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The performance of serial turbo codes does not
concentrate

Federica Garin, Giacomo Como, and Fabio Fagnani

Abstract—Minimum distances and maximum likelihood error
probabilities of serial turbo codes with uniform interleaver are
analyzed. It is shown that, for a fraction of interleavers approach-
ing one as the block-length grows large, the minimum distance
of serial turbo codes grows as a positive power of their block-
length, while their error probability decreases exponentially fast
in some positive power of their block-length, on sufficiently good
memoryless channels. Such a typical code behavior contrasts
the performance of the average serial turbo code, whose error
probability is dominated by an asymptotically negligible fraction
of poorly performing interleavers, and decays only as a negative
power of the block-length. The analysis proposed in this paper
relies on precise bounds of the minimum distance of the typical
serial turbo code, whose scaling law is shown to depend both
on the free distance of its outer constituent encoder, which
determines the exponent of its sublinear growth in the block-
length, and on the effective free distance of its inner constituent
encoder. The latter is defined as the smallest weight of codewords
obtained when the input word of the inner encoder has weight
two, and appears as a linear scaling factor for the minimum
distance of the typical serial turbo code. Hence, despite the lack
of concentration of the maximum likelihood error probability
around its expected value, the main design parameters suggested
by the average-code analysis turn out to characterize also the
performance of the typical serial turbo code. By showing for
the first time that the typical serial turbo code’s minimum
distance scales linearly in the effective free distance of the inner
constituent encoder, the presented results generalize, and improve
upon, the probabilistic bounds of Kahale and Urbanke, as well as
the deterministic upper bound of Bazzi, Mahdian, and Spielman,
where only the dependence on the outer encoder’s free distance
was proved.

Index Terms—Turbo codes, serially concatenated codes, mini-
mum distance, error probability, typical code analysis.

I. I NTRODUCTION

Serially concatenated convolutional codes with random in-
terleaver, briefly serial turbo codes, were introduced in [5],
together with an analytical explanation of the simulation
results. The authors based their analysis on the so-called
uniform interleaver, a conceptual tool first introduced in [6]
in order to explain the performance of Berrou et al.’s parallel
turbo codes [8]. In a nutshell, the idea consists in fixing the
outer and the inner constituent encoders, and in studying the
maximum likelihood (ML) error probability averaged over all
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possible interleavers. The main result in [5] is an upper bound
to the average error probability which decays to zero as a
negative power of the interleaver length. The exponent of such
power law decay, usually referred to as theinterleaver gain,
was shown to depend only on thefree distanceof the outer
encoder, which turns out to be the main design parameter of
serial turbo codes. The effect of the inner constituent encoder
was analyzed by considering the limit performance in the high
signal-to-noise ratio (SNR) regime. The fundamental design
parameter characterizing the performance in this regime is
the effective free distanceof the inner encoder, defined as the
smallest weight of codewords obtained when the input word
of the inner encoder has weight two. These ideas have been
rigorously formalized first in [24] and then, in a more general
setting, in [22], where also a lower bound is proved differing
from the upper bound only by a multiplicative constant, thus
showing that the bound is tight for theaverage serial turbo
code.

In fact, the average code analysis has been the main tool
used in the literature to study the performance of turbo and
turbo-like codes in the ‘waterfall’ SNR region, see e.g. [14],
[10], [34], [1], [27], [23] for a (non-exhaustive) list of exam-
ples of papers on the average error probability of serial turbo-
like ensembles, including recent work. The effectiveness of the
design based on the average performance might lead one to
believe that there is a concentration phenomenon, i.e., almost
all codes perform closely to the average one. In this paper, we
shall prove that this is not the case, as the typical serial turbo
code performs much better than the average one. Nevertheless,
as explained in the sequel, the typical serial turbo code analysis
shows the relevance of the same design parameters highlighted
by the average code analysis, namely, the free distance of
the outer encoder and the effective free distance of the inner
encoder.

A notable exception to the aforementioned literature based
on the average turbo code analysis is provided by the early
manuscript [26], whose focus is on the probability distribution
of the minimum distance of parallel and serial turbo code
ensembles, rather than on the ML error probability of the
average turbo code. A related line of research has focused
on deterministic bounds on the minimum distance, initiated
by Breiling [9] for parallel turbo codes, and developed in
the serial case in [4], [32]. A side research effort has also
concerned algorithms for numerical computation of minimum
distance, see in particular [20].

It is shown in [26] that, with high probability, the minimum
distance of serial turbo codes grows likeN1−2/do

f , whereN
is the block-length, anddof is the free distance of the outer
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constituent encoder, and the scaling is up to some unspecified
constants which depend both on the inner and on the outer
encoders, but not on the block-length. This result implies that,
for almost all choices of the interleaver, serial turbo codes
have ML error probability decreasing to zero exponentiallyin
a positive power of the block-length, thus showing that, due
to the presence of an asymptotically vanishing fraction of bad
codes, the average-code analysis provides too conservative a
prediction of the behavior of thetypical serial turbo code.

In fact, an analogous phenomenon has long been known
to occur for other code ensembles, and this has motivated
a considerable research effort in the analysis of the distance
spectra of such ensembles. Early results for random and linear
code ensembles at low rates, as well as low-density parity-
check (LDPC) code ensembles appear already in Gallager’s
thesis [19, Ch. 3], while more recent rigorous results are
reported, e.g., in [3] and [28, Ch. 6] for binary random and
linear code ensembles, [29] and [28, Ch. 11] for binary LDPC
code ensembles, [7], [12], and [13] for code ensembles over
groups for non-binary input channels. For a related stream
of literature based on the application of non-rigorous but
powerful techniques of statistical physics to the analysisof
LDPC codes, see, e.g., [30], [18], [31], [35] and [28, Ch. 21].
It is worth mentioning that, in contrast to the ML error
probability, other parameters of these code ensembles, such as
the weight-enumerating coefficients, may concentrate in some
cases, see, e.g., [3] for random and linear code ensembles and
[33] for regular LDPC code ensembles.

However, despite the lack of concentration of the serial
turbo code ensemble’s performance, the results in [26] show
that the scaling law of the typical serial turbo code’s minimum
distance is characterized by the outer encoder’s free distance,
dof , which is the same main design parameter suggested by
the average code analysis [5], [24], [22]. On the other hand,
no design parameter of the inner encoder emerges from the
analysis proposed by [26], [4].

The main contribution of the present paper consists in
showing that the scaling law of the performance of the typical
serial turbo code does depend also on the inner constituent
encoder’s effective free distance, to be denoted bydie. We
shall prove (see Theorem 1) that, with high probability, the
minimum distance of serial turbo codes scales like

dieN
1−2/do

f ,

up to some constants which depend on the outer encoder
only. This result generalizes and improves upon the afore-
mentioned probabilistic bounds of [26, Thm. 2]. We shall
also prove (see Theorem 2) a deterministic upper bound on
the minimum distance of serial turbo codes, which shows
an analogous dependance on the inner and outer encoder’s
parameters. This result generalizes and improves upon some
of the bounds of [4], with the main improvement consisting
in highlighting the dependance of the bound on the inner
encoder’s parameters. Also, it improves asymptotically on
the best known deterministic bound for minimum distance
of serial turbo codes, presented in [32]. Finally, by means
of code-expurgation techniques, these results will allow us to
show (see Theorem 3) that the ML error probability of the

typical turbo code decreases exponentially fast in a positive
power of the block-length.

The analysis performed in this paper involves, on the one
hand, precise bounds on the cumulative distribution function
(CDF) of the serial turbo code’s minimum distance, whose
proofs heavily rely on the combinatorial ideas developed in
[26]. On the other hand, our proof of the deterministic upper
bound makes use of some of the techniques devised in [4]. For
all the probabilistic bounds, we shall present completely self-
contained proofs. Our choice is in the interest of readability,
both since the manuscript [26] has not been published yet, and
because our results do not follow from the statements in [26]
but rather involve some suitable modification of the arguments
therein. Moreover, we shall consider a family of constituent
encoders which is more general than the one defined in [26],
where only systematic recursive convolutional encoders ofrate
1/2 were used.

The remainder of the paper is organized as follows. In Sec-
tion 2 we introduce in a formal way the serially concatenated
codes. Section 3 gathers some fundamental bounds on the
weight-enumerating coefficients of convolutional codes which
will be used throughout the paper. Section 4 contains all the
main results on minimum distances of serial codes. Finally,in
Section 5 we prove our main results on the typical behavior
of minimum distance and ML error probability and a number
of related results. The most technical proofs are deferred to
Appendix I while Appendix II contains some extensions.

Before proceeding, we establish the following notational
convention, to be used throughout the paper. When deal-
ing with quantities depending on many parameters, such as
w, d,N, n . . . , we shall implicitly assume that all the param-
eters are depending onN , but we shall avoid cumbersome
notationwN , dN . . . . Hence, a statement such as ‘asN grows
large, if d = o(N) and w ≤ d, then f(w, d,N) = o(Na)’
means that ifd = dN , w = wN satisfy wN ≤ dN and
dN/N vanishes, asN grows large, thenf(wN , dN , N)/Na

converges to0. When we say ‘w is constant’ we mean it does
not depend onN . We shall also writef(N) = ω (g(N)) to
meang(N) = o(f(N)).

II. PROBLEM SETTING

In this section we establish some notation on convolutional
encoders, and introduce the serial turbo code ensemble. Since
we do not want to put a priori limitations on the rate of
constituent encoders and/or their structure (e.g., systematic
encoders), we shall consider below general convolutional
encoders.

A. Convolutional encoders

In this section, we recall a few definitions and properties
of convolutional encoders that are essential for this paper.
We refer the reader to [16] and [25] for classical results on
convolutional encoders, and to [17], [15], [22] for more details
on those properties which are useful in the study of turbo-like
concatenations.

Denote byZ+ the set of non-negative integers, and consider
a map

φ : (Zk
2)

Z+ → (Zr
2)

Z+ ,
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Fig. 1. Section of the trellis associated to a convolutionalencoder. At time
t ≥ 0, the state isx(t) ∈ Z

µ
2

. Then, in response to an inputu(t) ∈ Z
k
2

, an
outputy(t) = Hx(t) + Wu(t) ∈ Z

r
2

is produced, and the state is updated
asx(t+ 1) = Fx(t) +Gu(t) ∈ Z

µ
2

.

i.e., φ maps an input word which is an infinite sequence of
vectors1 having k bits each into an output word which is an
infinite sequence of vectors havingr bits each. We say that
the mapφ is a convolutional encoderif it admits a linear
finite state-space realization. This means that the relationship
between the input and the output words (codewords) can be
described by a linear dynamical system with finite memory.
More precisely, there exist a state spaceX = Z

µ
2 and matrices

F , G, H, W of suitable dimensions and with binary entries,
such thaty = φ(u) if and only if there exists a (unique) state
sequencex ∈ (Zµ

2 )
Z+ such thatx(0) = 0 and, for allt,

x(t+1) = Fx(t)+Gu(t) , y(t) = Hx(t)+Wu(t) . (1)

We shall say thatx is the state sequence associated withu.
The state realization is usually pictorially represented as a

labeled graph, called trellis. To construct the trellis, for each
t ∈ Z+, draw2µ points, corresponding to elements of the state
spaceX; then draw an edge from statex at timet to statex′

at timet+1, with input labela ∈ Z
k
2 and output labelb ∈ Z

r
2

if and only if x′ = Fx+Ga and b = Hx+Wa (see Figure
1).

