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TRAVELING WAVES FOR THE WHITHAM EQUATION

MATS EHRNSTRÖM AND HENRIK KALISCH

Abstract. The existence of traveling waves for the original Whitham equation is investi-

gated. This equation combines a generic nonlinear quadratic term with the exact linear

dispersion relation of surface water waves on finite depth. It is found that there exist

small-amplitude periodic traveling waves with sub-critical speeds. As the period of these

traveling waves tends to infinity, their velocities approach the limiting long-wave speed c0,

and the waves approach a solitary wave. It is also shown that there can be no solitary

waves with velocities much greater than c0. Finally, numerical approximations of some

periodic traveling waves are presented.

1. Introduction

The study of waves on the surface of a fluid has been a source of intriguing mathemat-

ical problems for a long time. When studying such waves, viscosity is often neglected, so

that the governing equations are the nonlinear Euler equations, supplemented by a set

of nonlinear boundary conditions at the unknown fluid surface. This set of equations is

commonly known as the water-wave problem. Of special interest is the study of perma-

nent progressive waves, such as solitary or traveling periodic waves. These waves which

are also called steady waves propagate without changing their shape over time.

An early highlight in the study of such steady waves was the discovery by Gerstner

[16] of a family of exact solutions of the two-dimensional Euler equations in the form of

periodic traveling waves. A special feature of this family of solutions is that it includes

surface profiles that are not smooth, but have a cusp [11, 9]. While Gerstner’s wave

has non-zero vorticity, most studies of steady surface waves have been pursued in the

case when the flow is irrotational. Starting with the seminal work of Stokes [30] in the

mid 1800’s, periodic wave trains on the surface of a fluid have attracted a great deal of

attention. Stokes made the conjecture that the highest wave has a sharp crest [31], and a

great deal of work has been directed towards understanding this phenomenon, including

the mathematical proof of the fact that this highest wave exists. For an overview of

results in this direction, the reader may consult the surveys by Toland [33] and Groves

[17], and the book by Okamoto and Shoji [25]. While Gerstner’s wave is an exact solution

only for infinite depth, Stokes waves have been shown to exist for any depth.

A different line of research was initiated by the discovery of the solitary wave by

John Scott Russell [28]. His observations and experiments gave an impetus to finding
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2 MATS EHRNSTRÖM AND HENRIK KALISCH

a mathematical formulation capable of describing such waves. The Korteweg-de Vries

(KdV) equation

(1) ηt + c0 ηx +
3
2
c0
h0
η ηx +

1
6
c0h

2
0 ηxxx = 0

is a simplified model equation for waves at the water surface which includes the essential

effects of nonlinearity and dispersion [7, 22]. Balancing these two effects is the basic

mechanism behind the existence of both solitary-wave solutions and periodic traveling

waves. Equation (1) is given in dimensional form, and c0 :=
√
gh0 is the limiting long-

wave speed, h0 denotes the undisturbed water depth (assuming a flat bottom), and g is

the gravitational constant of acceleration. The function η(t, x) describes the deflection

of the fluid surface from the rest position at a point x at time t. The equation is a

valid approximation describing the evolution of surface water waves in the case when

the waves are long compared to the undisturbed depth h0 of the fluid, and the average

amplitude of the waves is small when compared to h0 [18]. In addition, transverse effects

are assumed to be weak.

The success of the KdV equation in describing steady waves and the discovery of its

completely integrable Hamiltonian structure has led to an intense study of this equation

for the last four decades. The mathematical theory for the KdV equation has reached a

very advanced level, with a solid theory of well-posedness in place, and a sound under-

standing of the stability properties of solitary and traveling waves [1, 2, 4, 5, 20, 26].

However, as a model for water waves, the KdV equation may not be the best choice

for a number of reasons. Most importantly, it has some shortcomings concerning the

propagation of shorter waves. The linear wave speed in the KdV equation is given by

(2) c(ξ) = c0 − 1
6
c0h

2
0ξ
2,

where ξ = 2π
λ is the wave number, and λ is the wavelength. This is a second-order

approximation to the wave speed

(3) c(ξ) = ω
ξ
=
√
g tanh ξh0

ξ
,

of the linearized water-wave problem. The latter expression for c(ξ) appears when the

full water-wave problem is linearized around the vanishing (irrotational) solution, and

solutions of the form exp(ixξ− iωt) are sought [18, 35]. However, as noted in [12, 13],
the dispersion relation takes a different form in the presence of vorticity. A comparison

of the two expressions (2) and (3) for c(ξ) is presented in Figure 1. As can be seen,

the linearized KdV equation does not give a faithful representation of the full dispersion

relation even for intermediate values of the wave number ξ. This problem with the KdV

equation as a model for water waves was recognized early on, and has been remedied

somewhat by the introduction of the regularized long-wave equation

(4) ηt + c0 ηx +
3
2
c0
h0
η ηx − 1

6
h20 ηxxt = 0,
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Figure 1. Comparison of linear wave speeds c = ω/ξ for the KdV and

Whitham equations. Here g = 9.81 and h0 = 1. The maximum of both

graphs is at c0 =
√
gh0.

by Peregrine [27] and Benjamin, Bona and Mahoney [3]. The linear wave speed of (4)

is given by

(5) c(ξ) =
c0

1 + 1
6
h20ξ

,

which is qualitatively closer to (3) than (2). A comprehensive review of these modeling

issues was given in [3].

