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Abstract
We present the first fully quantum chemical estimates of ligand-binding affinities, 

performed at a reasonable level of theory (MP2/cc-pVTZ) and at the same time including all 
physically important effects, such as solvation, entropy, and sampling. We have studied the 
binding of seven biotin analogues to the avidin tetramer. The calculations have been performed 
by the recently developed PMISP approach (polarisable multipole interactions with 
supermolecular pairs), which treats electrostatic interactions by multipoles up to quadrupoles, 
induction by anisotropic polarisabilities, and non-classical interactions (dispersion, exchange 
repulsion, etc.) by explicit quantum chemical calculations, using a fragmentation approach, 
except for long-range interactions, which are treated by standard molecular mechanics Lennard-
Jones terms. In order to include effects of sampling, ten snapshots from a molecular dynamics 
simulation are studied for each complex. Solvation energies are estimated by a polarised 
continuum model (PCM), coupled to the multipole–polarisability model. Entropy effects are 
estimated from vibrational frequencies, calculated at the molecular mechanics level. We 
encounter several problems, not previously discussed, illustrating that we are first to apply such 
a method. For example, the PCM model is questionable for large molecules, owing to the use of 
a surface definition that gives numerous small cavities in a protein. 

Introduction
A major goal of theoretical chemistry is to accurately predict the free energy for the binding 

of a ligand to a macromolecule. If such binding affinities could be accurately predicted, large 
parts of the drug development could be performed by computer simulations rather than by 
costly experiments, because essentially all drugs evoke their action by binding to a target 
macromolecule. Likewise, many interesting questions in biochemistry can be formulated as the 
differential binding affinities of a substrate, product, or transition-state to a protein or enzyme.
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Consequently, numerous theoretical methods have been developed to estimate ligand 
affinities [1]. The most accurate ones are based on free-energy perturbation and related 
approaches [2]. Unfortunately, they are extremely time-consuming and the results typically 
converge only in the case where the difference in binding affinity of similar ligands are 
considered, i.e. for relative binding affinities. Therefore, many more approximate methods have 
been suggested. Some of them are still based on extensive sampling of the phase space, e.g. the 
linear interaction energy (LIE) and molecular mechanics Poisson–Boltzmann surface area (MM/
PBSA) approaches [3,4]. Other methods use a single molecular conformation and estimate the 
binding affinities by methods based on either physics or statistics [1].

Most of the physical methods are based on calculations with a molecular mechanics (MM) 
force field. Clearly, the accuracy of such methods can never be better than that of the force 
field. Therefore, there has recently been a great interest in developing ligand-binding methods 
that are based on quantum mechanics (QM), rather than on a MM force field [5]. Such methods 
are typically based on either semiempirical calculations [6,7] or on higher-level methods, based 
on fractionation approaches, e.g. the fragment molecular orbital method (FMO) [8,9] or the 
molecular fractionation with conjugate caps (MFCC) and related methods 
[10,11,12,13,14,15,16]. It is well-known that calculations of dispersion effects generally require 
a very high level of theory [17]. Likewise, accurate predictions of polarisation effects and 
dispersion require the use of a large and flexible one-electron basis set [17,18]. Only one of 
these previous studies [16] has been performed at a level (MP2/6-311(+)G(2d,p)), for which 
there is hope that dispersion and polarisation effects are treated balanced and satisfactorily. 

Recently, we have developed an approach that is intended to provide accurate interaction 
energies between a ligand and a macromolecule at a proper level of theory [19]. It is called 
PMISP (polarisable multipole interactions with supermolecular pairs). It treats electrostatic 
interactions by multipoles up to quadrupoles, induction by anisotropic polarisabilities, and non-
classical interactions (dispersion, exchange repulsion, etc.) by explicit quantum mechanical 
calculations, using a fragmentation approach similar to MFCC. At a given level of QM theory, 
it can be seen as the best possible MM force field that treats all terms, except polarisation pair-
wise. It gives an accuracy of 2–5 kJ/mol for neutral and ~10 kJ/mol for charged ligands 
compared to full QM treatments [19]. For calculations with a full protein, much computer time 
can be saved if long-range interactions are treated by a QM/MM approach, i.e. by a standard 
Lennard-Jones term (PMISP/MM) [20]. If the boundary between the PMISP and MM systems 
are chosen far enough from the ligand, this approximation does not add any additional 
uncertainty. By this approach, we have illustrated the importance of using a proper level of 
theory. For example, the interaction energy between biotin and avidin differ by 150 kJ/mol if 
calculated at the MP2 level with the 6-31G* or aug-cc-pVTZ basis sets [20], showing that the 
former estimate is quite meaningless.

However, in order to provide reliable ligand-binding energies, more terms than the pure 
interaction energy need to be considered. In particular, the effects of the surrounding solvent, 
entropy, and sampling need to be taken into account [1,4]. Only a few of the previous studies 
take into account effects of solvation [6,7,9] and entropy [6,7], and none of them consider 
sampling.