The minimal realization (i.e., the one having the smallest
µ) of a given convolutional code is unique (up to a change
of basis for the state space), and has the observability and
controllability properties which are essential for defining the
terminated encoders (see below) and for proving Lemma 1. In
this paper we shall always assume that we are using a minimal
realization, in a fixed choice of coordinates for the state space,
and we shall refer to it as the trellis of the encoder.

A convolutional encoderφ is said to berecursive if, for
every input wordu with Hamming weight2 wH(u) = 1, the
corresponding codewordφ(u) has infinite Hamming weight.
The encoder is said to benon-catastrophicif every codeword
φ(u) having finite Hamming weight comes from an input word
u which also has finite Hamming weight. Thefree distance
and theeffective free distanceof φ are defined, respectively,
as

df := min{wH(φ(u)) : u 6= 0} , (2)

de := min{wH(φ(u)) : wH(u) = 2} . (3)

1Throughout this paper, vectors are column vectors.
2Throughout this paper, Hamming weight is to be intended bit-wise, i.e.,

the number of ones in the word, and not the number of non-zero vectors.

Z
kN
2−→ φo

N

Z
r(N+νo)
2−→ πN

Z
sMN
2−→ φi

N

Z
KN
2−→

Fig. 2. A serially concatenated encoding scheme.

Given u ∈ (Zk
2)

Z+ , we define thesupport3 of u as
supp(u) := {t ∈ Z : u(t) 6= 0} . The block-termination
of a convolutional encoderφ after N trellis steps is defined
as follows. Fix N ∈ Z+, consider an input wordu with
u(t) = 0 for all t ≥ N , and letx be the associated state
sequence. Notice that the state sequencex and the output word
y = φ(u) may not be supported in the same interval. Indeed,
it can happen thatx(N) 6= 0 andy(N) 6= 0. However, thanks
to the controllability of the minimal realization (see, e.g., [36]
or [17]) there exists an integerν ∈ [0, µ] (called constraint
lengthand not depending on the particularu nor onN ), and
an input wordũ coinciding withu on [0, N−1] and supported
inside [0, N + ν − 1] such that the associated state sequence
x̃ hasx̃N+ν = 0 and thus also the corresponding output word
is supported in[0, N + ν − 1]. Moreover, the pole placement
theorem (see, e.g., [36]) ensures that it is always possibleto
choose the terminating inputs̃u(N), . . . , ũ(N + ν − 1) to be
a linear state-feedback, i.e., to have the formũ(t) = −Kx(t)
for all t = N, . . . , N + ν− 1, for a suitableK ∈ Z

k×µ
2 which

depends only on the encoderφ, not onu nor onN . In this
paper, we shall assume that, given a convolutional encoderφ,
a matrix K has been chosen allowing one to construct the
terminating inputs. Then, the block termination ofφ after N
trellis steps is defined as the map

φN : ZkN
2 → Z

r(N+ν)
2

which associates to an input word

(uT (0), uT (1), . . . , uT (N − 1))T

the output word

(yT (0), yT (1), . . . , yT (N − 1), yT (N), . . . , yT (N + ν − 1))T

such that

φ
(

u(0), u(1), . . . , u(N−1), ũ(N), . . . , ũ(N+ν−1), 0, . . .
)

=
(

y(0), y(1), . . . , y(N−1), y(N), . . . , y(N+ν−1), 0, . . .
)

,

whereũ(N), . . . , ũ(N+ν−1) is the above-described terminat-
ing input obtained as a linear state-feedback. Such a choice
of the terminating input immediately implies thatφN is aZ2-
linear block encoder.

B. Serially concatenated convolutional encoders with random
interleaver

We start from two convolutional encoders

φo : (Zk
2)

Z+ → (Zr
2)

Z+ , φi : (Zs
2)

Z+ → (Zl
2)

Z+ .

Let νo and νi be their corresponding constraint lengths and
let N be a positive integer such thats dividesr(N + νo). Let
MN be such that

sMN = r(N + νo) ,

3Notice that the size of the support is the number of non-zero vectors in
the sequenceu. Hence,| supp(u)| = wH(u) whenk = 1, while the equality
need not hold true in general fork > 1.
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TABLE I
THE RELEVANT PARAMETERS OF THE CONSTITUENT ENCODERS OF THE

SERIAL SCHEME INFIGURE 2

do
f

free distance ofφo, see (2)
die effective free distance ofφi, see (3)
δi defined in Sect. III

ηo, ηi defined in Lemma 1
νo, νi constraint lengths ofφo andφi, see Sect. II-A
µo memory (size of minimal state space) ofφo, see Sect. II-A

and let

KN := l(MN + νi) = l( rs (N + νo) + νi) .

Consider the block terminations ofφo andφi afterN andMN

trellis steps, respectively

φo
N : ZkN

2 → Z
r(N+νo)
2 , φi

N : ZsMN

2 → Z
KN

2 .

Finally let πN be a permutation of lengthsMN and denote
by the same symbolπN : ZsMN

2 → Z
sMN

2 the corresponding
linear isomorphism. The serially concatenated encoder consid-
ered in this paper is the composition

φi
N ◦ πN ◦ φo

N : ZkN
2 → Z

KN

2

depicted in Figure 2. We shall refer toφo as theouter encoder,
to φi as theinner encoder, and toπN as theinterleaver. Table I
summarizes the parameters ofφo andφi that will be used along
this paper.

Throughout this paper we shall make the following assump-
tions on the constituent encoders:

Assumption 1. The outer encoderφo : (Zk
2)

Z+ → (Zr
2)

Z+ is
non-catastrophic, and its free distancedof is even and satisfies
dof > 2.

Assumption 2. The inner encoderφi : (Zs
2)

Z+ → (Zl
2)

Z+ is
non-catastrophic and recursive, has scalar input (i.e.,s = 1)
and is proper rational (i.e., the matrixF of its minimal state
space representation (1) is invertible).

Among such assumptions, the ones which are truly needed
in order to obtain the claimed asymptotic behavior of min-
imum distance and error probability are the following: non-
catastrophicity of both encoders,dof > 2 and recursiveness of
φi. The other assumptions have been introduced for simplicity:
they allow one to avoid cumbersome notation and definitions,
to have simpler proofs, and to easily underline underline the
role of die (the effective free distance) as the main design
parameter for the inner encoder. In Appendix II we shall
briefly comment on which results can be obtained in the
most general case, with a particular focus on the case of odd
dof , while we refer the interested reader to the first author’s
Ph.D. thesis [21] for further detail.

In the rest of this paper, we shall investigate the performance
of the above-described serially concatenated coding schemes,
assuming that the interleaverΠN is a random element uni-
formly distributed on the group of permutations ofMN

symbols. This is the classical ‘uniform interleaver’ ensemble
of [6], [5]. Since the interleaverΠN is random, the minimum
distance

dmin
N := min{wH(φ

i
N ◦ πN ◦ φo

N (u)) : u 6= 0)}

0

t= t2t= t1

0 0 0 0 0 0 0 0

t= t2+10, 0 0, 0

u(t1)

0, 0 0, 0

y(t1)

u(t2)
y(t2)

Fig. 3. An error event with active window[t1, t2].

is a random variable itself. Similarly, assuming transmission
over a binary-input output-symmetric memoryless channel
with ML decoding, the word error probability of the serial
turbo code is a random variable, to be denoted by

P (e|ΠN ) .

While the focus of most of the literature (see, e.g.,[5], [22]) has
been on the error probability of theaverage serial turbo code,
E[P (e|ΠN )], in this paper we shall be concerned with the
minimum distance and error probability of thetypical serial
turbo code, namely with the high-probability behavior ofdmin

N

and the distribution ofP (e|ΠN ), asN goes to infinity.

III. W EIGHT-ENUMERATING COEFFICIENTS OF THE

CONSTITUENT ENCODERS

This sections deals with the input-output weight-
enumerating coefficients of the constituent encoders.
We define the error events and the weight-enumerating
coefficients, we recall some properties of convolutional
encoders related with the weight of codewords, and we
state the bounds on the weight-enumerating coefficients of
outer and inner encoder, which will be used in the following
sections. The proofs of such bounds, many of which rely on
variations of the arguments developed in [26], are deferredto
Appendix I-A.

Consider a convolutional encoderφ ∈ (Zk
2)

Z+ → (Zr
2)

Z+ .
We say that an input wordu ∈ (Zk

2)
Z+ is anerror eventif there

exist t1 < t2 such thatu has supportsupp(u) ⊆ [t1, t2] and
such that the corresponding state sequencex has support equal
to the discrete intervalsupp(x) = [t1 +1, t2]. Notice that this
implies thatu(t1) 6= 0 and that the corresponding codeword
y = φ(u) has supportsupp(y) ⊆ [t1, t2]. The length of the
error event is defined ast2 − t1 + 1 and the discrete interval
[t1, t2] is called theactive window. See Figure 3 for a pictorial
representation.

Every finitely supported input sequenceu such thatφ(u) has
also finite support, can be obtained as the summation of a finite
number of error events with non overlapping active windows.
The following useful result was proved in [15, Lemma 20].

Lemma 1. Given a non-catastrophic convolutional encoder,
there exists a constantη such that any of its error events with
output Hamming weightw has length not greater thanηw.

Let ν be the constraint length ofφ and consider the block
termination of lengthN , φN : Z

kN
2 → Z

r(N+ν)
2 . An error

event forφN is any input word(uT (0), . . . , uT (N − 1)) such
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that
(

u(0), u(1), · · · , u(N − 1), ũ(N), · · · , ũ(N + ν − 1), 0, . . .
)

is an error event forφ (whereũ is the usual linear terminating
extension ofu). Such an error event is said to beregular if its
active window[t1, t2] lies inside[0, N − 1] (the termination
ũ is 0). Otherwise, the error event is calledterminating. It is
clear that any input word forφN can be written as the sum
of a finite number of regular error events plus, possibly, a
terminating one, all having disjoint active windows.

Considerφo : (Zk
2)

Z+ → (Zr
2)

Z+ andφi : Z
Z+

2 → (Zl
2)

Z+ to
be the outer and inner encoder of the turbo encoder described
in the previous section (notice that we are considerings = 1).
We shall denote byηo andηi the constants defined in Lemma 1
for φo andφi respectively.

For the outer encoder, we define the weight-enumerating
coefficient Ao,N

d to be the number of input words ofφo
N

whose corresponding codewords have weightd. For it, we
need only the following simple upper bound, which holds true
for all non-catastrophic terminated convolutional encoders, and
is mainly a restatement of [26, Lemma 3]. Its proof is provided
in Appendix I-A1.

Lemma 2. If φo is non-catastrophic, then the following
inequalities hold true.

(a) If bd/dof c < N/2, then

Ao,N
d ≤ 2(kη

o+ηo+1)d+1

(

N

bd/dof c

)

;

(b) If mo
f denotes the number of different error events for

φo starting at t1 = 0 and producing output weightdof ,
then

Ao,N
do
f

≤ mo
fN .

As for the inner encoder, we shall need a weight-
enumerating coefficient which considers both input and output
weight. DefineAi,N

w,≤d to be the number of input words ofφi
N

with input weightw and output weight not greater thand.
Another weight-enumerating coefficient which will play a key
role isRi,N

w,≤d,n, defined as the number of input words ofφi
N

with input weightw and output weight not greater thand,
consisting of exactlyn regular error events.

