write the first term on the left-hand
side of (3.33) as

D, (C2) 9(Ci) '
CaPa—r = EaPa g, + [grad (Cfl)] EapPaVa (3.34)
That is, the material derivative of the concentration C?, can be expressed as
D, (¢4 - | :
p% +div (eaphul) = &, + & — Chéa (3:35)

which is an alternative version to (3.3) of the mass balance of the jth constituent in the o phase.
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Consider, finally, the derivation of the mass balance equation for the jth constituent in o
phase using the material time derivative instead of the spatial derivative used in (3.3). The
relation between the derivatives becomes

D, (eapgt) . (Eapf;)
Dt T ot

+ v, - grad (eapl) (3.36)
where (2.27) is used. Hence, the balance equation (3.3) can be written as

Da (07 : y 1 Y y y y
% — vl - grad (eapl,) + div (eaplvl) = &, + &, (3.37)

Noting that the following identity is valid
div (eap,vy) = eapldiv (V1) + v, - grad (eapl,) (3.38)
Combining (3.36) and (3.37) gives

Dalearl) | oo
T + Eap‘édlv (Va) =e€,t+ cZz (339)

The summation of (3.39) yields the already derived condition for the « phase, i.e. (3.14).

4. Balance of linear momentum
The momentum balance for the jth constituent in phase « is the postulate

9 I = i I (v J

5 %eap-gvadv = -9 eapl vy (V) - ds) + a%tads (4.1)

+ / (caphalt )+, + v + vt ) do
%

where tJ is the stress tensor of jth constituent, g the body force, ’i‘{x is the net gain of
momentum for the jth component of the a-phase due to interactions with the other phases.
%], measures the gain of momentum for the jth component of the a-phase through interactions

with other species in the same phase
Using the divergence theorems

f apl Vi, (V, - ds) = / div (eapl, vy, ® v,) dv (4.2)
o R

and
]{ tlds = / div (eqt?,) dv (4.3)
IR »

one can write the local form (4.1) as
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9 (caPhv)

o = —div (eapv], ® V1) + div (eat?,) (4.4)

+6apgg£+’i‘i +# v+ &V

Partial differentiation of the left-hand side of (4.4) gives

0(eartvi) _ _;9(caph) 0(vh) _
= = Vi— S tearh—5 0 = (4.5)
0 (b, - Di, (v, o
Vﬁ% +5apé—l§:—')‘ - [grad (Vi)] v,

where the relation between the material and spatial derivatives, i.e. —59 Jl + [grad ()] v¥, is
used. Noting that the identity

div (eapd Vi, @ V1) = vidiv (eapl VL) + eapl, [grad (v4)] V2, (4.6)
holds, the momentum balance (4.4) can by (4.5) and (4.6) be written as
J ' e . .
Eqpl,—2—2L (v ) = v ii;p?i) +div (eqp?v)) — &, — &, (4.7)

+div (eat{;) + sapégg‘—l—’i‘fx + EZX

where it is concluded that the terms in the bracket cancels due to the balance of mass for the
jth constituent in phase «, i.e. see equation (3.3). The momentum balance reduces to

; D4 (V)

Eafl D= div (6at£) + eapz;gg‘-f-'i‘i + (4.8)

In the same manner one can show that the same condition for the phase « becomes

D, (Va)

Eapa Dt = le (sata) + Eapaga+ri‘a (49)

where T, is the net gain of momentum for the a-phase due to interaction with the other phases.
Summation of the constituent equation (4.8) i.e.

p N N
Zeap’ Zdlv eatj + ZfaPZx ‘|‘ZT£ +Zi{; (4.10)
j=1 j=1

should result in the postulate for the phase a, i.e. equation (4.9). The restriction imposed by
this fact will be examined. Consider first the definition of the so-called inner stress tensor

N .
=) i (4.11)
Jj=1
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The body force for the phase is, further, defined as

1 &
g =— gl (4.12)
po
From the above definitions the equation (4.10) can be written
) N N
Z Eap7 = div (eatia) + €apPuBat Z T + sz (4.13)
J=1 7j=1

Consider the arbitrary property 'y (x,t). Assume that the property for the constituents T can
be weighted as

N
1
T, = T = Z cird, (4.14)
Pa 55 =
The material time derivative of T, is by use of (4.14) written as
Do(Ta) Do (C31%) &, Da (M)  ,; Da(Cl)
prt = 4.
Dt ; Dt ];1 CO‘ Dt 1 Dt (4.15)

where also partial differentiation is performed. It has been shown earlier that the material time
derivative of the arbitrary property I, following the motion of the phase « and the property
following the motion of the constituent j in the « phase can be related through the diffu-

J 3
sion velocity for the jth constituent as: Da [()1; 8) _ D"[(,l:") = (grad I‘{,‘) ul,. Further, it has

been shown that the mass balance for the jth constituent in phase « can be expressed as:

Do (C . g ~d ~d I . . . .
EapaJDt—“z—l-dlv(eapruZx) = & + &), — Clé, where the concentration of jth constituent is

defined as: CJ, = p’/p,. From this it is concluded that (4.15) multiplied with e4p, can be
formulated as

N y j
oy Dalle) _ 6apaz<cz;D°‘ (%) | py D (Ca)> (a.16)

* Dt ; Dt Dt
j=1

N 2
5 (20 o o ) )

=1

N
+ > (-Tidiv (eaplul) + T4 (&), + &, — Ciéa))

Jj=

ey

Using the identity

div (eaplToul) = eapl, (grad TY) ul, + [ div (caplul) (4.17)
equation (4.16) takes the form
Do (Ts) & Dj, (1Y o
EaPoa— Dy = ; ( ) o ( 5) div (eapl,Tud) + T, (&), + &, — C’fxea)> (4.18)
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By identifying the arbitrary properties TV, and T, as: I, = vJ, and T, = v, equation (4.18)
gives
N
Da (2] y ~q ~q y ~
504;004%)' = E (ea;ﬂ ( &) —div (eapg,‘vJ ® uj) +v! (&, +¢é, - Céea)> (4.19)

Jj=1

Noting that the velocity of the jth constituent yg can be expressed by the diffusion velocity u?,
and the velocity of the o phase v, as: v, = v/, + v,, one can use equation (4.18) to establish
that

N
By =S Dcx (Vn Z (Eapé ‘D(:’J )) div Z Eap]au] ® uJ ) (420)

j=1 7j=1
N . N .
_divz (Eapflufx) X Ve + Z (é’; + &, — Cléq) w,
j=1 j=1

)=

(&1, + &, — Cléa) v
1

.
I

Using, further, the restriction for the diffusion velocities, i.e. Z;VZI plul = 0 and the relation
Z;V 1 &), = é, together with ZJ _,Ci =1and E L (8L + &), — Che,) = 0, that is (4.20) takes
the form

N . .
DL(vh)\ _ Da (Va j
—JZ:; <EQPQT> = —EQPQT leZ eaphul, ®ul) (4.21)
N
+Z (&, + &, — Cléa)ul
j=1

Combining (4.13) and (4.21) results in

D (Va) ' N N N By
eapa% = div eatla—;(sapgm@ua) +5apaga+;Tg+;zg(4.22)
N N .
+> &l + ) &l - Zp& uf,
j=1 j=1 i

where also G4 = pl,/p,, is used.
According to (4.22) the stress tensor for the o phase, t., takes the form

N N

Zt’ =3 (Pl @ul) = tia — Y (Phul, @ ul) (4.23)

j=1 j=1

where the definition of the inner stress tensor (4.11) is used. The second order tensor pf,uf, ® u,
is the so-called Reinholds stress tensor which is observed to be symmetric.
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The local form of the moment equation for the o phase is the postulate

Dy (va . .
Eapa% =div (Eata) + Eapaga+Ta (424)

By comparing (4.22) with (4.24) the following choice will be adopted
N N
ST +) el =T, (4.25)
and
N N
doH A+ dul =0 (4.26)

The relations (4.25) and (4.26) are the conditions that must be fulfilled in order to assure that
the momentum balance equations for the constituents and the phase are compatible.
The local postulate for momentum balance of the whole mixture is

% — div(t) + pg (4.27)
The summation of the phase equations, i.e.
R De (va) R R R
;EQPQT . o;dlv (eate) + Oglsapaga—i—o;Ta (4.28)

should result in the equation for the whole mixture. The condition for ’i‘a, i.e. the net gain of
momentum for the a-phase due to interaction with the other phases, must be

R R
Y Ta+ D Eaua=0 (4.29)
a=1 a=1

in order to fullfil this condition. The relation (4.29) can be derived in the same manner as the
relations for the constituents within phases, see equations (4.25) and (4.26).

5. Balance of angular momentum for the mixture

The angular momentum is usually used only to show that the stress tensor for a single constituent
material must be symmetric. This derivation will be performed in this section.
The postulate for angular momentum is

2/ (xxpv)dv = —]{ XX pv (v-ds) —i—]{ x X Tds+/ xxpgdv (5.1)
ot Jn o o ®
where x is an arbitrary place. The divergence theorem gives
?{ xxpv (v-ds) = / div(p(x x v) ® v) dv (5.2)
oR ®
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and

j{ xdes=/div(x><T)dv
o R

which means that the local form of the angular momentum is

&X(;V—p) = —div(p(x x v) ® v) + div (x x T) +xxpg
This equation will now be simplified further. Consider the identity
D exve) = xn P 20
= o) 24 p P fgrad (ex vl
GHGEE or or
o7 (0 0) = 57 (0t) + [grad D (x, 8)] v (x, )

is used with I' = x x v, i.e.

D (x xv) =8(x><v)

T it [grad (x x v)]v

Equations (5.4) and (5.5) combines to yield

(xxv)@-f-pD(x—xv) = plerad (x x X)] %

ot Dt
~div (p (x X %) ® %)
+div (x x T) +xxpg

The first term on the right hand side of (5.4) is rewritten with the identity
div(p(xxv)®@v) = (xxv)div(pv) + plgrad (x x v)]v

Combining (5.8) and (5.9) to yield

(xxv)6_p+pD(x><v)

ot Dt = plgrad (x x v)]v — (x x v) div(pv)

—plgrad (x x v)] v
+div (x x T') +xx pg
ie.
D (x xv)
Dt
This equation is further rearranged to yield

(xxv)%-}-p — (x x v) div(pv) + div (x x T) +xxpg

(x xVv) <%§ + div (pv)> + p_D()lc)—:v) =div (x x T) + xxpg
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(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)



The balance of mass for the whole mixture is

ap
ot

And due to this the balance of angular momentum reduces to

+div(pv) =0 (5.13)

pD(xxv)

=di .14
D div (x x T) +xxpg (5.14)

This equation will be analyzed further to show that the stress tensor T is symmetric,
Consider the identity

p_D{xT?v)_ =pxx2D(tL) (5.15)

and also the identity

div (x x T) = =xxdiv (T) (5.16)
+ (Ts2 — Tog) i1 + (Ths — Ts1) iz + (To1 — T12) i3

The verification of this identity will be left to the reader. Combining (5.15) and (5.16) with
(5.14) yields

pxx% = xxdiv (T) (5.17)
+ (T2 — Tos) i1 + (Ths — Ts1) iz + (T21 — Ti2) i3 + xXxpb

Rearrangement of this equation gives

XX (p%;’) —div (T) . pb) = (T32 - T23) i1 (518)
+ (Ths — Ts1) iz 4+ (Ton — Th2) i3
Due to the linear balance of momentum, i.e.

L)

i div (T)—pb=0 (5.19)

Equation (5.18) simplifies to
0= (T3 - T23) i+ (T13 - T31) ig+ (Th — Tyo)is (5.20)
Using the rectangular base vectors iy = [ 1 00 ]T, ip = [ 0 10 ]T, i3 = [ 0 01 ]T

one obtain
0 T3p — T3
0 |=| Twis—Tm

0 151 —Tha

(5.21)
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from equation (5.20). That is, the stress tensor

T Tie Tis
T=| Tn T T (5.22)
T31 T3 T33

is symmetric. This fact can be illustrated by writing T35 = T3, Tis = T31 and Tpy = Ty or
equally
T=T" (5.23)
Cauchy’s laws of motion is simply the linear momentum equation (??) together with the
fact that the stress tensor is symmetric which was shown by using the postulate of angular
momentum (5.14), compare previous sections. That is

D(v)
Dt

This, further implies that the stress tenors for the constituents indeed can be unsymmetrical.

=divT +pg; and T=T7T (5.24)

6. Energy balance

The energy balance postulate for the jth constituent in the o-phase is

gt/eapé <El (Uj)z) dv = —7{ Eapl, ( (v3)2> vl - ds (6.1)

o (3] — o) - ds
®

(6apf;r£+sapf;vf; . g’a) dv

_|_

Q%e\

+

+ [ (vi- (Tg+ag))dv

(
+ (@g n Eg;) dv
+/meg; (BL+3 (1)) o
+/§Ra~g (B +4 (1)) av
where E! is the internal energy density for the jth constituent in phase a, g is the heat flux

vector for jth constituent, EJ is the heat supply to jth constituent from all other constituents
in phase «, Qfl is the heat supply to jth constituent from other phases than «, 4, is the external

heat source and ('ug‘)2 =vi, v,
Using the divergence theorem on the term on the left-hand side of (6.1), i.e

j{ €0l ( 1 )2) vl .ds= /mdiv (sapf; (E; +1 (vé)z) va) dv (6.2)
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and on the first term on the right-hand side of (6.1), as

% ga (tLvE, — ) - ds -——/ div (ea (t3,v%, — of,)) dv (6.3)

o% ®

the energy balance for the constituents (6.1) can by (6.2) and (6.3) be brought to the local form
0 el (E L (vl )2) = iy (eap; (EJ 1 (o, )2) vg) (6.4)

+div (eq (tflvfl — qa))

+ealhrhealiVl, - 8

v, (Th+ ) + Qi+ B
+24, (BL+3 0d)')

+& (EJ + 1 (v, )2)

Partial differentiation of the term on left-hand side of (6.4) gives

o (Bi+300)7) = (mi+i o)) Lo 65)
d(E: + v )2
+ (card) ( = 2 (%) )

Further, partial differentiation of first term on right-hand side of (6.4) gives
div (F;ap{x (E}; 1 (vl )2) vg) - (Eg +1 (vg)z) div (eaphvi) (6.6)
+grad (EI (’UJ ) ) - Eapl v,
By using the relation between material derivative and spatial derivative, i.e. —(—ED&DI;Z‘ — _ﬁ_la ; 5’ =
(grad T%,) v4,, with TY, = EX, + 1 (v}, )2 one obtain

Dj, (EL ; ! (vh)°) 9 (E +8t L (1) ) N [grad (Eg+%(vé)2)] i 6.7)

By multiplying (6.7) with 407, and eliminating the term grad (E}I +3 (fugx)z) €qpl vy, in (6.6),
yields
div (sapfx (E’ 3 (v )2) vi) = (Ezz +1 (vfx)z) div (eap?, Vi) (6.8)
D3, (Ei+ 4 (v4)°)
teapa Dt

8 (Bi+4 (v1)")

~cafl ot
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. . . . e eap”,; . Ty <
Consider next the mass balance for the 7th component in phase «, i.e.: JC,,T2-|—d1v(e:apg‘v£¥) e
&J + ¢&,, multiplied with (Eﬁx +1 (vg)z), ie.

(oW

(E; +1 (vfx)z) QM = = (E& +3 (vf!)2> iv (eaplvy,) (6.9)

ot

By eliminating the term: (E; + 3 (vfx)2> div(eqpl,v4,) in (6.8) and (6.9), one obtain

. (E,’I+ % (v&)z) 8_(55;_97«1) (6.10)
+eapf;8 (= +8t% )
v (e, (B2 +§ 02)") i)
—Eap), & (Eé ;;t% (”gx)z)
- (Bi+3 ))&
- (B4 02)") &

Combining (6.10) and (6.5) the result is

D etk (B3 (4)") = —div (capd, (Bat } (2)°) Vi) (6.11)
g L (yi)?
+€ap£Da (Ea ;E (v1) )

+ (B + 1 00)) 2
+(Ph+1()) e
Combining, further, (6.11) with the energy balance equation (6.4) one obtain

Di, (B + 3% (vd)° o
Eapl. ( Dt2( ) ) = div(ea (v —ol)) (6.12)
teaphriteapl Vi - gl
+vi - (Th+8) + QL+ B
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Since the following identity

) .
DL (3(0)") , pi(vi) 1
Dt SR (6.13)
and
div (eat? Vi) = 7, -div(eatd) + eat?, - gradvy, (6.14)

= vl -div (eatd) + tr (cats’dl)

holds, where d/, =gradv/, is the velocity gradient, the equation (6.12) can be brought to the
form

Eapl—22L (E ) - & (eaty’dl) — div (ead),) (6.15)
J
v, . (div (eatg) +gleap? + (’i‘Ja + ifx) — Eap, (v )>
+eaplry, + Q + EY,

Due to the equation for the momentum balance: sapgﬂ*[)‘;—z"z =div(eqt]) + caplgl +T0 4+ 1,
i.e. equation (4.8), the third term on the right-hand side of (6.15) cancels, i.e.

gap{)‘ (E ) =tr (eatzjdi) —div (ané) + Eap‘zfg + Qfx + Ei (6.16)

which is the local form of the energy balance (6.1).
Consider next the postulate for the phases building up the whole mixture, which can be

written

9 /%sapa (Ea +3 (va)z) dv = — }({m EaPo (Ea +1 (va)2> Vo, - ds (6.17)

ot
+7{ €a (taVe — Qo) - ds
R

N
+/ 6apara+Zeavag-g£ dv
®

=1

+/%(va-’i‘a+62a) dv
+/méa (Ea + % (va)2) dv

According to the same procedure used to obtain the local statement (4.24) for the constituents
in phase «, one obtain the local version of the whole phase, as
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D (Ea+ % (va)?) _
EaPa i = div(ea (taVa — da)) (6.18)

N
teaPaTat Y EaplVh - 8l
j=1
+vy - Ta =+ Qa
The following definitions for the external heat 7, and the inner internal heat density Eio of
the phase o will be adopted

1 & il
ra=—> phrh; Eia=—) pLE]; (6.19)
o .7=1 pa ]=1

where the internal heat density E, is related to the inner internal heat density Fi, by the
diffusion velocity, as

N
1 i 52
Ea == EIa + 2_100: ;p&’ng (620)
The inner heat flux vector qi,, is defined as
N . “ . . .
e = 3 (o — 657, + oL ) (6.21)
j=1

where the heat flux vector q, is given by
N
Qo = dra + 3 Y pLuilnd, (6.22)
]
Another quantity k., which is related to the heat flux, will also be introduced:

ko

> (d + pLEL) (6.23)

J=1

N

T

= qiat E t'zx u'zx
Jj=1

N
= aa— D _rh (-6 /ph+ JulT) vl
j=1

N

where the definitions (6.21) and (6.22) are used.
Consider the identities valid for the terms in (6.18), the left-hand side can be written as

Do(Bat3@e)  DuBa) Dald(vava)
€alPo Dt = EafPqy Dt €aPa Dt

(6.24)
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Partial derivative of the last term in (6.24) makes it possible to re-write the expression to yield

2
D, (Ea+%(va) ) B Do (Es) ey, Da (Vo)
€ala Dt = taPaT EaloVe '

(6.25)

Using the definition of the diffusion velocity wj, i.e. u), = vJ — v, the third term on the
right-hand side of (6.18) can be written

N N
> cupivi g = D earh (vt va) 8 (6.26)
=1 =i

N
. Z ngga Va+5az pzjx

=1

Using the definition of the body force g, = pl E;V=1 plgl,, expression (6.26) becomes

N N
> eap Vi 8l = CapaBa Vatea Y (Phul) - &L (6.27)
=1 j=1
The term div(eq (taVa)) in (6.18) can be written as
div (6o (taVa)) = Vo - div (€ate) + atr (tads) (6.28)

where partial differentiation is used and where d,, =gradv,.
Using the identities (6.27) and (6.28) in (6.18) one obtain

empa% Vo - div (€ata) + att (tads) — div (€09a) (6.29)
N
+eaPalatEaPaBe Vo +Ea ¥ (PAUL) - &
j=1
-~ A Da a4
+vo To+ Qo —€apaVa lg: )

By collecting terms including v, the expression (6.29) becomes

Do (E,)

o BB~ et - aivieaa) 6
N
tea Y (PL0L) - 8L + Qo+ apoTa
=1
D, (vy . T
—Vg <8apa-%)- —div (Eatot) —EafPuBa — Ta)
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Noting that the momentum balance for the a-phase is: zsapc,t———ét—2 =div(eqta) + sapaga-i-Ta,
i.e. see equation (4.24), the local form of the energy balance for the phase a becomes

Do (Ea)

eapa% = gutr (tads) — div(caqa) (6.31)
N
tea Y (hul) - gl + Qo+ €apaTa
=1

Next the condition of the heat supply term Qo will be examined.
Consider equation (6.20) written as

D.(E.) D, Ela paiDa (Ciuf?)