In this paper, we present what seems to be the first realistic QM estimation of ligand-
binding affinities at a proper level of theory and at the same time taking into account the 
combined effects of solvation, entropy, and sampling. We employ the PMISP/MM method at 
the MP2/cc-pVTZ level within the framework of the MM/PBSA method. We study the 
affinities of seven biotin analogues to the full avidin tetramer. This system it is well 
characterised by X-ray crystallography [21,22,23,24] and experimental binding free energies 
for a number of ligands (biotin analogues) are available [25,26,27]. Moreover, it has been 
investigated by several different theoretical methods [28,29,30,31,32,33].
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Methods

The PMISP/MM method 
The PMISP and PMISP/MM approaches have been thoroughly described before [19,20]. 

Therefore, we here only provide a short summary of the methods. We consider the binding of a 
small ligand (L) to a protein (P): 

P + L → PL (1)
 
In the PMISP method [19], the interaction energy of this reaction is estimated by: 

EPMISP( PL) = Eel( PL) + Eind( PL) + Enc( PL) (2),

where Eel and Eind are the electrostatic and induction interaction energies, respectively (note that 
all energies in Eqns. 2–4 are interaction energies between L and P, not the absolute energies of 
the PL complex). Eel is calculated from a multicentre–multipole expansion up to quadrupoles, 
centred at all atoms and bond midpoints in the protein and the ligand. Likewise, Eind is 
calculated from anisotropic dipole polarisabilities in the same centres in a self-consistent 
manner. Both these terms are obtained with the LoProp approach [34]. Enc is the non-classical 
term, containing mainly dispersion and exchange repulsion, but also short-range corrections to 
the classical terms, e.g. charge penetration. It is estimated by 

Enc PL=∑
i=1

n

c i  EQM P i L−Eel Pi L−Eind P i L  (3),

where the protein has been divided into a number of fragments (Pi), using the molecular 
fractionation with conjugate caps (MFCC) method [35]. In this paper, each amino acid 
constitutes one fragment, and they are capped with CH3CO– and –NHCH3 groups. The caps 
from neighbouring fragments are joined to form a CH3CONHCH3 conjugated cap (concap) for 
each peptide bond and the energies of these concaps are subtracted (ci = –1 in Eqn. 3) from the 
energies of the capped amino-acid fragments (ci = 1). This has been shown to be an excellent 
approximation, giving errors of only ~1 kJ/mol [19]. EQM(PiL) is the counterpoise-corrected 
quantum mechanical (QM) interaction energy of the Pi–L pair. A similar formula is used to 
derive properties (multipoles and polarisabilities) for the whole protein from fragment-wise 
calculations [19]. EQM was calculated at the MP2/cc-pVTZ level, which has been shown to 
provide dispersion energies similar to coupled-cluster methods with larger basis sets, owing to 
error cancellation [20,36]. The multipoles and polarisabilities were calculated at the 
B3LYP/6-31G* level, which has been shown to be a good approximation for the much more 
expensive MP2/cc-pVTZ properties, provided that the same properties are used in both Eqns. 2 
and 3 [20].

For a large protein, only a few fragments Pi are in close contact with the ligand, so the 
direct use of Eqn. 2 would be very inefficient. Therefore, we can save much time without 
compromising the accuracy by using a QM/MM approach, PMISP/MM [20]: For a model 
containing residues close to the ligand (M), the full PMISP approach is used, whereas for more 
distant residues, Enc is approximated by the Lennard-Jones term from a classical force field, ELJ:

EPMISP/MM ( PL) = Eel( PL) + Eind( PL) + Enc( ML) + ELJ ( PL)  − ELJ( ML) (4)

Thus, we use the same accurate multipole–polarisability model for the whole protein as in 
PMISP. In this work, the ELJ term is taken from the Amber 1994 force field (the same terms are 
also used in the newer Amber 2003 and the polarisable 2002 force fields) [37,38,39]. Naturally, 
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the accuracy of this approximation will improve as the size of the M region is increased [20]. In 
this work, we have used all atoms within 4 Å of the ligand and added enough atoms to obtain 
chemically reasonable groups, such as aromatic rings or amide groups. For groups that form 
exceptionally strong interactions with the ligand (distances shorter than 1.7 Å), the model was 
extended with an extra CH2 group, to avoid the largest errors observed previously [20] (e.g. 
Ser-73 was modelled by ethanol, rather than methanol). Thus, M consisted of 165–271 atoms, 
depending on the ligand (but the same M region was used for all snapshots with the same 
ligand). All PMISP calculations were performed with the Molcas 7.2 software [40], using 
Cholesky decomposition in combination with the local exchange algorithm [41,42,43].

Solvation calculations with the PCM method 
To accurately estimate ligand-binding affinities, an accurate estimate of the change in 

solvation energy upon ligand binding is needed. The standard continuum solvation methods for 
MM/PBSA in the AMBER software [44], the Poison–Boltzmann or generalised Born methods, 
cannot handle a multipole expansion or polarisabilities (although there exist recent extensions 
that can [45,46]). Therefore, we instead decided to use the PCM method, which has recently 
been extended to be used with the effective fragment potential method (which also uses a 
polarisable force field with a multipole expansion) [47]. We used the integral equation 
formulation of PCM, IEFPCM [48]. Owing to the large size of the molecular systems, the PCM 
problem was solved using a direct inversion of the iterative subspace procedure [47], as 
implemented in the GAMESS software [49]. The PCM calculations, were performed at the MM 
level. Thus, we constructed the PMISP multipole and polarisable force field for the solute and 
this force field was then used in the calculation of the solvation energies.