Also recognizing the problems of the KdV equation as a model equation for water

waves, Whitham introduced what is now called the Whitham equation [34]. The idea

was to use the exact form of the wave speed (3) instead of a second-order approximation

like (2) or (5). The equation proposed by Whitham has the form

(6) ηt +
3
2
c0
h0
η ηx +Kh0 ∗ ηx = 0,

where the convolution is in the x-variable. The equation is written in dimensional vari-

ables, with η(t, x) representing the deflection of the surface from rest, just as in the KdV

equation. The convolution kernel is given by

(7) Kh0 := F−1
(√

g tanh h0ξ
ξ

)
,

where F−1 is the inverse Fourier transform to be defined by (9) in Section 2. Often,
instead of the kernel Kh0 , the kernel

(8) π
4
exp

(
−π
2
|x |
)

is used. This kernel matches the asymptotic behavior of Kh0 [35], and has certain math-

ematical advantages over (7), such as not having a singularity at the origin. Moreover,
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this approximation gives rise to a differential equation, the so-called Burgers-Poisson

equation [14]. The properties of (8) were exploited by Seliger [29], who showed that for

this simplified kernel wave breaking is possible.

Even though there does not exist a formal asymptotic expansion or a rigorous proof

of convergence of solutions of (6) to solutions of the water-wave problem, the Whitham

equation remains a source of intriguing problems. The monograph by Naumkin and

Shishmarev [24] is devoted entirely to equations like (6). In particular, some questions

of Whitham concerning breaking and peaking of waves described by generalizations of

(6) are answered. However, the work of Naumkin and Shishmarev is mainly focused on

problems of time evolution. Steady solutions of the equation (6) with the kernel (8)

were studied in [36]. However, for the original Whitham equation the literature is rather

sparse. The inherently non-local character of (6) makes things much more intricate. In

particular, it is still not known whether the proper Whitham equation (with the kernel

Kh0) admits a nontrivial solitary-wave solution.

The present article is a study of steady waves for the non-local Whitham equation with

its original kernel. In Section 3 we make use of the Crandall-Rabinowitz local bifurcation

theorem to prove the existence of small-amplitude periodic traveling waves. A similar

treatment was outlined by Gabov in [15], but for the exact kernel (7) no proof was given.

In Section 4 we prove a priori continuity and compactness properties of bounded traveling-

wave solutions. These properties imply convergence of periodic solutions to solitary-wave

solutions. Section 5 is on non-existence. It is shown that for large velocities there can

be no continuous solitary-wave solutions of the steady Whitham equation. In Section 6

we compute numerical approximations of both traveling and solitary waves. It is worth

mentioning that the Whitham equation has excited interest precisely for the reason that

it features wave breaking and peaking. This was indicated already by Whitham [34], and

investigated at length by Naumkin and Shishmarev in the monograph [24]. According

to this theory, there is a highest wave, which will have a cusp at the center. Some

computations in this direction are carried out in Section 6.

2. Preliminaries

In this article, the standard notation of mathematical analysis is used. For 1 ≤ p <∞,
the space Lp(Ω) is the set of measurable real-valued functions of a real variable whose pth

powers are Lebesgue integrable over a subset Ω ⊆ R. If f ∈ Lp(Ω), its norm is given by
‖f ‖pLp(Ω) :=

∫
Ω
|f |P dx . The space L∞(Ω) consists of all measurable, essentially bounded

functions with norm ‖f ‖L∞(Ω) := ess supx∈Ω |f (x)|. We define the Fourier transform F
of a function f ∈ L1(R) by

F f (ξ) :=
∫ ∞

−∞
f (x) exp(−ixξ) dx,

and the inverse Fourier transform F−1 by

(9) F−1f (x) := 1
2π

∫ ∞

−∞
f̂ (ξ) exp(ixξ) dξ,



TRAVELING WAVES FOR THE WHITHAM EQUATION 5

for any f̂ ∈ L1(R). We shall also use the notation f̂ := F f . The Fourier coefficients of
2L-periodic functions on R are defined by

f̂k :=

∫ L

−L
f (x) exp

(
−ix kπ

L

)
dx.

We write

f (x) ∼ 1
2L

∑

k∈Z
f̂k exp

(
ix kπ
L

)

to indicate that under certain conditions on f , this infinite trigonometric series converges

to f pointwise, uniform, or in norm. For example, if f ∈ Lp((−L, L)), p > 1, then
the Carleson–Hunt theorem [19] guarantees that the series converges to f (x) almost

everywhere. If in addition f (x) is an even function, the series can be written as

f (x) ∼ 1
2L
f̂0 +

1

L

∞∑

k=1

f̂k cos
(
ix kπ
L

)
=
1

L

∞∑

k=0

′

f̂k cos
(
ix kπ
L

)
,

where the prime indicates that the first term of the sum is multiplied by 1/2.