Because of the assumption of recursiveness, the inner en-
coder’s outputφi(u) has infinite Hamming weight whenever
the input wordu has weight1. In contrast, it is well known
that there exists an input word of Hamming weight2 which
produces a codeword with finite weight (see e.g. [22, Proposi-
tion 3.6] for a proof). Having assumed thatφi has scalar input
(s = 1), the codewords corresponding to weight-2 input words
have the following useful property. Letδi be the smallest
possible relative distance between the positions of the non-
zero entries of a weight-2 input word u such thatφi(u) has
finite Hamming weight. Let̄u be the weight-2 input word with
a one in position0 and a one in positionδi, and letȳ := φi(u)
be the corresponding output word. Then, it is easy to see that,
if u is a weight-2 input word, thenφi(u) has finite weight
if and only if the positions of the two non-zero entries ofu
are at a distance multiple ofδi, sayaδi for a ≥ 1. Moreover,

under the assumption thatφi is proper rational, such an output
word is made ofa consecutive disjoint copies of̄y and thus
it has Hamming weightawH(ȳ) ≥ wH(ȳ). In particular, this
means thatwH(ȳ) = die. The case when the inner encoder
has non-scalar input or is not proper rational is discussed in
Appendix II.

Recursiveness ofφi ensures that any error event forφi

has input weight2 or larger. When consideringφi
N , however,

one has to be slightly more careful: regular error events have
indeed weight at least2, while this is not necessarily true for a
terminating eventu which could have weight1, the remaining
weight being in the extended partũ and not counted in the
weight of u.

The bounds we shall give rely on the input-weight lim-
itation of error events imposed by recursiveness. Notice in
particular that, for every evenw, the input words contributing
to Ri,N

w,≤d,w/2 will exclusively be composed of regular error
events each having input weight equal to2.

For the weight-enumerating coefficients ofφi
N , we have the

two bounds stated below. The following lemma is proved in
Appendix I-A2. While its part (b) follows from minor changes
to the arguments in [26, Lemma 1], its part (a) is a key novel
contribution, since it explicitly captures the dependenceof the
leading term on the inner encoder’s effective free distancedie.
In fact, part (a) of the following lemma will turn out to be
a fundamental ingredient in the next section, when showing
the linear scaling ofdmin

N in die. In contrast, the bound of [26,
Lemma 1] depends on a term, therein denoted byΘ(1), which
can be traced back to equal4e

√

ηi, and cannot be chosen
inversely proportional to

√

die: therefore, [26, Lemma 1] does
not allow one to prove the linear scaling ofdmin

N on die.

Lemma 3. Let Assumption 2 be satisfied. Then, the following
inequalities hold true.

(a) If w is even, then

Ri,N
w,≤d,w/2 ≤ (2e)w

ww
M

w/2
N

⌊

d

die

⌋w/2

.

(b) If d ≤ MN/(2ηi), then

Ai,N
w,≤d ≤







Ri,N
w,≤d,w/2 +

d
N

Cw

ww Nw/2dw/2 if w even,

Cw

ww Nbw/2cddw/2e if w odd,

whereC is a constant only depending on the inner convolu-
tional encoder.

The following result is essentially a restatement of [26,
Lemma 2], with the dependence ondie made explicit, and is
proved in Appendix I-A3.

Lemma 4. Let Assumption 2 be satisfied. Ifw is even and

diew

2
≤ d ≤ dieMN

2δi
,

then

Ri,N
w,≤d,w/2 ≥ 2w/2

ww
M

w/2
N

⌊

d

die

⌋w/2

.
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IV. M INIMUM DISTANCE OF THE TYPICAL SERIAL TURBO

CODE

In this section, we state and prove our main results on the
minimum distance of the typical serial turbo code. Our results
will indicate that, if dof is even, then the minimum distance
dmin
N scales asdieN

β with high probability, where

β := 1− 2

dof
∈ (0, 1) .

First, we shall provide precise upper and lower bounds
of the CDF of dmin

N . These bounds, stated in Theorem 1,
improve upon some of those in [26]. Then, we shall prove
a deterministic upper bound ondmin

N . Such a bound, stated
in Theorem 2, generalizes and improves upon some of the
results of [4]. As explained in the Introduction, the most
novel contribution of both Theorems 1 and 2 with respect
to the existing literature consists in highlighting the role of
the effective free distance of the inner encoder,die, as a linear
scaling parameter fordmin

N .
We start by observing that a standard application of the

union bound gives the useful bound (see [26, Lemma 6])

P(dmin
N ≤ d) ≤

ηid
∑

w=do
f

(

MN

w

)−1

Ao,N
w Ai,N

w,≤d , ∀d ≤ KN .

(4)
The limitation w ≤ ηid is due to the remark that any
terminating or regular error event ofφi

N with output weightd
has input weightw bounded from above bysηid (and here
we are considerings = 1).

Now, using the bounds on the weight-enumerating coef-
ficients established in the previous section, we obtain the
following result on minimum distances, which is a refinement
of [26, Thm. 2.a].

Proposition 1. Let Assumptions 1 and 2 be satisfied. Assume
that d = o(Nβ), asN grows large. Then, there existsN0 ≥ 0
such that

P(dmin
N ≤ d) ≤ C

(

N−β d

die

)

dof
2

,

for all N ≥ N0, whereC := 2mo
f (2e/

√
r)

do
f .

Proof: Define ξN :=
(

N−βd/die
)1/2

, and observe that
the assumptiond = o(Nβ) implies that

ξN = o(1) ,
d

N
= o (ξN ) , (5)

asN grows large. Now consider (4), and split the summation
therein in three parts:

P(dmin
N ≤ d) ≤ Sdo

f
+ Sodd+ Seven, (6)

where

Sdo
f
:=

(

MN

dof

)−1

Ao,N
do
f
Ai,N

do
f ,≤d ,

Sodd :=
∑

do
f <w≤ηid
w odd

(

MN

w

)−1

Ao,N
w Ai,N

w,≤d ,

andSeven is defined similarly toSodd, considering terms with
even w > dof . Then, in order to obtain bounds on the
weight-enumerating coefficients, we use the upper bounds
from Lemmas 2 and 3, as well as the simple bound

(

MN

w

)

≥ Mw
N

ww
.

We obtain that, for some suitable positive constants
K1,K2,K3,K4 (depending on the constituent convolutional
encoders only)

Sdo
f
≤ ξ

do
f

N

(

C

2
+K1

d

N

)

; (7)

Sodd ≤
∑

do
f <w≤ηid
w odd

Kw
2 Nbw/do

f c−dw/2eddw/2e

=

(

d

N

)1/2
∑

do
f <w≤ηid
w odd

Kw
2 Nbw/do

f c−w/2dw/2

≤
(

d

N

)1/2 ∞
∑

w=do
f +1

(K̃2ξN )w , (8)

whereK̃2 := K2

√

die;

Seven≤
∑

do
f <w≤ηid
w even

Kw
3 Nbw/do

f c−
w
2 d

w
2 +

d

N
Kw

4 Nbw/do
f c−

w
2 d

w
2

≤
(

1 +
d

N

) ∞
∑

w=do
f +2

(K5ξN )
w
, (9)

whereK5 :=
√

die max{K3,K4}. It follows from (5) that

K̃2ξN ≤ 1

2
, K5ξN ≤ 1

2
, (10)

K1
d

N
≤ 1

6
C , 2K̃

do
f +1

2 ξN

(

d

N

)
1
2

≤ 1

6
C (11)

(

1 +
d

N

)

2K
do
f +2

5 ξ2N ≤ 1

6
C , (12)

for sufficiently largeN . From (7) and (11), it follows that

Sdo
f
≤ ξ

do
f

N

(

1

2
C +K1

d

N

)

≤ ξ
do
f

N

(

1

2
C +

1

6
C

)

. (13)

Equation (10) implies that the series in right-hand sides of
both (8) and (9) are convergent, and dominated by twice their
first term. From this remark, together with (11) and (12), it
follows that

Sodd ≤
(

d

N

)
1
2

2
(

K̃2ξN

)do
f +1

≤ 1

6
Cξ

do
f

N , (14)

Seven≤
(

1 +
d

N

)

2 (K5ξN )
do
f +2 ≤ 1

6
Cξ

do
f

N . (15)

The claim follows by combining (6), (13), (14), and (15).

It is possible to obtain also a lower bound for the CDF
of the minimum distance, showing that, asymptotically in the
block-length, the upper bound in Proposition 1 is tight. This



7

lower bound, stated below as Proposition 2 is a novel result.Its
proof combines techniques similar to those of [26, Thm. 2.b]
with the inclusion-exclusion principle [2, p. 124].

First of all, we fix an error eventu∗ for the outer convolu-
tional encoderφo, having active window[0, T − 1] for some
T , and with an outputc∗ = φo(u∗) such thatwH(c

∗) = dof .
Note that2 ≤ T ≤ dof η

o. ConsiderN > T . For a nonnegative
integer j, definec∗j as the codeword obtained by shiftingc∗

for j trellis steps, so that the active window is[j, T + j − 1];
clearly, if |j2−j1| ≥ T , thenc∗j1 andc∗j2 have non-overlapping
supports.

Now consider the terminated encoderφo
N , and, with a slight

abuse of notation, letc∗j denote its codewords corresponding
to the above-constructed codewords ofφo. Define the set of
indicesJ := {dof ηo j , j ∈ Z+}∩{0, 1, . . . , N −1−dof η

o}, so
that if j1 and j2 both belong toJ , andj1 6= j2, then clearly
|j2−j1| ≥ dof η

o ≥ T . For j ∈ J andd ∈ Z+, define the event

E∗
j (d) :=

{

wH(φ
i
N (ΠN (c∗j ))) ≤ d

}

∩
{

φi
N (ΠN (c∗j ))hasdof /2 regular events

}

.

Clearly, for anyj, E∗
j (d) implies dmin

N ≤ d, so that

P(dmin
N ≤ d) ≥ P(∪j∈JE

∗
j (d)) .

The following lemma provides an expression forP
(

E∗
j (d)

)

and shows that, asymptotically, the eventsE∗
j (d) are ‘almost’

pairwise independent. Its proof, deferred to Appendix I-B1
closely parallels the arguments of part of the proof of [26,
Thm. 2.a]. The main difference with respect to [26, Thm. 2.a]
is in the definition of the eventE∗

j (d), which in our case has
the additional restriction thatφi

N (ΠN (c∗j )) hasdof /2 regular
events. Our definition does not significantly modify the proof
of this result, but turns out to be a key point in order to show
the role ofdie in Proposition 2.

Lemma 5. Let Assumptions 1 and 2 be satisfied. Then, for all
j1 6= j2 ∈ J ,

P(E∗
j (d)) =

(

MN

dof

)−1

Ri,N
do
f ,≤d,do

f /2
, (16)

P(E∗
j1(d) ∩ E∗

j2(d)) ≤
(

MN

do
f

)

(MN−do
f

do
f

)P(E∗
j1(d))P(E

∗
j2(d)) .

We shall obtain our lower bound by considering the prob-
ability of the union event

⋃

j E
∗
j (d) and using the inclusion-

exclusion principle.

Proposition 2. Let Assumptions 1 and 2 be satisfied. Assume
that d ≥ 1

2d
o
f d

i
e, and d = o(Nβ), as N grows large. Then,

there existsN0 ≥ 0 such that, for allN ≥ N0,

P(dmin
N ≤ d) ≥ K

(

N−β d

die

)do
f /2

,

whereK := 1
4 (1− 2/dof )

do
f /2/

(

rd
o
f /2ed

o
f dof η

o
)

.