Like all continuum-solvation approaches, PCM employs dielectric cavities defined by a set 
of atomic radii. For accurate predictions of solvation energies, it is mandatory to use optimised 
cavity parameters. Several such sets of parameters are available for PCM at various levels of 
theory, e.g. Hartree–Fock [50] and density functional theory (UAHF and UAKS, i.e. united-
atom topological model for Hartree–Fock and Kohn–Sham theory). Since we base our 
predictions on B3LYP and MP2 calculations, we decided use the latter radii, which were 
optimised using the PBE0 functional. These radii, although not yet properly published, are 
available in the Gaussian-03 suite of programs [51]. 

Since we use the UAKS parameters at the MM level, recalibration of these parameters is 
strictly needed. However, we limited the recalibration to a scaling of the radii for the 
electrostatic component in the PCM solvation energy calculation. For the original UAKS radii, 
this scaling parameter is 1.2. The calibration was based on a test-set of 22 small organic 
molecules, listed in Table 1. These molecules were selected to represent models of the peptide 
backbone and all amino-acid side-chains. For these,we constructed distributed multipoles up to 
quadrupoles and anisotropic polarisabilities in the same way as for PMISP [19]. The multipoles 
and polarisabilities were calculated using the B3LYP/6-31G* method (6-31+G* for the two 
anions) and the solvation energies were then evaluated using the PCM approach for various 
values of the scaling parameter. The non-polar solvation terms (cavitation, dispersion and 
exchange repulsion [50]) are independent of this scaling factor and were therefore calculated 
only once. As will be discussed below, we encountered serious problems with the non-polar 
terms in the PCM model. Therefore, the final calibration of the PCM method (Table 1) 
employed instead the non-polar energy from the standard MM/PBSA method. A fitting to 
experimental data [52,53,54,55,56], gave a scaling factor of 1.12 (with the non-polar terms 
from PCM, the optimum scaling factor was 1.15). This decrease in the scaling factor is 
expected, because at the MM level, there is no charge penetration. The scaled model gave 
MADs of 2 and 4 kJ/mol, for the neutral molecules and all molecules, respectively. This is only 
slightly worse than for the UAHF parameters (1 and 3 kJ/mol), similar to the UAKS parameters 
(1 and 5 kJ/mol), and appreciably better than seven different Poison–Boltzmann and eleven 
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generalised Born methods [57] (3–9 and 7–18 kJ/mol). For the seven biotin analogues, this 
recalibrated PCM method gives a MAD of 10 kJ/mol, compared to a weighted average of 24 
different continuum solvation methods [57], which again is slightly worse than for the original 
UAHF and UAKS methods (4 and 7 kJ/mol). 

MM/PBSA
The calculations in this paper are based on the MM/PBSA approach [4]. In this method, the 

binding affinity (the free energy of the reaction in Eqn. 1, ΔGbind) is estimated from the free 
energies of the three reactants,

ΔGbind = G(PL) – G(P) – G(L) (5)

where all the reactants are assumed to be in water solution. The free energy of each of the 
reactants is estimated as a sum of four terms:

G = <EMM> + <Gsolv> + <Gnp> – T<SMM> (6)

where Gsolv is the polar solvation energy of the molecule, estimated by the solution of the 
Poisson–Boltzmann (PB) equation [58], Gnp is the non-polar solvation energy, estimated form 
the solvent-accessible surface area (SASA) of the molecule [59], T is the temperature, SMM is 
the entropy of the molecule, estimated from a normal-mode analysis of harmonic frequencies 
calculated at the molecular mechanics (MM) level, and EMM is the MM energy of the molecule, 
i.e. the sum of the internal energy of the molecule (i.e. bonded terms, Ebonded), the electrostatics 
(Ees), induction energy (Eind, only if a polarisable force field is used), and van der Waals 
interactions (EvdW):

EMM = Ebonded + Ees + Eind + EvdW (7)

All the terms in Eqn. (6) are averages of energies obtained from a number of snapshots taken 
from MD simulations. In order to reduce the time-consumption and to obtain stable energies, 
the same geometry is normally used for all three reactants (complex, ligand, and receptor), i.e. 
only the PL complex is explicitly simulated by MD [60]. Thereby, Ebonded cancels in the 
calculation of ΔGbind. 

In this investigation, we test if the binding-affinity predictions can be improved by 
replacing some of these terms with estimates using other methods. Thus, we replace the EMM 

term by the PMISP/MM estimate of the interaction energy between the ligand and the protein. 
Second, we replace the Gsolv

 + Gnp estimates of the solvation energies by the corresponding 
terms within the PCM model. It should be noted that because of the non-additivity of the 
induced energy, there is no unique way to separate the Eind and Gsolv terms. However, we found 
that the default decomposition done in GAMESS [49] gave reasonable trends and we therefore 
use this decomposition in the discussion. Other approaches to replace the EMM term with a 
standard QM/MM term have been tested, both for calculations of ligand-binding affinities and 
for other energies [61,62,63].