7=1
where Cp,, = pJ, is used. According to equation (4.18) one can establish that
Eapy—2ml (F Z < apl T2 ( %) div (eapf,Toul) + 1Y, (&), + &, — ogéa)) (6.33)
with T4, = —uJ2 and observing that Ty, is the mass density weighted value of I}, i.e. Ty =

cy l'tﬂ2 one obtaln

N N
capa 3 f ) OWZ Z(E «

Jj=1 J=1

DJ uﬂ)

l\')lr—i
wln—l

—div (Eapg‘%u’;?u{!)) (6.34)

N
—|—Z uJ2 &+ - 764))
j=1
Noting also that - R o
Df (uf?) _ D (vh-wi) , , Di(uh)
Dt Dt a Dt
is valid, one can write (6.34), as

(6.35)

J

€afyo Z S RE=va— C] u32 Z (Eapfxu ( a) — div (sapfx ul2ud )) (6.36)

j=1

[

N

+2_ (3ul (& + & — Cita))
Jj=1
.. Di(u] . . : : .
The term eqp?ul, - "Dl:" in (6.36) can further be written, using uj, = v, — v, to obtain

Zeap;u Do) Zea,}gu ( ("JJ ~ D%;’”) (6.37)
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Following the relation: L J—l = (grad Ty)ud, ie. equation (2.29), with —J—)— =
2%‘;—“2, the equation (6.37) becomes

N . DI (uj) N o Di (vj) 5 (v) |
g 1o\ Selly i [Dh(vE) Da(va) ;
;sapﬁua Dt ;sam’xua Dt D (grad vo)ul, | (6.38)

Y i (DL(vL) Da(va) .
= J . @ o) LYoa\Va) 3
- ;eam@ua ( i . d,u/,

The term E;\le eapid, - (daud) can, further, be identified as

N
Zeapfxu’ d u’) = Za(a)pia)uza)l . d(a)lmufa)m (6.39)
j=1
N . .
= tr Z%da (ul, ® ul,)
=1

From equations (6.39), (6.38) and (6.36) it is concluded that

sapazz C“ﬂ) = Zeapaua (L) (6.40)

Due to the condition Ej\;l (plul) =0, ie. equation (2.17), it is concluded that the second
term on the right-hand cancels.
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Consider next equation (6.31) written as

faPa™ Dy 2 Dt

N 1492 al
]:1

i=1

~div | €o | A1a + 3 ZP’ ulw,

J=1
N

+5a P}’;(uj ) gf; + Qa RN

j=1

where the definitions (6.32), (4.23) and (6.22) is used. Combining (6.41) with (6.40), using the

condition Z;vzl (piud,) =0, yields

D, (F1a)

T Eatt (t1ade) — div (64910)

+EapPola + Qa
N

_Zsau{x'< (e ( )—p{xga>
J=1

N

= (34l (& + & — Cleéa))
j=1

(6.42)

Con31der1ng the term tr(tind,) which can be introduced by the following identities by using the

relation: uJ = vJ — Vg, 1.€.

trZ (627d2) =
j=1

(7T gradvy,) = tr

!
E%z
.Mz

.
Il

-
1l

A

J

N N
= ftr Z (t7Tgradu?) + trZ (77 da)
Jj=1 j=1
N
= tr Z (t77 gradul) + tr (trada)
j=1
Further the following holds
N N N
tr Z (tiTgradul) = Z (tTud) — Zu{x - divt?,
i=1 =1 =
That is, equation (6.43) can be written
N N N
tr Y (657 dd) =divy (¢2Tul) — > ud, - dived + tr (b1ada)
j=1 j:l =
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(tJTgrad (uJa + va))

(6.43)

(6.44)
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The derived equations (6.42) and (6.45) combines to yield

Do (Bra) tri t/Td7) — di Z (t7Tud) (6.46)
EaPa Di =l [Eh, 2 v .

+eapuTa + Qa —div (anla)

o (et 20 g -
= - | eaph =2 —eaplglh + eadivt], | -
7j=1

Mz

qu eJ -I—c7 Cjea))
_7:1

Usmg the momentum balance for the jth component, i.e. €4p?, —i—z =div (z—:atJ )+ea p&ga+T +

#2, i.e. equation (4.8), and the definition of k, i.e. ko= qg,, + ZFI t/Tu,, see equation (6.23),
one obtain
N

= gutr Z (tiTd7) — div (eaka) (6.47)
j=1

+6a,0a7"a + Qa

N

——Zuf; . (’i‘fx +ifx) :
i=1
N

=3 (3ul? (&4 + &, ~ Cléa))
j=1

The balance principle for the constituents within the a-phase must be consistent with the equa-
tion for the whole phase. Consider, therefore, the sum of the equations of (6.16), i.e.

Da (EIa)
Eapa Dt

’L

N
€a Z p’ Z tr (e otTidl) — Z div (ang,) (6.48)

+eabaTo + ZQ’ + ZEJ

J=1
The term e, Z;\;l %M in (6.48) can be written as

EQZM Ba) = eapaD (EI"‘ +Zd1v eap7E 2 (6.49)

+E, (&, +&, - Cfxea)

Using the relation:

N pi (T o S .
caps 22 T) _ 5~ (m D2 08) _ v cuphThd) + T3 (8 +8 - Cééc»)

j=
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that is equation (4.18), with ', = EZ.
Combining (6.48) and (6.49) results in the expression

D, (Ei) Al el -
sapa——DtI— - ;tr (eatgjdfx) - j;dlv (eaq”a) (6.50)

N N
+eapaTat y QL+ D B
=1 =1
N
- Z div (eapl ELu,)
7j=1

~E;, (&, + ¢l — Cléa)
Using, further, equation (6.23) i.e. ko = Z;V=1 (of, + p3,EZud)) in (6.50), one obtain

Do, (Ef’a) _ d Tj 14 N .
Cala™pr = j};tr (Eata &) - ;dw (eaka) (6.51)

N N
+eapPoTa + Z Qé‘ + ZE&
J=1 j=1

—E;, (&), + &, — Cléa)

A direct comparison between (6.51) and (6.47) gives the condition

N
S (@4 + By - (T4 +8) + (6 + 8 — Clea) (3ul? + BL) ) = Qa (6.52)
j=1
which is the proper expression that must be fulfilled in order to assure that the phase equations

to be compatible with the equations of the constituents within the phase.
In the same manner one can establish that the following condition

R
> (Qut e Tat o (3ud + Ba) ) = 0 (6.53)

=1

should hold when comparing the phase equations with the whole mixture.
Combining (6.52) and (6.53) yields

R N R
Ny (c}z; + B+, (Tg, +ag;) + (&, +8, - Clea) (3ul? +E;)) =) Qo (6.54)
a=1j=1 o
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We shall later need the expression for 3% Z;\;l (Qfx + Eg) which becomes

N’
I
|
NE
M=
Qz“

R

1
-
.

Il
—

R N
>0 (Q’ (TJ +i”> (6.55)

=1

|
[1]=
=
~_
>
ph
_|_
Y
f
Q
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~—
BN
:u
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Q
Il
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1
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|
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Qms
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Il
it
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Il
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7. Second axiom of thermodynamics

A form of the second axiom of thermodynamics in which all constituents and phases has the
same temperature will be considered. One postulate for the phase o is

3} ?{ y{ (aa )
sa oMV > — €aPolaVa - d5 — . 7.1
5 | EaPal ) Ealall MZ (7.1)
+/ EaZpg"r(jldv
® 4

where 7),, is the entropy density for phase a, hY, is the entropy flux vector for the jth constituent
in a-phase, not necessarily equal to the heat flux vector and T is the absolute temperature.
The the entropy density for a-phase 7, is defined to be related to the entropy density of

constituents in phase, as
=—ZP’%_Z (7.2)
(=3 J =1
Using the divergence theorem on the first term on the right-hand side of (7.1), i.e

f EaPolloVa * dS :/ div (€apuaVe) dv (7.3)
oR ®

and on the second term on the right-hand side of (7.1), as

foo 3 (F) w [ (2 () » ns

j=1 j=1
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the local form corresponding to equation (7.1), becomes

8 (eapPalle) _ [ [eahd
———lo o~ — o .
p” > —div(eapafaVe) — div ; T (7.5)
N . .
TEa Z pLTY
j=1
Consider the identity
div (eapafaVe) = Nadiv (€apaVa) + EapoVa-gradn, (7.6)
and also the partial derivative
8 (6O£pa77a) _ 8,’7(1 asapa
ot PaTp Tyt 7
Combining (7.5), (7.6) and (7.7), one obtain
N Beata | giy (PaVa) —€a) = —sapa-% ~ EaPoVargradn, (7.8)
ot ot
R4 (52) ) += 3 et = (@)

The balance of mass for the a-phase is: ﬂ%‘T‘Oﬂleriv(zsapava) = é4, which means that (7.8)
reduces to the form

9 N, /e hi N
copa e 2 ~apavarmradiy —div | 3 (52 ) | 4 Yok = (@an))  (19)
j=1

=1

Expressing the inequality (7.9) in terms of the material time derivative using the relation: %} =
v-gradly + %Ft“, with I'p, =1,

Da"?a _ a’f]a
D = v-gradn, + 5t (7.10)
is yielded. That is the corresponding version of (7.9) is
N ; N
Dan . h! w N
[ = > — @ r o e (e 1
cota g 2 v | 20 (3))+ > ek = (eona) (r.11)

Another postulate for entropy for the phase «, than equation (7.1), will be considered in
order to examine the meaning of the property h’,. This postulate is

), fuoedorinotie= 57 (55%)

— | €aponadv = — o Il vy - ds — —= | :ds 7.12

31 |, SaPa B ;p’n 8%; N (7.12)
N

+/ eaZpng!dv
® i
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Performing the divergence theorem on the surface integrals, gives

7=1

N
?{ caplmi vl - ds :/ div (sa Zp&nflvfx dv (7.13)
o R

and

fém o i (%) ds z/mdiv €a i (%) dv (7.14)

j=1 j=1

By using the definition vJ, = v, +u, and p,n, = Z;v=1 plnd the term on the right-hand side
of (7.13) can be written as

N

N
div | &4 Z pinivi | = div (€apaaVe) +div | eq Z Pl (7.15)
j=1 j=1

That is the expressions (7.13), (7.14) and (7.15) makes it possible to write (7.12) in its local
form

N
mLaptani)' > —div(eapaNaVe) — div (6a J;pjanguﬂy> (7.16)
—div | £q (—3>
=1 1
N
+€a Z phr,
i=1
The partial differentiations
div (€apafaVe) = NediV (EapaVa) + EapPuVa-gradn, (7.17)
and
O(Eapoﬂla) —c _% e 8Eapo¢ (7 18)
ot aPegy T 5t '

will be used. Further, consider the relation between the material derivative and spatial deriva-
tives of the entropy deunsity, i.e.

Dana _ 877(1
o = vq-gradn, + Bt (7.19)
Combining (7.18) and (7.19), yields
@ D, aPa
O(eapalta) _, , Dalla _, o oragy 1y %P (7.20)

ot TTele Dt ot
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The expressions (7.17) and (7.20) gives together with (7.16) the inequality

D, o ~
i > N (d Pa + div (Euﬁa“'a) — 6a> (721)

cePe"Dt at
N N i
. PG . q}’:g
—div | €a E platal, | —div | eq E T
7=l J=1 '

N
tea D Phrd — ((Bana))
i=1

where term é,7, — €47, = 0 has been added to the expression. This makes it possible to use
the mass balance equation for the a-phase, i.e. BLgtE“+div(ea PoVa) —€q = 0, in order to reduce
equation (7.21) to

N 3
Dan, . o
€aPa BZ > —div 6aj§=1 (pgnaum%) (7.22)

N N .
TEa ZPZJ"& — ((Bans))

=1

A direct comparison between (7.11) and (7.22) immediately validates that the entropy flux hi,
is related to the heat flux ¢?,, as
n, =g + plnd, T, (7.23)
The entropy inequality, such as equation (7.22), is often combined with the energy equation
in order to obtain a more physical intuitive and instructive version of the second axiom of
thermodynamics. Consider first the inequality (7.22) re-written in terms of the material time
derivative of i, following the motion of the jth constituent instead of the phase motion. The
relation between the time derivatives can be expressed as

Do(Ts) & I o
Caba—pr " = ; (504!731 5 (Te) div (eapfT4ul) + 1Y, (&), + &, — Cg‘ea)> (7.24)
which is equation (4.18) repeated. With I'y, = 7, one obtain
Datn) ( SDLOR) ot s s ds
€a9a$ = ;::1 (Eapfx# — div (eaplmlul) + 7l (8, + &, — C’era)> (7.25)

Combining (7.22) and (7.25) yields the inequality

N

0 < e, Z p7 + div | eq Z ‘fj (7.26)

N
—sazp;r + 37 (8 + &, — Clea) + ((eama)

Jj=1
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This expression is multiplied with the temperature T, i.e.

J N j
0 < Te Zp; (")+wa eaz% (7.27)

1=1
_TEOt Zp{y + ZTna A?y =g — ngéa) + ((éOtTna))
j=1

The second term on the right-hand side of (7.27) can be re-written by using the partial derivative

. To j j
div (eaq’,) = div <aa ;a> = Tdiv (%%) + ea% -grad (T) (7.28)

The equations (7.27) and (7.28) gives

N

N .
0<T6a2p7 ( &) + div sanf; —eaz%if‘ ~grad (T') (7.29)
=1

j=1
~Teq sz;rz; + ZTnf; (&, + &, — Cléa) + ((6aTna))
Jj=1 =1

The local energy balance equation for the jth component in the a-phase is

J 4 . »
eopl 220l Da (E ) _ = tr (eqtL?dl) — div (ead) + aplrd, + Q) + F, (7.30)

which is (6.16) repeated. Summation of the energy balance equations for all N constituents
building up the a-phase is expressed as

N

N
?az - L €a tTﬂ'dg> + =div <ea2qa) (7.31)

Jj=1 7j=1

"
il
Z (Q£+Eﬁ;) Zp’

=1

l

.

in which the whole equation has been divided by the temperature T. The inequality (7.29)
divided by the temperature T is

0<eq Zp’ + d1v (ea an —€a Z T2 -grad (T') (7.32)

=1 J=1

—a Zp{wé + Z Tnf, (&, + &, — Cléa) + ((eaTna))

=1 j=1
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Combining the expressions (7.31) and (7.32) yields an alternative version of the inequality (7.22),

ie.

N i (g N P ;
; DY, (% o : D, (B, &
60(2/731 a(n ) _ € Zp};x ( ) Zea%-grad(T)

Summing the equation (7.33) over all phases building up the whole mixture gives

] o é Ea i 3 E& & g
Sy il o5 2y a2 5 S S @)

a=1 j=1 a=1 7j=1 a=1 J=1

a=1j7=1
N R
=Tl (&L + &, — Chéa) — (O 2aTna))
j=1 a=1

The expression for 337 Z;V=1 (Qfx + ng) in (6.55), i.e.

R N
~3 3w (Tl i)

Il

R N N .
23 (%2

Jj=1 a=1 j=1
R N
N s\ 1,32
D RICET LRI
a=1j=1
R N
=2 > (h+ & - Cles) B
a=1j=1
R R
0 5 (1,2
— g u, Ty — E éa (§Ua+Ea)
a=1 a=1
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can be combined with the inequality (7.34), yielding

R N _ i i R N i i E,‘
ZEQZ%T%—ZEQZ@%z (7.36)
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It is most often convenient to express the entropy inequality in other variables than the
internal energy E!. Here the Helmholtz free energy will be adopted Ay,. The Helmholtz free
energy is related to the internal energy, temperature and entropy with the following definition

Al =B —Tnl, (7.37)

Partial differentiation of the Helmholtz free energy gives

D (As) _ D (Ba) L Di(m) _ ; DL(T)
Dt - Dt T Dt "D (7.38)
where A?, is related to A, with the definition
A N
Ay = o > AL =) CLAL (7.39)
o j=1 j=1

The term of interest in the inequality (7.36) therefore can be written

Di (i) Di(B.) _ Di(AL) _ ;Di(T)
'=bt ~~—Dr - Dt ™D (7.40)
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Using the definition (7.36) and (7.40), the inequality (7.36) can be expressed as

N .
AZ . DI (T
faZ< ( ) |y DL )>>>
a= 7=1
N o
6042% grad (T

(QT

1
N
ea Y tiidd
Jj=1 )
R
N
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1j5=1 a=1
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in which the internal energy E in (7.36) is replaced by the Helmholtz free energy At

Consider next the equation (2.29) with I', =T, i.e.

DI (T) _ Da(T)

Ry
Dt~ Di +grad(T) - u

(7.41)

(7.42)

Multiplying the whole expression (7.42) with p?n/, and summing over all N constituents in the

a-phase, gives

Z L “(T —panaDD(tT) +Zp£nagrad (T) -}

The definition of the entropy flux h?, will also be used, i.e. equation (7.23) is
b, = o, + phof T,

A summation of (7.44) is
an =h, — ZP&’?J Tuj

where it is noted that Zj\;l hJ, = h,. Multiplying (7.45) with grad(T') /T gives

N
an grad (T) /T =h, - grad (T") /T — Z Pt - grad (T)

7j=1
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Combining (7.43) and (7.46), further, results in that the inequality (7.41) can be written as

(AL &
- Z Z ( )> - Zsapana—Dj)iT) > (7.47)
a=1 a=1
Zaah -grad (T) /T — tr (Z ZtTJdJ>
a=1 a=
R
+ZZ e’+c7 C’ea)% Z”a%ui
a=1 j=1 a=1
R J R
+ Z éaFy + Z eaAa
a=1 =1
R
+ZZu{;- (Th+8) + Y ua-Ta
a=1j=1 a=1
R JN
+DI DT (@ + 8, - Cléa) AL
a=1j=1
Consider next equation (4.18) with T', = A%, which gives
R N
zz carh D) LSS A (o8~ e = zeapaD «lda) (1)
a=1g

a=1j= =1
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The inequality (7.47) combined with (7.48) yields

R
- Z EaPoa™ 1; - (A ) Z €alPolla DOfD(tT) 2 (749)

a=1

ZEO‘ o grad (T) /T
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which is the version of second axiom of thermodynamics for the whole mixture expressed with
the material time derivatives following the motion of the a-phase. The inequality, such as (7.49),
is used when deriving constitutive equations. It is, however, of interest to make some further
manipulations.