Next we turn to recording some elementary properties of the Whitham kernel, Kh0, and

its Fourier transform. It is immediate that the function
√
g(tanh h0ξ)/ξ is even and

strictly decreasing on (0,∞). It is in fact real analytic since in a neighborhood of the
origin

tanh ξ

ξ
=

∞∑

n=1

22n (22n − 1)B2nξ2(n−1)
(2n)!

> 0,

by using the Taylor series expansion for tanh (Bn are the Bernoulli numbers). Moreover,√
g(tanh h0ξ)/ξ takes the following limits:

lim
ξ→0

√
g tanh h0ξ
ξ

=
√
gh0, lim

ξ→∞

√
g tanh h0ξ

ξ
= 0.

Consequently,
∫∞
−∞Kh0(x) dx =

√
gh0, and

(10) ‖Kh0‖L1(R) =
√
gh0

∥∥∥F−1
(√

tanh ξ
ξ

)∥∥∥
L1(R)

.

Thus it can be shown that Kh0 ∈ L1(R) in the following way. The substitution of variables
y = xξ and partial integration shows that the growth of F−1

(√
(tanh ξ)/ξ

)
is of order

x−1/2 as x → 0 (for a rigorous proof of this fact, cf. Section 4). Since the function√
(tanh ξ)/ξ is analytic, the inverse Fourier transform has rapid decay. Thus splitting

the integral according to

‖Kh0‖L1(R) =
∫

|x|≤1
|Kh0(x)| dx +

∫

|x|≥1
|Kh0(x)| dx,

it is plain thatKh0 has finite L
1(R)-norm. In fact, this argument establishes more generally

that Kh0 ∈ Lp(R) for 1 ≤ p < 2.
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Since the existence of traveling waves is in view, we make the usual ansatz η(t, x) =

φ(x − ct), with c > 0 being the propagation speed of a right-going steady wave. Using
this form, the equation (6) transforms into

−c φ′ + 3
2
c0
h0
φφ′ +Kh0 ∗ φ′ = 0,

which may be integrated to

(11) − c φ+ 3
4
c0
h0
φ2 +Kh0 ∗ φ = B,

for some real constant B. For solutions φ ∈ L2(R), it appears that the convolution

Kh0 ∗ φ is in L2(R) since Kh0 is in L1(R). Therefore, the left-hand side must vanish as
|x | → ∞, and we shall consider here only the case when B = 0. The scaling

φ 7→ 3
4
c0
h0 c
φ

then yields the normalized problem

(12) φ = φ2 + 1
c
Kh0 ∗ φ.

3. Existence of periodic traveling waves

Theorem 3.1. For a given L > 0 and a given depth h0 > 0, there exists a local bifurcation

curve of steady, 2L-periodic, even and continuous solutions of the Whitham equation.

Those solutions are perturbations of C cos(πx/L), C ∈ R, and their wave speed at the
bifurcation point is determined by the full dispersion relation

(13) c∗ =

√
gL tanh (h0π/L)

π
.

In particular, as L→∞ we have c∗ → √gh0.

We shall make use of the Crandall-Rabinowitz bifurcation theorem [21, Section I.5],

which we state in a form suitable for our purposes. Here and elsewhere Dc is the Fréchet

derivative with respect to c.

Lemma 3.2. Let W be a Banach space, c ∈ I := (0,√gh0) a parameter, and let L :
W → W be the Fréchet derivative at 0 with respect to u of the Whitham map

(14) u 7→ u − 1
c
Kh0 ∗ u − u2.

Suppose that L and Dc L exist and are continuous W → W , and that for some c∗ ∈ I
the following conditions hold:

i) dim ker(L) = 1,
ii) W = ker(L)⊕ ran(L),
iii) (Dc L) ker(L) ∩ ran(L) = 0.

Then there exist ε > 0 and a continuous bifurcation curve {(cs , φs) : |s| < ε} with
cs |s=0 = c∗, such that φ0 is the vanishing solution of (12), and {φs}s is a family of
nontrivial solutions with corresponding wave speeds {cs}s . Moreover, we have

dist(φs , ker(L)) = o(s) in W.
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Remark 3.3. We remark that our method works equally well for the generalized Whitham

equation

ηt +
3
2
c0
h0
ηp ηx +Kh0 ∗ ηx = 0,

whenever 1 ≤ p ∈ Z. In that case the Whitham map becomes u 7→ u − 1
c
Kh0 ∗ u − up.

Since the linearization around the vanishing solution is the same for this map as for (14),

all that is needed to check is the continuity of the full map in W . As we shall see in the

proof of Theorem 3.1, our choice of W is an algebra, so that continuity is evident.