Thus, only the SMM term is kept from the original MM/PBSA method, but it is calculated 
according to our recently developed improved method [64]. In the original approach [4], the 
protein is truncated 8 Å from the ligand and it is then freely optimised, using a distance-
dependent dielectric constant ε = 4r. We have shown that this gives a large statistical 
uncertainty in the entropy estimate, which can be reduced by a factor of 2–4 if a buffer region 
of 4 Å is used outside the cut-off radius. This buffer region is kept fixed in the geometry 
optimisation and not included in the estimate of the entropy, but it ensures that the optimised 
system stays close to the complex structure. This also makes the use of the questionable 
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distance-dependent dielectric constant superfluous. 
The results of the PMISP/MM/PCM/TΔS approach is compared with the results of standard 

MM/PBSA calculations using the polarisable Amber 2002 force field [39]. These were 
performed in the same way as in our previous investigation of various force fields for the 
biotin–avidin system (02ohp/02 calculation; but the present calculations are based on the ligand 
in the fourth subunit in the tetramer, rather than the first one in the previous investigation) [33]. 
This means that Gsolv is estimated by adding an extra charge close to each atom site to simulate 
the induced dipoles in the PB calculations. Calculations of both Gsolv and Gnp used Parse radii 
[65]. Moreover, the entropy estimate was done with our new method (this term is identical to 
the one used in the PMISP estimate. Unfortunately, the Amber nmode program does not work 
properly for a polarisable force field (in contrast to what is indicated in the manual), so the 
entropy calculations were performed without the polarisabilities.

Studied systems 
The seven biotin analogues (BTN1–BTN7) studied in this investigation are the same as in 

ref. [33]. The set-up of the molecular dynamics simulations have been described before [33]. 
We used ten snapshots (sampled every 20 ps) for each analogue taken from this investigation, 
performed by the polarisable Amber 2002 force field [39] (the 02ohp simulation).

Result and Discussion

Non-polar solvation energy
First, we tried to calculate the solvation energies using the full PCM model implemented in 

the GAMESS program [49]. However, this gave differential solvation energies (i.e. Gsolv(PL) – 
Gsolv(P) – Gsolv(L)) that were 60–140 kJ/mol more positive than the corresponding results with a 
PB+SASA model. Further inspection shows that the difference arises almost entirely from the 
non-polar part of the solvation energy: In the PB+SASA method, this term is taken from the 
difference in solvent-exposed surface area between the complex and the isolated protein and 
ligand. From the results presented in Table 2, it can be seen that the SASA non-polar energies 
are quite small and similar for the complex and the protein, ~470 kJ/mol (corresponding to a 
SASA of 20 600 Å2, because ΔGnp = SASA*0.0227 – 3.85 kJ/mol, when  SASA is given in Å2 

[33]). The difference is 1–4 kJ/mol, with the protein having the largest value, which indicates 
that only ~25% of the ligand contributes to the SASA in the complex (i.e. the ligand is mainly 
buried in the protein). Therefore, the net non-polar SASA effect comes mostly from the ligand. 
As an effect, ΔGnp in MM/PBSA is small and positive for all complexes, 11–21 kJ/mol and 
directly related to the size of the ligand.

However, in the PCM method, the non-polar solvation energy is calculated from three 
separate terms: the energy cost of making a cavity in the solvent (the cavitation energy), a 
favourable term from the dispersion interactions between the solute and the solvent, and the 
corresponding unfavourable term from exchange repulsion [50]. The former term is calculated 
from an expression that contains terms involving the radius of each atom to the power of 0–3 
[66], i.e. including a term that is proportional to the the volume, whereas latter two terms are 
calculated by a surface-based integration method [67]. In fact, the PCM energies are almost 50 
times larger than the SASA energies, ~22 200 kJ/mol. The PCM energies are dominated by the 
cavitation energy, which is ~28 000 kJ/mol, compared to the dispersion energy of ~–7500 
kJ/mol and the exchange repulsion energy of ~2 000 kJ/mol (cf. Table 2). However, when 
computing the difference upon binding, the cavitation energy is mainly cancelled (the net effect 
is negative and 8–22 kJ/mol). This indicates that the volume term of the cavitation energy is 
dominating the individual energies, because the volume hardly changes during ligand binding. 
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On the other hand, the surface area is reduced, and this causes a positive (unfavourable) 
contribution from the dispersion term of 89–236 kJ/mol, only partly cancelled by the exchange 
repulsion (negative and 29–61 kJ/mol) and by the small cavitation energy. The net ΔGnp  is 
therefore 52–155 kJ/mol, i.e. it has the opposite sign and is larger in magnitude compared to the 
SASA non-polar solvation energy. It is notable that the two methods are reasonably in 
accordance for the ligand: The SASA energy estimate is 9–16 kJ/mol (corresponding to SASAs 
of 240–550 Å2), whereas the PCM non-polar energies are –3 to +24 kJ/mol with a correlation 
coefficient r2 = 0.85.