Consider the term Y, Z;V=1 [eatr (£17d%)] in the inequality (7.49). By combining the
equations (2.21) and (2.23) it is clear that Z;V=1 gl.dJ, can be written as

N N
Zsﬂd{; =eqdy + Z el gradu’ (7.50)
Jj=1 Jj=1
Hence, one also obtains
R N R
Z Z tred, dt7, = Z treqade Z t, + Z tred gradul t?, (7.51)
a=1j=1 a=1 j=1 j=1

which is the trace of equation (7.50). The term S5_, (trsad EJ 1 a) in (7.51) can by aid of
(4.23) be written as

R N R N
Z tre,do th" Z treqde | ta + Zp&u{l ® uf; (7.52)

a=1 j=1 j=1
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The term Z;\;ltreflgraduf;tg in (7.51) can be written

N

R
Z Z trsagraduJ t/ ) Z Ea Z tr graduJ 1:J (7.53)

a=1 \j=1

That is, (7.51), (7.52) and (7.53) combined, yields

R N R N
YN treaditd, = ) (treada (t,, + Z plul @ u{,)) (7.54)

a=1 j=1 a=1

+ Z o Z tr g;rauduJ t’

Noting, also, that the following identity holds

R N
Z div Z el p? Al ud, Z Z gl pl Al diva?, (7.55)
a=1 j=1

a=1j=1
N

+ Z Z:uf1 -grad (,pf, AL)

a=l,s j=1

which is obtained by taking partial derivatives. Further the first term on the right-hand side of
(7.55) can be re-written by the identity

R N R N

Z ZeapLAgdivug = Z Ea Ztr (gradud, (pL ALT)) (7.56)

a=]1 j=1 a=1 j=1

i.e. the expression (7.55) can be formulated as

R N

Zdlv (Zs pLAIL u”) Z Ea Ztr gradul (o7, A7T)) (7.57)
e w
ZZ - grad sjpfl )
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The expressions (7.54) and (7.57) is used in the inequality (7.49), i.e

R Da(Ad) & Da (T
- agl Eapa_% - ;Eapana D(t ) 2 (758)
R
> eahq - grad (T) /T
a=1
R N
— Z treqda | ta + szxu{z & uf‘1
a=1 7=1
R N
— Z Ea Z tr graduJ tJ
=1 j=
+ZZ(§£+(}£— uJ2+Zeazua+Zea -
a=1j5=1 a=1
R JN R
33w (T )+ ) we- Ta
a=1j=1 a=1
+ Z Ea Ztr (gradu (pf,ALT)) + Z Z ul, - grad (e, 03, A%,)
a=1 7=1 a=1j=1

Collecting terms including tr (gradufl) and w/, simply gives

R

D, (Aa) D, (T)
— > R
az_:l €aPq az::l €aPalla Dt = (7 59)
R
> eahe - grad (T) /T
a=1
R
— Z treqady | ta + Zp&uﬂ ® uJ
a=1
R N

— Z Ea Z tr (gradu (t7, — pf, ALT))
a=1 J=1

R N R
+ZZuﬁ-grad (e&p&A{x—l—Tg‘+iJa> —i—Zua‘Ta

a=1j=1 a=1
R N R R
A 4 ad s\ 1. 52 A 1.2 A
+ E E (&, +¢& - Cléa) sull + E €agzly + E éaAu
a=1 j=1 a=1 a=1

Finally consider the meaning of h,, expressed in terms of the Helmholtz free energy AY. The
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definition of the heat flux q, in the a-phase is

N
Qo= 3 (ol — 7+ B + Blodud) (7.60)
=1

which is obtained by combining (6.21) and (6.22). The heat flux ¢, is related to ha, as
N N
S =ha — S P T (7.61)
j=1 =1

i.e. compare with equation (7.23). The equations (7.60) and (7.61) gives the proper expression
for h,, i.e.

N N N N
ho =dqa+ Y 85wl + ) phniTul, =Y phELw + 5 ) phullul, (7.62)
j=1 j=1 j=1 i=1

This equation reduces when using the definition of the Helmholtz free energy, i.e. A%, = E' —Tn7,,
and one obtain
N N o N
he =qo+ Y thTul, =Y pl Al + 3 plullul, (7.63)
j=1 i=1 i=1

which is the proper identification of the entropy flux included in the inequality (7.59).

8. General principles for developing constitutive relations

Here different theories will be discussed how to develop stringent physical assumptions concern-
ing material behavior for different material. However, the assumptions involved in determining
the material behavior for fluids will serve as an important example.

8.1. Introductory remarks

In developing constitutive relations several powerful theories can be adopted to make sure that
nothing unphysical sneaks into the model. Here some of the different approaches will be dis-
cussed.

In order, to understand these classical continuum approaches the concept of tensors must be
deal with. A brief discussion of the subject will be performed.

8.2. Vectors, first order Cartesian tensors

A vector is a ‘geometrical’ object representing physical properties such as displacements w,
velocities %, accelerations X, forces, momentum etc..

The characteristic properties of a vector is that one must specify a direction and, furthermore,
one must use the parallelogram law when the sum of two vectors is to be computed. That is
if two vectors r and s are represented by a direction and length by two ‘arrows’ in a Cartesian
coordinate system, then these vectors are ‘moved’ in its corresponding directions so that its
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origins coincide and so that its sides is the sides in a parallelogram. The diagonal in this
parallelogram (from corner to corner) is the sum of the vectors r and s. This means, in general,
that this new vector has an new direction and length..

Another important property of vectors is that the length, e.g. |r| and |s| remains the same
if another origo and directions of axis is used to describe the vectors r and s. In other words,
|r| and |s| remains the same irrespectively of which Cartesian coordinate system one happens to
choose to represent the vectors. Indeed, the length of a vector is independent of any introduced
coordinate system such as cylindrical or curve linear systems and also independent of transfor-
mations between such different systems, here the traditional Cartesian coordinate system will
be considered by simplicity, without losing the generality of the concept of vector properties.

A Cartesian vector can also be seen as an ‘arrows’ between two points in (a rectangular)
space, say a and b, and the corresponding vector is then written as ab. It seems intuitively correct
that this ‘arrow’ between two points is physically independent of which coordinate system one
happens to used since the two points a and b can easily be described (represented) in different
types of coordinate systems and therefore summation of different vectors in such coordinate
systems can also be defined.

We now starts to reach the physical relevance for the introduction of so-called first order
tensors. Above the phrase ‘physically independent’ was used, this means, loosely speaking,
that a physical event such as acceleration of a body in space, do not care about any coordinate
system which has been introduce (by someone to relate the numerical value of this acceleration).
Naturally, we often want to relate a physical phenomenon to a certain coordinate system, but
indeed, from a purely physical point of view is seem unnecessary to even specify a coordinate
system since the physical events that we which to study acts independently of them. The so-
called tensors is introduced without any attention to any special coordinate system. However,
for example, the first order tensor (a vector) includes three pieces of information corresponding
to directions in space (not necessary three perpendicular Cartesian axis z1, 2 and z3), this
mean that a first order tensor can be bound to a coordinate system whenever one which to do
so. When, for example, describing the physical balance laws, e.g. balance of energy and balance
of momentum, one often use this ‘coordinate free’ tensor description since these physical balance
principles has nothing to do with which type of coordinate system we happens to relate a physical
balance principle to.

Why not always introduce a coordinate system in advance and, moreover, why not choose a
simple Cartesian coordinate system when describing physical events? It turns out that there is
several reasons that motivates the use of a ‘coordinate free’ tensor description. Perhaps, the most
important issue is that the tensor description opens up possibilities to study the reasonableness
of different material assumptions in a very stringent way. This steams from the fact that tensors
take certain different ‘values’ when they are described in different coordinate systems. By rather
intuitively argument it is tempting to postulate that the general behavior of the response of a
material during, for example, mechanical loading should be independent of the orientation of
the observer. That is one want to assure that two different observers having different coordinate
systems to relate the same physical behavior can communicate and agree that they observe
the same thing. In general one need a transformation to relate what the two observers record,
i.e. they communicate through a proper transformation and the same transformation is the
guarantee that the two observers can agree that the record the same physical event. If the same
two observers attached to different coordinate systems cannot under any circumstances agree how
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the real physical event should be transformed between them something unphysical takes place
since the physical event is independent of any coordinate system. For example, an introduced
material assumption which results in that a simulated response cannot be interpreted correctly
by two observers attached to different coordinate systems. i.e. a proper transformation between
them cannot be obtained, then the material assumption must be considered to be irrelevant and
cannot therefore be used.

Another, useful, feature of (second order) tensors is that certain mathematical operations
among the (nine) component in such a tensor results in a scalar property which is invariant. An
invariant is some kind of physical property which is completely independent of which coordinate
system attached.. That is, not even a transformation between two observers is needed since the
same number is recorded in both coordinate systems. Invariants is very useful when establish-
ing relevant material assumptions since it describes a fundamental process which is completely
independent of how the observer is oriented relative to the process. An invariant measure carn,
for example, be a volume change (a scalar number) or a hydrostatic mechanical pressure.

When using tensors to describe physical events one certainly expect that when attaching a
certain coordinate system to it, lets call this coordinate system O, a known physical event such
as a known acceleration of a body can be described with three numerical values. But, on the
other hand, if one of some reason want to observe the same acceleration from another coordinate
system O* (which, for example, has another origo and directions of the axis than compared to
the O-system) one will obtain three numerical values which (in general) differs from the values
recorded with the O-system as an reference to the event. In the next section it will be shown
how the three numerical values in the two different frames can be related to each other, ie. a
transformation between the values in the O-system and O*-system will be explained. It should
be observed that the real physical event is independent of both the O-system and the O*-system
as we have introduced them only to record the event relatively to some arbitrary reference.
Indeed, the transformation rule of a vector between to different coordinate systems, say O and
O* can be used as an definition of a first order tensor. Or, perhaps, more correctly a column
maftrix including three pieces of information is a first order tensor if a given transformation
rule gives a new column matrix including three pieces of information which can be correctly
represented in another coordinate system (this ‘new’ coordinate system is given explicitly from
the transformation).

8.3. Point transformation, change of coordinate system

In order to obtain a transformation of properties such as a vectors between different coordinate
systems the transformation of points between coordinate systems will be discussed. A point
transformation between two Cartesian coordinate systems can be expressed, with a general
relation, as

x=c(t)+Q(t)x (8.1)

where c (t) represents a translation and Q (t) is a rotation.
The rotation Q (t) is always orthogonal i.e.

QQT =1 (8.2)
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or equally

Q'=qQ" (8.3)
Consider a point vector, i.e. a vector between to points a and b in space given by
r =ab (8.4)
ie.
r=x%—-x° (8.5)

where x® are the coordinates (place) for the point a and x® for the point b described in the
x-frame. This the same vector observed in another coordinate system x™* is

r*=x" — x* (8.6)

where x* are the coordinates for the same point a and x*® for the same point b in the x*-frame.
According to the point transformation (8.1) one obtain the following relation between the
same vector recorded in the x-frame and in the x*-frame, one obtain

X = c()+Q(1)x*

x? = ct)+Qt)x"

r = x-x®=ct)+Q()x* —c(t) - Q(t)x°
o= Q) (x*—x")=Q()r

That is, a vector transforms between two Cartesian coordinate system as
r'=Q()r (8.7)

This can also be seen as an definition of a first order (Cartesian) tensor. Note also that a vector
is independent of the translation c (¢) which corresponds to the definition of a vector only having
a direction and a length, i.e. no information is included telling anything about its actual place

in space.
All introduced physical vector properties in the balance principles are first order tensors, i.e.

=Qt)% X'=Q@M)% b =Qt)b o =Q()q (88)

A second order tensor is a linear combination of two first order tensors s and r, e.g. U and
U* is a second order tensor if
s=Ur; s"=U"r" (8.9)
The transformation rule for the second order tensor follows by considering the transformation
rule for the first order tensors r and s, i.e.

s*=Q()s; r=Q()r (8.10)
Insertion of (8.10a) and (8.10b) into (8.9b) yields
Qt)s=U*Q(t)r (8.11)
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Multiplying both sides with Q (t)T, ie.

QM Q®)s=Q®"'UQ()r (8.12)
and using that the rotation is orthogonal, i.e. (8.2) is
QW) Q) =1 (8.13)
Insertion of (8.14) into (8.12), gives
s=Q®)TT'Q(t)r (8.14)
Comparison with (8.9a), yields
U=Q®)"'UQ() (8.15)

which is the transformation rule for a second order tensor.
That is, all introduced physical second order tensor properties in the physical balance prin-
ciple descriptions are transformed according to (8.15), e.g.

T = Q®'TQ®); L=Q@TL'Q(); (8.16)
D = Q®)'D*Q(); W=Q®) " WQ();

At last, it is mentioned that all scalar properties are independent of different frames, e.g.
*=6; p*=p; =g (8.17)

That is, no transformations is needed for scalar properties when the coordinate system is
changed.

8.4. Observing a physical event in two different frames moving relatively to each
others in the time domain

Given a deformation function ¥, a change of frame is a mapping that yields a new deformation
function x*, defined by

X Xt)y=c(t)+ Q@) x(X;t) (event) (8.18)

which follows from (8.1) where c (¢) is an arbitrary time-dependent vector representing a transla-
tion and Q (¢) a time-dependent orthogonal linear transformation representing a rigid rotation.
Physically, x and x* describe the same motion, but mathematical x* is the motion obtained
from :x by the superposition of a time dependent rigid transformation. It is important to stress
that (8.18) represents a transformation of points and does not alter the reference configuration,
i.e. X is the ‘name’ (this ‘name’ is actually the initial (reference) coordinates X at some time
level t,) of a particle in its reference configuration which is independent of the transformation
(8.18).

The sequences of position vectors x* following the motion with reference to the x*-frame can

be written
x* =x* (X,t) (8.19)
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and the same motion recorded by sequences of position vectors x in the x-frame can be written
x = x (X,¢) (8.20)

Observe, that the reference position X is the same for the motion observed in the different

frames.
The velocity %* and acceleration ¥* observed in the x*-frame are by definition time deriva-

tives of the motion, i.e.

x* = 0x* (X,t) /ot (8.21)
% = 9%x* (X,t) /ot? (8.22)
and in the x-frame the velocities is defined as
x = 0x (X,t) /ot (8.23)
% = 0%x (X,t) /0t* (8.24)

Noting, that c (t), i.e. the translation and Q (¢) i.e. the rotation, in general, must be allowed to
change with time. This corresponds to

X (X1) = &(8) + Q(6) X + Q1) x (X,t) (8.25)

or equally
(X)) =€() + Q)X+ Q(t)x

where (8.20) has been used. Note that, the x-frame is moving relatively to the x*-frame.

Indeed, a transformation of a first order tensor is defined as in (8.8a), i.e. for the velocity
which certainly is a tensor one have %X* = Q(¢)%, but the reason for the expression (8.25)
and (8.8a) being different is that the condition for X* in (8.25) is that the two different {rames
considered is allowed to ‘move’ relatively to each other with a speed given by ¢ and Q. This
means that the transformation rules which defined the first and second order tensors, discussed
in the previous section, is ‘time independent’. That is, a tensor itself is not affected by the time
aspect, the only restriction on a tensor is that a physical correct interpretation of it should be
obtained (at an instantaneous time level) in two frames and the two different interpretations
of it should be related through the transformation rules (8.8a) (first order tensor) and (8.15)
(second order tensor). However, the transformation (8.25) tells us that observers attached to
two different frames which moves relative to each other with a given speed (here, speed can
be referred to a time dependent translation and rotation), will measure two different velocities
which not communicates with each other with the transformation (8.8a). Therefore, such time
dependent properties are said to be a frame-different tensor. A frame-indifferent tensor (such as
the heat flux vector) is then a property which can be measured by to observers moving relatively
cach other, these to measurements should then be related by the standard time independent
tensor transformation (8.7).

The acceleration % as observed from the x-frame (note that, the x-frame is moving with a
speed relatively to the x*-frame) is transformed to the acceleration ¥* in the x*-frame, as

(XK= + Q) x+ Q) x+ Q) x (X)) + Q1) x (8.26)
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- % (Xt) =& () + Q) %+2Q (t) x + Q (t) x (X,t) (8.27)

The deformation gradient is transformed as a vector, i.e.
F*(Xt) = Q) F(Xt) (8.28)
This will be shown below, and the velocity gradient is transformed between two different frames,
as
L'=FFl=Q@®LQ®) +Q1)Q®” (8.29)

where
L*=D*4+W* (8.30)

The transformation (8.29) will also be shown below.

The second order deformation gradient tensor F transforms like a vector under change of
frame at time ¢. Assuming that the two frames had the same orientation at time t, when the
neighborhood of a point was in the reference configuration so that dX* = dX at ¢,

dx* = F*dX* = F*dX; dx = FdX (8.31)

i.e. from (8.7) and (8.31b) one obtain

dx* = Q(t)dx (8.32)
= Q) (FdX)
= (Q®F)dX
thus by replacing dx* by dx* = F*dX, yields
F*dX =(Q(t)F)dX (8.33)
i.e.
(F*-Q(@)F)dX=0 (8.34)

since dX can be chosen arbitrary the expression (8.34) becomes
F* (X,0) = Q(t) F (X, (5.39)

which is the result to be derived, i.e. expression (8.28).
In order to show how the transformation of the velocity gradient (8.29) can be obtained,

consider the material time derivative of (8.35), i.e.
F* (X,t) = Q) F (X,t) + Q1) F (X t) (8.36)

Furthermore, the inverse of the deformation gradient F~! can be transformed as a vector in the
same manner as F being transformed, that is

F1(X) =F'Q@®" (8.37)
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Since we have
FXH)=QWF ' (X)=Q®) ' QW) F'Q®) =F'Q(t)" (8.38)

where (8.2) and (8.3) has been used. Noting further that L* can be expressed in terms of the
deformation gradient and its material time derivative, as

L* = F*p*! (8.39)
and in the same manner in the x-frame, as
L=FF (8.40)
Noting, that the following, also, holds
FFF~l=1, FF'l=1 (8.41)

Using, the expressions (8.39) and the transformation rule (8.36), gives

L* =Pl = (Q O F + Q@) F) F1Q )T (8.42)
ie. ) L i
L*=FF1=Q®FF Q)T+ Q@) FF'Q()" (8.43)
by using the expressions (8.41b) and (8.40) gives the transformation for the velocity gradient
L= PP = Q(LQ® T+ Q1 QT (5.44)

Which is the expression presented in (8.29).

8.5. Objectivity, or frame-indifference

A scalar ¢ and a vector (or equally a first-order tensor) r is said to be objective or frame-
indifferent if the tensor transformation is independent of the rate of change of relative translation
& (t) and rotation Q (t) between two different frames moving relatively to each other. That is,
frame-indifferent tensors in this case denoted ¢ and r should be transformed as

" (x*,t) = ¢(x,t) (8.45)
r* (x*,t) = Q)r(x,t) (8.46)

For example, the time ¢ is objective since t = t*. The transformation (8.46) follows directly from
the point relation between the two frames in equation (??). This is due to the translation c ()
not contributing to any change of vector properties (or equally a line between points in space)
transformed between different frames. However, the translation ¢ (t) do effect the transformation
of points (but, again, not vectors between point).

Constitutive equations ‘must’ be invariant (objective) under changes of reference frame. If a
dynamic constitutive equation with a motion and a stress tensor satisfied in one frame, lets say
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in the x-frame, one have x = x (X,t) and T (X,t) it must also be satisfied for any equivalent
process in the x*-frame. This means that the constitutive equation must also be satisfied by the
motion and the stress tensor given by

x* = x* (Xt) = c(t) + Q) x (X,t) (8.47)
T* = T* (X,£) = Q(¢) T (X,t) Q (&)" '

which follows from the expressions (77) and (8.15) (where the arbitrary tensor U is identified
as the stress tensor T).

The velocity gradient L is a second order tensor, but is the velocity gradient L a frame-
indifferent tensor property according to (8.47)? Actually, the physical property L is not a
frame-indifferent tensor since it was shown that L* is related to L as

L'=FF1=Q®)LQ®)" +Q®)Q®)’ (8.48)

which is (8.29) repeated. That is, the term Q () Q ()" is not ‘allowed’ when a property is to
be frame-indifferent. It is noted that the transformation between L* and L is dependent of
the rate of change of a ‘hypothetical’ rate of change of the relative rotation between different
frames. Due to this fact, one usually, avoid to constitute the stress as a function of L since it is
supposed that a ‘hypothetical’ relative rotation of two different frames with attached observers
should not affect the material behavior itself in terms of a response..

It has been discussed earlier that the velocity gradient can be decomposed into a symmetric
part and a skew symmetric part as

L=D+W (8.49)
Where D is the symmetric part of the velocity gradient is defined as
D=1 (L+L") (8.50)
and the skew part is defined as
W=1(L-L") (8.51)

Is the symmetric part of the velocity gradient, i.e. D, a frame-indifferent tensor property
according to (8.47)? By using (8.50) and the transformation rule for L, i.e. equation (8.29), one
obtain

D* = iL*+inT (8.52)
. . T
= QMM +iemr'eT +amaw’+1(Qma®”)

ie.
T

D'=qHDQ®” +3Q1Q®’ +3(QWQ®’) (8.53)

Moreover, from (8.2) we have

QuQ@W’-1=0 (8.54)
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differentiation of (8.54) with respect to the material time derivative, i.e.