Remark 3.4. It can be seen from the proof of Theorem 3.1 that for wave speeds c 6= √gh0
and different from (13), the linear Whitham map L is a continuous bijection W → W . It

then follows from the implicit function theorem [21, Thm I.1.1] that in a neighborhood

of the trivial flows, there are no other solutions in W of the Whitham equation.

Before we turn to the proof, let us explain how the convolution operator Kh0∗ acts on
periodic functions. Suppose then that f ∈ L∞(R) is periodic. Since Kh0 is in L1(R), we
can write the integral

∫ ∞

−∞
Kh0(x − y)f (y) dy =

∞∑

k=−∞

∫ L

−L
Kh0(x − y + 2kL)f (y) dy

=

∫ L

−L

( ∞∑

k=−∞
Kh0(x − y + 2kL)

)
f (y) dy ≡

∫ L

−L
A(x − y)f (y) dy.

Inspection of the the definition of A(x) shows that it is 2L-periodic, even, and continuous

on [−L, L] \ {0}. Moreover, a straightforward proof using Minkowski’s inequality shows
that A(x) belongs to Lp(−L, L), for 1 ≤ p < 2. Therefore, according to the Carleson–
Hunt theorem [19], A(x) can be approximated pointwise by its Fourier series. Thus we

have

A(x) =

∞∑

k=0

′

Âk cos
(
kπx
L

)
, a.e.,

where the Fourier coefficients of A are given by

(15)

Âk =

∫ L

−L

∞∑

j=−∞
Kh0(x + 2jL) exp

(
− ixkπ

L

)
dx

=

∞∑

j=−∞

∫ L

−L
Kh0(x + 2jL) exp

(
− i(x+2jL)kπ

L

)
dx

=

∫ ∞

−∞
Kh0(x) exp

(
− ixkπ

L

)
dx = K̂h0(

kπ
L
).

Thus it appears that the periodic problem is given by the same multiplier as the problem

on the line, and we have the representation

(16) Kh0 ∗ f (x) =
1

L

∞∑

k=0

′

f̂k Âk cos
(
kπx
L

)
=
1

L

∞∑

k=0

′

f̂kK̂h0(
kπ
L
) cos

(
kπx
L

)
.



8 MATS EHRNSTRÖM AND HENRIK KALISCH

Proof of Theorem 3.1. Looking for a steady solution we consider first the linearized equa-

tion

Lψ := ψ − 1
c
Kh0∗ ψ = 0.

For ψ ∈ L∞(R) we see that

ψ̂
(
1− 1

c

√
g tanh hξ
ξ

)
= 0.

This makes sense in the setting of distributions. Let S(R) denote the Schwartz class of
rapidly decreasing functions (see [32]). Then 1

c
K̂h0∗ ψ, ψ̂ and ˆ1

c
Kh0 all exist in S ′(R).

Since 1 −
√
g tanh(hξ)/ξ is in L∞(R) ∩ C∞(R), the product of ψ̂ and this function is

well-defined acting on functions in S(R). The convolution theorem [32, Section 4.3]
then implies that 1

c
K̂h0∗ ψ(v) = 1

c
(ψ̂K̂h0)(v) for any v ∈ S(R). Now, if c <

√
gh0 the

support of ψ̂ is contained in {±ξ0}, where ξ0 := ξ0(c, h0) is the unique positive root of
g tanh h0ξ = c2ξ; if c =

√
gh0 then supp (ψ̂) ⊂ {0}; and if c >

√
gh0 it follows that

ψ̂(ξ) = 0 for all ξ. The non-trivial solutions of the linear problem are thus given by

(17)

{
ψ(x) = C, c =

√
gh0,

ψ(x) = C cos(ξ0x), c <
√
gh0,

where C ∈ R can be any constant. Note that the constant solutions different from zero
are non-physical, and therefore discarded in this analysis. We want to find even periodic

small amplitude solutions by bifurcating from a curve of trivial flows. For this purpose,

fix the depth h0 and the half wavelength L > 0. The speed c > 0 shall be our bifurcation

parameter. It is clear from (17) that, in any real linear space of 2L-periodic functions,

dim ker(L) = 1,

if and only if ξ0 = kπ/L, k ∈ Z+. Settling for the lowest mode, k = 1, gives a unique c as
in (13), which from now on will be presupposed as our candidate for c∗ as in Lemma 3.2.
Looking for even, continuous, and periodic solutions, we introduce the commuting

Banach algebra

W :=

{
u(x) =

1

L

∞∑

k=0

′

ûk cos
(
kπx
L

) ∣∣∣∣ ‖u‖ :=
1

L

∞∑

k=0

′

|ûk | <∞
}
,

which is a suitable subalgebra of the Wiener algebra (cf. [6]). This follows since for

even functions the complex Fourier coefficients satisfy ûk = û−k , so that our norm is

equivalent to the classical norm for the Wiener algebra. Note that each member of W is

uniformly continuous on all of R. We shall consider the Whitham equation as the map

(14) from W , and it will be shown that it is a continuous map into W . As shown in (16)

the periodic problem is given by the same multiplier as the problem on the line. In effect,

(18) L u ∼ 1
L

∞∑

k=0

′

û(k)
(
1− 1

c
Â(k)

)
cos
(
kπx
L

)
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holds a.e. on [−L, L]. By the Riemann-Lebesgue lemma [23, p.133] Â(k)→ 0 as k →∞,
so the right-hand side is in W , hence continuous, and

‖L u‖ ≤
(
1 + 1

c
max
k
{Â(k)}

)
‖u‖,

so that L : W → W is continuous. Since also the left-hand side is continuous, (18) is

an equality, which in its turn implies that the full non-linear Whitham map u 7→ L u − u2
is a continuous endomorphism on W , since this is an algebra. The fact that ker(L) =
spanR (cos(πx/L)) yields

(19) Â(1) = c, and Â(k) 6= c, k 6= 1.