Proof: Let us defineξN :=
(

N−βd/die
)1/2

, and

Γ1 :=
∑

j∈J

P(E∗
j (d)) , Γ2 :=

1

2

∑

j1,j2∈J
j1 6=j2

P(E∗
j1(d) ∩ E∗

j2(d)) .

Then, using the inclusion-exclusion principle we obtain

P(dmin
N ≤ d) ≥ P

(

⋃

j∈J E∗
j (d)

)

≥ Γ1 − Γ2 . (17)

We give a lower bound for the first summation using Lemma 5,
Lemma 4, and (26). Also, recall that|J | = bN/(dof η

o)c. We
get

Γ1 = |J |Ri,N
do
f ,≤d,do

f /2

(

MN

dof

)−1

≥
⌊

N

dof η
o

⌋

2d
o
f /2

ed
o
f
M

−do
f /2

N

⌊

d

die

⌋do
f /2

≥ 2Kξ
do
f

N , (18)

with the last inequality following from the fact that
⌊

d

die

⌋

≥ d

die

(

1− die
d

)

≥ d

die

(

1− 2

dof

)

,

thanks to the assumptiond ≥ 1
2d

o
f d

i
e, and from the inequalities

MN ≤ 2rN ,

⌊

N

dof η
o

⌋

≥ N

2dof η
o
,

which hold true for sufficiently largeN .
Now, we find an upper bound for the second summation

in (17) using Lemma 5, Lemma 3, and (26), as follows

Γ2 ≤
(|J |

2

)

(

MN

do
f

)

(MN−do
f

do
f

)

(

Ri,N
do
f ,≤d,do

f /2

(

MN

dof

)−1
)2

≤ Γ2 ,

where

Γ2 :=
1

2

(

N

dof η
o

)2
(

MN

do
f

)

(MN−do
f

do
f

) (2e)2d
o
f M

−do
f

N

⌊

d

die

⌋do
f

.

Notice that

MN = rN(1 + o(1)) ,

(

MN

dof

)(

MN − dof
dof

)−1

= 1 + o(1) ,

asN grows large, so that

Γ2 ≤ (4e2)d
o
f

2rd
o
f (dof η

o)2
(1 + o(1)) ξ

2do
f

N .

Sinced = o(Nβ) by assumption, one has thatξN = o(1), so
that

Γ2 ≤ Γ2 ≤ Kξ
do
f

N ,

for sufficiently largeN . Together with (17) and (18), the
foregoing implies the claim.

We may combine Propositions 1 and 2, in the following.

Theorem 1. Let Assumptions 1 and 2 be satisfied. Then, for
every positive sequence{εN} such that limN→∞ εN = 0,
there exists a finiteN0 ≥ 0 such that

Co
0ε

do
f /2

N ≤ P
(

dmin
N ≤ dieN

βεN
)

≤ Co
1ε

do
f /2

N ,

for all N ≥ N0, whereCo
0 and Co

1 are positive constants
depending on the outer encoder only.

Theorem 1 provides some fundamental insight into the ef-
fect of the constituent convolutional encoders on the minimum



8

distance of the typical serial turbo code. On the one hand, it
shows that the minimum distance of the typical serial turbo
code grows as a positive power of the block-length. In fact,
it implies that the probability that the minimum distancedmin

N

grows any slower thanNβ vanishes asN grows large. The
exponent of this power law growth,β, depends only on the free
distance of the outer encoder,dof , in an increasing way. This is
in line with the results of [26]. On the other hand, it shows that
the minimum distance of the typical turbo code scales linearly
in the effective free distance of the inner encoder,die. While
the effect ofdie on the average error probability of serial turbo
codes has been studied in [5], [22], up to our knowledge no
results have previously appeared in the literature relating die
to the minimum distance. Such a scaling effect ofdie on dmin

N

is particularly relevant for moderate block-lengths.
The result stated below provides a deterministic upper

bound on the minimum distancedmin
N , showing an analogous

dependence on the parametersdof anddie.

Theorem 2. Let Assumptions 1 and 2 be satisfied. Then, for
all

N ≥ 22/d
o
f 8dof η

o(δi)d
o
f ,

and for every realizationπN of the interleaverΠN , the
minimum distance satisfies

dmin
N ≤ 6rdof (8d

o
f η

o)2/d
o
f (δi)2die Nβ logN . (19)

It is worth comparing the upper bound (19) with the high
probability scalingNβdie implied by Theorem 1. On the one
hand, the dependence onN of the right-hand side of (19)
involves an additional factorlogN . On the other hand, the
right-hand side of (19) shows a linear dependence ondie,
though multiplied by a factor(δi)2, which depends itself on
the inner encoder, and is therefore related todie itself. It is
important to highlight the fact that, in contrast to Theorem1,
Theorem 2 holds for every choice of the interleaver, and not
only with high probability with respect to its random choice.
In fact, it may be conjectured that such greater strength of the
statement could be the main reason for the additional factors
in the upper bound (19).

Theorem 2, whose proof is deferred to Appendix I-B2,
may be thought of as a generalization of [4, Thm. 2]. There,
only the case when the outer encoder is a repetition code
was considered, while we extend it to general serial turbo
codes. Moreover, our modification of [4, Thm. 2] unveils the
fundamental role played by the inner encoder’s parametersdie
andδi.

Indeed, [4] considers serial turbo codes as well, in an even
more general setting with growing memory, but the result
they obtain ([4, Thm. 3]), when specialized to the constant-
memory case, gives a bound which is asymptotically weaker
than Theorem 2. In fact, [4, Thm. 3] gives

dmin
N ≤ CN1−(r(µo+2))−1

for some positive constantC, and whereµo is the dimension
of the state space of the outer encoder. It is easy to show that
dof ≤ r(µo + 1) and thus that

β < 1− (r(µo + 2))
−1

.

In fact, we can always construct a non-zero outer codeword
of weight at mostr(µo+1), as follows. Take a non-zero input
at time zero, and then drive the state back to zero by applying
the termination procedure: the corresponding codeword is
supported in[0, νo] ⊆ [0, µo] and thus has weight at most
r(µo + 1).

The result we obtain in Theorem 2 is also asymptotically
tighter than the currently best known bound for serial turbo
codes, presented in [32], which, asN grows large, grows as
fast asC N1−1/do

f .

V. ERROR PROBABILITY OF THE TYPICAL SERIAL TURBO

CODE

In this section, we discuss implications of the previous re-
sults to the analysis of the error probability of the typicalserial
turbo code. For the sake of concreteness—even if the results
can be easily generalized to binary-input output-symmetric
memoryless channels—we shall assume the channel to be
the binary-input additive white Gaussian noise channel: when
ω ∈ {0, 1} is transmitted, the output of the channel is
(−1)ωL + Ω, whereL ∈ (0,+∞) andΩ is an independent
Gaussian random variableΩ ∼ N (0, σ2). The signal-to-noise
ratio is

ρ := L2/(2σ2) .

As already mentioned, the focus of most of the previous
literature on the analysis and design of serial turbo codes has
been on the error probability of the average code, for which
it is known [5], [22] that

C1N
−b(do

f −1)/2c ≤ E(P (e|ΠN )) ≤ C2N
−b(do

f −1)/2c ,

for some constantsC1, C2 whose dependence ondie in the
high SNR regime can be made explicit.

However, the error probability of the average serial turbo
code turns out to be much larger than that of the typical
serial turbo code. Indeed, the former is dominated by an
asymptotically negligible fraction of poorly performing codes.
In the sequel, we shall use so-called expurgation techniques
in order to show that the error probability of the typical serial
turbo code decays faster thanexp(−Nβ−ε), for all ε > 0.

We define, for everyN ≥ 1 and ε > 0, the eventEε
N :=

{dmin
N > Nβ−ε} . It follows from Theorem 1 that

P(Eε
N ) ≥ 1− C1N

−εdo
f /2 . (20)

The following proposition gives an upper bound on the average
word error probability of the serial turbo ensemble, condi-
tioned on the eventEε

N .

Proposition 3. Let Assumptions 1 and 2 be satisfied. Then,
there exists some finiteρ0 ≥ 0 such that, if the signal-to-noise
ratio ρ satisfiesρ ≥ ρ0, then, for all ε ∈ (0, β) there exist
some finite constantsN0 ≥ 0 andC > 0 such that

E[P (e|ΠN ) |Eε
N ] ≤ C exp(−2Nβ−ε)

for all N ≥ N0.

Proof: The main tool for this proof is the classical
union-Bhattacharyya bound, introduced for the average error
probability in serial ensembles in [5]. Here we use a modified
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version of it, where we consider the ensemble expurgated from
the codes with low minimum distance

E[P (e|ΠN )|Eε
N ] ≤ 1

P(Eε
N )

KN
∑

h=Nβ−ε

ηih
∑

w=do
f

Ao,N
w Ai,N

w,h
(

MN

w

) γh ,

(21)
whereγ = exp(−ρ).

To prove this bound, first notice that

E[P (e|ΠN )|Eε
N ] =

E[χP (e|ΠN )]

P(Eε
N )

,

whereχ denotes the indicator function of the eventEε
N . The

union-Bhattacharyya bound (see e.g. [5] or [24]) gives

P (e|ΠN ) ≤
KN
∑

h=1

Aserial,ΠN

h γh ,

where byAserial,ΠN

h we denote the number of codewords with
weighth of the serial code obtained from the given ensemble
when the interleaverΠN is sampled. Then (21) is obtained as
follows

E[P (e|ΠN )χ] ≤ E[

KN
∑

h=1

Aserial,ΠN

h χγh]

≤
KN
∑

h=Nβ−ε

E[Aserial,ΠN

h ]γh

=

KN
∑

h=Nβ−ε

ηih
∑

w=do
f

Ao,N
w Ai,N

w,h

(

MN

w

)−1

γh ,

where the last equality is obtained by applying the expression
[24, Eq. (7.1)]. The limitationsdof ≤ w ≤ ηih come from
the fact that, by definition ofdof and by Lemma 1, if these
inequalities are not satisfied thenAo,N

w Ai,N
w,h = 0.

By Theorem 1,P(Eε
N ) approaches1, as N grows large.

So, for somec > 0, P(Eε
N ) ≥ c, for large enoughN . Now

we need bounds for the weight-enumerating coefficients of the
constituent encoders.

We start by considering the terms withh ≤ N/(2ηi). For
the outer encoder, havingw ≤ ηid ≤ N/2, we can apply
Lemma 2 to find a bound forAo,N

w . For the inner encoder we
use the simple boundAi,N

w,h ≤Ai,N
w,≤h and then, thanks to the

inequalityd ≤ N/(2ηi) ≤ KN/(2ηi), we can apply Lemma 3.
Hence, we can find a positiveC1 such that

N/(2ηi)
∑

h=Nβ−ε

ηih
∑

w=do
f

Ao,N
w Ai,N

w,h
(

MN

w

) γh≤
N/(2ηi)
∑

h=Nβ−ε

ηih
∑

w=do
f

Cw
1

(

h

w

)
w
2(w

N

)
w
2 − w

do
f γh.

Then, observe that the functiong(z) := (a/z)z has maximum
valueg(a/e) = ea/e, so that

(h/w)w/2 ≤ eh/(2e) .

Moreover,w ≤ c̃N for somec̃ ≥ 1, so

(w/N)
w
2 − w

do
f ≤ c̃

( 1
2−

1
do
f
)w

.