Q®HQ kt)T -1=0 (8.55)
This expression can be written as
Quam'+e®Q®m’ =0 (8.56)

where partial differentiation is used. A pure mathematical rearrangement with help from the
mathematical rules for the transpose operator, gives

T

(amaw™) - ((ee") ") -awaw” (8.57)

The expressions (8.56) and (8.57) combines to yield

T

amaw’ =-(ewaen’) (8.58)

It can be noted that Q(t) Q (t)T is skew symmetric and more important, by using (8.58) in
(8.53) one can obtain
D'=Q()DQ ()" (8.59)

which is due to

Jame®™+3 (@) = 4(Quew) +i(@nan’) ©6)
= 0

Hence, the symmetric part of the velocity gradient D is an objective tensor or equally a frame-
indifferent tensor.

In fluid mechanics one usually prefer to choose the stress to be a function of D rather than
of L. This is due to the symmetric part of the velocity gradient D remaining unaffected by the
time aspects of two different observers attached to two different frames moving and rotating
relatively to each others. That is D is a frame-indifferent tensor.

8.6. More about frame indifference an constitutive equations

The important physical message of the frame-indifference when establishing constitutive func-
tions is that the response function f should be independent of which time dependent frame one
happens to choose.

Consider, for example, a stress T which is assumed to depend on the symmetric part of the
velocity gradient D, the spin W, the density p, the temperature gradient g, the velocity x and

the place x
T =f(D,W,p,g %,x) (8.61)

where g =gradd. The same physical event in terms of stresses must be obtained in the x*-frame

T*= f (D*, W*, p*, g%, x*,x") (8.62)
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Not that the response function f must be independent of the transformation, indeed, it is
independent of any introduced coordinate system. Loosely speaking, this means that if the
stress can be determined with a (hypothetical) experiments with the x-frame as an reference,
then it should also be possible to observe the same physical process having the observer attached
to the x*-frame. This means, further, that the material itself is subjected to a stress (determined
by the response function ) when a hypothetical motion is given (this motion is really the same for
two different frames, but the motion is recorded by two different observers one of them attached
to x-frame and the other to the x*-frame), it then seams natural to assume that the response
function f is independent of how the two different observers like to interpret physical events
to their attached frames. Due to this, the assumption behind frame-indifference of constitutive
equations is also called isotropy of space, yet another illustrative (alternative) name is material
objectivity. Indeed, the concept of frame-indifference are so obvious to our physical intuition
that we do not even recognize in most cases that we are applying a very useful general principle.
The objectivity principal gives the transformation rule

T = Q() TQ ()" (8.63)

for the stresses as observed from two different frames moving relatively to each others.
From (8.48) one obtain

L'=D"+W'=Q(1)LQ®)" + Q1) Q®)" (8.64)

and from (8.59) one obtain

L"'=D"+ W' =Q(t)DQ(®)" +QHWQ(®)" +Q1)Q(®)" (8.65)
since . -
W' =Q®)WQ(t) +Q()Q() (8.66)
The density transforms as
pr=p (8.67)
and the temperature as
9 =90 (8.68)
hence, g =gradf, transforms as
g'=Q(t)e (8.69)
The velocity % transforms as
X =e(@t)+ Q@)%+ Qt)x (8.70)
and the point relation is
xX*=c(t)+Q(t)x (8.711)
The constitutive relation (8.59) can the be written
T = f(QHDQM",QHOWQE +Q® QM ,p, (8.72)

Q(t)g, ¢(t) + Q)%+ Q(t)x,c(t) +Q () %)
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where the above transformation rules, given above have been adopted.

By testing a given value of the otherwise arbitrary rotation tensor Q (t), conclusions can be
drawn concerning if the frame-indifference is fulfilled. Choose, for example, Q (¢) =1, Q@) =0,
insertion of this choice into (8.72), gives

T =f(D,W,p,g,¢(t) +%,c(t)+x) (8.73)

Since ¢ (t) and ¢ (¢) must be allowed to be chosen arbitrary one concludes that the constitu-
tive relation f (D, W, p, g, %, x) must be reduced to £ (D, W, p,g) in order to fulfill the frame-
indifference postulate. That is (8.72) is reduced to

T =£(Q®DQX",QHWQR®" +Q1HQWM" QW) (8.74)
Next, choose the otherwise arbitrary rotation to the value Q (¢) =1
T* =f(D,W+Q(t),p,8) (8.75)

which says that the response function f cannot depend on W, since Q (t) is completely arbitrary,
ie. f(D,W,p,g) =f(D,p,g). That is, the rate of rotation of a frame (which has noting to do
with the actual motion of the body) is not allowed to effect the response function f.

Another, often used, argument which perhaps is more illustrative is to set Q (t) = —W and
Q (t) = 1 which yields T* = f(D, O, p, g). By using this choice of rotation and rate of rotation
of the observers frames it is, again, clear that f cannot depend on the spin W when not allowing
for any dependence of Q (t), i.e. when adopting the frame-indifference principle.

Another important issue is to show that velocity differences or equally relative velocities
fulfill the frame-indifference postulate. Consider two velocities X} and %x; which transforms as

XE=¢(t)+ Q1) % +Q () x (8.76)

and )
Xy =¢(H) + Q1) % +Q(t)x (8.77)
The difference of the two velocities denoted %*_, can according two (8.76) and (8.77) be trans-
formed as
X =% % =Q) (Xe — %) = Q(t) Xazsp (8.78)
which is the desired property and it is concluded that %,_; is a frame-indifferent property.
The stress could therefore, for example be constituted as T = f (%q—p) since T* = f (%5_,) =
£f(Q(t) %a-sp). It should be noted, however, that other postulates, such as the second axiom of
thermodynamics, may be in conflict with such constitutive assumptions. This subject will be

discussed later.
Spin tensor

Wi=QH)W.Q®t)" +Q®) Q)" (8.79)
W;=Q)W, Q)" +Q1)Q®)" (8.80)
W2, = Wi-W; = Q(t) (Wa—W3) Q)" = Q1) Warh Q(t)" (8.81)

which means that the difference of spinn as defined above is a reference indifferent property.
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8.7. The Rivling-Eriksen tensor of second order

Consider the constitutive assumption for the stress as
T = f (gradx,gradx) (8.82)
Denoting the symmetric part of the velocity gradient in the fashion of Rivling-Eriksen, i.e.
A=L+LT=2D (8.83)

From earlier we know that the part of the velocity gradient denoted D is symmetric and frame

indifferent i.e.
A =AT; and A= Q1) A1Q ()T (8.84)

Referring to the material time derivative of the rotation times rotation as: Q (t) Q (t)T =10,
that is, one obtain

L'=Q®LQ®) " +Q1) Q1" =Q®LQ®)’ + 0 (8.85)

Again, it is shown that the velocity gradient is not frame indifferent.
Since Q () Q (t)" = 1 we can identify Q as

Qe Q®T+Q®Q®)T =0 (8.86)

ie.
Q=-qf (8.87)

Assume a second property related to gradX, i.e.
A=A, + A L+LTA, (8.88)
A transformation yields
A=Q0AQ()"+Q(MAQMT+ QM AQEM)" (8.89)
With further arrangements one obtain
AL = Q0 AQe” (QBLAEW +QB QM) (8.90)

= Q®AQ® QXLA®T+Q1)AQL QB Q®)T
= QH)ALQ®T-Q®)AQ()"

Noting also that
LTA; = (QOLTQE +QMQ®) QW AQM' (8.91)

= QMLTQM QW AQM"+QA®Q®T Q) ALIQ()”
= QHLTAQM)" - Q1) AQ)"
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This derivation leads us to the conclusion that
Ay =Ar + AJL*+ LT A (8.92)
ie.
A} = QHAQMT+QMALQWM +QMHLTAQ®M)” (8.93)
= Q@ (Ai+AL+LTA ) Q)"
That is, the property A, is frame indifferent. From above we have
A3 =Q(t) A:Q(1)" (8.94)
The second axiom of thermodynamics, however, may not necessarily be in accordance with this
type of frame indifferent assumption.
8.8. Frame indifference of the convective stress tensor

Consider the rate assumption for the stress tensor as

T =f(T,D) (8.95)
A frame indifferent behavior must result in that a different fame denoted by (*)
T*=f (T*,D*) (8.96)
The symmetric part of the velocity gradient and the stress tensor are transformed as
D*=Q#)DQ(®)"; T =Q(t)TQ(®)" (8.97)
It is noted that T* does not represent a isotropic function in space, i.e.
T =QWTQM" +Q®)TQ®)" +Q®) TQ®)" (8.98)
Introduce the convective definition of the rate of the stress tensor as
T=T-wT+TW,; T'= T -W*T+T*W* (8.99)
where W = 1 (L — L") . From above chapter it has been derived that
W'=Q®H)WQ(®) +Q(H)Q®)T =Qt)WQ®)" +Q (8.100)
where Q = —Q7.
The transformation rule is
T =Qu)TQ )" (8.101)
ie.
™ = T-W'T*+T*W* (8.102)

= QOTQE +QMTA®" +Q®) TQ®)"
+(eapwaerT+ama®’)emTan’

Q1) TQW" (RO WQ® +Q®m QX))
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Noting that Q (£)T Q (¢) = I, reduces the above to

™ = QUTQER " +Q®TQE)" + Q1) TQ®)" (8.103)
FQHOWTQ® +Q®mQ® QW TQ®)"
+QHTWQE +Q®)TQ®) Q1) Q)"
T

Using also that Q (£) Q ()T = —Q (t) Q ()" and again that Q (t)" Q(t) = I, one obtain’

™ = QuTQW " +Q@®)TQ®)" +Q®)TQ )" (8.104)
+QH)WTQ )T + Q) TQ(t)"
+Q)TWQ®)" — Q) TQ(®)”
That is
T = QuTQA®W " +QB)WTQ®)" +Q ) TWQ(t)” (8.105)
= Q) (T+WT+TW) Q'

The important conclusion is that when defining the material functions and the convective stress
tensor as shown above the properties are frame indifferent.

8.9. Rate dependent vectors

Consider a situation were, for example, the heat flux vector is transformed as

q"=Q(t)q (8.106)
and where the material time derivative of the same property becomes
¢=Q®)a+Q®)q (8.107)

That is, the property ¢ is not frame indifferent. Therefore it is tempting to assume the following
convective rate dependent assumption, that is

d=4q—Wq; §'=¢§"-W*q* (8.108)
The proper calculation gives

g = @-Wq=Q®a+Q®a- (QHWREMT+Q1)QMT)Qt)a (8109)

Q) a+QMa-QHWQH Q1 a-Q®) QB Q) a
Qt)a+Qt)a-Qt)Wag—Q(t)q
Q1) (a—Wa)=Q(t)&

Other types of assumption may be used. Consider for example the following
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T, =f(q®q) =f (arqr ); af =Qrar 9 =q; Qr (8.110)

g4’ =QqqiQF; q"®q*=Qq®qQ" (8.111)
Or as time dependent vectors, such as
4®4=(q-Wq)®(q-Waq) (8.112)
where ) )
T=T-WT+TW+(§—Wq)®(q—Wq); (8.113)
and
rj:w*z T*—W*T*‘f—T*W* + (q*_W*q*) ® (q*_W*q*) (8114)

8.10. Material symmetry, material isotropy

The material isotropy which is to be discussed here should not be mixed up with the frame-
indifference postulate. The important difference is that when studying the consequences of
frame-indifference two observers are moving with a speed relatively to each others and therefrom
observe the same physical event When changing the frame the reference configuration is the
same for both frames and the reference configuration is kept constant. When, on the other hand,
studying material symmetry properties, such as isotropy, one which to study what happens
with the material response function when having one single fixed coordinate system and let
the material body rotate by ‘testing’ different reference configurations. If different directions
of a hypothetical applied ‘load’ gives the same response in terms of, for example, stresses, the
material is said to be isotropic. This special case can be studied by imagining having a fixed
applied ‘load’ (and a fixed direction of the load) on a material and then rotate the material
body.
The stress determined with a certain reference configuration x is the expression

T =1£,(D,p,8) (8.115)

When rotating the material and assigning the ‘new’ positions in the material with a new reference
configuration % (still subjecting the material to the same physical properties D, p and g with the
same direction and magnitude as in the reference configuration x) the stress may not necessarily
be the same. The stress obtained if rotating the material is denoted T and is given by the
material function fy in the reference configuration ¥, as

T =1(D,58) (8.116)

The objectivity or frame indifference, discussed in previous sections, stated that the actual
(or measured) material response is independent of the coordinate system we choose, and also
independent of the rate of change of the rotation Q (t) and translation ¢& (¢) describing the relative
rate between to frames. Applying this theory, also, for a case where the material is subjected
to a rotation interpreted by letting the material having different reference configurations for
different rotations, one may write

T=Q®)TQ®)" (objectivity) (8.117)
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and for the symmetric part of the velocity gradient D, frame-indifference (or objectivity) gives
D=Q#)DQ#)" (objectivity) (8.118)

The temperature gradient transformation is
£=gQ(®)" (8.119)

Using the objectivity principles (8.117), (8.118) and (8.119) the relation (8.116) can be expressed
as

T=£,(D,0,8) =£,(Q®HDQEX)" ,p,8Q®)") (8.120)
Due to (8.117) and (8.115), the expression for T' can also be expressed as
T=Q)f(D,pe)Q®)" (8.121)
Combining (8.120) and (8.121) yields
&(QHDAW",0,8Q(1)") = Q1) &(D,re)Q®)" (8.122)
The special symmetry condition to be considered here is isotropy which implies that
fe (D, 2,8) = £, (D0, 8) (8.123)

The physical interpretation of (8.123) is that the material response (in terms of stresses) is the
same for different direction of the material for a given applied fixed ‘load’.
Using (8.120) and (8.122) it is seen that the relation between fg and f, transforms like a

objective tensor
£, (D,0,8) = Q) £(D,p,2)Q ()" (8.124)

This follows also directly from (8.115), (8.116) and (8.117). The combined requirement from the
frame-indifference, i.e. (8.120) and the supplementary, assumed, condition of material symmetry,

one obtain
£(D,5,8) = Q (1) £x(D,p,8)Q ()" (8.125)

or, equally
£QMHDQAMT,18Q1") = Q) (D, p,e)QM" (isotropy) (8126

That is, the material response for a given load is independent of the orientation of the body.
It should be mention that it is often explicitly assumed that a fluid is isotropic.

8.11. Invariants to symmetric tensors

Symmetric tensors such as the stress tensor T includes components which can be combined
with certain mathematical operations to yield a scalar number. Some special combinations
of components in a tensor results in a scalar number which remains the same if the same
mathematical operation is performed with components in a transformed tensor T*. Such a
special scalar number is called an invariant. Here a discussion will be performed were it will be
shown how some of the most important invariants can be obtained.
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Consider the traction vector t which is obtained by the linear equation
t=Tn (8.127)

where n is the out-ward directed normalized vector to the surface on which the traction act.
The stress component normal to the studied surface can be obtained as nTt =nTTn =T,,, ie.

Tpn =n't (8.128)
In the same manner the shear stress Ty, is obtained by the projection
Tpm =mTt (8.129)

A special case where t is colinear with n, i.e. the case when the direction of n and t is the same
the length of the vector t can be related to n by a scalar number A, as

t =\n (8.130)
From (8.128) one obtain
Tpn =0Tt = nThn =) (8.131)

since n is a normalized vector.

Hence, the relation between the traction stress t and the stress tensor T, i.e. the expression
(8.127) and the relation for the magnitude of the traction stress t in the direction normal to the
studied surface, i.e. expression (8.130) gives the following requirement

An =Tn (8.132)
ie.
(T-M)n=0 (8.133)
This is the eigenvalue problem or the characteristic equation for the stress tensor T.
If a nontrivial solution n is to exist, one must require

det (T—AI) =0 (8.134)

furthermore, it is possible to show that for symmetric tensors all eigenvalues are real numbers,
ie.
T symmetric = all eigenvalues are real

Writing the stress tensor T in a Cartesian coordinate system as

Th T Tz
T=| T T Tus (8.135)
T31 T30 T3

when the expression (8.134) can be explicitly obtained as

Tu—-X2 T2 T13
det T21 T22 —A T23
T3 T3y  T33—A

(8.136)

(T11—X) (Tra—A) (Ts3—=) +
T10T23T31 + T13Th1 T30 —

(Th1—A) To3T32 — T1oT21 (T33—A) —
Th3 (Toa—A) T31

70



Consider, for example, a stress state given as

1 0 —4
T=|0 5 4 (8.137)
-4 4 3

The eigenvalue to this special stress state is the determined as

- 0 -4
det| 0 5-X2 4 [=-X34924+92-81=0 (8.138)
-4 4 3-)

Solving the obtained cubic equation one obtain the roots
A =9, 2=3 A3=-3 (8.139)

which corresponds to the so-called principle stresses T3 = A1, To = A9 and T3 = A3 at a given
direction n which can be determined by insert the values A1, Az and Az into (8.133) and also
using the fact that the length of the vector n is equal to one.

The principal stresses is

Ty 0 0
TP=| 0 T, O (8.140)
0 0 T

where T*? is used to denote the principal stresses which coincide with the principal directions
which can be determined from (8.133). For the special stress state for T in (8.137) the principal
stress, hence, becomes

9 0 0
T™=|0 3 0 (8.141)
00 -3

It turns out that the numbers determined from the equation (8.138) i.e. the numbers 9,9, 81 in
this example, can be calculated in a very systematic manner for arbitrary stress states, consider
the equation (8.134), i.e.

Tii—A T T3
det | Toy Tog—r Taz | ==X480 —BA+8;=0 (8.142)
T3 T3p  T33—A

where 3, B, and B4 are the numbers to be calculated in an alternative manner compared to
the method shown in (8.136). By algebraic operations it is possible to show that £y, 82 and S5
are given by

B, = trT (8.143)
By =3 (1T)* — 3T (8.144)
B, = det (T) (8.145)

This means that (8.142) or equally (8.136) can be expressed as

—3% 4+ 6 TA” — (4 (0T)* — %Tz) X+ det (T) = 0 (8.146)
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In the example studied where the stress state is given by (8.137) on obtain

B;=trT=1+5+3=9 (8.147)
By=3wT)? - 1T2=1(9° -3 (1 +16+25+16+16+16+9) = —9 (8.148)
B3 = det (T) = 1(15 — 16) 4 (—4) (—20) = —81 (8.149)

That, is an alternative way of determining the constants in, for example (8.138), is obtained,
from which the principal stresses can be calculated.

It is noted that the characteristic equation satisfies its own solution which means that inser-
tion of the calculated principal stresses into (8.146) results in

—T3 4 T2 — (% (trT)? — %T2) Ty +det(T) = 0 (8.150)
—93 4+ (9)9? - (-9)9+(-81) = 0O

where, again, the example of the stress state given in (8.137) is studied. The principal stress
component Ty is in the same manner obtained as

~T3 + 2 TT2 — (% (trT)? — %T2) Ty + det (T)
~33+(9)3% — (-9) 3+ (-81)

To show the remarkable properties of the 5;, 85 and 85 values, consider a rigid body rotation
around the x3-axis, of coordinate points in which the rotation is described Q (¢), as

0 (8.151)
0

cosep —sing 0
Q)= | sing cosep 0 (8.152)
0 0 1
where ¢ is the angle between the z1 and zi-axis and also between the z2 and 3-axis.
The stress is then transformed according

T = Q@) TQ(t)" (8.153)
when the two systems x and x* are studied, se previous sections, i.e.
cosep —sing 0 Tin Tio Tis cosp singp O
T = | singp cosp O To1 Tpo Thg —singp cosp 0 (8.154)
0 0 1 T3y T30 T3g 0 0 1

As, an example, the rotation ¢ = 45° of the axis will be studied, this choice gives the stress state
evaluated when recording the stress state given in (8.137) in a different angel (or in a different
frame), one obtain

[1/vV/2 -1/v/2 0 1 0 —4 1/vV2 1/¥/2 0
™ = | 1/vV2 1/¥/2 0 0 5 4 -1/v/2 1/V2 0 (8.155)
0 0 1 0

I -4 4 3 0 1
( 3 -2 —5.6569
| —5.6569 0 3
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It turns out that the 8, B, and 5 values remains unaffected by the rotation, in the example,
while the components in the stress tensor is not, e.g. compare (8.137) and (8.155).
By calculating trT*, T*? and det (T*) for the rotation in the example studied one obtain

B, = tr'T*=9 (8.156)
By =4 (trT*)? — 1T = —9 (8.157)
By = det (T*) = —81 (8.158)

That is By, By and 5 values remains unchanged. Indeed, any arbitrary rotatlon can be tested
and still the 8,, B, and 85 remains the same. Due to this fact the values tr'T, 1 3 (trT) - 1T2
and det (T*) are called stress invariants. It should also be noted that all symmetric tensors have
the same properties when it comes to the invariants. As an example trD, 3 (trD)? — iD? and

det (D) will always remain unchanged by a transformation given by D* = Q (1) DQ ®)".