To show that codim ran(L) is one-dimensional, consider a given u ∈ W . Take u⊥ ∈ W
with û⊥(1) = 0. Then the function

v(x) :=
1

L

∞∑

k=0

′
cu⊥(k)

1− 1
c
Â(k)
cos
(
kπx
L

)

is well-defined and belongs to W (this can be seen from (15), but it also follows from

the Riemann-Lebesgue lemma in combination with (19)). Indeed

v(x) = L−1 u⊥(x).

Consequently,

u(x) = L v + û(1)
L
cos
(
kπx
L

)
,

so that W = ker(L)⊕ ran(L). The derivative with respect to the bifurcation parameter
c is

(Dc L)u = −(Dc 1cKh0) ∗ u =
1

c2
Kh0 ∗ u.

Hence—by exactly the same arguments as above—we have that

(Dc L)u =
1

Lc2

∞∑

k=0

′

û(k)Â(k) cos
(
kπx
L

)

is bounded as a map on W . In particular

(Dc L) ker(L) = ker(L) ∩ ran(L) = 0.

�

4. Continuity and compactness of bounded solutions

We present here a regularity and a compactness result for traveling solutions of the

Whitham equation. This casts light on the relation between L-periodic solutions and

solitary wave solutions.

Theorem 4.1. Let φ be a solution of (12) such that ‖φ‖∞ < 1/2. Then φ is continuous.
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Proof. Without loss of generality we pursue the analysis for k(ξ) :=
√
tanh(ξ)/ξ. In

view of that Dξ tanh ξ = 1− tanh2 ξ ∈ S(R), it follows from the Leibniz rule that

Dnξk(ξ) ∈ O
(
ξ−1/2−n

)
as |ξ| → ∞.

Hence we use partial integration to rewrite

K(x) :=
1

2π

∫
k(ξ) exp(ixξ) dξ =

1

(−ix)n
∫
k (n)(ξ) exp(ixξ) dξ,

for any x 6= 0, n ∈ Z+. Consequently, we have well-defined derivatives of all orders away
from the origin,

Djx

∫
k(ξ) exp(ixξ) dξ ∈ O(x j−n) as |x | → ∞.

For any fixed j , we may choose n as large as required to obtain that K(x) is smooth

away from the origin, and all its derivatives have rapid decay at infinity. Consider then

K ∗ φ(x) = I1(x) + I2(x) :=
∫

|x−z |≤1

K(x − z)φ(z) dz +
∫

|x−z |≥1

K(x − z)φ(z) dz.

Since |K(x − z)| ≤ C|x − z |−2 and φ is bounded, it follows from an application of the
dominated convergence theorem that I2(x) is continuous. By the change of variables

ξ 7→ s := (x − z)ξ we have that

I1(x) =
1

2π

∫∫

|z−x|≤1

k(ξ) exp (i(x − z)ξ)φ(z) dξ dz

=
1

2π

∫

|z−x|≤1

x − z
|x − z |3/2

(∫ √
tanh (s|x − z |−1)

s
exp (i s) ds

)
φ(z) dz.

Likewise, the inner integral can be divided into two parts,

∫ √
tanh sy

s
exp (i s) ds = Ii(y) + Ii i(y)

:=

∫

|s|≤1

√
tanh sy

s
exp (i s) ds +

∫

|s|≥1

√
tanh sy

s
exp (i s) ds,

where we have used the shorthand y := |x − z |−1. It is clear that | tanh sy | ≤ 1, so that
Ii(y) is well-defined. Its integrand is furthermore bounded by |s|−1/2, uniformly for all y .
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Now to Ii i . Using partial integration, we obtain that

∫

|s|≥1

√
tanh (sy)

s
exp (i s) ds = −2 sin(1)

√
tanh(y)

+
1

2i

∫

|s|≥1

(
sy tanh2 (sy)− sy + tanh (sy)

)

s3/2
√
tanh (|s|y)

exp (i s) ds

= −2 sin(1)
√
tanh(y) +

1

2i

∫

|s|≥1

f (sy)

s3/2
exp (i s) ds,

where f (τ) := (τ tanh2 τ − τ + tanh τ)/
√
| tanh τ |. It is immediate that the boundary

term is bounded by 2, and it can be seen that f is uniformly bounded with ‖f ‖∞ = 1.
This implies that if xn → x , then there is a uniform integrable bound, C|x−z |−1/2(|s|1/2+
|s|3/2)−1, for the integrands of I1(xn). Just as for I2(x) it follows from dominated con-
vergence that I1(x) is continuous, and hence K ∗ φ(x) is. Using (12), we see that