Hence, asw ≤ ηih, we can find a constantC2 ≥ 1 such that

N/(2ηi)
∑

h=Nβ−ε

ηih
∑

w=do
f

Ao,N
w Ai,N

w,h
(

MN

w

) γh ≤
N/(2ηi)
∑

h=Nβ−ε

(C2γ)
h .

For the remaining terms, havingN/(2ηi) < h ≤ KN , we use
the following trivial upper bounds on the weight-enumerating
coefficients

Ao,N
w ≤

(

MN

w

)

and Ai,N
w,h ≤

(

KN

h

)

,

from which we have
KN
∑

h=N/(2ηi)

ηih
∑

w=do
f

Ao,N
w Ai,N

w,h
(

MN

w

) γh ≤
KN
∑

h=N/(2ηi)

ηih

(

KN

h

)

.

Now notice that, under the assumptionN/(2ηi) < h ≤ KN ,
one has

(

KN

h

)

≤
(

eKN

h

)h

≤ Ch
3

for some positive constantC3 which depends only on
r, l, νo, νi, ηi. Finally, putting all terms together, we have
proved that there exists some constantC4 ≥ 1 such that

E[P (e|ΠN )|Eε
N ]≤

KN
∑

h=Nβ−ε

(C4γ)
h ≤

∞
∑

h=Nβ−ε

(C4γ)
h .

Assuming thatγ < 1/C4, the series is convergent, and equal
to (C4γ)

Nβ−ε

/(1 − C4γ). As we don’t aim at optimizing
constants, we can further assume thatγ ≤ 1/(C4e

2), so that
the claim easily follows withC = C4/(1− e−2).

It is worth pointing out that the constantC in Proposition 3
is independent from the signal to noise ratioρ, provided that
this is large enough.

From Proposition 3 and Theorem 2, we can obtain the
following result, characterizing the asymptotic decay rate of
the error probability of the typical serial turbo code.

Theorem 3. Let Assumptions 1 and 2 be satisfied. Then, there
exists some finiteρ0 ≥ 0 such that, if the signal-to-noise ratio
ρ satisfiesρ ≥ ρ0, then for all ε ∈ (0, β) there exist some
finite N0 ≥ 0 andC > 0 such that

P

(

exp(−Nβ+ε)≤P (e|ΠN )≤exp(−Nβ−ε)
)

≥1−CN−εdo
f /2,

for all N ≥ N0.

Proof: By applying Markov’s inequality to the random
variableP (e|ΠN ) conditioned on the eventEε

N , one gets

P

(

P (e|ΠN ) ≥ aE
[

P (e|ΠN )
∣

∣

∣
Eε

N

]
∣

∣

∣
Eε

N

)

≤ 1

a
, ∀a > 0 .

(22)
Now, consider the event

F ε
N := {P (e|ΠN ) ≥ exp(−Nβ−ε)} .

From Proposition 3 and inequality (22) witha =
C−1

2 exp(Nβ−ε), one gets that

P (F ε
N |Eε

N ) ≤ P

(

P (e|ΠN ) ≥ E [P (e|ΠN )|Eε
N ]

C2 exp(−Nβ−ε)

∣

∣

∣

∣

Eε
N

)

≤ C2 exp(−Nβ−ε) .
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Let us denote the complement of the eventEε
N by Eε

N . Then,
it follows from (20) that

P (F ε
N ) = P

(

F ε
N ∩ Eε

N

)

+ P (F ε
N ∩ Eε

N )

≤ 1− P(Eε
N ) + P (F ε

N |Eε
N )P(Eε

N )

≤ C1N
−εdo

f /2 + C2 exp(−Nβ−ε)

≤ CN−εdo
f /2 ,

(23)

where the last inequality holds withC := C1 + C2, for
sufficiently largeN .

On the other hand, using the inequality

P (e|ΠN ) ≥ pd
min
N , (24)

wherep = erfc(
√
ρ)/2 is the bit error probability of uncoded

transmission (see e.g. [15] for a proof), and using Theorem 2,
one gets that

P (e|ΠN ) ≥ exp(−Nβ+o(1)) , (25)

for every realization of the random interleaverΠN . Then, the
claim is an immediate consequence of (23) and (25).

We conclude this section by observing that both Theorems 1
and 3 only imply weak probabilistic convergence results, since
the CDFs ofdmin

N andP (e|ΠN ) decrease slowly inN . Indeed,
one may prove [11] that, while converging in distribution to
β, both the growth rate of the minimum distance, i.e.,

XN := (logN)−1 log dmin
N ,

and the decay rate of the error probability, i.e.,

YN := (logN)−1 log(− log(P (e|ΠN ))) ,

densely cover the interval[α, β] with probability one, where
α = 1− 2/ddof /2e.

VI. CONCLUSION

In this paper we have studied the behavior of the minimum
distance and ML error probability of serial turbo codes with
uniform interleaver. We have shown that the minimum distance
of the typical serial turbo code grows as a positive power of the
block-length, whose exponent is an increasing function of the
free distance of the outer encoder, and scales linearly withthe
effective free distance of the inner constituent encoder. Such
a scaling law has been proven by means of a detailed study
of the minimum distance’s CDF, and of a deterministic upper
bound. As a consequence, we have characterized the decay
rate of the ML error probability of the typical turbo code,
which turns out to be exponential in some positive power of
the block-length.

This contrasts the asymptotic behavior of the ML error
probability of the average serial turbo code, which is known
to decay only as a negative power of the block-length. In spite
of such lack of concentration of the typical code performance
around the average code performance, our results confirm the
centrality of the two main design parameters for serial turbo
codes suggested by the average-code analysis, namely the free
distance of the outer encoder, and the effective free distance
of the inner encoder.

In the results that we have presented, we have considered
the assumptions that the constituent convolutional encoders
are non-catastrophic, that the outer encoder’s free distance
is even and greater than 2, and that the inner encoder is
recursive, proper rational and with scalar input. As discussed
in Appendix II, only some of these assumptions are indeed
essential in order to obtain the claimed asymptotic scalingof
the typical minimum distance and ML error probability (non-
catastrophicity of both encoders, outer encoder’s free distance
greater than 2, inner encoder’s recursiveness), while the other
assumptions were introduced for simplicity.

APPENDIX I
PROOFS

In the present appendix, we provide the proofs of some of
the statements of Sections III and IV. Throughout, we shall
make repeated use of the following well-known combinatorial
bounds. For positive integersm ≤ n, one has

nm

mm
≤
(

n

m

)

≤ (en)m

mm
, (26)

(

n

m

)

≤ 2n < en . (27)

For realsw ≥ t ≥ 0, one has

tt(w − t)w−t ≥ (w/2)w for all t ∈ [0, w] , (28)

while, for t > 1,

1

(t− 1)(t−1)
≤ e t

tt
. (29)

Throughout this section, whenever we find it useful, we
will write input and output words of the terminated encoders
(finite strings of bits) as polynomials in the indeterminateD
with binary coefficients, where the powers ofD will simply
be place-holders, indicating the position where the bits occur.
This is a very common notation for convolutional encoders,
where the powers ofD denote the number of trellis steps and
the coefficients are vectors of a suitable number of bits, but
here we will rather use it for the terminated encoders, and
powers ofD will count the number of bits, not of vector
labels (this distinction is important for the outer codewords in
the proof of Theorem 2, while for the input words of the
inner encoder the assumptions = 1 implies a one-to-one
correspondence between bits and trellis steps).

A. Proofs of the results presented in Section III

Our proof techniques are based on ideas from [26]. We
retrace here the proofs in all detail, both since [26] has not
appeared yet, and in order to be able to underline the role of
die.

1) Proof of Lemma 2:This is essentially a restatement of
[26, Lemma 3]. We start by introducing some notation:

• Let Ro,N
d andT o,N

d denote, respectively, the number of
input words toφo

N having output weightd and consist-
ing exclusively of regular error events, or containing a
terminating error event. We thus have

Ao,N
d = Ro,N

d + T o,N
d .
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• Let Ro,N
(d1,...,dn)

be the number of input words toφo
N

consisting ofn regular error events whose output weights
are d1, . . . , dn, respectively. Similarly, letT o,N

(d1,...,dn)
be

the number of input words toφo
N consisting ofn − 1

regular error events having output weights, in order,
d1, . . . , dn−1, and a final terminating one of weightdn.

Assume thatd1 + · · ·+ dn = d. Then, one has that

Ro,N
(d1,...,dn)

≤ 2kdη
o

(

N

n

)

.

Indeed, we are consideringn error events, with lengths at most
d1η

o, . . . , dnηo respectively, so that the sum of their lengths
is bounded bydηo. Thus, the number of distinct choices for
the bits in the input word inside the active windows of such
error events are at most2kdη

o

. The only remaining freedom
is in the choice of the starting points of the error events, and
the number of possibilities is clearly bounded by

(

N
n

)

.
Hence, one has

Ro,N
d =

bd/do
f c

∑

n=1

∑

d1,...,dn:∑
i di=d,di≥1

Ro,N
(d1,...,dn)

≤
d
∑

n=1

(

d

n

)

2kdη
o

(

N

bd/dof c

)

≤ 2(1+kηo)d

(

N

bd/dof c

)

,

(30)

where we are using assumption thatbd/dof c ≤ N/2. Similarly,

T o,N
(d1,...,dn)

≤ 2kdη
o

(

N

n− 1

)

dηo

because then-th event, being terminating and having length
at mostdηo, starts in a position betweenN − dηo andN − 1
on the trellis. Therefore,

T o,N
d =

dd/do
f e

∑

n=1

∑

d1,...,dn:∑
i di=d,di≥1

T o,N
(d1,...,dn)

≤
d
∑

n=1

(

d

n

)

2kdη
o

(

N

dd/dof e − 1

)

dηo

≤ 2(1+kηo+ηo)d

(

N

bd/dof c

)

.

(31)

Summing up (30) and (31) we get statement (a) of Lemma 2.
The tighter bound of statement (b) of Lemma 2 is easily
obtained from the observation that input words with output
weight dof necessarily consist of just one error event starting
in the interval[0, N − 1].

2) Proof of Lemma 3:Our arguments parallel those of [26,
Lemma 1]. The main novelty consists in proving separate
bounds for the leading term (statement (a)), and the other ones
(statement (b)). While the proof of part (b) is essentially the
same as the one of [26, Lemma 1], with different handling of
some of the constants involved, the proof of part (a) is novel,
and fundamental in showing the correct scaling indie.

Similarly to what we have done before, we need to introduce
several auxiliary weight-enumerating coefficients forφi:

• let Ri,N
w,≤d (respectively,T i,N

w,≤d) denote the number of
input words forφi

N having input weightw and output
weight not larger thand, and consisting exclusively of
regular error events (resp., containing a terminating error
event);

• let Ri,N
w,≤d,n (respectively,T i,N

w,≤d,n) denote the number
of input words forφi

N having input weightw, output
weight not larger thand, and consisting ofn regular
events (resp.n−1 regular error events plus a terminating
one);

• Fix two vectors of integersw = (w1, . . . , wn) and
b = (b1, . . . , bn) with wi > 0 and bi ∈ [0, N − 1]. Let
Ri,N

w,b,≤d,n (respectively,T i,N
w,b,≤d,n) denote the number

of weight-w input words toφi
N such that: the output has

weight not larger thand, and containsn regular error
events (resp.n−1 regular error events plus a terminating
one); for all 1 ≤ j ≤ n the j-the error event starts in
positionbj and has input weightwj .