8.12. Isotropic material functions and the representation theory

An isotropic material which response for a given load is independent of the orientation of the
body, can be formulated as

£(QEHDQ®,0,eQ 1)) = Q1) f(D,p,g)Q()" (isotropy) (8.159)
where also the objectivity requirement holds, i.e.
D*= QDQT; T*= QTQ" (8.160)

The isotropic condition will be written, as

T=f,([D); T*=f,(D); (8.161)

which indicates that the material response function f,,, is independent of the orientation.
Imagine a case where only principal directions in D are active, but nothing is known about
the stress state, this case is illustrated as

Dy 0 0 Ty T T
D= 0 DQ 0 ) T= T21 T22 T23 3 (8.162)
0 0 Dy T3 T3z T33

Let us assume that the x*-system is obtained by a 180° rotation about the zi-axis, when the
transformation Q, i.e. the rotation matrix, is given by

1 0 0
Q=Q"=|0 -1 0 (8.163)
0 0 -1

Using the transformation rule T*= QTQT, yields the ‘new’ stress state and principal directions
for the symmetric part of the velocity gradient, as

T Tz -Ti3 D, 0 0
T*=| Ty, Tn2 Ths : "= 0 Dy O (8.164)
T3 T3 133 0 0 Dj
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One obtain D* = D and it follows from the angular momentum that T* is symmetric. Conse-
quently, one obtain D* = D and it follows from (8.161) that also T* = T. Hence one must have
Tyo = Ty = 0 and also Ty, = T3; = 0, which is obvious when (8.162) and (8.164) is compared
together with (8.161).

Assume next that the x*-system is obtained by a 180° rotation about the xo-axis, when the
transformation Q, i.e. the rotation matrix, is given by

-1 0 0
Q=QT=| 0 1 0 (8.165)
0 0 -1

and using the same argument as above, it follows that Ths = 0 (and also, T3z = 0).
Consequently, it has been shown that if D is diagonal, so is T. This means that the assump-
tion of material isotropy means that the principal directions for D and T coincide.
Studying the material response function (8.161a) in a coordinate system colinear with the
principal direction of D, only the principal directions of T need to be considered

T1 == hl (Dl, Dz, Dg); Tg = hg (Dl, Dg, D3) ) T3 = h3 (Dl, DQ, Dg) (8166)

where hi, ho and hs are some functions related to a certain material.

dhy 8%h, 3hy
Ty=hi+—D+ 3% D?+1 D3+ .. 8.1
1 1+6D1 1+28Df 1+68Df’ 7+ (8.167)
this is, for simplicity, rewritten as
Ty = by +byDy + b3D? + by D3 + ... (8.168)

The eigenvalue problem for the symmetric part of the velocity gradient is similar to the eigenvalue
problem for the stress, therefore one can write

—D} + B, D} — D1 + B3 =0 (8.169)

where 3, By and B4 are invariants.
Expression (8.169) can by purely mathematical arguments be rearranged as

D{*? = 8, DY — B, Dy Y7 + B3 DF (8.170)
where p is non-negative integers. For example, consider expression (8.168) written as
Ty = by + by Dy 4 b3 D? + b4D3 + b5 D3 + (..) (8.171)
Using (8.170) with p = 0, gives
D} = 6,D% — B,D} + By (8.172)

and with p = 1, one obtain
Di = D} — B,D} + B3D1 (8.173)

74



Inserting, the expression for D} given from (8.173) into (8.171), yields

Ty = by +byDy+b3D? + by D3 (8.174)
+bs (51D? — ByD3 + B3D1)

then in the same manner, replacement of D3 given from (8.172) into (8.174), yields

Ty = by+byDs+b3D +by (8, D] — B2D1 + Bs) (8.175)
+bs (81 (B1D3 — B2D1 + B3) — ByD? + B3Dy)

That is, terms of a higher order than D? can always be eliminated by repeated use of (8.170).
It is therefore concluded that the most general relation between 77 and D; is

T, = q1 +71Dy + 51 D%

Likewise, making a Taylor expansion of the function A, in (8.166b) about Do = 0 and for h3
about D3 = 0 in (8.166¢c), one obtain

Ty = po+raDy+s3D32 (8.176)
T3 = p3+r3D3+s3D3

Therefore it is possible to write T = f (D), as

T =P +RD +SD? (8.177)
or in matrix format, as
pp 0 O 0 0 s 0 O
P= 0 D2 0 H R = 0 T2 0 ; S = 0 D) 0 (8.178)
0 0 ps 0 0 r3 0 0 s3
Consider
T =f,(D); where f,(D)=P+RD+SD? (8.179)
The objectivity and material isotropy gives
Q) £ (D) QM) =t (QHDQ") (8.180)

By transforming this condition as
Q®'AWt.Ma® a® =a® &= (QMDa®T)Q®) (8181

one obtain

£n (D) = Q)" £ (Q(H)DQXT) Q) (8.182)
Combining (8.179) and (8.182) gives

P +RD +SD?=Q (%) £, (Q (t)DQ (t)T> Q) (8.183)
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Rearranging this with aid of Q (¢) one obtain

£ (Q()DQ(YT) = P+ RQHDQ()+5Q(D* Q)" (8.184)
It is concluded that the following holds
P+ RD +SD? = Q(1)" (P +RQHDQMX’+SQ(1)DQ(®)") Q ¢) (8.185)
ie. L _
P+RD+SD =0 (8.186)
where
P=P-Q(1)TPQ(); R=R-Q()"RQ(t); S=S-Q(1)7SQ() (8.187)

The properties P, R and S must behave objective i.e.
P=Q()TPQ(t); R=Q()"RQ(); S=Q()"SQ() (8.188)

The only isotropic second-order tensor is kI where the factor £ may depend on some invariant.
That is
P =o1]; R =asl; S =a3l (8.189)

where ay, ag and a3z may depend on the invariants of D, e.g. trD.
From (8.189) and (8.179) one conclude that for an isotropic material the stress must be
related to D in the following manner

T =o I+ D+azD? (8.190)

which is a non-linear condition.

8.13. Principle of equipresence

The principle of equipresence states that all constitutive variables should depend one the same
properties, as long as the other principles, such as the second axiom of thermodynamics, allows
for such a dependency.

8.14. Restrictions imposed by the second axiom of thermodynamics

The second axiom of thermodynamics imposes restrictions on the choice of constitutive functions
and is, perhaps, the most helpful principle when it comes to develop stringent continuum models.
The second axiom of thermodynamics, or equally the entropy inequality will be used to develop
equilibrium, non-equilibrium and near-equilibrium conditions for a mixture. The mixture will
be restricted in the sense that only two phases are considered, a solid and a liquid phase, being
built up by N number of constituents.
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9. Constitutive functions

A case where two phases, i.e. a liquid phase [ and a solid phase s will be considered. Both

phases contains NV constituents.
The Helmholtz free energies for the solid phase and the liquid phase are the assumptions

As (T’ psacgaES) ) Al (T’ pl)cijvES) (91)

The classical format of the pressure p, in the a-phase and the definition of the Gibb’s free
energy tensor G, will be used, i.e.

A ZAD‘

(2

The classical effective stress tensor t¢ for the solid phase and the so-called hydration stress tensor
t! are defined by the Helmholtz free energies A, for the phases, as

0A; 04,
OE, O0E;

Go = Aal — p3 0 (9.2)

t¢ = p,Fy—F7; = pFo——FT (9.3)

Further, the chemical potential scalar /i, will be defined by the derivative

. 0A
o= == 94
=50 (9.4)
The Green-Lagrange strain rate, i.e.
1
E, =3 (FIF, - 1) (9.5)

will be adopted, e.g. see equation (2.69).
The material time derivative of A; (T, Prs Cf , Es) can by differentiation be expressed as

DAy _ 94 DT  0ADip Ni 84, DiC! (94 DiE, 96)
"Dt ~ 8T Dt ' 8p, Dt . 80{ Dt OE, Dt '
where the Green-Lagrange strain rate is given as
D,E
—— =Frd,F, :
which has been derived in equation (2.116).
Using next the identities give by equation (2.29), i.e
D, DU Dr Dr
T gradT; ST Dr W gradl’ (9.8)

That is the equations in (9.8) verifies that material time derivative of an arbitrary property I'
following the motion of the liquid and the motion of the liquid phase are related by
Dll" D,
Dt~ Dt

—uy) - gradl (9.9)
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With the property ' identified as I' = E;, the equation (9.9) becomes

DE, D,E,

— . — .10
BT 1 + gradE; - (u; — uy) (9.10)

The hydration stress tensor t} can by the definition (9.3) be written as

8A x  OAl p
= A1
8E3 Fs 8Es FS (9 )

F;lltls =F'F,
Pr

when multiplied with deformation gradient F; ! and noting that the relation F,F;! = F;!F, =
I holds, i.e. see equation (2.32).
The last term present in (9.6) can be formulated as

aA[ DZES 8Al T -1 ]. ! 1 l
= SLLpTY,F, = F71—t!d,F, = —tld, 9.12
aEs Dt BES s L1 P ( )
by using the relations (9.7), (9.11) and F;'F, =L
The relation (9.10) multiplied with 8A;/0E; becomes
A DIE;, 0A; D,E, 04,
_ ) - 13
GE, Dt ~ 9B, Dt ' \om, & ) (u—u) (9.13)
Taking the trace of this expression and using (9.12) yields
0A, D|E, 1 . 04,
tr <8Es T ) = p—ltr (tids) + tr a—EsgradEs (g — uy) (9.14)

That is, the material time derivative for A; in (9.6) can by (9.14) be written as

N—-1

DA _ 0ADT 04 D v 04, DiCY 0.15)
Dt T Dt = dp, Dt = oci Dt '
—|—piltr (tid,) + tr (gﬁ: gradEs> (a; — )
The material time derivative for A, (T, p,, C%, Es) can by differentiation be formulated
D, A, 8A, D,T  8As Dyp, = 8A, D,C!
— —= —_— 9.16
Dt oT Dt | @p, DT +;30g Dt (9.16)
4t 0A; DE;
"\@E, Dt
where it is noted that the last term in (9.16) can be written as
sl FTd,F, = F;1—t:d,F, = ltgds (9.17)

0E, Dt OE, Ps Ps
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where the same procedure used in receiving (9.12) was adopted. That is, (9.16) can also be
formulated as

DAy 8As D,T 84, Dyp, Nz‘l 8A, D,CY

N < 9ci Dt

= 1
Dt oT Dt ' 8p, DT (9.18)

1
-I—p—str (t:ds)
With the thermodynamic definitions for the pressure in the two phases, i.e. po = pi%ﬁ, the
proper function for D;A;/Dt, corresponding to the constitutive function (9.3b) is

DA 041 DIT ] D[pl =
= —= 9.19
Dt oT Dt pl ; (9.19)
+piltr (tlsds) + tr (g—]g—igradEs) (ug — uy)
And the function for DsA;/Dt, corresponding to the constitutive function (9.3a) is
D A, 0As DT ps Dgp N ]

_ s 2

D 9T Dt ' p2 DT +Z : (9.20)

1
+—tr (téd,
Ps ( )
The functions (9.19) and (9.20) will be used when examining the entropy inequality as expressed
in equation (7.59).

10. Classical properties of the chemical potential

In classical Gibbsian thermodynamics, the chemical potential is defined to be the change of the
total extensive Helmholtz potential, A, with respect to the number of molecules of constituent
4, n?, keeping temperature, volume, and the number of molecules of all other constituents fixed,
i.e. 9A/On? |1 v.n. The following properties holds in this classical format.

1. It is a scalar quantity representing the amount of chemical energy required to insert/remove
a molecule of constituent 7 (by definition).

2. At equilibrium, the chemical potential of a single constituent in different phases is the
same.

3. The chemical potential is the driving force for diffusive flow. In particular, at equilibrium
the gradient of the chemical potential is zero.

Note that the above properties do not imply that at equilibrium the chemical potentials of
two different constituents are the same. It is especially important that property 3 holds, as it is
the property used to indirectly measure the chemical potential.

Later the difference of the tensorial chemical potential, introduced by Bowen, and the classical
scalar chemical potential will be pointed out.
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11. Adding a virtual force in the inequality

A method where one add terms to the entropy inequality which is equal to zero will be adopted.
The mass balance equation for the phase o, i.e. equation (3.9), the mass balance for the jth
constituent within phase «, i.e. equation (3.35), and the condition for the diffusion velocities
for constituents, i.e. equation (2.17), will be used. The virtual force adopted is

Ar = 0= ) < 5"")0‘) +sapadiv(va)—éa> (1.1)

a=l,s
+ Z ZAJ <€apa (C ) +div (5apfxu )—é{;—é&%—C’g‘éQ)
a=l,s j=1

+ Z Eatr I‘NZgrad (phul)

a=l,s

where Ay, /\fx and 'Y are the so-called Lagrange multipliers.
The terms in (11.1) will be re-written to fit the inequality. Consider the partial differentiation
of the first term of the first row of equation (11.1), i.e

D, (5a,0 ) D, (P ) D, (ea)
& = = 11.2
Dt €« pg P pi (11.2)
The equation (2.29) are used for the solid and liquid phase as
D, DU Dr DU
=u,- J —_—— = r 11.
o " pp =W gradl; o " Dr =W grad (11.3)
Setting I' = ¢; these equations combines to yield
Dlel o DSE[
Py =Py TA (w — us) - grade; (11.4)

where the whole expression has been multiplied with p;. The first term of the first row of
equation (11.1) involving the derivative of £, can be written

) Dlsl D 63
- 5P 11.

a=l,s

Combining (11.4) and (11.5) gives

D, (ga)
D dapapy

a=l,s

Dgeg
Sps Dt

= nup 28 (11.6)

TR Ly Aipp (ug — ) - grade; + A

Note also that the volume fractions for the two considered phases are related as: €5 +¢; = 1,
hence, the material derivatives following the motion of the solid phase must be related as

Dgses  Dsey

Dt Dt (11.7)
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The expressions (11.6) and (11.7) combines to yield

Da(ga) DSEl Dsel
Y. Pa— = o (w =) - grade — p, =5 (11.8)

a=l,s

Consider next the term div(vy) in the first row of (11.1). This term can be re-written with
the identities
div (va) = tr (gradvy) = trd, (11.9)

where the velocity gradient d., is defined as d, =gradv,. That is the sum involving div(v,) in
the first row of (11.1) can, therefore, be written as

Z Aalalodiv{ve) = Z Aatr (gradve, (eap,I)) (11.10)
a=l,s a=l,s
= Z Aatr (dy, (ap,I))
a=l,s

The last row in (11.1) can be re-written with the identity

N N
eatr | T Z grad (plul) | = eqtr Zp&grad (ui)TY (11.11)
i=1 =1

+ul, - T grad (p2,)
The term M, div(eapfud,) in (11.1) can by using partial derivatives be written as
N div (eapltl) = Meapldiv (ud) + X, - grad (007, (11.12)
Further, the first term on the right hand side of (11.12) can be replaced by the identity
M e pl div (ufx) = M tr (graduf1 (Eap‘LI)) (11.13)

ie.
N, div (eaplul) = Mtr (gradu, (e4p2T)) + Mud, - grad (eapl,) (11.14)

The identities (11.8), (11.10), (11.11) and (11.14) are used in the virtual force equation (11.1)
to obtain the alternative version
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Ay = 0= Ao (EQM + tr (dg (eapl)) — éa> (11.15)

oa=l,s Dt
D
+ 5? ()\lpl - )\sps) + (lll — us) - pygrade;
N-1 ‘ D y | |
+a=l,s 5=1 )‘fx (Eapa% +ir (gfaduﬂ (6(1)0311))
N-1 .
+ AL (ufx - grad (sapf;) —& -+ ngéa)
Oé:l,s j=1
N .
+ Eatr Zpg,grad (u]a) Y | +ul T grad (Pix)
Oézl,s jzl

This equation will be added to the entropy inequality given by (7.59), which is possible since
the expression (11.1) always is identical to zero.

12. The entropy inequality for the two phase case

Before proceeding with the method of deriving constitutive equations for the studied two phase
system containing N number of constituents in each phase, an important assumption will be
made. It will be assumed that the momentum supply terms T; and T, i.e. the momentum
supply to the liquid and solid phase, respectively, is related as

A

T, = -T, (12.1)

It must be carefully noted that this relation do not steam from the derived conditions for the
exchange terms in the mixture. The condition in (12.1) should rather be seen as a super imposed

assumption.
Due to the assumption (12.1) the terms in the entropy inequality (7.59) involving u,, simply,

becomes .
Z u, To=(w—u,) Ty (12.2)

a=l,s

By combining the entropy inequality (7.59) with the virtual force equation (11.15) and also using
the assumption (12.2) and the definition (7.63) one obtain the following condition
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D, T
= Z Eapana (123)

a=l,s
8Al D[T pl DlPl gl chl
€1py <8T Dt Pz ;
1 04
—e1p; <-p—ltr (tlsds) + tr <8E ) (g — us)>
Dge
tl (Nupr = Asps) + (W — 1) - pigrade;
—(w; —uy) T
0A, D,T 4P Dyp, ;DO 1 .
8-9:08 (8T Dt 2 DT + Z S p_atr (tsds)

i=1

N
+tre;d; (tl + Zp{u{ ® uf + )\lpll)

=1

N
+tresd, (ts + Zpgug ®ul + )\SpsI)

N
+ Z Ea Z tr ((gradul) (t7, + N ol 1 — pL A1 T+p7TY))

a=l,s Jj=1
P 3 Sl (- (8 42) - ()
a=l,s j=
+ Z ZU‘J (N grad (eqp%) + T grad (7))
a—lsj 1
S IDITRCRRIFED 3 S ICERE AT I
a=l,s j= a=l,s j=1
N
(@) 5 ( kD0 3 o (4~ el ))
a=ls J=1
A R
+ Z Ao€o <D 2 (pa) _ :_a) - ZéO‘AO‘
a=l,s ¢ o=l
+ > Z)\’ <5apa éfj)) >0
a=ls j=1



This inequality will be re-arrange in order to fit the purpose of validate different constitutive
functions and in order to derive equilibrium and non-equilibrium conditions. By collecting terms
associated with the material derivatives Dy (o,) /Dt, Do (C2) /Dt, DoT/Dt and Dser/Dt and

with the terms tre;d,, tre,d,, (u; — u,), gradud, uf, &, &, & and grad(T) in (12.3), one obtain
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D,p Pa
— Zala — e X 124
A Dr ()\aea € Pa) ( )

a=l,s

+ Z Z Dt Dtpa Eapaﬁ‘zx)

a=ls j=1
Y eap 2T 9As
Eapa Dt na 8T
a=l,s

N
+tregd; | € + pru{ Quj + Amﬂ)

j=1
N
+tre ds | ts + Zpgug @u! + A0, I— t -t
j=1 €s
oA =
+ (w —u,) - | pigrade; — g pptr —lgradEs — T
OE,
Asps)

+ Z Ea Ztr gradul)) (¢, + M, 001 — pL AJT+piTT))

a=l,s
+ 3 Zug (= (Th+,) — grad (holad))
a=l,s j=1
N
+ Z Zu{x - (M,grad (eqp)) + eaTY grad (p7,))
a=l,s j=1
JN
3 > () dul
a=l,s j=1

N—

—z() e (3= x)

Jj= j=1

p—l

L%

N-1
—é ()\l — A + Z (Cg)\i — Cf)\g) + A — A,

=1

a=l,s

4(T) =
_% Z (qa+zt1z:)¢TuJ Zp’u’ AJ _5 [+ al)) ZO
j=1

This expression is suited for evaluating equilibrium and non-equilibrium results. This will be
the subject for the next sections.
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12.1. General non-equilibrium Results

The special form of the entropy inequality (12.4) must hold under general variations of state
variables. This results in that some properties must be related to each other in a special
way. Here it will be shown how such relations can be developed under the conditions that
the Helmholtz free energies of the solid and liquid phase are given by the material functions

As (T, ps, CI,Ey) and A (T, o, C} ,ES>. The so-called Lagrange multipliers introduced into
the virtual force equation (11.15) will also be defined by the procedure to be described.
Let the following properties be arbitrary defining a non-equilibrium state

D.T  Dap, DuCi

. J. 12.
Dt’ Dt pp o e gradug (12:5)
The part of the inequality (12.4) involving the term D,T/Dt is
D, T 0A,
- . > 12.6
ADQT s Dt € poz < aT + 77(1) . 0 ( )

That is, if D,T/Dt is arbitrary, according to the general non-equilibrium state defined in (12.5),
the inequality (12.4) gives that 0A4,/0T and 0, for the two considered phases must be related,

N > apa <%‘;{ > =0 (12.7)

a=l,s

The part of the inequality (12.4) involving the term material time derivative of p,, is

Dop Do
= ZaPa (o Ay — a2 ) > 12.8
Ap,,, B <6 Ao — € Pa) 0 (12.8)

In a general non-equilibrium state D, p, /Dt is arbitrary, hence the Lagrange multiplier A, must
be defined, as

Pa
Ay = Do 12.9
Pa ( )
The term in (12.4) involving Dan‘ /Dt is
Ap.ci (Eapa — €apaiid) > 0 (12.10)

a=l,s j=1
For arbitrary choices of D,C% /Dt the Lagrange multiplier )\f; is given, as
N, =il (12.11)

The part of the inequality (12.4) including the (symmetric) velocity gradient d; for the liquid
phase, is
N . . .
Ag, =trad; [ 6+ plul @u + NpI | >0 (12.12)
j=1
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which by aid of (12.9), i.e. A\; = p;/p;, can be expressed in terms of the hydrostatic pressure p;
instead of the mass density p;, i.e.