This illustrates a major problem in estimating binding affinities using approaches that 
involve a continuum estimate of the solvation energy. Apparently, there is no consensus how 
the non-polar energy should be estimated and the PCM and SASA approaches give strongly 
differing results. It has previously been argued that it does not matter whether the area or 
volume is used to estimate the non-polar solvation energy [68]. However, the present results 
show that this is not the case for ligand-binding affinities: When a ligand binds to a complex, 
the volume of the protein increases, approximately by the volume of the ligand (so that the total 
volume during the binding reaction hardly changes). However, the SASA typically decreases 
during the binding, because the ligand becomes partly hidden by the protein and an empty 
cavity in the protein becomes filled by the ligand. In PCM, this is further complicated by use of 
several energy terms with different functional forms. In fact, it appears as the cavity term (after 
cancellation of the volume contributions) contains the same type of information as the SASA 
estimate (the difference is always within 3 kJ/mol), but that the dispersion and repulsion are 
either overestimated in PCM (because they rely on cancellation with the cavity term occuring 
for small molecules) or simply missing in SASA. At present, we cannot say which approach is 
more physical. 

Another difference between the two solvation methods is that the PB method is based on 
SASAs, whereas the electrostatic and cavitation terms in PCM are based on the van der Waals 
surface of the solute. The latter is simply the surface of the union of spheres on all atoms with 
the corresponding van der Waals radius, whereas the  SASA is defined as the surface defined 
by the centre of a spherical solvent probe that is rolled on the van der Waals surface. Therefore, 
the radius of a solvent molecule (~1.4 Å for water) is added to the van der Waals radii of each 
atom and thus, crevices between the spheres that are not accessible to a solvent probe are 
considered as a part of the solute. For small molecules, for which the PCM method was 
calibrated [50], these two surfaces are rather similar. However, for a large molecule, like a 
protein, they are totally different, because there are numerous small cavities inside the protein 
that are not large enough to room a solvent probe. The solvent-accessible surface of the protein 
will essentially be only the outer surface of the protein, whereas the van der Waals surface will 
be much larger. For example, for the avidin tetramer, the van der Waals area is 58 000 Å2 and 
all atoms contribute to it, whereas the SASA is only 21 000 Å2 and only 40 % of the atoms 
contribute to it.

 It seems quite questionable to use the van der Waals surface to calculate any solvation 
energy in a protein, in particular for the electrostatic part of the solvation energy – surface 
charges are then calculated on many small boundaries inside the protein that should hardly be 
there. For the non-polar energies, we tend to prefer the SASA model, because it uses the 
seemingly better solvent-accessible surface, and additionally the resulting energies are 50 times 
smaller in magnitude, probably giving more precise differences.  We have therefore based the 
recalibrated PCM model on the non-polar SASA energies. We do not argue that this is an 
optimum approach – on the contrary, it would be better to develop a new PCM method that 
works properly also for a protein, based on the solvent-accessible surface. Unfortunately, this is 
a major task, involving both method development and a complete reparametrisation of the 
method so that it works well both for small molecules and for proteins. Moreover, it has to be 
settled whether the non-polar term should be based on the volume or the surface area. Clearly, 
this is out of the scope of the present investigation. 
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Binding affinity estimates
Table 3 shows the various terms in the full PMISP/PCM/TΔS method (with the non-bonded 

solvation energies from the PCM method; column ΔG1). It can be seen that the method gives 
poor absolute affinities, ranging from +24 to +103 kJ/mol, compared to the experimental data, 
–19 to –85 kJ/mol. Therefore, the absolute errors for all the individual estimates are poor with a 
mean absolute deviation from the experimental estimates (MAD) of 105 kJ/mol. If we allow for 
a systematic error in the method (i.e. if we translated all points with the mean signed error), we 
still get a mean absolute deviation (TR MAD) of 21 kJ/mol, with the largest error for BTN1. 
This result is very disappointing. It is worse than similar MM/PBSA calculations using various 
MM force fields for the same system, which gave MADs of 9–19 kJ/mol, and TR MADs of 5–
19 kJ/mol [33].  In particular, the standard MM/PBSA calculations for exactly the same 
snapshots, using the Amber 2002 force field give a MAD and TR MAD of 13 and 11 kJ/mol 
(Table 4). In fact, it is even worse than assigning the same affinity to all seven biotin analogues, 
which gives a TR MAD of 20 kJ/mol. The correlation coefficient is also quite poor, R2 = 0.22, 
compared to 0.65 for MM/PBSA, and 0.43–0.98 in our previous investigation [33]. The 
replacement of the PCM non-polar term by the SASA term (as discussed above) gave only a 
slightly better TR MAD, 19 kJ/mol although the binding affinities are shifted to a range closer 
to the experimental one, –2 to –110 kJ/mol (column ΔG2 in Table 3).