In order to prove statement (a), we notice that, for any input
word withw/2 error events and input weightw, recursiveness
of φi forces input weight2 for each error event. So the input
words contributing toRi,N

w,≤d,w/2 can be written as

u =

w/2
∑

t=1

Dbt(1 +Dδiat)

with bt > bt−1+ δiat−1 (so that the error events have disjoint
active windows). We also have the restrictionwH

(

φi(u)
)

≤ d,
but we can obtain an upper bound on the number of such words
by imposing a weaker condition.

Notice that

die

w/2
∑

t=1

at ≤ ∑w/2
t=1 wH

(

φi
(

1 +Dδiat

))

= wH

(

φi
(

∑w/2
t=1 D

bt(1 +Dδiat)
))

.

The restrictionwH

(

φi(u)
)

≤ d thus implies

die
∑

1≤t≤w/2

at ≤ d , (32)

and there are
(bd/di

ec
w/2

)

choices for positive integers

a1, . . . , aw/2 satisfying (32). Finally, there are at most
(

MN
w
2

)

choices for the starting positionsb1, . . . , bw/2 of the error
events. Summing up, and using (26), we obtain

Ri,N
w,≤d,w/2 ≤

(bd/diec
w
2

)(

MN
w
2

)

≤
(

2e

w

)w

M
w/2
N

⌊

d

die

⌋w/2

.

This yields statement (a) of Lemma 3.

In order to prove statement (b) of Lemma 3, we start by
considering the case whenw is even. We first show that

Ri,N
w,b,≤d,n ≤

(

dηi

w − n

)

. (33)

Notice indeed thatRi,N
w,b,≤d,n is smaller than the number of

binary words of lengthdηi with exactlyw − n ones, because
it is possible to exhibit an injective map between the words
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we want to count and such words. Given an input word (of
length MN ) producingn error events having input weights
w1, . . . , wn, fixed starting pointsb1, . . . , bn, and total output
weight≤ d, map it into a word of lengthdηi in the following
way: remove all the zeros outside the active windows of the
error events, and furthermore remove the bit correspondingto
the starting point of each error event (which is surely a one).
The word obtained in such a way has surely length< dηi,
then add dummy zeros at the end to get a word of lengthdηi;
the number of ones isw − n. This map is injective since the
starting points of the error events are fixed and known. This
proves (33).

Now, consider the decomposition

Ri,N
w,≤d,n =

∑

w=(w1,...,wn):
wj≥2,

∑
wj=w

∑

b=(b1,...,bn):
0≤b1<···<bn<MN

Ri,N
w,b,≤d,n ,

where, once again, the constraintwj ≥ 2 comes from the
recursiveness ofφi. Using (33), we obtain the bound

w/2−1
∑

n=1

Ri,N
w,≤d,n ≤

w/2−1
∑

n=1

(

w − n− 1

n− 1

)(

MN

n

)(

dηi

w − n

)

≤
w/2−1
∑

n=1

ew−n−1 (eMN )n

nn

(edηi)w−n

(w − n)w−n

≤ e2w

(w/2)w

w/2−1
∑

n=1

Mn
N (ηid)w−n

≤ e2w(ηi)w/2

(w/2)w
d

w
2 M

w
2

N
MN

dηi − 1
,

where the second inequality follows from (26) and (27), and
the third one from (28).

Finally, we have to consider weight-enumerating coeffi-
cients of typeT . For them, we have

T i,N
w,≤d =

∑

1≤n≤w
2

T i,N
w,≤d,n

=
∑

1≤n≤w
2

∑

w=(w1,...,wn):∑
wj=w

wj≥2 ∀j<n,wn≥1

∑

b=(b1,...,bn):
0≤b1<···<bn<MN

bn≥MN−dηi

T i,N
w,b,≤d,n .

Everything is similar to the regular case, except for the
additional conditionbn ≥ MN − dηi. This comes from the
remark that the terminating event has clearly output weight
smaller thand, hence of length smaller thandηi. Being a
terminating event, it cannot start beforeMN − dηi. Moreover,
the recursiveness imposeswj ≥ 2 for the regular events, while
for the terminating event onlywn ≥ 1 is required.

With the same proof as for the bound (33) onRi,N
w,b,≤d,n,

we have also

T i,N
w,b,≤d,n ≤

(

dηi

w − n

)

,

so that

T i,N
w,≤d ≤

w/2
∑

n=1

∑

w=(w1,...,wn):∑
wj=w

wj≥2 ∀j<n,wn≥1

∑

b=(b1,...,bn):
0≤b1<···<bn<MN

bn≥MN−dηi

(

dηi

w − n

)

≤
w/2
∑

n=1

(

w − n

n− 1

)(

MN

n− 1

)

dηi
(

dηi

w − n

)

≤ e2w−2 dηi
w/2
∑

n=1

Mn−1
N (dηi)w−n

(n− 1)(n−1)(w − n)(w−n)

≤ e2w−1w

2

dηi

MN

w/2
∑

n=1

Mn
N (dηi)w−n

nn(w − n)(w−n)

≤ e2w

(w/2)w
w

2

dηi

MN

w/2
∑

n=0

Mn
N (dηi)w−n

≤ e2w

(w/2)w
w

2

M
w/2
N (dηi)w/2

MN

dηi − 1
,

where the third inequality above follows from (26) and (27),
the forth one from (29), and the fifth one from (28). Now,
statement (b) of Lemma 3 follows from the fact that

Ai,N
w,≤d = Ri,N

w,≤d,w/2 +

w/2−1
∑

n=1

Ri,N
w,≤d,n + T i,N

w,≤d . (34)

The case of oddw requires slightly more care. We start
with the analysis ofRi,N

w,≤d,bw/2c. Input words contributing to
this term are made ofw/2−1 events with input weight2 and
one event with input weight3

u =

bw/2c−1
∑

t=1

Dbt(1 +Dδiat) +Db(1 +Da +Da′

) .

All the error events have disjoint support, which implies
the weaker condition thatb1 < · · · < bbw/2c−1 and b 6=
b1, . . . , bbw/2c−1. The overall output weight is≤ d, and
this implies the weaker conditiondie

∑bw/2c−1
t=1 at ≤ d and

a < a′ < ηid. There are:

•

(

ηid

2

)

choices for sucha, a′;

•

( bd/diec
bw/2c − 1

)

choices fora1, . . . , abw/2c−1;

• no more than bw/2c
(

MN

bw/2c

)

choices for

b1, . . . , bbw/2c−1, b, where the factor bw/2c comes
from the choice of the position where to put the error
event of weight 3 in between the other events.

Summarizing,

Ri,N
w,≤d,bw/2c ≤

⌊

w
2

⌋ (

MN

bw/2c

)(

ηid
2

)( bd/di
ec

bw/2c−1

)

≤ (ηi)2

4e2

wew M
bw/2c
N d2

⌊

d
di
e

⌋bw
2 c−1

⌊

w
2

⌋bw
2 c (⌊w

2

⌋

− 1
)bw

2 c−1

≤ (ηi)2

16

w3(2e)w

ww
M

bw/2c
N d2

⌊

d

die

⌋bw
2 c−1

,

(35)
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where the second inequality follows from (26), and the last
inequality follows from (28) and (29).

The remaining regular terms are bounded exactly as in the
case whenw is even

bw/2c−1
∑

n=1

Ri,N
w,≤d,n ≤ e2w(ηi)d

w
2 e

(w/2)w
dd

w
2 eM

bw
2 c

N
MN

dηi − 1
. (36)

We now pass to studying the termsT i,N
w,≤d. Differently from

the even case, we shall consider the main termT i,N
w,≤d,dw/2e

separately. Input words contributing toT i,N
w,≤d,dw/2e consist of

bw/2c regular error events, each with input weight2, and
one terminating event with input weight1, with overall output
weight≤ d. We represent such input words as

u =

bw/2c
∑

t=1

Dbt(1 +Dδiat) +DMN−l

and we observe that the following conditions hold

0 ≤ b1 < · · · < bbw/2c < MN ,

l ≤ ηid , die
∑

t

at ≤ d .

Thus, we get

T i,N
w,≤d,dw/2e ≤

(

MN

bw/2c

)

dηi
(bd/diec
bw/2c

)

≤ ηi

2

w(2e)w

ww
M

bw/2c
N d

⌊

d

die

⌋bw/2c

.

(37)

The remaining terms are bounded as in the even case,

bw/2c
∑

n=1

T i,N
w,≤d,n ≤ e2w

(w/2)w
w

2

M
bw/2c
N (dηi)dw/2e

MN

dηi − 1
. (38)

By bounding the addends of the right-hand side of (34) as in
(35), (36), (37), and (38), one finds that the leading terms are
in fact the ones on the right-hand side of (35) and of (37), and
statement (b) follows. This completes the proof of Lemma 3.

3) Proof of Lemma 4:We shall use ideas similar to those
of [26, Lemma 2]. We consider a subclass of input words
contributing to the termRi,N

w,≤d,w/2, exactly those which can
be written as

∑

1≤t≤w/2

(

Dit+ht−1δ
i

+Dit+htδ
i
)

with

0 ≤ i1 < i2 < · · · < iw/2 < MN − δibd/diec ,

0 = h0 < h1 < h2 < · · · < hw/2 ≤ bd/diec .

It is evident that they have input weightw and consist ofw/2
disjoint error events. The only property which remains to be
verified is whether they produce output weight not exceeding
d. In fact, thet-th error event has input word

Dit+δiht−1(1 +Dδi(ht−ht−1)) ,

so that the output has weight

wH

(

φi(1 +Dδi(ht−ht−1))
)

≤ die (ht − ht−1) .

Thus, the total output weight can be bounded from above as

die

w/2
∑

t=1

(ht − ht−1) = diehw/2 ≤ d .

Observe that, for every choice of the twow/2-tuples
(i1, i2, . . . , iw/2) and (h1, h2, . . . , hw/2), one obtains distinct
input words. It follows that

Ri,N
w,≤d,w/2 ≥

(

MN − δibd/diec
w/2

)(bd/diec
w/2

)

. (39)

Recall that, by assumption,w2 ≤ d
di
e
≤ MN

2δi and w is even.
Hence,

w

2
≤
⌊

d

die

⌋

, MN−δi
⌊

d

die

⌋

≥ MN

2
,

w

2
≤ MN−δi

⌊

d

die

⌋

.

The final bound follows by applying (39) and (26).

B. Proofs of the results presented in Section IV

Throughout this subsection, we will use the wordsc∗, c∗j
and the set of indicesJ defined in Section IV.

1) Proof of Lemma 5:This proof closely follows part of
the proof of [26, Thm. 2.b].

The first statement is immediate, let us prove the second
one. Let

c∗i =

do
f
∑

m=1

Dtm .

Given a multi-index

τ = (τ1, . . . , τdo
f
) ∈ [MN ]d

o
f ,

where[MN ] := {0, . . . ,MN − 1}, define the event

Eτ := {ΠN (Dtm) = Dτm ∀m = 1, . . . , dof } .
Clearly,

P
(

E∗
j1(d)∩E∗

j2(d)
)

=
∑

τ

P
(

E∗
j1(d)∩Eτ

)

P
(

E∗
j2(d)

∣

∣E∗
j1(d)∩Eτ

)

,

where the summation indexτ runs over all[MN ]d
o
f .