N
Ag, =treyd; |t + Zp{u{ ®u{ +pl) >0 (12.13)
j=1

That is, defining a non-equilibrium state in which d; is arbitrary, gives the definition for the
stress tensor for the liquid phase t;, as

N
tr=-—pl-) pul®@ul (12.14)
j=1

The term in the inequality including the (symmetric) velocity gradient d is

N

Ag, =treqd;s | ts + E plud @ul + )\spsI—ﬂtls —t;) >0 (12.15)
” €s
Jj=1

Using (12.9) with @ = s, i.e. A\; = ps/p,. The expression (12.15) can be used to define the stress
tensor for the solid tg, for arbitrary d;, as

N
te = —p, I+ 2tt +t5— 3 plud @ ul (12.16)
€s o
The term in the inequality (12.4) including gradu?, is
N . . . . ] . .
Agadai = D a0 Yt ((gradud) (£, + M LT — pf ALT+pLT ) (12.17)

a=l,s j=1

For arbitrary choices of gradu/, one obtain the definition of the stress tensor for the jth con-
stituent in phase «, tJ,, as _ o o '

t), = pl ALY - il pLT—pi T (12.18)
where the condition M, = i, i.e. (12.11), is used. Consider the stress tensor for the Nth
constituent which is

t8 = pd AN — pf pl1-plT (12.19)

By identifying the Lagrange multiplier I'Y as the chemical potential tensor Y and also relating

the chemical potential for the jth constituent in o-phase, i/, as relative the Nth constituent,

ie.

ry = py; B = pl — pl (12.20)

From (12.20) it is concluded that %I = 0, which means that the Lagrange multiplier TY can
be identified as

1
Y =ANT - —¢¥ (12.21)

—t
Py
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where (12.19) is used. .
From the choice of identifying T'Y and i1, as described in (12.20), the definition of the
stress tensor for the jth constituent in phase «, t7,, can be formulated, as

tl, = pL ALL — gl (ud, — p&) —phnd (12.22)
According to (12.22) the chemical potential tensor p?, becomes

pl, = AL — %t{! (12.23)

[23

which is the chemical potential tensor as defined by Bowen.
Consider next the definition (12.23) multiplied with C?, and summed over all N constituents

in phase a, i.e.

N N N ci
> Cipl, = CLAIT- " =2t (12.24)
j=1 j=1 j=1 Pa

Using the definition (7.39), i.e. Z;V=1 CI Al = A, and the definition for the stress tensor for
the a-phase, i.e. equation (4.23) in which the terms involving second order diffusion velocities
are neglected, one obtain

Z Il = AL — —l-ta =Gy (12.25)
P

(24

which is the definition of the Gibbs free energy tensor, e.g. see equation (9.2b).

12.2. The non-relative chemical potential

Consider the following derived expressions or definitions

N
Ztﬂ - Z Pl ®ul) (12.26)
=1
t] = pl ATT — il pf T—p TN (12.27)
N . . .
t;=-—pl— Zp{u{ ®ul (12.28)
4=1
N
t, = —p.d + —t‘ +ti— ) puieul (12.29)
=1
= ANT - —tN (12.30)
Pk

which is (4.23), (12.19), (12.14), (12.16) and (12.21) repeated. Consider the elimination of

Z;V 1 t2, to and T from the above expression. Combining (12.26) and (12.27) gives
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N
> (AL~ FAL-AATY) (1231)
j=1

Further, by combining (12.31) and (12.30), one obtain

N .
3 <pg;Ag1 Tl AVT 4 ;’]_;tg) (12.32)
i=1 @
N
-3 (e )
J=1

N
—P—Ilvtfv = Z (pl AT — i oI} ANI) +pl (12.33)
j=1

Using the definition (7.39), ie. pd; = Z; 10 Al, and dividing the whole expression (12.33)
with p;, one obtain

N
——%t = [ A=Y _pci-aY + 2T (12.34)
{ j=1 P
where (2.13) has been used, i.e. C/ = p!/p;.

The corresponding relation to (12.34) for the solid phase s, is obtained by combining (12.32)
and (12.29), i.e

N »
El g | AGY _ 28 AT 4 ANT . Pa N
—p, I+ —t té = Al — 2 T—-p? AT t 12.35
psl+ b+t j§=1<p€s B I—ph Ay +p£,s> (12.35)

Using the definition (7.39), i.e. p,As = Zf’: L PLAL and (2.13), ie. C! = pl/p,, dividing the
whole expression with p,, one obtain the expression

il
Y ZegN 4 — (ﬂtls +t§) = (Al - Zugcﬂ —AN 1 B (12.36)
ps Ps \Es j=1 Ps

The the left-hand-sides of expressions (12.34) and (12.36) tells us that equations (12.34) and
(12.36) are scalar multipliers of the identity I. With this as a motivation, define the scalar
chemical potentials

: 1
h EA{I—?t{ (12.37)
1
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and ) .
I =AT-—t] + — <ﬂtg + t;) (12.38)
Ps Es

8

where the notations ,u{ and p has been used instead of ﬂ{ and i to distinguish it from Bowen’s
tensorial chemical potential. Multiplying (12.37) and (12.38) with C?, and summing on j gives
the relation analogous to(12.24) is obtained. For the liquid phase one obtain

Z CJud= Z CJ AT Z (12.39)

7=1

which by the definitions p, Ay = ijl pZyAa, ijl ol = p, and CL = pl, /p,, the expression
(12.39) can be written as

N A
> o Clu=A—=> "t (12.40)
= 1
the following definitions concerning the property tf will be made

N
t{ =—plT; and > t/ =-—pI (12.41)

which partly, also, can be seen as a consequence of ,w{ being a scalar property. By combining
(12.40) and (12.41) it is concluded that

N
> Ciu _AH—,D_Z (12.42)
j=1

If expression (12.42) for the scalar chemical potential for the liquid phase ,uf , should be valid
also for the solid phase, the somewhat general relation

N
3 CgungaJrgﬂ —tes (12.43)

which is the classical Gibbsian thermodynamical definition, i.e. compare with the tensorial
definition (9.2b), should hold. In this case the definition of the pressure of the constituents in
solid phase pJ must take a different form than the classical definitions shown in (12.41). To
show this consider (12.38) multiplied with C? and summed on j, i.e.

N ;
D i = ZCJAJI Z Stﬂ+z (6 tl +t> (12.44)
j=1 ps

Using the same definitions used to receive (12.40), i.e. p,Aa = Z o PLAL, Z —1 L = p, and
C? = p /p,,, one obtain

Z CI a1 =A, I—— th t’ — it (12.45)
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That is, by ignoring the second order diffusion velocities in the definition (4.23), and defining
the pressure of the constituents in solid phase p, as
—p I =ty — Lt} —te (12.46)
€s
the classical result (12.43) is valid. Further, due the expression (12.44) and (12.46), it seems
natural to define the partial pressure p’, as

=t — Y (?tls - t§> (12.47)

By comparing expressions (12.41) and (12.47) with its corresponding definitions (12.37) and
(12.38) it is directly concluded that
u-g‘:Ai—f—%,—; o = l, s (1248)
i

where CJ/pJ = 1/p, was used when combining (12.47) and (12.38) for identifying the validity
of (12.48) for the solid phase. Not that (12.48) shows consistency with (12.43).

By comparing the two definitions of the scalar chemical potentials, i.e. (12.37) and (12.38),
with Bowen’s tensorial chemical potential one arrive at the following relationships

@I = pd (12.49)

) e (ﬂtg +t§> (12.50)
ps 3

It is also noted that when the definition ji, = 8A,/0CY, i.e. (9.4), and expression (12.20b) is

combined with (12.49) or (12.50), one obtain

0Aq . .
aojlzui—ufl’= (Wl — )1 (12.51)

where it is noted that the term 1/p,(e;/est! + t¢) vanish when (12.50) is combined with (9.4)
and (12.20b).

pLI=

12.3. Equilibrium Restrictions

Before considering the equilibrium restrictions imposed by the entropy inequality, it is necessary
to re-write the term in entropy inequality associated with ud,, 7 =1, ..., N, in terms of indepen-
dent variables u,, 5 =1, ..., N — 1. To do so, consider the terms in inequality (12.4) associated
with w/,, written as

N N-1
doudwlh=> ulowi+ulwl (12.52)
Jj=1 Jj=1

where w, is a vector representing the coefficient of u, in (12.4). From (2.17), it follows that

N o N-1 o
> Chul, =0; Y G, = - Clu]] (12.53)
Jj=1 Jj=1
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where the definition CY, = p,/p,, is used. Therefore the expression for u}) becomes

ci
u =~ Eﬁufx (12.54)
=1
Combining (12.52) and (12.54), yields
) ) N-1 ' . N—1 CJ .
Zu{x wl, = uw, - wl, — Z C—j:;ufx ~wh (12.55)
= =1 j=1 e

where it is noted that C4/CY also can be written as

ci  pl
o a 12.
oy = o (12.56)

since C’J 0L/ P Noting that the Lagrange multiplier M, according to (12.11) is identified as
M, = ji?, the vector w?, representing the coefficient of u, in (12.4), can be identified as

wi, = —(T4+8) - erad (caplAL) + Hgrad (carh) (12.57)
+eaT Y grad (o1,
Using (12.21), i.e. TV = ANT — t¥ /pY | the sum of w/, can be expressed as

N-1

N—1
Z w, = - Z (’i‘J +zﬂ> Z grad (eap?, AL) (12.58)
. —
J -
+ Z fil.grad (eapl,)
i
s

Partial differentiation of div(eqp?,fi?,I) gives

N-1
Z div (eapd BLI) = il grad (eqpl,) + eaplgrad ([fo) (12.59)

J

z

I’
—
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That is, the term i/ grad(eop?,) in (12.58), can be written as

N-1 N-1
Z il grad (eal?,) = Z div (Eapéﬁfﬂ) — eaplgrad (fil,) (12.60)
j=1 j=1
The equations (12.58) and (12.60) combined gives
N-1 N-1 N-1
Nowl o= =) ('i"a —i—ifx) — > grad (eaplAL) (12.61)
j=1 j=1 =1
N-1 ' ‘
+ Z div ( sapfxua ) eaphgrad (fil,)
7=1
N—1
+ ) eq (ANT) grad (o)
j=1
N-1
- o <—A7tfxv> grad (p,)
=1 2

From (2.14) it is concluded that the concentrations C%, j =1, ..., N — 1, are related as
N N-1
dYoci=1 Y ci=1-CF (12.62)
=1 j=1

That is, the term CZ/C¥ in (12.55) can be written as

Z Ce 1 -1 (12.63)

a

The term ZN lod J /CNwl needed for evaluation of expression (12.55) can be written as
N-1 CJ . 107
Z C—f{,w,‘:‘r — Z (Tg + ig) Z & grad (eaphy AY) (12.64)
j= 1 o Ot Ct

+ Z %sa (Afva) grad (plav)

Jj=1 "¢
N-1

Pl <1 N) N
- N o _ta d e
ok () st

where jiY = 0 is used which is a consequence of equation (12.20).
The term p?,/p grad(eapl AY) in (12.64) can be re-written with the identity

f—ggrad (eapy AY) = Zg‘ ea (ANT) grad () + plgrad (eaAL) (12.65)

o
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Further, by using pY = p?, CN /CJ, i.e. equation (12.56), the last term on the right-hand side in
(12.64) can be written as

12
P (1 .n (p&) Y cy
—p—g—sa <@ta grad (p)) = - N Ea Eta grad o (12.66)
CNd_ (1 o
e ()= (3)
Combining (12.65) and (12.64), yields
N-1 N=1 N-1
C Cy, N ;
Z WWN Z N ( +fov) — Z plgrad (saAfo) (12.67)
j= =1 o j=1
-1 .
cy,
Z ovees Ngrad (b))

1

L%
Il

where CY%/CN = pJ /pV is used. Note also that the following identity holds

N—1 N-1 N-1
Z eaAlgrad (o2, + Z plgrad (e, AY) = Z div (eap?, AN T) (12.68)
Jj=1 j=1 =1
By combining (12.61) and (12.67), yields
NoLo Nl N N-1 ) N-1 o
Z wi — Z onVe = (TJ + H) ~ grad (eapl, AL) (12.69)
3=1 j=1 "¢ j=1 j=1
N-1 o '
+ div (eapaﬁgI) — eqp’,grad (/lf])
j=1
N-1 _
+ ) eq (ANT) grad (o)
j=1
N—1 1
Y. (p_N )grad(pv)
=1 C
Ny N-1
+ —C@ (Tg + ig) + Z plgrad (e AY)
j=1 j=1
N-1
¢y
+ 1 oN = o Ngrad (pg)
ij=

N-1 N-1 N N—1
Wiy = D Garcagrerad (PY) =) ea ( th) grad (p?,) (12.70)
j=1 j=1 ¢ - j=1 o



That is, expression (12.70) can be written
N—1 A= .
Z watN = (ea N> Z <C—R‘,grad (oY) — grad (p&)) (12.71)
J=1 pa .7=1 [24
Using plY = CNp4,/CI, i.e. equation (12.56), the expression (12.71) can be brought to the form
tV\ = /¢l pl.CcN .
= | ea ad [ =% | —grad 12.72
St ()5 (G2 i) oo

Differentiation of the first term on the right hand side of (12.72), gives

C’N grad (p7 cll (i)™ 1) C’N ——grad (p?,CL) — -M—grad (C3) (12.73)
cy (CJ)
ie.
gN grad (p’aC’éV (ci)” 1) = C—lN-grad (pr.co - pg grad (c4) (12.74)
By differentiation of the first term on the right hand side of (12.74), one obtains
cy ; = ; ]
Gaenad (AON ()7 = erad (p) + C”’N grad (G (12.75)
—g%grad (Cfl)

Combining (12.75) and (12.72), gives

N-1 N-1 i 1 '
Z W = (eatl Z < 2grad ey - m—grad (Cg)) (12.76)
=1 &

i=

where (12.56), i.e. p/, = C4pN /CN is used. Note, also, that the identity
¢l

(—ON—)zgrad (C(]IV) -

holds, i.e. the expression (12.76) can be written

Z Loy = (€ata) A_H ( grad ( gg,)) (12.78)

Jj=1

! 7) = d G 12.7
C—évgrad (C%) = —gra oN (12.77)
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Using (12.78), valid for the terms associated with terms involving t% in (12.69), one obtain

N
S ud,-w Z w, - ( grad (eqp%,A) — (Tg; + zg)) (12.79)
J=1
N-1
+ Z W, - div (sap{;AgI)
j=1
N-1 ' .
+ - (div (Eapgﬁfo) — eqplgrad (i)
j=1
N-1
+ ) ul- gN (TN )
j=1
N-1

. ci
- w, - et grad <—C’%> :
«

.
Il
-

where also the identity (12.68) is used.
Consider next the momentum balance equation for the jth constituent in a-phase.

(V’) v (e td i 9 3
Eapl,—22% = div (eqt]) + eaplel+T, + &, (12.80)

At the equilibrium situation considered the acceleration D vy /Dt is zero and that the gravity
is, further assumed to be small, i.e. e4p%,g, = 0. That is at equilibrium the following condition
is assumed valid

- (Tg + zg) = div (eat?) (12.81)

The two last rows in (12.79) will be denoted Wi 4 and is given as

[:%

- s, cy
Wy = o (TN iy ) — eatNgrad <CN) (12.82)
cy, .. cd
= —@dlv (satflv) — et grad <C’N>

where (12.72) has been used with j = N. The expression (12.82) can be re-written be the

identit
’ cL N i, — 4 NP
_—delv (eatl) — eatl grad or )= —div ( eaty o (12.83)

[0 [

where pl¥ /pJ, = CN /CJ is used. hence the expression for Z;V=1 ul, - w¥, becomes using (12.79),
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(12.81), (12.82) and (12.83)
Z“i o Z W, - (—div (apl ALT) + div (e4t?))
+ )l - div (eapl ANT)
+ 7wl - (div (caplBAT) — capherad ()

N— ,
- W, - div <eatévj—1‘\",> .

(o4

(12.84)

The equilibrium condition for wJ, can be evaluated from this expression since the diffusion

velocities u/,, j = 1,..., N — 1 are independent variables.

The equ111br1um condition to be studied is defined when the following properties vanish

Dy S "
D?; (w—u,); ul; &5 &; &; gradT
For the ul,, j = 1,..., N — 1 independent variables in (12.84) it is concluded that
i i | 7 N tf; tN i ~j
diveapl, | I (49, — AJ) I+ ——-p—N = eqplgrad (fil,)
[¢7 [0

is a equilibrium result when v/, vanish in the inequality (12.4).
The term involving Dse;/Dt in the inequality (12.4) is

D 61

If Dge;/ Dt vanish at equilibrium, the followmg relation must hold

’\lpl = )‘810.9
Using further the non-equilibrium result Ay = po/pq, i-6. (12.9), gives the condition
DL = DPs

The terms associated with (u; — u,) in the inequality (12.9) is

dA; "
Ay, = (0 — uy) - (plgradel —gptr <8E gradE, ) — T;> >0
At equilibrium (u; — u,) must vanish, so that

~

04;
T; = p,grade; — g1p,tr <a—EsgradEs)
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holds.
The terms associated with & in the inequality (12.4) is

Ay =28 (M=) =0 (12.92)
Noting that )\f; = ﬁ{; holds at a non-equilibrium condition, e.g. see equation (12.11), and that
é] vanish at equilibrium. The expression (12.92) gives the condition
i = i (12.93)
at equilibrium,
The term V51, (A{ = Ag)a,nd X, = [, the &, vanish

The terms in the inequality (12.9) associated with &, is

Ay =8 (,\{ - Ag') >0 (12.94)
which gives an identical condition as illustrated in (12.93), i.e. i = fil. Since the chemical
reactions ¢/, only is connected to reactions within the two considered phases and not between
phases, the expression (12.94) will be separated into two terms, as

N-1 N-1 N-1
AL +A% =34 (A{ - Ag) =Y N> dx >0 (12.95)
i=1 j=1 j=1
which with )\f = /1{ and M = i/ gives the conditions
N-1 N-1
gpl >0; and Y &l >0 (12.96)
j=1 j=1

for the two different phases. Making the assumption that only reaction involving two constituent
in phase « can occur at a time level. Let fi/, and fiy, be the chemical potentials for the two
reacting constituents in c-phase, where ¢ # j. In such a case the relation between ¢/, and &, is:

¢l, = —¢',. That is, when making the above restrictions (12.96) can be expressed as
o (A — i) > 0; and & (i) — i) >0 (12.97)

The expression (12.97) gives the condition
i = fj; and f = fig (12.98)
at equilibrium, i.e. when 6*17 and ¢ vanish. If considering reactions which involves more than

two constituents within the phase, the conditions in (12.98) are noted not to be valid.
Consider next the condition in the inequality (12.4) in the case when é; vanish, i.e.