The standard deviations of the total PMISP/PCM/TΔSMM energies are listed in Table 5, 
where it can be seen that they are 10–30 kJ/mol. Thus, the standard errors of the mean values 
are 3–9 kJ/mol, showing that the statistical precision cannot explain the poor results. The 
standard deviation is dominated by the electrostatics, induction, polar solvation, and non-
classical terms, which typically give slightly larger standard deviations than the total energy, 
because some of the variation between these terms is cancelled. The standard deviation of the 
entropy term is also quite large, 9–21 kJ/mol, but it never limits the precision of the method. 
The standard deviation of the non-polar solvation energy is always less than 1 kJ/mol. The 
corresponding standard deviations for the MM/PBSA method are also listed in Table 5. The 
standard deviations of the electrostatics and entropy terms are similar to that for PMISP, but 
those of the solvation and the non-classical terms are somewhat smaller. 

We will try to rationalise the failure of PMISP by analysing the various terms in the method 
in comparison to MM/PBSA. The entropy term is identical between the two methods and the 
non-polar solvation term is also identical in the ΔG2 estimate, so these cannot explain the failure.

The solvation energies show differences of –62 to +91 kJ/mol (PMISP mostly more 
negative for the neutral ligands and always more positive for the charged ligands). However, 
the correlation is excellent for the neutral ligands, R2 = 0.97 and rather good for the charged 
ones, R2 = 0.93. 

The electrostatic and induction energies of the PMISP and MM/PBSA methods are not 
comparable, because intramolecular induction is not treated in the same way [19]. Therefore, 
we can only compare the sum of these two terms. It turns out that this sum is always more 
negative with PMISP than with MM/PBSA, by 39–47 kJ/mol for the neutral ligands, and by 
135–232 kJ/mol for the charged ligands. However, again the two terms are almost perfectly 
correlated, with R2 of 0.98 and 0.97 for the charged and neutral ligands, respectively.

If the solvation energy is added to this sum, the difference is partially cancelled, but the 
PMISP/PCM results are still 29–141 kJ/mol more negative than the MM/PBSA results. 
Unfortunately, the good correlation is completely lost, especially for the charged ligands (R2 = 
0.12, versus 0.87 for the neutral ligands).

Finally, the non-classical (van der Waals) energies also differ by a sizeable, but rather 
constant amount, 28–74 kJ/mol, which is slightly larger for the charged ligands than for the 
neutral ones. The PMISP estimates are always more positive. There is a perfect correlation (R2 

= 1.00) between Amber and PMISP for the neutral ligands, but it is much worse for the charged 
ones (R2 = 0.21). If we replace the non-classical PMISP term with the Amber van der Waals 
term, the results become worse, with a TR MAD of 30 kJ/mol (but R2 increases to 0.55).
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Conclusions
In this paper we present the first attempt to calculate ligand-binding affinities using high-

level QM methods with large basis sets (MP2/cc-pVTZ, i.e. enough to get reasonably accurate 
dispersion energies), combined with estimates of solvation energies, entropy, as well as 
sampling effects. To this aim, we have used the recently developed PMISP method [19], 
extended to a full protein, using the PMISP/MM approach [20]. This method uses an accurate 
MM force field, with multipoles up to quadrupoles and anisotropic polarisabilities in all atoms 
and bond centres, calculated for all residues in the correct conformation in the protein. This 
force field is then combined by explicit pair-wise QM calculations at the MP2/cc-pVTZ level 
for the ligand and all residues within 4 Å. This approach has been shown to give an accuracy of 
5–15 kJ/mol compared to full QM calculations with the same method [19,20].

This should give accurate non-bonded interaction energies between the protein and the 
ligand. To obtain estimates also of other important terms in the ligand binding, we have 
combined the PMISP approach with the standard MM/PBSA method [4]. Thus, we supplement 
the PMISP energies with a continuum estimate of the solvation energy and an MM estimate of 
the entropy change during ligand binding, obtained from the vibrational frequencies. Moreover, 
all terms are calculated for ten snapshots from a MD simulation of the protein. Since the 
standard Poisson–Boltzmann and generalised Born methods cannot handle multipoles and 
polarisabilities, we have employed the PCM model, developed for the effective fragment 
potential [47]. 

Unfortunately, the results with this PMISP/PCM/TΔS approach are poor in both absolute 
and relative terms, with a TR MAD of 21 kJ/mol, i.e. worse than a standard MM/PBSA method 
for the same problem (11 kJ/mol) and slightly worse than a trivial model predicting all binding 
affinities to be equal (20 kJ/mol). This can partly be caused by the use of different force fields 
for the geometry generation and for the energy calculations [33], but a more likely reason is that 
some error cancellation in the use of MM together with PB is lost when the interaction energies 
are improved and the solvent model is changed. We are currently investigating this issue 
further.