Then, notice that

P
(

E∗
j2(d)

∣

∣E∗
j1(d) ∩ Eτ

)

= P
(

E∗
j2(d)

∣

∣Eτ

)

. (40)

Also notice that

P
(

E∗
j2(d)

∣

∣Eτ

)

≤ Ri,N
do
f ,≤d,do

f /2

(

MN − dof
dof

)−1

. (41)

Indeed, after having fixed the positionsτ whereΠN maps
the dof ones ofc∗j1 , we need to find how many choices for
the positions of the ones ofc∗j2 will produce an output weight
less than or equal tod, out of the

(

MN−do
f

do
f

)

ways to choose
dof positions amongMN − dof . The number of such favorable
choices is bounded by the number of favorable choices that
we would have if we could choose among allMN positions,
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including the unavailable positions already assigned toc∗j1 , i.e.,
Ri,N

do
f ,≤d,do

f /2
, which proves (41).

Eqs. (40) and (41), together with (16), give

P
(

E∗
j2(d)

∣

∣E∗
j1(d)∩Eτ

)

≤ P
(

E∗
j2(d)

)

(

MN

dof

)(

MN − dof
dof

)−1

.

Therefore,

P
(

E∗
j1(d) ∩ E∗

j2(d)
)

≤
∑

τ

P
(

E∗
j1(d) ∩ Eτ

)

P
(

E∗
j2(d)

)

(

MN − dof
dof

)−1(
MN

dof

)

,

where the summation indexτ runs over the set[MN ]d
o
f .

Finally, observe that
∑

τ∈[MN ]d
o
f

P(E∗
j1(d) ∩ Eτ ) = P(E∗

j1(d)) .

From this, the claim immediately follows.

2) Proof of Theorem 2:The key idea, introduced in [4],
consists in turning the problem of finding codewords of small
weight into the problem of finding a generalized cycle on an
hypergraph. We describe here the construction of the suitable
hypergraph, adapting the construction from [4] to our setting,
and then we state the lemma on hypergraphs given in [4],
which completes the proof. The aim is to show that, for
any interleaver, it is possible to find a suitable subset of the
codewordsc∗j , say {c∗j : j ∈ S̃}, with cardinality growing
at most as logarithmically withN , and such that the outer
codewordc :=

∑

j∈S̃ c∗j produces a codewordy = φi
N ◦πN (c)

of the serial code having weightwH(y) non-zero and smaller
thanKNβ logN , for some constantK.

Let Zδi be the ring of integers moduloδi. Define a map
σ : J → Z

do
f

δi
by associating with an indexj ∈ J a vector

(σ1(j), . . . , σdo
f
(j)) in the following way: if

c∗j =

do
f
∑

m=1

Dtm , πN (Dtm) = Dτm ,

with {tm}m an increasing sequence, thenσm(j) = τm
mod δi. By the pigeonhole principle, clearly there exists
U ⊆ J with |U | ≥ |J |/(δi)do

f such thatσ(j1) = σ(j2) for all
j1, j2 ∈ U .

This means that, for everym = 1, . . . , dof , all them-th ones
in words c∗j , with j ∈ U , are permuted byπN to positions
whose relative distance is a multiple ofδi. Thus, applying
φi to any pair of such ones gives an output weight which is
proportional to the distance between the two ones. The goal
is to find a non-empty subset of indices̃S ⊆ U , such that
its cardinality |S̃| is even and grows at most logarithmically
with N , and such that for allm = 1, . . . , dof , the ones being
the m-th one of wordsc∗j with j ∈ S̃ form pairs in such a
way that after the permutation the distance within ones of the
same pair grows at most asNβ . This will allow to construct
an outer codewordc =

∑

j∈S̃ c∗j which gives a codeword
y = φi

N ◦ πN (c) of the serial scheme, whose weight grows as
most as a constant timesNβ logN .

In order to find the setS̃, consider the set[MN ] =
{0, . . . ,MN − 1} and divide it inb intervalsI1, . . . , Ib, each

of length at mostdMN/be; b is a parameter depending onN
that will be properly chosen later in this proof.

Define a hypergraphH = (V,E) in the following way. Take
a dof -partite vertex setV being the union ofdof disjoint copies
of W = {I1, . . . , Ib}. The set of hyperedgesE has cardinality
|U | and isdof -regular in the sense thatE ⊆ W do

f , i.e., every
hyperedge contains exactly one vertex from each of thedof
copies ofW . Any hyperedge inE corresponds to an index
j ∈ U , and is defined ase = (Ih1

, . . . , Ihdo
f
) ∈ W do

f where,
denoting as above

c∗j =

do
f
∑

m=1

Dtm

with {tm}m and increasing sequence, the indexhm is such
that πN (Dtm) ∈ Ihm

.
Define the degree of a vertex in the hypergraph as the

number of hyperedges that contain that vertex. The following
lemma holds true:

Lemma 6 ([4], Lemma 3). Given ak-partite, k-regular hy-
pergraph(V,E) with b vertices in each part, if4bdk/2e ≤ |E|,
then there exists a non-empty subsetS ⊂ E, with |S| ≤ k log b,
such that in the induced subhypergraph(V, S) every vertex has
even degree (possibly zero).

We shall show here that this lemma implies Theorem 2. In
the above construction of the hypergraphH, we choose

b =

⌊

( |J |
4(δi)d

o
f

)2/do
f

⌋

=

⌊

(

1

4(δi)d
o
f

⌊

N

dof η
o

⌋)2/do
f

⌋

.

This ensures thatb is an integer satisfying

4bd
o
f /2 ≤ |J |

(δi)d
o
f
≤ |U | = |E| ,

so that we can apply Lemma 6 and find the subsetS.
By construction of the hypergraph, there is a bijection

between hyperedges and indices inU ⊂ J ; let S̃ ⊂ U be
the indices corresponding to the hyperedges inS, so that any
hyperedges ∈ S corresponds to some wordc∗j , j ∈ S̃. Let
c :=

∑

j∈S̃ c∗j ∈ Z
MN

2 , and observe thatc is clearly a non-
zero codeword of the outer code. Hence,y := φi

N (πN (c)) is
a non-zero codeword of the serial turbo code.

By construction,πN (c) is composed of|S|dof /2 pairs of
ones. Each pair has both ones lying in a same intervalIj and
at a distance multiple ofδi. Hence,

wH

(

φi
N (πN (c))

)

≤ |S|dof
2

die

⌈

MN

b

⌉

.

Finally use the bound on|S| which is the key contribution of
Lemma 6:|S| ≤ dof log b.

Our choice ofb gives

log(b) ≤ log(N2/do
f ) =

2

dof
log(N)

and
dMN/be ≤ 6r(8dof η

o)2/d
o
f (δi)2N1−2/do

f ,

which concludes the proof.
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APPENDIX II
GENERALIZATIONS

Parts of Assumptions 1 and 2 were stated for the sake of
simplicity, and are in fact not essential for the validity ofthe
results presented. In this appendix, we shortly discuss how
such assumptions can be weakened, pointing out the role they
played in the proofs and stating the results that can be obtained
in greater generality, while we refer the interested readerto
[21] for more details and proofs.

The following formulation is the one truly needed in order
to obtain the claimed asymptotic behavior of the minimum
distance and the error probability:

Assumption 3. The outer encoderφo : (Zk
2)

Z+ → (Zr
2)

Z+ is
non-catastrophic, and its free distancedof satisfiesdof ≥ 3.

Assumption 4. The inner encoderφi : (Zs
2)

Z+ → (Zl
2)

Z+ is
non-catastrophic and recursive.

Non-catastrophicity of both constituent encoders and recur-
siveness of the inner encoder are needed in order to ensure the
properties of the weight-enumerating coefficients (Lemmas2
and 3), and to give the limitations on the input weights
(due to Lemma 1 and to the absence of input-weight-1 inner
codewords) in the summations in the proofs of Propositions 1
and 3.

The assumptiondof ≥ 3 is needed in order to ensure thatβ >
0, and is essential in order to have minimum distance growing
with high probability as some positive power ofN . Indeed,
when dof = 2 (and thusβ = 0), Theorem 2 still holds true,
and states that, for any choice of the interleavers sequence,
the minimum distance grows at most logarithmically withN .
Moreover, a slight modification of the proof of Proposition 2
(see [21, Sect. 4.5.1]) allows one to prove that, whendof = 2,

P(dmin
N ≤ die) ≥ c

for some positive constantc, which implies that

P

(

P (e|ΠN ) ≥ pd
i
e

)

≥ c ,

wherep = erfc(
√
ρ)/2 is the bit error probability of uncoded

transmission.
The assumptions that the inner encoderφi has scalar input

(s = 1) and is proper rational (F is invertible) have been
considered in order to simplify the analysis of the codewords
of φi

N made of error events with input weight 2 (proofs of
Lemma 3 and Theorem 2), and to have clean expressions of the
constants depending ondie. Indeed, under such assumptions,
an input word with weight two produces a finite-weight output
word if an only if the two ones are separated byaδi−1 zeros,
and the output weight isadie, because the word is made ofa
shifted copies of the same error event, with non-overlapping
support. Whenφi is not proper rational, the above-mentioned
error events have overlapping support, so that the weight is
smaller thanaδi: this allows one to prove bounds on the
one side, while for the other side it is necessary to introduce
another parameter of the inner encoder, for which the opposite
inequality holds true. Whenφi has non-scalar input (s > 1),
we have to look separately at pairs of ones being in different

components of the entry vector, so that we need to define
s parametersδi(j) and corresponding weightsdie(j), one for
each componentj = 1, . . . , s; moreover, we need to take into
account also possible pairs of ones where the second one is
not in the same component as the first one (which turn out to
have an asymptotically negligible role). For more details,see
[21], Sections 4.5.2 and 4.5.3.

Removing the assumptions thatφi has scalar input (s =
1) and is proper rational (F is invertible) does not change
any of the asymptotic results whenN grows large: except
for the value of the constants and their dependence ondie, all
the statements of this paper remain true under Assumptions 1
and 4.

Removing the assumption thatdof is even requires some
more effort, because of the key role that was played by
words where an outer codeword with weightdof (or multiples
of it) was producing inner codewords composed of error
events each with input weight two. In the remainder of this
section, we consider the case of odddof , and for simplicity
we focus again on the simpler case where the inner encoder
satisfies Assumption 2, while we replace Assumption 1 with
the following:

Assumption 5. The outer encoderφo : (Zk
2)

Z+ → (Zr
2)

Z+ is
non-catastrophic, and its free distancedof is odd and satisfies
dof ≥ 3.

We will state and prove the main results (the asymptotic
typical behavior ofdmin

N and P (e|ΠN ), while we will refer
the reader to [21] for details on some results we will only
quickly mention.

Notice that, under Assumptions 5 and 2, Lemmas 2 and 3
hold true without any modification. However, Proposition 1
needs to be modified, because the dominant term in the
summations is not the same, due to the ceilings and floors
of the fractions in the exponents. The following Proposition
holds true, where for simplicity we do not look at the explicit
dependence of the constants ondie and on other parameters
of the inner encoder such as the output weight of terminated
error events with input weight1 or of regular error events with
input weight3.

Proposition 4. Let Assumptions 5 and 2 be satisfied. Assume
that d = o(Nβ) asN grows large. Then, there existsN0 ≥ 0
and C1, C2 > 0, depending on the constituent convolutional
encoders only, such that, for allN ≥ N0,

P(dmin
N ≤ d) ≤ C1

(

d

N

)1/2
(

N−βd
)do

f /2 + C2

(

N−βd
)do

f .