(20) |φ(x)− φ(y)| = |K ∗ φ(x)−K ∗ φ(y)|
1− φ(x)− φ(y) ≤ |K ∗ φ(x)−K ∗ φ(y)|

1− 2‖φ‖∞
,

and hence φ is continuous. Here we have used the assumption that ‖φ‖∞ < 1/2. �

Corollary 4.2. Let r < 1/2. The set of solutions of the steady Whitham equation (12)

contained in the closed ball ‖φ‖∞ ≤ r is compact in L∞loc(R).

Proof. Pick any sequence (φn)n of solutions of (12) that fulfill ‖φn‖∞ ≤ r . By Theo-

rem 4.1 those are continuous on R. Moreover, it can be seen from the proof of Theo-

rem 4.1 that the continuity of φ ∗K(x) is uniform with respect to ‖φ‖∞. It then follows
from (20) that φn are equicontinuous. The Arzela-Ascoli theorem thus yields the ex-

istence of a subsequence (φnk )k ⊆ (φn)n and a continuous function φ, such that φnk
converges to φ in L∞loc(R).

To prove that φ is a solution of the Whitham equation, let v ∈ C0(R) be any continuous
function with compact support. Then

∫ (
φn(x)− φ2n(x)−

∫
1
c
Kh0(y − x)φn(y) dy

)
v(x) dx = 0.

Since φn(x) converges pointwise to φ(x), the functions v ,
1
c
Kh0 ∈ L1, and ‖φn‖∞ ≤ r , it

follows from the Lebesgue bounded convergence theorem that
∫
(φ− φ2 − 1

c
Kh0 ∗ φ)v dx = 0.

In view of that v is arbitrary this implies that φ fulfills (12) almost everywhere. The fact

that φ is continuous implies that it is indeed a solution of the steady Whitham equation

in the pointwise sense. �
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Remark 4.3. In Section 3 we find periodic solutions for any period L > 0. Under the

conditions of Corollary 4.2, any such sequence of solutions converges to traveling-wave

solution on the line as L→∞. This will be illustrated numerically in Section 6.

5. Nonexistence of a class of solitary waves

The Whitham equation was designed to incorporate both breaking and dispersion.

However, if the depth h0 > 0 is small when compared to the wave speed, then the

dispersion term is small, and moreover, dispersion is very weak. As a result, for large

velocities c, there are no traveling waves.

Theorem 5.1. There are no steady and bounded continuous solutions of the Whitham

equation with

(21) c > κ
√
gh0 and inf φ ≤ 0 < supφ,

where κ = 2
(√
2 + 1

) ∥∥∥F−1
(√
(tanh ξ)/ξ

)∥∥∥
L1(R)

.

Remark 5.2. Note that the condition (21) means that there are no solitary waves with

velocities much larger than the critical long wave speed
√
gh0. Using the estimate

1 =
∥∥∥FF−1

(√
tanh ξ
ξ

)∥∥∥
L∞(R)

≤
∥∥∥F−1

(√
tanh ξ
ξ

)∥∥∥
L1(R)

,

the value of κ appearing in the statement of the theorem may be estimated below by

2
(√
2 + 1

)
.

Proof of Theorem 5.1. The proof proceeds by contradiction. Suppose that there exists

a nontrivial bounded solution φ to (12). Then the following inequalities must hold.
(
‖φ‖L∞(R) − ‖ 1cKh0‖L1(R)

)
‖φ‖L∞(R) ≤ ‖φ‖L∞(R) ≤

(
‖φ‖L∞(R) + ‖ 1cKh0‖L1(R)

)
‖φ‖L∞(R),

so that

(22) 1− ‖ 1
c
Kh0‖L1(R) ≤ ‖φ‖L∞(R) ≤ 1 + ‖ 1cKh0‖L1(R),

in view of that supφ > 0. Note first that

φ2(x) ≥ φ(x)− ‖ 1
c
Kh0‖L1(R)‖φ‖L∞(R)

for all x . This is a simple consequence of (12). For the desired contradiction it is thus

enough to show that there is some x , such that

φ2(x) < φ(x)− ‖ 1cKh0‖L1(R)‖φ‖L∞(R),
or in other words

(23) φ2(x)− φ(x) + ‖ 1
c
Kh0‖L1(R)‖φ‖L∞(R) < 0.

An application of (22) yields that

φ2(x)− φ(x) + ‖ 1
c
Kh0‖L1(R)‖φ‖L∞(R) ≤ φ2(x)− φ(x) + ‖ 1cKh0‖L1(R)(1 + ‖ 1cKh0‖L1(R)),
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and we set out to examine the right hand side,

F (φ) := φ2 − φ+ ‖ 1
c
Kh0‖L1(R)(1 + ‖ 1cKh0‖L1(R)).