The reason for the poor absolute energies is probably the non-polar solvation energies, 
obtained with the PCM approach, which are 60–180 kJ/mol more positive than those obtained 
with the simple SASA-based method in standard MM/PBSA [69]. There are three important 
sources to this large difference. First, the cavity term in PCM is based on the van der Waals 
surface, which is ~3 times larger than the SASA for a protein. Second, the non-polar terms in 
PCM are ~50 times larger in magnitude than the corresponding SASA terms. Third, the cavity 
energy in PCM contains terms that are proportional to the change in the volume during ligand 
binding. Typically, the volume is essentially unchanged, whereas the surface decreases during 
ligand binding. Therefore, the net non-polar PCM term is positive, whereas the corresponding 
SASA term is negative (and ~5 times smaller). Moreover, it seems questionable to use a surface 
(e.g. the van der Waals surface) that contains contributions for atoms deeply buried in the 
protein and gives rise to many cavities. This might also explain the different results also in the 
polar solvation energies.
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Table 1. Calibration of the PCM method for PMISP. The total solvation free energy of 22 
organic molecules and ions were calculated with the PCM+SASA method, using different 
values for the scaling factor of the radii for the electrostatic term (1.10–1.20). The SASA non-
polar energy, calculated with Parse radii [11] were added to these values, and the results were 
compared to experiments. In the table, the difference compared to experiments are given, as 
well as the non-polar energy term (ΔEnp), and the experimental data (Exp.) [52,53,54,55,56] (all 
in kJ/mol).

Scaling factor of radii for polar term ΔEnp Exp.

1.20 1.19 1.18 1.17 1.16 1.15 1.14 1.13 1.12 1.11 1.10

H2O 7.9 7.1 6.1 5.2 4.1 3.1 1.9 0.7 -0.5 -1.9 -3.3 6.3 -26.4a

CH3OH 9.8 9.1 8.3 7.5 6.6 5.7 4.7 3.6 2.5 1.3 0.0 7.4 -21.4a

ethanol 10.7 9.9 9.1 8.3 7.3 6.4 5.4 4.2 3.0 1.7 0.4 8.2 -21.0a

p-CH3C6H4OH 9.9 8.8 7.7 6.5 5.2 3.9 2.4 0.9 -0.8 -2.6 -4.6 10.0 -25.7a

NH3 8.4 7.9 7.3 6.7 6.1 5.4 4.7 4.0 3.2 2.3 1.5 6.5 -17.9a

CH3NH2 11.7 11.1 10.5 9.8 9.1 8.3 7.5 6.6 5.7 4.7 3.6 7.5 -19.1a

CH3CONH2 13.7 12.6 11.5 10.3 9.0 7.6 6.2 4.7 3.2 1.6 -0.2 8.3 -40.6a

propionamide 15.2 14.2 13.1 11.9 10.7 9.4 8.0 6.5 5.0 3.4 1.7 8.9 -39.2a

CH4 -1.4 -1.4 -1.4 -1.4 -1.4 -1.4 -1.5 -1.5 -1.5 -1.6 -1.6 7.1 8.4a

propane 0.1 0.1 0.1 0.0 0.0 0.0 0.0 -0.1 -0.1 -0.2 -0.2 8.5 8.2a

n-butane 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.0 9.3 8.7a

isobutane -0.9 -0.9 -1.0 -1.0 -1.0 -1.1 -1.1 -1.1 -1.2 -1.2 -1.3 9.1 9.7a

toluene 5.9 5.5 5.2 4.8 4.4 4.0 3.5 3.0 2.5 1.9 1.3 9.6 -3.7a

CH3SH 5.1 4.8 4.5 4.1 3.8 3.4 3.0 2.6 2.1 1.6 1.1 7.9 -5.2a

CH3SC2H5 7.3 7.0 6.7 6.3 6.0 5.6 5.2 4.7 4.2 3.7 3.2 9.3 -6.2b

3-methylindol 8.2 7.1 6.0 4.8 3.6 2.3 0.9 -0.6 -2.2 -3.9 -5.7 10.7 -24.6b

4-methylimidazole 12.4 10.9 9.4 7.8 6.2 4.4 2.5 0.5 -1.6 -3.8 -6.3 9.1 -43.0b

N-propyl guanidine 17.3 15.5 13.7 11.7 9.6 7.4 5.0 2.5 -0.3 -3.3 -6.4 10.2 -45.7c

CH3NH3
+ 36.8 34.2 31.6 28.9 26.1 23.3 20.4 17.4 14.4 11.3 8.1 7.8 -319.7d

imidazoleH+ -9.2 -12.0 -14.8 -17.8 -20.9 -24.0 -27.3 -30.8 -34.3 -38.1 -42.0 8.5 -248.9e

HCOO– 15.3 12.6 9.9 7.2 4.3 1.4 -1.6 -4.7 -7.9 -11.2 -14.6 7.2 -318.8d

CH3COO– 21.6 19.0 16.3 13.5 10.7 7.8 4.9 2.0ar
e the 
same

-1.0 -4.1 -7.3 8.1 -324.7d

MAD, all 10.4 9.6 8.8 8.0 7.1 6.2 5.4 4.7 4.4 4.8 5.2

MAD, neutral 8.1 7.5 6.8 6.0 5.2 4.4 3.5 2.7 2.2 2.3 2.3
a Data from [52].
b Data from [54].
c Data from [55].
d Data from [53].
e 18.8 kJ/mol was added to the value in ref. 56 to use the same value of the absolute solvation 
energy of a proton as in ref. no. 53.
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Table 2. Average non-polar solvation energies (kJ/mol) in the SASA and PCM calculations. 
The energy contributions for the complex (PL), protein (P), and ligand (L) given, as well as the 
net contribution to the binding (PL–P–L), for PCM further divided into cavitation (cav), 
dipsersion (disp), and repulsion (rep) contributions.