Before giving the proof, we underline the fact that, differ-
ently from Proposition 1, we have two terms in this upper
bound, and either one can be the dominant one, depending on
how fastd grows withN : defining

κ = 1− 2

dof − 1

(notice thatκ < β), if d = o(Nκ) the dominant term is the
first one, while otherwise it is the second one.
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Proof: From (4), we use Lemmas 2 and 3 to find bounds
on the weight-enumerating coefficients of the constituent en-
coders, and we get

P(dmin
N ≤ d) ≤

ηid
∑

w=do
f

CwNbw/do
f c−dw/2eddw/2e (42)

for someC > 0 depending on the constituent convolutional
encoders only. For evendof , the asymptotically dominant term
in the summation was the one withw = dof . Here, for odddof ,
we have different dominant terms: the ones withw = dof and
with w = dof + 1 dominate ifd = o(Nκ), and otherwise the
dominant term is the one withw = 2dof . To prove this, we
consider separately the terms with odd and evenw in (42).
For the odd terms, usingbw/dof c ≤ w/dof and the fact that
dw/2e = (w + 1)/2 for oddw, we get

∑

do
f ≤w≤ηid
wodd

CwNbw/do
f c−dw/2eddw/2e ≤

(

d

N

)
1
2 ∑

w≥do
f

(

CN− β
2 d

1
2

)w

.

(43)
For evenw, we need to split once more the summation in
two parts. A first summation will contain the terms withw
multiple of dof , for which bw/dof c = w/dof ; notice that such
terms havew ≥ 2dof . All the other terms will have

bw/dof c ≤
w

dof
− 1

dof
, w ≥ dof + 1 .

Hence,
∑

do
f <w≤ηid
w even

CwNbw/do
f c−dw/2eddw/2e

≤
∑

w≥2do
f

(

CN− β
2 d

1
2

)w

+N−1/do
f

∑

w≥do
f +1

(

CN− β
2 d

1
2

)w

. (44)

Similarly to the proof of Proposition 1, we can use the
assumptiond = o(Nβ) to conclude that, for sufficiently large
N , the series in (43) and (44) are convergent and each one is
bounded by twice its first term.

Similarly to what was done for the even case with Propo-
sition 2, a lower bound can be found, which ensures that the
upper bound given in Proposition 4 is tight ford = o(Nκ);
this is useful in order to findα = 1 − 2/ddof /2e such that
the growth rateXN := (logN)−1 log dmin

N and the decay
rateYN := (logN)−1 log(− log(P (e|ΠN ))) densely cover the
interval [α, β] with probability one, but we will not discuss
such issue here.

For evendof , Proposition 1 (or equivalently the upper bound
in Theorem 1) was completed by Theorem 2: the two results
together imply that the growth rateXN := (logN)−1 log dmin

N

converges in probability toβ. For odddof , it is indeed possible
to prove a deterministic upper bound, analogous to Theorem 2,
by a slight modification of the construction of the bipartite
graph from the hypergraph in the proof of Theorem 2 (see the
proof of [4, Thm. 2] for repeat-accumulate codes, or see [21]).
Unfortunately, such a bound is of the form

dmin
N ≤ CN β̃ logN

where
β̃ := 1− 1

ddof /2e
= 1− 2

dof + 1
> β .

However, as suggested in [26], it is still possible to prove that
Nβ is the actual growth rate ofdmin

N , using a second-order
method, as shown below.

Theorem 4. Let Assumptions 5 and 2 be satisfied. Ifd =
ω(Nβ) as N grows large, then there exist positive constants
C1, C2, andN0, such that

P(dmin
N ≤ d) ≥ 1− C1

N
− C2

Nβ

d
,

for all N ≥ N0.

Proof: Let the outer codewordsc∗, c∗j and the set of
indicesJ be the same as in Section IV and in Appendix I-B.
We define events quite similar to theE∗

j ’s involved in the proof
of Proposition 2, but here we consider pairs of codewordsc∗j ’s.
More precisely, forj1, j2 ∈ J , we define

E∗
j1,j2(d) :=

⋃

(b,e)∈B

Ej1,j2(b, e) ,

where

Ej1,j2(b, e) :=

{

ΠN (c∗j1) =

do
f
∑

t=1

Dbt , ΠN (c∗j2) =

do
f
∑

t=1

Det

}

,

b = (b1, . . . , bdo
f
), e = (e1, . . . , edo

f
), and

B :=

{

(b, e) s.t. 0 ≤ b1 < e1 < · · · < bdo
f
< edo

f
≤ MN ,

et = bt + ltδ
i∀t ,∑do

f
t=1 lt ≤

⌊

d/die
⌋

}

.

Now, let χj1,j2 be the indicator of the eventE∗
j1,j2

(d), and
define the random variable

Z :=
∑

j1,j2∈J, j1 6=j2

χj1,j2 .

Clearly

P(dmin
N ≤ d) ≥ P

(

⋃

j1,j2∈J, j1 6=j2

E∗
j1,j2(d)

)

= 1− P(Z = 0).

A standard argument, which follows from Chebyshev’s
inequality and is known as ‘second-order method’ [2,
Thm. 4.3.1], gives

P(Z = 0) ≤ E(Z2)

[E(Z)]2
− 1 ,

so that

P(dmin
N ≤ d) ≥ 2− E(Z2)

[E(Z)]2
= 2−

∑

j∈J4

j1 6=j2,j3 6=j4

Λj

Ξ2
, (45)

where, forj = (j1, j2, j3, j4) ∈ J4,

Λj := P
(

E∗
j1,j2(d) ∩ E∗

j3,j4(d)
)

and
Ξ :=

∑

j,j′∈J,j 6=j′

P
(

E∗
j,j′(d)

)

.
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The following steps allow one to find bounds forΞ andΛj .
First, notice thatP

(

E∗
j,j′(d)

)

is the same for all pairsj 6= j′,
so thatΞ = |J |(|J | − 1)P

(

E∗
j,j′(d)

)

. Then, notice that the
union in the definition ofE∗

j1,j2
(d) is a disjoint union, so that

P
(

E∗
j,j′(d)

)

=
∑

(b,e)∈B

P
(

Ej,j′(b, e)
)

.

Moreover,

P
(

Ej,j′(b, e)
)

=
(dof !)

2(MN − 2dof )!

MN !

and the setB can be conveniently described in the following
equivalent way (which was already used in the proof of
Lemma 4):

B :=
{

(b, e) s.t. ∀t, bt = it + ht−1δ
i andet = it + htδ

i,

0 ≤ i1 < i2 < · · · < iw/2 < MN − δibd/diec,
0 = h0 < h1 < h2 < · · · < hw/2 ≤ bd/diec

}

.

from which it is clear that

|B| =
(

MN − δibd/diec
dof

)(bd/diec
dof

)

.

Thus we have the following explicit formula:

P
(

E∗
j,j′(d)

)

=

(

MN−δibd/diec
dof

)(bd/diec
dof

)

(dof !)
2(MN − 2dof )!

MN !
.

(46)
Then we considerΛj . We use a similar proof as for

Lemma 5, i.e., we condition on the eventsEj1,j2(b, e).
If j1, j2, j3, j4 are all distinct, then

Λj =
∑

(b,e)∈B

P
(

E∗
j3,j4(d)

∣

∣Ej1,j2(b, e)
)

P
(

Ej1,j2(b, e)
)

≤
∑

(b,e)∈B

|B| (d
o
f !)

2(MN − 4dof )!

(MN − 2dof )!
P
(

Ej1,j2(b, e)
)

= P
(

E∗
j1,j2(d)

)

P
(

E∗
j3,j4(d)

) (MN − 4dof )!(MN )!

[(MN − 2dof )!]
2

(47)

so thatΛj ≤ P
(

E∗
j1,j2

(d)
)2(

1 +O(1/N)
)

asN grows large.
When one of the indices is repeated, sayj1 = j3, we have

that

Λj =
∑

(b,e)∈B

P
(

E∗
j1,j4(d)

∣

∣Ej1,j2(b, e)
)

P
(

Ej1,j2(b, e)
)

≤
∑

(b,e)∈B

(bd/diec
dof

)

dof !(MN − 3dof )!

(MN − 2dof )!
P
(

Ej1,j2(b, e)
)

= P
(

E∗
j1,j2(d)

)

(bd/diec
dof

)

dof !(MN − 3dof )!

(MN − 2dof )!
(48)

and the same bound holds true whenj2 = j4.
Finally, it’s clear thatΛj = P

(

E∗
j1,j2

(d)
)

for all j ∈ J4

such thatj3 = j1 and j4 = j2 .
The above bounds allow one to prove that the right-hand

side of (45) tends to one. In fact, we can split the summation
into the following terms

P(dmin
N ≤ d) ≥ 2− S4 − S3 − S2 ,

where

S2 =
∑

j1=j3 6=j2=j4

Λj

Ξ2
, S4 =

∑

j1,j2,j3,j4
distinct

Λj

Ξ2
,

S3 =
∑

j2 6=j1=j3
j3 6=j4 6=j2

Λj

Ξ2
+

∑

j1 6=j2=j4
j1 6=j3 6=j4

Λj

Ξ2
.

Remember that|J | andMN grow linearly withN , and that
d/Nβ grows unbounded by assumption. On the other hand,
without loss of generality one may assume thatd/N vanishes,
since the deterministic upper bound guarantees thatdmin

N ≤
CN β̃ logN for any choice of the interleavers sequence. Then,
using (46), (47), (48), and the bound (26) for the binomial
coefficients, it is easy to conclude that, asN grows large,

S4 ≤ 1 +
C1

N
, S3 ≤ C2

N
, S2 ≤ C3

N
+ C4(N

βd−1)d
o
f

for some positive constantsC1, C2, C3, C4.

Similarly to Section V, we will now show how the above
results on the minimum distance imply results on the word
error probability. We will use here the same notation

Eε
N := {dmin

N > Nβ−ε} , F ε
N := {P (e|ΠN ) ≥ exp(−Nβ−ε)} .

A first result is that Proposition 3 holds true also when
Assumption 5 replaces Assumption 1: the only modification
in the proof is that nowP(Eε

N ) converges to1 thanks to
Proposition 4 instead of Theorem 1.

The following theorem is the analogous of Theorem 3 for
odd dof .

Theorem 5. Let Assumptions 5 and 2 be satisfied. Then, there
exists some finiteρ0 ≥ 0 such that, if the signal-to-noise ratio
ρ satisfiesρ ≥ ρ0, then for allε ∈ (0, β−κ) there exist some
finite N0 ≥ 0 andC > 0 such that, for allN ≥ N0,

P

(

exp(−Nβ+ε)≤P (e|ΠN )≤exp(−Nβ−ε)
)

≥1− CN−εdo
f .

Proof: Similarly to the proof of Theorem 3, the upper
bound follows from Proposition 3 and from Proposition 4
(which is the analogous for odddof of Proposition 1)

P
(

F ε
N

)

≤ 1−P
(

Eε
N

)

+P
(

Eε
N

∣

∣F ε
N

)

≤ C1

Nεdo
f
+C2 exp(−Nβ−ε) .

The lower bound is obtained again using (24), but here the
role of Theorem 2 is replaced by Theorem 4

P
(

P (e|ΠN ) ≥ pN
β+ε) ≥ P

(

dmin
N ≥ Nβ+ε

)

≥ 1− c1
N

− c2

Nεdo
f
.

Finally, notice that, forε ∈ (0, β − κ), 1/N = o
(

1/Nεdo
f

)

as
N grows large.
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