Observe that F (φ) is negative whenever

(24)
1

2

(
1−

√
2− (2‖ 1

c
Kh0‖L1(R) + 1)2

)
< φ <

1

2

(
1 +

√
2− (2‖ 1

c
Kh0‖L1(R) + 1)2

)
.

The left and right hand sides of (24) are real if ‖ 1
c
Kh0‖L1(R) ≤ 1

2
(
√
2 − 1). Taking the

scaling and (10) into consideration, that follows from the requirement (21). Therefore,

under that assumption, we have that

1

2

(
1−

√
2− (2‖ 1

c
Kh0‖L1(R) + 1)2

)
<
1

2
< 1− ‖ 1

c
Kh0‖L1(R) ≤ ‖φ‖L∞(R),

in view of (22). Since φ is continuous with inf φ ≤ 0, there is thus an x , such that both
inequalities in (24) are satisfied. As a result, we have obtained that (23) holds, reaching

the desired contradiction. �

6. Numerical Approximation

For the numerical approximation of periodic traveling waves of the Whitham equation,

a spectral projection is used. As above, the undisturbed depth h0 and the wavelength

L are fixed, and the speed c is used as the bifurcation parameter. For the purpose of

approximating periodic solutions of (11), a Fourier method is optimal. To define the

Fourier-collocation projection, define the subspace

SN = spanC

{
exp(ikx)

∣∣∣ k ∈ Z, −N/2 ≤ k ≤ N/2− 1
}

of L2((0, 2π)). The collocation points are defined to be xj =
2πj
N
for j = 0, 1, ...N − 1.

Let IN be the interpolation operator from C
∞
per ([0, 2π]) onto SN. As explained in [10], this

operator is defined in the following way. Given u ∈ C∞per ([0, 2π]), INu is the unique element
of SN that coincides with u at the collocation points xj . For the spectral projection, we use

the equation (11) with B = 0. According to Theorem 3.1, the equation is defined on the

interval [−L, L], whereas the discrete Fourier transform to be used is most conveniently
defined on [−π, π]. Therefore, the scaling φ(x)→ φ(ax) is used, where a = L

π
. Special

attention has to be paid to the operator Kh0. A straightforward calculation shows that

(25)
(
Kh0 ∗ u

)
(ax) =

√
aKh0/a ∗

(
u(a ·)

)
(x).

Therefore, the rescaled equation for 2π-periodic solutions is

−c φ+ 3
4
c0
h0
φ2 +

√
aKh0/a ∗ φ = 0.

The discretized form of this equation is

(26) − c φN + 3
4
c0
h0
φ2N +

√
a
[
Kh0/a

]
N
φN = 0,
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which is enforced at the collocation points xj . If φN is written in terms of its discrete

Fourier coefficients φ̃N(k) as

φN(x) =
∑

−N/2≤k≤N/2−1
φ̃N(k) exp(ikx),

the operator
[
Kh0/a

]
N
can be evaluated using the formula

[
Kh0/a

]
N
φN(x) =

√
gh0
a
φ̃N(0) +

∑

1−N/2≤k≤N/2−1
k 6=0

√
g
k
tanh k(h0/a) φ̃N(k) exp(ikx).

Thus the operator
[
Kh0/a

]
N
is the truncation at the N/2-st Fourier mode of the operator

given by the periodic convolution with Kh0/a. Note that this formulation includes the

truncation of the Fourier mode φ̃N(−N/2) which otherwise can lead to instabilities in
the computation. The equation (26) is treated pseudospectrally. That is, multiplication

is carried out in physical space, while the term involving Kh0/a is evaluated using the

discrete Fourier transform.

The resulting system of equations can be solved using any standard nonlinear equation

solver. We have chosen to use the Matlab routine fsolve which appears to work very

efficiently. To make sure that the computed functions are approximate traveling waves

for the Whitham equation, we have also used a dynamic integrator for the time-dependent

Whitham equation. The equation (6) is translated to the interval [0, 2π] by the scaling

η(x, t) → 1
a
η(ax, t), where a = L

π
as before. The discretization is then defined by the

following problem. Find a function ηN : [0, T ]→ SN, such that

(27)

{
∂tηN +

3
2
c0
h0
∂x IN(η

2
N) +

1√
a

[
Kh0/a

]
N
∗ ∂xηN = 0, x ∈ [0, 2π],

ηN(·, 0) = φN.
In Figure 2, a branch of traveling-wave solutions is shown. Here the wavelength is chosen

to be 2π, and the depth is h0 = 1. Note that in this case, the wavenumber is k =
2π
2L
= 1,

and therefore the phase velocity of a linear wave is given by
√
g tanh(h0) ∼ 2.7334. In

panel (c) shown in Figure 2, it appears that as the amplitude approaches zero, the

velocity of the traveling wave approaches the linear wave speed. Note also that not

the whole branch is shown in panels (a) and (b). Two periods of the highest wave

we were able to compute is shown in panel (d). This solution seems to nearly have

a cusp, a fact already noted by Whitham [34] using an asymptotic argument. Since a

Fourier-collocation method is used, it is implicitly assumed that the solutions are smooth,

and it is not possible to find the very highest wave predicted by Whitham. A possible

method for finding the highest wave is outlined in [8], where a scheme based on Lagrange

polynomials is used, and the highest point on the wave is treated as a boundary condition.