N-1
Ay =2 Py 5m (Cﬁﬂi—cfﬁ{)JrAl—Aszo (12.99)

P Ps j=1
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where Ay = pa/pos X = /1? and M = i are used.
The following definitions will be used
=ANT - — g pl = AIT — %t{x (12.100)

N
o Po

and . _

WYSTY Il az10
which is (12.21), (12.23), (12.20a) and (12.20b), repeated. The third term in (12.99) can by
(12.101b) be re-written as

N-1

> d

j=1

=z

—1
CI il Zq’m (12.102)

M

1

2?

N—
Z
N
2 - =Y ciw +
= i=1

Using the relation ijl CJ =1, i.e. equation (2.14), the expression (12.102) becomes

N-1

> Ci1= Z Gl — (12.103)

j=1

That is, when é; vanish the expression (12.99) gives

N
(B ch ol = (B ) 1Y Ol + (12100
s =1
at equilibrium, where (12.99) and (12.104) are used.
A more physical intuitive interpretation of (12.91) can be obtained by considering the mo-
mentum equation for the a-phase, which is given by (4.24), i.e

Da a A =
Eapa# = div (eats) + €apuatTa (12.105)
At equilibrium D, v, /Dt = 0, hence
T, = —div (eit) — 10, (12.106)

is the equilibrium version for the liquid phase momentum equation. Combining (12.91) and
(12.106) gives

0A
—div (e1t;) — e1p,81 = p,grade; — epgtr (8—ElgradEs> (12.107)

8
The definition of the stress tensor for the liquid phase, i.e. t; = —pI — Ej\;l p{ u{ ® u{ , given
from equation (4.23) and (12.14), is at equilibrium given as: t; = —pI, which means that

(12.107) can be expressed as

A
div (eipiI) — e1p; 81 = pygrade; — erptr (%gdes) (12.108)
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Noting, also, that the following identity holds
div (eipiI) = eigradp; + p;grade; (12.109)

That is, by combining (12.108) and (12.109) one obtain

gradp, — pig1 = —ptr <g—;§l-gra,dEs> (12.110)

which is an alternative version of (12.91).
The condition for the terms involving the property gradT is

N N

aT . o .

Agraar = graT Qo+ tiul = > plud (44, — LpluZ) | 20 (12.111)
5=1 5=1

a=l,s
The properties gradT and u’, vanish at equilibrium, therefore (12.111) gives that
Q+aq.=0 (12.112)

is an condition defined by (12.85) and (12.4).

12.4. Comparison with classical equilibrium results

Consider again the equilibrium result (12.110), i.e.

A
gradp; — pjg1 = —pitr (%gradEQ (12.113)

which shows that the fluid in consideration is in contrast with the classical equilibrium result,
ie.: gradp, = pygi. A normal fluid satisfying gradp; = p,g; is called a bulk fluid and the fluid
described by the equilibrium condition (12.113) can be referred to as a vincial fluid.

Consider, next, a combination of the equations (12.18), i.e.

t] = pl AV — i pl T—p T (12.114)
and (12.86), i.e.
diveqp’, <,1g;1— (A5, — AV I+ (:—J—%)) = eaplgrad (i) (12.115)
which yields
diveap?, <A{1VI -y - %) = eaplerad (i) (12.116)

Using the definition T'Y = ANT—t% /pl, i.e. (12.21), the equilibrium condition (12.116) reduces
to
grad (fi,) = div (u?, — pl) = grad (u?, — pY) =0 (12.117)
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where (12.20b) and (12.51) are used. This resembles the classical Gibbsian result stating that at
equilibrium, the chemical potential is constant, but it is expressed only in terms of the relative
chemical potential.

Consider now the non-relative definitions of the chemical potentials corresponding to the
relative chemical potentials in (12.93) and (12.117). The derived expressions (12.25), (12.14),
(12.16), (12.104) and (12.93) will be used, which are given as

N o 1
> il = AI - ;—ta =G, (12.118)
N . . .
tr=—pl- Zp{u{ ®ul (12.119)
= —pI+ —tl +t° — Zpguﬂ ®ul (12.120)
j=1
N . .

( -I-Az) ZC{ ud = <2ﬁ +As> 1-> Cipd+pl (12.121)

8 =1
i = (12122)

where it should be noted that (12.121) and (12.122) are equilibrium results.
For the liquid phase combine (12.118) and (12.119) in order to eliminate the stress tensor t;,
ie.

N
: 1
> Ciul = AT + o | pI Z piul @ uj (12.123)

7j=1
Eliminating stress tensor t, in solid phase combine (12.118) and (12.120) to obtain

N N
> ciul = A, I+ — | psI— —tl —ti+ ) puieul (12.124)

=1

Combining (12.123) and (12.124) with the equilibrium condition (12.121), gives
1 P ; 1
—= pruf oul | +pl¥ = o tl +t5 — Zpguj oul | +ul (12.125)
Note, further, that at equilibrium the diffusion velocities u{ and u/ vanish, and that i1 = pd, ~

. ie. (12.101b) together with (12.122), gives

B =p - pp =BT =pd — ) (12.126)
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That is, u) — pd = N — p. Hence, by (12.125) and (12.126) it is concluded that

pVN oy =L (—Eitls +t§> (12.127)

S 8

The equivalent expression for the scalar chemical potential can be obtained by considering

W1 =yl (12.128)

g 1 (e e
wI— Hi:p_ (—tls —|—t3> (12.129)

S 8

i.e. (12.49) and (12.50), combined with (12.127), to obtain
ul = (12.130)

which is the classical Gibbsian result stating that the chemical potentials of a single species in
two phases are equal at equilibrium. It is, however, concluded from (12.127) that the tensorial
potential does not recover the classical result when the solid phase is stressed.

The absolute form of (12.117) can be derived by considering the constitutive function for
A;, which is A; (T, P15 C’lj, Es), see (9.1). The gradient of A4, (T, 21 C’lj, Es) is by the chain rule,
give as

dA, 8A, = 84, '
rad4; = ——=gradT + —gradp, + —— gradC/ 12.131
grad4, L a5, Bede ;:1 207 gradCy ( )
0A;
+tr <8Es gradEs)

where the third term on the right-hand side of (12.131) only is summed on j = 1,..., N — 1,
due to the summation from 1 to N not is independent since Z;V:I C] = 1. Considering, further
(12.51) with j = N, i.e.

. 0Aq
= ey o = (- )10 (12132
which justifies that (12.131) can be written as
BA 84, Loy ;
grad4; = ﬁgradT + -a—plgradpl + Z i gradC (12.133)
i=1
A
+tr <-gflgradEs>

Observing that the relative chemical potential p{ and the‘pressure in the liquid phase p; are
given by the definitions (9.2a) and (9.4), i.e. ] = 84,/0C}, and p, = p?8A;/8p,. Recall, also,
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that under the equilibrium conditions studied the property gradT, in (12.133), vanish. Hence,
at equilibrium (12.133) can be written as

N
; ; 0A
gradA; = %gradpl + Zufgradq’ +tr <5E—lgradEs> (12.134)

1 j=1 s

Note also that (12.43) with o =1, i.e.

N
a=>cig-2 (12.135)
= Py
can be used to obtain an expression for the gradient of A4;, as
N . .
gradA; = —grad <%> + Zgrad (Of,u{) (12.136)
1 =
By using the identities
—grad <ﬂ> = p—égradpl — —1—gradpl (12.137)
P P Py
and
N o N N '
Z grad (C’f,u{) = Z Clgrady + Z plgradCy (12.138)
j=1 i=1 j=1

the term gradA; in (12.136) takes the for

1
grad4; = ﬁ—égradpl - p—gradpl (12.139)
] !

N N
+ Z Clgradp] + p] Z gradCy
; =

i=1

Combining (12.134) and (12.139) one obtain

8A 1 Ny :
tr <8_E:gdes> = —p—lgradpz + Z Cfgradyj (12.140)

J=1

Using, further, the equilibrium condition (12.110), i.e. gradp, — p;g = —p;tr(0A;/0EgradE;)

Ly : 0A 1
E Clgradpy] = tr —loradE, | + —gradp = g (12.141)

which is the Gibbs-Duhem relation for the liquid phase. In order to obtain a sharper result
for (12.117) consider the scalar version of (12.117) multiplied with C] and summed over all
constituents, i.e.

N N
Y Cgrad (;1{) =Y Cigrad (u{ —pf ) =0 (12.142)
=1 Jj=1
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ie.
N N
Z Cfgradu{ = Z C’ljgradulN = gradud’ (12.143)
j=1 j=1

By combining (12.143) and (12.141), one obtain

gradpl’ = g (12.144)

Using this expression with (12.117), i.e. grad (u{ — u{v) =0, gives

grad (ﬂf) =g (12.145)
Further, by using p = u, i.e. (12.130), and (12.145) results in

grad (,u{) = grad (ug) =g (12.146)

where the body force g is identified as the gravity which is assumed to be the same for all
constituents and phases, i.e. g/, = g, = g. The equilibrium condition in (12.146) is a sharper
result than (12.117) and shows consistency with the classic Gibbsian result stating that in
absence of gravity the scalar chemical potential is constant at equilibrium. By combining the
condition (12.146) with the relation between scalar and tensorial chemical potentials for the
liquid phase: I = p, i.e. equation (12.49), and with the corresponding condition for the solid
phase: pIT — pi=1/p (tie; /e, + t2), i.c. equation (12.50), one obtains

dive] =g (12.147)
. 1
divp? = g—div (— <ﬂt‘5 + t;’)) (12.148)
ps €s

The condition (12.146) confirms that in absence of gravity the tensorial chemical potential for
the solid phase, as defined by (12.23), is not constant at equilibrium.

12.5. Near-equilibrium theory

To derive near-equilibrium results, the coefficients of the variables listed in (12.85) in entropy
inequality (12.4), are linearized about the variables

Dssl'
Dt’

(W —u,);uwl; &; é&; &; gradT (12.149)

since they vanish at equilibrium. The approach of linearizing only about the one variable
which gives a positive quadratic form in the entropy inequality. Consider z which is one of the
variables which vanish at equilibrium and the function f is the coeflicient of z within the entropy
inequality. The linearization procedure is then given by

freq = feq + C2 (12.150)
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which is an approximation for the near equilibrium value of f, where C is the linearization
constant.
Consider, first, the condition when &; vanish at equilibrium, i.e.

P = Ds (12.151)

The near-equilibrium result, hence becomes

Diey
, 12.152
PL=Ps = ( )

where (12.149) is used with feq = p1 — ps, 2 = Dser/Dt and C' = p,.
When (w; — u,) vanish at equilibrium, one obtain (12.91), i.e.

R 0A
T, = p,grade; — ep;tr (@—lgradEs> (12.153)

The near-equilibrium result is obtained by identifying 2z and C as: z = (w —u,) and C = Ry,
ie.

A .
pgrade; — ey pytr <%gradEs> — Ty = Ry (0, —uy) (12.154)

The linearized version of the equilibrium condition /1{ = /]g, i.e. equation (12.93), becomes
B - =K7¢; j=1,.,N—-1 (12.155)

where K7 is the linearization constant. ‘ ‘ ) '
When &/, vanish at equilibrium, the conditions i} = f; and ji] = fi; was obtained, see
equations (12.98a) and (12.98b), hence the linearization process gives

BB =W and - = WiE (12.156)

where Wl’ and W/ are the linearization constants for the reaction between two constituents in
the liquid phase and the solid phase, respectively. Note also that j # i.

In the above near-equilibrium results the term feq is zero. This it not the case for the coeffi-
cients for u/, which includes an equilibrium condition. For this case it is, therefore, necessary to
do some further manipulations. Consider the property w, which is the terms associated with
u!, in the entropy inequality (12.4), i.e.

N-1
wl, = - ('i‘fl + i{l) — grad (eaph AL) + fid grad (eap?,) (12.157)
=1

+eo M grad (pfl)

where second order terms of the diffusion velocities are ignored and where (12.11) has been used,
ie. X = i, Using the definition of I'Y, i.e. equation (12.20a), and adding Z;vzl w, (pl il grade., )
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which is zero by the constraint (2.17), one obtain
N . . . . .
Zw{l wl, = o (pherad (eapl) — pllgrad (eapd)) — grad (eaplAL)) (12.158)
=1

ot (= (1% +8,) + eanllgrad (o) + phpl gradea )
where the summation is from j = 1,..., V. Note that the identity
pl grad (eqpl ) = equll grad (p,) + pl,nl grade, (12.159)

holds, i.e. (12.158) is reduced to
N . . . .
Zw{l !, =ul - (uigrad (Eapg‘) — grad (eapjo"Afx) — (TZ] + 'ZZ)‘)) (12.160)
j=1

Consider, further, the momentum balance equation for the a-phase, i.e. equation (4.9), and
assuming that the inertial terms is negligeable near equilibrium, i.e. (4.9) reduces to the form

- (Tg n if;) = div (eatl) + eaplgl, (12.161)

By combining (12.160) and (12.161) the result is
N . . . . . . . . . .
wax wl, =, (pherad (eapl) — grad (eaplAL) + div (eat?) + caphgl) (12.162)
j=1

Hence, according to the linearization procedure illustrated in (12.150), one obtain
(1igrad (eqpl,) — grad (eaplAL) + div (eat?) + eapggg)neq (12.163)
= (pigrad (eapl) — grad (eaplAL) + div (eatd) + caplgl) . RIu,

where z = u/, and the linearization constant is given by RJ, = uf,, where the matrix R, must

be positive definite.
The expression (12.163) can be rearranged further. Note that the chemical potential tensor

i, is defined as
pl, = AT - %tg (12.164)

P

which is (12.23) repeated. By multiplying the definition (12.164) by €407, and taking the diver-
gence of the whole expression one obtain

div (eapL A1) = div (eaplp?,) + div (eat?,) (12.165)
The first term on the right-hand side of (12.165) can be re-written by the identity

div (eaplpsl) = eapldiv (pl) + pégrad (eapl,) (12.166)
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Combining (12.165) and (12.166) gives
pherad (eapl) — grad (eapl,AL) + div (eat?) = —eapldiv (1) (12.167)

where it is noted that div(e,p?, ALI) =grad(eqp’, A%,). The terms of the left-hand side of (12.167)
is identical with the terms in the near-equilibrium equation (12.163), i.e. combining (12.163)
and (12.167) gives the result

(—eapldiv (pl) +eaplel), .. = (—eapldiv(pl) + eapggé)eq + RIu, (12.168)

neq

By considering the equilibrium result (12.147), for the liquid phase, i.e.
div (u?) —g (12.169)

it is noted that the first term on the right-hand side of (12.168), with o = I, vanish. That is, by
combining (12.168) and the equilibrium condition (12.169) and using g, = g« = g, one obtain

(—Qp{div (u{) + slpfg) = R{u{ (12.170)
neq
which is a generalized version of the classical Fick’s law. The generalized Fick’s law will in this
case be written as o _ ‘
Rjuf = —eipf (div () - g) (12.171)

The equilibrium condition corresponding to (12.169), for the solid phase, is given by

s €s

div (pl) = g—div <pi <t§ + ﬂt@)) (12.172)

which is equation (12.148) repeated. Combining (12.172) with (12.168) using g, = go = g and
setting o = s, gives

(—espidiv (ud) + sspgg)neq = <—esp£ <g—div <-[-)1— (t§ + Z—:té))) + ssp§g> (12.173)

S eq
J447
+R7u’

ie.
. ‘ . . 1 oo
(—espidiv (1) +esplg),,, = esphdiv (p— <t§ + gt;» +RiuZ (12.174)
s S eq
Therefore, the near equilibrium theory gives that the diffusion velocity for the jth constituents
in solid phase is

ﬂti)) (12.175)
€s

which, also, is a generalized version of the classical Fick’s law valid for diffusion of constituents
in a stressed solid.

Riu! = —e,p) (div (p) — g) — espldiv <I—j— <t§ +

S
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Next the interest will be turned to the derivation of a modified expression of the Darcy’s
law. Consider the equilibrium condition (12.110) with g} = g = g, i.e.

A
—gradp; — ptr <%gradE3> +p8=0 (12.176)

which is an alternative version of (12.91). The equilibrium expression (12.91) is associated the
variable (u; — u,) which vanish at equilibrium, see also the entropy inequality (12.4). Hence, by
linearizing (12.176), according to (12.150) with C' = (u; — u,), one obtain

A
Ry (w; — u,) = —gradp; — pitr (%gradEQ +piE (12.177)

In addition to the pressure gradient this generalized form of the Darcy’s law includes a ferm
accounting for flow of liquid in the solid pore structure induced by strains in the solid phase,
the magnitude of this flow is, of course, given by the constitutive function for A;(T, p;, C{, Es).

Finally, the Fourier’s law will be examined. Consider the equilibrium condition (12.112), i.e.

Q+qs=0 (12.178)

The terms associated with this condition in the entropy inequality (12.4) is gradT’, hence the
linearization according to (12.150) becomes

q +qs = AgradT’ (12.179)

which is the classical Fourier’s law, in which the constant A must be positive definite.

13. Internal variables

Internal variables are frequently used in different applications, such as in plasticity, creep and
thermo-elastic models. The internal variables denoted Hy, k = 1,...Z, where Z is the number of
introduced variables, are introduced in the constitutive function for the Helmholtz free energy
for the solid and liquid phase, as

As (T,ps:C.ZvEsaHk:) ) A <T7pla CijaES:H/C> (13'1)

With reference to the material time derivatives of A, in equation (9.20), and A; in (9.19), one
must add the following Z terms

DA, 0A, D,Hy

Dt OH, Dt (13'2)

and
D[Al . 8A[ DlHk

Dt — 8H, Dt

Further, it is noted that the Helmholtz free energy for the two considered phases are included
in the entropy inequality as, for example, presented in (7.59). The terms that must be added

(13.3)
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in the inequality, due to the inclusion of Hy in the constitutive functions for the Helmholtz free
energy for the solid and liquid phase, are

OA DiHy |
= i .
A= Z 9H, Dt 20 (13.4)

That is, the nature of these terms must be examined and arranged so as they satisfy the above
condition.

14. Different versions of the energy equation

In the method of using the Helmholtz free energy as a constitutive function it can be an advantage
to re-write the energy equation in terms of the chemical potential tensor and the Helmholtz free
energy or with the Gibb’s energy tensor and the Helmholtz free energy, instead of using the
internal energy as used before. Consider the energy equation for the jth constituent in phase
o, ie.