However, the Whitham equation as it appears here was not treated in [8]. In Table

1, we record the numerical errors incurred by the time integration of an approximate

traveling wave with velocity c = 2.7 propagating for 5 and 50 periods. To find the most

advantageous combinations of the number of Fourier modes N and the time step h, we

used a computation for one period. We then use this combination, and integrated for
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Figure 2. (a) and (b) Part of a branch of solutions of (26) with h0 = 1

and L = π. Note that the highest wave is not shown here. (c) Amplitude

vs. wave speed. (d) Two periods of the (nearly) highest wave.

N h L2-error |u|∞ − |uN |∞ L2-error |u|∞ − |uN |∞
25 1.0e-03 7.092e-04 9.927e-04 0.0078 0.0045

26 1.0e-03 3.821e-06 3.606e-06 3.316e-05 3.022e-06

27 1.0e-04 6.058e-06 1.208e-08 9.899e-07 6.675e-09

28 5.0e-06 1.217e-07 2.038e-11 2.198e-07 5.417e-11

5 periods 50 periods

Table 1. Error in evolution code after 5 and 50 periods for the traveling

wave shown in Figure 3.

5 and 50 periods. The discrete L2-error, the difference in maximal height between the

original wave, and the profile after 5 and 50 periods were computed. As can be seen,

the error is decreasing for increasing N and decreasing h. Moreover, the fact that the

difference in maximal height is generally smaller than the L2-error suggests that the error

incurred during the time evolution is mostly due to a phase shift of the solution. This

can also be observed in Figure 3, where the same traveling wave is shown after time
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integration for 10000 periods. These results also suggest that the traveling waves are

orbitally stable, but no special investigation of this question has been carried out.

0 1 2 3 4 5 6
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x

φ N
, η

N

(a)

3 3.1 3.2 3.3
−0.066

−0.0657

−0.0654

−0.0651

x

φ N
, η

N

(b)

Figure 3. Solid line: approximate traveling wave φN for the Whitham equa-

tion with h0 = 1, L = π, and c = 2.7. Dashed line: ηN after time integra-

tion using (27) for 10000 periods. In (a), the difference between φN and

ηN is hardly visible. In this computation, N = 512 and h = 0.0005. The

L2 error was 0.0021, while the difference in height was 2.2385e−06. This
and the magnification (b) suggests that the the error is mainly due to a

phase shift.

In Section 4, a connection between traveling waves with finite period and solitary waves

is given. In particular, it is shown that if the amplitude of a family of traveling waves

with increasing wavelength L is bounded below 1
2
, then these traveling waves converge

to a solitary wave. Here, we want to illustrate this result numerically. In Figure 4, a

family of approximate traveling waves is shown in the case when the wavelength L in

increasing, while h0 and c are held constant. Note that amplitude is initially increasing,

but seems to level off to an approximate value of 0.145. As Figure 5 shows, even though

the wavelength L keeps increasing, the shape of the traveling waves does not change

very much if a certain threshold is passed. The numerical evidence suggests that these

waves converge to a solitary wave, as was intimated by the proof in Section 4. Generally,

a solitary wave is assumed to decay to zero at infinity. For the limiting solitary wave

suggested in figures 4 and 5, this can be achieved by a Galilean transformation of the

form

φ→ φ+ γ and c → c + 2γ.

This introduces a non-zero constant B in equation (11). However, it can be seen that the

constant levels off to zero as the amplitudes of the sequence of traveling wave approaches

the asymptotic value as shown in Figure 4 (b).
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Figure 4. (a) Approximate traveling waves for the Whitham equation with

h0 = 1 and c = 2.733, and with increasing wavelength. (b) Amplitude as

a function of wavelength.
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Figure 5. (a) Approximate traveling wave for the Whitham equation with

h0 = 1, c = 2.733, and L = 5π. (b) Approximate traveling wave for the

Whitham equation with h0 = 1, c = 2.733, and L = 7.5π.

7. Conclusion

We have investigated the existence of traveling-wave solution of the Whitham equation,

a nonlinear dispersive integro-differential equation capable of supporting breaking and

peaking solutions. It has been found that small-amplitude traveling-wave solutions exist.

Moreover, in the limit as the wavelength goes to infinity, these solutions converge to

traveling-wave solutions on the real line. Nontrivial bounded and continuous solutions

do not exist if the wave speed c is much larger than the limiting long-wave speed c0.

Numerical approximations have been found of various traveling-wave solutions, including

small-amplitude and finite-amplitude waves, as well as waves which are near the highest
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wave which is known to have a cusp. As the wavelength increases, the traveling waves

appear to converge to a solitary wave.
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