- Tj 7
— 5 =t (eat?dl) — div (eadl) + carlry, + QI + EY, (14.1)
which is (6.16) repeated. The energy equation for the inner part of the internal energy of the a
phase is according to equation (6.47) given as

N
cop2eB) S () —diveak) 142

+5a.0aro¢ + Qa
_Zua (TJ +’Zj) .
N
(3u?? (&1, + &, — Cléa))
j=1

where it is noted that k, is defined as in equation (6.23), i.e

N
ke = 3 (al+ALEI) (149
=1
N . .
= dla + thxTufx
=1
N . . . . .
= qa— Y ph (—t3 /Pl + $ui’T) u,
=1
The defined relation (7.37) between A%, E%, T and 79, is
Al =E —Tnd, (14.4)
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Combining (14.3) and (14.4) gives

(al + pLEL L) (14.5)

Mz

ko

.
1
.

qfx+ZpaA"u7 +Zp7Tna A

1 J=1

I
Mz

.
1

The entropy flux hJ, for the jth constituent in phase o is defined in (7.23), i.e
hi = of, + plnd, T, (14.6)

The entropy flux h, for the phase « is the sum of the equation (14.6) written as
N N
=> dh+ ) pnhTu, (14.7)
Jj= j=1

The Gibb’s energy for the o phase is given by the definition (9.2b), i.e
Go = Al — p M, (14.8)

By using (14.4) and (6.19b) the inner part of the Helmholtz free energy can be related to the
inner part of the internal energy density Fi., as

Al = — Z AL = By — Ty, (14.9)
@ =1
The material time derivative of (14.9) is

Da (EIa) _ Dcx (AIa) Da (T)

Do (14)
= 2 14.1
Dt pr 1T De e (14.10)
The term div(e,k,) can according to (14.4) be expressed as
N .
div(eoka) = divz (eadt,) (14.11)
N . . .
+div Z Eap7 A uJ + divz (%P&Tn]aué)
Jj=1 j=1
The term eq Z;\le pi, D3, (AL) /Dt can using the relation:
Ty) DJ I’ non
eapaD ( Z ( J, ( ) — div (sapgrfxugx)> (14.12)
N . . . .
+Y 1Y, (&), + &, - Cléa)
j=1
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that is, equation (4.18) with I'y, = A%, be written

A o) N . DI (A,
CaPa—— " ( ol 4 Z div (eaplAlul) = eq Z;pg% (14.13)
J:

+AL (8], + &, — Cléa)

Hence, by combining (14.2), (14.10) and (14.11) one obtain the energy equation

D, (A1) D, (n,) D, (T)
EaPo Dt EapPol F - Eaﬂa’ﬂaT (14.14)
N
—I—eatrz (t27d%) leZ eadtl,)
j=1
N g . .
—div ) " eapl ALl — div Z eapt T ul,
i=1 i=1

+eapPaTa + Qa
N
—Zu&- <’i‘fx +i{1) ‘
7=1
N
=Y (hof? (6 + &~ Clen)

=1

Using, further (14.11) in (14.14) the following result is yielded

N, . Di (4] A2 o
aa;p;—]% = —AL (e +& —Clé,) (14.15)
Da(na) _ Do (T)
—Capel =5 ~ EaPalla ),

N N
+eqtr Z (t’a'tT dja) — din (eaqf;)
=1

i=1
N

—div Z eIl ul,
i=1

+eapala + Qa



It is noted that hi, = q’, + p/n), T, by definition (14.6), therefore one can conclude that the
terms including the divergence operator in (14.15) can be expressed solely in terms of the entropy
flux h?, as

N N N

—div Z (eadtl,) — div Z eapl T, = div Z (eohd) (14.16)

= = ;
The proper equation for calculating the temperature T in the energy equation, therefore, be-
comes

apaita D) = 4] (& + &, — Chéa) (14.17)

Dt
_Eapcx D (na - Zp‘?x )

+eatr Z (t27d7) - divz (eahi)
§=1

=1
-i-ea,oara + Qu

—Zuﬂa (TJ +iJ) :
j=1
N
-3 (3o (& + &, - Cle)
Jj=1
which is (14.15) and (14.16) combined.
Next, the energy equation expressed in terms of the chemical potential tensor will be derived.

Consider the partial derivatives of DY, (p},A%) /Dt, i.e.

Di(rlh) _,  DAGR) | s D (sl
— CRWCTO O Eo Al T \VRRas 14.1
= T v (14.18)
The mass balance for the for the jth constituent in phase o is given by (3.39), i.e
DI (eqp? L . :
%tpé—)- =&, + &, — eupl divvd, (14.19)
Combining (14.18) and (14.19) gives
D, (eqpl A2 AJ
LSDK:Q Eapl, —S 2 ( ) + AL (&), + &, — eapldivvy) (14.20)
The last term on the right-hand side of the above expression can be re-written by the identity
Al 2 divvi, = eopl, AL tr (gradvy) = eqpl Al tr (d,) (14.21)
where it is recalled that dJ, =gradv?,. Hence (14.21) can be written as
DI (caph ) Di(4D) o
—r = Eap‘é Dt + A (6 + & ) (14.22)
—eapl Altr (d),)
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Recall that the definition of the chemical potential tensor p, for the jth constituent in « phase
is given by (12.23), i.e.

. , 1 .
i, = AT~ =+, (14.23)

Po

This means that the term eqpf, Af tr(d? )in (14.22) by the condition
eal ALl = e0pd il + et (14.24)
can be expressed in terms of pf, and t,. The condition (14.24) and equation (14.22), gives

DY (eaphAl)  _  DLAL) i (i 4w
T = EQP‘Z!T -+ Aa (ea + CZI) (1425)

—eapitr (pldl) — eatr (t1dY,)

By eliminating the sum of the j = 1,.., N number of terms qp%, D7 (A%) /Dt in (14.17) using
(14.25) one obtain

Dy (T) - =
o = _ i i
€aPalla— T = aa;tr(p{!uada)+j;fla0aea (14.26)
N . ] .
Dy, (eaplAL) Da (14)
_;T_EQP L=

N
—div Z (Eah‘i)
j=1
+60£poz’ro¢ + Qa

N . ~ .
—Zug-(Tg+ig)-
j=1

which is the energy equation expressed with the chemical potential tensor 1,

15. Electric charge balance

In some cases one is forced to add variables to the normally introduced state variables used in
continuum mechanical theories. An important case is phenomenon where electro-magnetic fields

are of importance.
Consider the electric displacement vector j and the charge density r which must be balanced

0:—]{ j-ds—i—/rdv (15.1)
oR R
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which is the postulate for the charge balance for a mixture of charged constituents. Using the
divergence theorem on the first term on right-hand side of (15.1), i.e.

7{ j-ds :/ divj dv (15.2)
aR R

the local form of charge balance can be written as
—divj =r (15.3)
This expression will be used when considering diffusion and sorption of charged constituents in

a porous medium.

16. Selected one dimensional examples

Assume incompressibility for the solid phase, i.e. Dsp,/Dt = 0.
The deformed volume dV* can be related to the reference volume dV in the reference con-
figuration X by considering the triple product of the side vectors 9x/9 Xy, as

. ox 0x 0x _ oz,
av* = <6X1 X, X 8X3>dv—det <0Xk>dV (16.1)

= det (GRADx)dV = det (F)dV = JFdV

where J¥ = det (F) is the so-called Jacobian. Hence, the volume fraction in deformed state &%
and in reference configuration €5 can be related as
*

€s = % (16.2)

The derivative de;/OPs, where J¥ = P,, will be needed which with ¢, = E:Ps—l/ 2, becomes

Oe Oe 1 1 -3
E] = s _ = *P—3/2 — L p* F 16.
8(,]‘}?)2 aPs 265 8 268 ('JS ) ( 6 3)

The relation (12.50) is
pI1 = pd + E. (t: + iti) (16.4)
Ps €s

In order to compare p? and ! at equilibrium, consider the following definition of scalar difference
of potentials

Ayl = %twﬂf — 1 (16.5)

Combining (16.4) and (16.5) gives

Ayl = —%l (trtj + ?trti) (16.6)

S
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Using the definitions for t¢, t¢ and E;, which are given by (9.3a), (9.3b) and (9.5), i.e.

0A 0A; 1
e _ i SFT, tl - s FT' Es e CS_I 16.7
ts psF (9Es ER s plF 8Es s 2 ( ) ( )
where C; = FTF;, one obtain
. 1 0A, 1le Py 04
Ay = —= L) =28y ) 16.8
a 3 (8ESC ) 3% n, T\ BE, © (16.8)

2 0A, 2ep 04
= —ctr|{ —=C, | —5——t C,
5= (acs ) e, p, \OC,
where (16.7) and (16.8) has been used. The following identity will be of use

. a(ﬂ)z 2
§tr __8((;: Cs =(J(1:)) (16.9)

where J(I';) is the determinant of F,, see equation (2.37). The derivation of relation (16.9) can

be performed by considering an arbitrary second order tensor A and its inverse A~!. Assuming
that the determinant of A is different from zero, the following relation is obtained

A
%— =JAAT! (16.10)
where JA = det A. By identifying A = C, one obtain
c
g‘é =J°c;! (16.11)

where JC = det C. By examining the definition of F, = zp k and the determinant of Fy, i.e.
|k, |, where indices after comma indicate partial differentiation with respect to X(4)x when
they are majuscules, and with respect to zx when they are minuscules, the following relation is
obtained :
JG) = det G = |zp kww, ] = |2,k |* = (J%Z)) (16.12)

where C; = F]F,, i.c. (2.70) has been used. That is, the Jacobi J3y is related to Jf,, as
Jg) e J(F;) 2. This means that the relation between C, and C! can be expressed in terms of
the Jacobi of the deformation gradient, i.e.
2
9 (J(lz)) F\% et
—5o— = (J(s)) C; (16.13)

which is (16.11) and (16.12) combined. By multiplying this equation with C; and taking the
trace of the whole expression, one obtain

2
tr #E)_)_cs = tr <(J(1;))2(j;108> =3 (Jg))z (16.14)
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where the identity C;'C, = 1, which follows directly from C; = FTF; and F;!F; = 1. That

is
1, [0JF 2
St (805 C,| = (J(S)) (16.15)
which is the equation stated in (16.9).

Using the chain rule and the identity (16.9) and the conditions (16.2) and (16.3) one can
establish the following relations

2 (04 2 84 8.2
§tr <8_CJSCS> = §t1‘ = 21 803 Cs (1616)
5 (J%)

_J(FS) Oes — s Og;
where &; + €; = 1 also has been used. Combining (16.8) with (16.16) yields

0A, _ap 8_Al
¥ Oey ps Oel

Ayl = —¢ (16.17)
which is a simplified one-dimensional relation ship between the tensorial and scalar chemical
potentials. The terms on the right hand side of (16.17) represent the one-dimensional version of
the effective stress tensor and the hydration stress tensor, respectively.

Example 1: Classical State Fluid Column Problem. Consider a static column filled
with an incompressible (i.e. Dyp;/Dt = 0) fluid. The fluid is assumed to be composed of a single
constituent. In such a case one have G; = A, +p;/p, and p; = ¥ = (pi/p; + A;) 1, i.e. one have
for this situation G; = p;. In this example, therefore, the classical scalar chemical potential is
identical to the Gibbs free energy scalar of the fluid. We gravi-chemical potential Gy is defined

in terms of GG as
Gl=G —v (16.18)

where 1 is the gravitational potential, i.e. g =grad(v). The gravitational potential in (16.18)
plays the same role as the effective and hydration stresses in (16.17). Orienting the one-
dimensional coordinate system in the static column from top to bottom and referring this
direction as the z-axis, setting g =gi, where i, is the unit vector along the z-axis. Hence

Y=gz (16.19)

where at z = 0 the gravitational potential 1 is set to zero. This means that, in this case,
the gravi-chemical and chemical potential (or equally, in this case, the Gibbs free energy) are
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identical at the top of the column. From (16.18) and (16.19) it is concluded that
G, —G] =gz (16.20)

Since the considered single constituent fluid is assumed incompressible, the condition in (12.133),
ie.

0A 04 o
! ! j ;
grad4; = a—TgradT + a—plgradpl + jEZI pi gradCy (16.21)
04,
+tl‘ (8—Esgf&dEs>

reduces to gradA; = 0 at isothermal conditions. Thus, taking the gradient in (12.43), i.e. the
gradient of

N
Y clui=at = (16.22)
— P
j
and using the equilibrium expression (12.141), i.e.
N
. . A 1
Z Clgrady = tr (QgradEs> + —gradp; = g (16.23)
=1 8E}s P

yields
1
gradG; = p—gradpl =g (16.24)
1

By combining (16.24) with (16.20) one obtain
gradG{ =0 (16.25)

The results in (16.20) and (16.25) shows that G7 is constant throughout the length of the column
while G} must increase linearly as the z increases. Noting that the Gibbs free energy scalar G
and the scalar chemical potential is identical in this example, it is concluded that the chemical
energy required to place a particle in the bottom of the column is greater than the chemical
energy required at the top of due to the gravitational potential.

Example 2: Terzaghi’s Consolidation Problem. In this example the influence of the
effective stress tensor on Aul will be studied. A one-dimensional version of the Terzaghi’s
consolidation problem for a non-swelling elastic medium will be considered. In the formulation
presented so far this situation can easily be obtained by setting t} = 0. A isothermal conditions a
porous elastic column is considered, bound by the sides and on the bottom by a rigid, adiabatic,
impermeable wall. At the top, a load is applied and the bulk water is free to drain. The initial
equilibrium configuration will be considered and each phase contains N miscible components.
By neglecting the dependency of A; on g; in (16.17), one obtain

(16.26)




A system with constant volume fraction £; and a case where the system initially is free from
stress is considered. It is, further assumed that the porous medium is linearly elastic and the
gravitational effects are neglected. The proper constitutive function of A is for this case
c

As= (e - &)’ (16.27)
where C' is a material constant representing the compressibility of the solid matrix. Using
(16.26), (16.27) and e, = —e, one obtain
C 0 (e? — 2e15, + &)

1 . .
—trpd — = = 16.28
3 r/‘l/s /*Ls 2 85[ ( )

—Ceg (61 - E[) ~ —C’(El — 51)

A

where a lincarization about equilibrium defined as ¢; = &;, has been performed, so that C' = &,C,
where £, is the constant volume fraction of the solid matrix in the reference configuration. In
addition it is possible to derive the linear relationship between the effective pressure p¢ and the
volume fraction g;. The effective pressure is defined as p$ = %trt?, hence, by (16.6) with t} =0
and by (16.26) one obtain

s = 1trt§ = —ssps% =—C*p, (g1 — €]) (16.29)
3 861
which is similar in form to the one heuristically proposed by Terzaghi.

The conclusion from this example is, among other things, that as the overburden pressure
on the column is increased, &; decreases, and since uJ is constant at equilibrium when the effect
of the gravity is small, according to the derived equilibrium condition gradu? = g, i.e. equation
(12.146), then trpf increases. The fact that trp! increases during the described conditions can
be confirmed by equation (16.28). Hence, the chemical energy required to insert a solid particle
into the compressed system is greater than at the unstressed initial state.

Example 3: Swelling Pressure Experiment. In order to study the influence of the
hydration stress tensor t!, on the chemical potential Ay defined in (16.5), the classical reverse
osmosis swelling pressure experiment will be considered. A saturated mixture of clay and ad-
sorbed incompressible fluid is separated from a bulk (non-adsorbed) fluid by a semi-permeable
membrane which only allows fluid to pass. An overburden pressure is applied to the clay mixture
and the shrinkage due to the loss of fluid is recorded. As in example 2, the gravity is assumed
small as compared with the applied external pressure and each phase is assumed to be composed
of the same N miscible components which concentration within a phase may be zero. It assumed
that the clay minerals consists of flat plates and the clay medium is such that the flat plates
are parallel so that the effective stress tensor t¢ is negligeable. Consequently, equation (16.17)

is reduced to
_&ap 04

. (16.30)

Ayl =
that is A is assumed to be independent of €;. As is seen from example 2, the equation (16.28)
shows that Au; is proportional to the volume fraction ;. In this example, however, it will be
shown that Ap? will appear as being inversely proportional to the volume fraction ;. Assume
that the macroscopic solid phase stress tensor in the clay mixture is negligeable, i.e. t; = 0 so
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that all overburden pressure is supported by the adsorbed liquid. It is recalled that the total
stress t is given as: t —=e;ts + €;t;. By using the assumptions t¢ = 0 and t; = 0, the equation
for the solid phase stress tensor (12.15) together with the equilibrium condition p; = ps, ie.
(12.89), reduces to

pl= —tl (16.31)

which leads us to the conclusion that the pressure in the adsorbed fluid is balanced by the
hydration forces. If this not was the case all the fluid would pass through the membrane
with minimal applied pressure. Taking the trace of (12.15), using the definition (9.3), i.e
tL = p,F Z4LET | one obtain

S OE,
€, 1P OAI 7
t I)=tr|{—t, | =t F,——F 16.32
D) = tr (£6) = (228, 22067 (16.32)
using E, = % (Cs —1) and C,; = FTF,, one obtain the following relation between p; and 4;
8Al ELP; aAl
- . ] 16.
tr (piI) tr( *3E, ) tr< - 25‘CSC (16.33)
From (16.16), one have that
2 [0A 0A
20 (g, ) = ¢, 042 16.34
3tr<3CSC'> € B¢, ( )
Combining this expression with (16.33) the following is yielded
elpr . 04 0A,
= el = 16.35
tr (pI) tr< - 28050 > 3eip; e, ( )
which also can be expressed as
8Aa ]. &l 1
— = ——tr(t 16.36
b Oey 3e, r( s) ( )

where (16.32) is used. Moreover, in this example, by design one have that the concentrations
of all constituents in solid phase are constant. At equilibrium, which is the case studied, the
condition in equation (12.146) is valid, i.e. grady] = g. With the assumption that g is neglige-
able ,u{ is constant in the spatial domain. Furthermore, in this case, the Gibbs free energy and
chemical potential scalars are identical, hence, the relation

N
S Ciui= Aag’% = Ga (16.37)

which is (12.43) repeated, gives together with the condition that the concentrations of all con-
stituents are constant, that the Gibbs free energy G; must be constant, i.e.

G =A+ P const. (16.38)
P
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Since, the adsorbed water was assumed incompressible, i.e. Dyp;/Dt = 0, and since (16.38) can

be written as
oG, _ 0A,; 1 %

AN A =0 16.39
Oe; Oer  p; Ogy ( )
That is, one obtain the relation
94 = _1lom (16.40)
Oe; o, Og )
The equations (16.40) and (16.36) combined, gives
om
__. 9 16.41
b €l e, ( )

Upon integration and using that when e; = 1, the pressure in the adsorbed fluid, p;, is equal to
the bulk fluid pressure, ps, one obtain

Di d £y
/ ﬂ:/ & (16.42)
Py D J1 €]

In <ﬂ> =—Ing=In (-1—> (16.43)
by €l

This means that the pressure p; and py are related by the volume fraction €; as

or, equally

=2 (16.44)
€l

Combining (16.40) and (16.30) and eliminating p; using (16.44) gives

=t J _ ) = A I L /. 16.45
Tty He = Qg = ] 10 ( )

It is observed that Ap? is never zero due to the assumption that there is always some
hydration force between the adsorbed liquid and solid phase. Contrary to the Terzaghi problem,
this example shows that increasing the overburden pressure, which causes ¢; to decrease, results
in a decrease in the magnitude of the term tru? when it is also assumed that uf is constant at
equilibrium when the effect of the gravity is small. Hence, according to the example it is easier
to insert a solid particle into a compressed swelling media. This can be physically attributed
to the stronger adsorption forces in the compressed system due to the closer proximity of the
liquid and the solid phases.

An geometrical interpretation of the problem can be performed. Consider a separation of
platelets, denoted by A, having a thickness As. The volume fraction ¢; can then be written

_ A
T+

£l (16.46)

The needed derivative dp; /O can be expressed by the chain rule as
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where (16.46) and (16.41) are used. The thickness of the platelets are, further, assumed to be
constant. The separation between platelets can, hence, be expressed as

pY Opi
— - == 16.47
< . + A) £ DL ( )
At high moisture contents the following approximation can be used
)\2
A << x (16.48)
That is 9
A Opy
——— g — 16.49
Nox o (16.49)
The integrated version of (16.49), valid at high moisture contents, is
Pt A
/ Iy, [ (16.50)
vy Pl 0o A

where bulk fluid pressure, py, is set to zero when the platelets are in contact with each others,
i.e. when A\ = 0 or equally when no moisture is present in the system. Evaluation of the integrals
in (16.50) gives

In <£—;> = 2;\3; Or Py =psexp <%> (16.51)
By using (16.45) one obtain the expression for Ay, as
j Pr As
Apl = —=exp <7> (16.52)

which is an alternative expression of (16.45) incorporating a certain geometry of the platelets of
the solid phases.

17. Conclusions

A review of the article; Macroscale Thermodynamics and the Chemical Potential for Swelling
Porous Media, by Lynn Schreyer Bennethum, Mdrcio A. Murad and John H. Cushman, has
been performed.
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A novel definition of the macroscale chemical potential is introduced. Unlike Bowen’s ten-
sorial chemical potential, this new chemical potential is a scalar which satisfies three properties
consistent with the classical Gibbsian chemical potential for a single phase medium.

The properties of the chemical potential satisfies the following three conditions: (1) it is
a scalar, (2) at equilibrium, the chemical potential of a single constituent in different phases
is the same, and (3) the chemical potential is the driving force for diffusive flow (generalized
Fick’s law). These properties were obtained by exploiting the entropy inequality and using a
generalized Gibbs-Duhem relation. It is noted that Lagrange multipliers were used to enforce
the gradient of the relationship between the diffusive velocities. Near-equilibrium results were,
further, obtained by linearizing coefficients which were not necessarily zero at equilibrium.
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