SASA PCM

PL P L PL–P–L PL P L PL–P–L cav disp rep

BTN1 465 467 14 -16 22282 22156 12 114 -18 189 -57

BTN2 466 469 14 -17 22275 22144 14 116 -20 198 -61

BTN3 471 474 14 -17 22234 22117 7 111 -22 181 -49

BTN4 469 473 16 -20 22447 22268 24 155 -22 236 -58

BTN5 465 468 13 - -16 22250 22138 8 104 -18 164 -41

BTN6 467 470 13 - -16 22228 22119 9 100 -19 153 -34

BTN7 478 480 9 - -11 21942 21892 -3 52 -8 89 -29

Table 3. The results of the PMISP/PCM/TΔS method. Three different estimates of the total 
binding energy are given: ΔG1 = ΔEes + ΔEind + ΔEnc + ΔGsolvPCM + ΔGnp,PCM – TΔS is the full 
PMISP/PCM/TΔS, whereas in ΔG2 = ΔEes + ΔEind + ΔEnc + ΔGsolvPCM + ΔGnp,SASA – TΔS, the non-
polar PCM term has been replaced by the non-polar SASA term, and in ΔG3 = ΔEes + ΔEind + 
ΔEvdW + ΔGsolvPCM + ΔGnp,SASA – TΔS, the ΔEnc term has also been replaced by the Amber van der 
Waals energy. The mean absolute deviation (MAD), the correlation coefficient (R2), as well as 
the MAD after subtraction of the mean signed deviation (MAD TR) are also given for each 
energy estimate.

Exp ΔEes ΔEind ΔEnc ΔGsolv,PCM ΔGnp,PCM –TΔS ΔEnp,SASA ΔEvdW ΔG1 ΔG2 ΔG3

BTN1 -1056.3 -253.5 -80.5 1236.5 113.9 96.8 -16.9 -143.4 57.0 -73.8 -136.7

BTN2 -1108.8 -322.7 -74.7 1311.3 116.3 102.4 -17.2 -149.1 23.9 -109.7 -184.1

BTN3 -1051.7 -282.3 -68.9 1235.0 110.7 93.4 -16.7 -138.6 36.2 -91.2 -160.9

BTN4 -124.4 -55.9 -150.2 181.1 155.4 96.5 -21.3 -211.0 102.6 -74.1 -134.8

BTN5 -113.2 -50.9 -95.8 140.7 104.5 77.4 -16.2 -134.5 62.6 -58.0 -96.7

BTN6 -91.5 -45.3 -91.4 132.9 100.4 69.8 -15.8 -131.9 74.9 -41.3 -81.8

BTN7 -113.3 -46.3 -25.1 127.4 52.3 66.4 -10.7 -53.6 61.2 -1.7 -30.1

MAD 104.7 27.5 72.9

TR MAD 20.6 19.2 30.2

R2 0.22 0.50 0.55
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Table 4. Results for the MM/PBSA calculations using the polarisable Amber 2002 force field. 
The MAD and TR MAD are 13.2 and 11.5 kJ/mol, respectively, and R2 is 0.65. 

ΔEes ΔEind ΔEvdW ΔEsolv,PB ΔEnp,SASA –TΔS ΔGbind Exp.

BTN1 -1173.6 -1.6 -143.4 1180.0 -16.9 96.8 -58.6 -85.4

BTN2 -1213.8 14.6 -149.2 1220.0 -17.2 102.4 -43.2 -59.8

BTN3 -1182.2 -0.6 -138.6 1164.1 -16.7 93.4 -80.6 -58.6

BTN4 -127.0 -14.6 -211.0 243.1 -21.3 96.6 -34.2 -36.8

BTN5 -100.7 -16.3 -134.5 159.4 -16.1 77.4 -30.9 -34.3

BTN6 -80.4 -11.2 -131.9 152.1 -15.8 69.8 -17.4 -20.9

BTN7 -111.4 -9.6 -53.6 117.6 -10.6 66.4 -1.2 -18.8

Table 5. Standard deviations of the various terms for PMISP/PCM/TΔSMM and MM/PBSA. Eeis 

is the sum of the Ees, Eind, and Gsolv terms.

MM/PBSA PMISP/PCM/TΔSMM

Ees Eind EvdW GPB GSASA TΔS Gbind Eeis Ees Eind Enc GPCM Gnp,PCM Gbind Eeis

BTN1 20.9 5.4 15.0 18.8 0.2 14.2 18.7 19.6 18.1 17.6 24.8 22.0 0.2 23.3 18.5

BTN2 37.6 4.6 14.4 21.0 0.2 21.0 25.4 25.5 33.3 32.2 22.7 45.4 0.2 29.8 35.5

BTN3 26.0 6.8 11.6 17.9 0.2 11.7 22.1 29.3 25.9 24.2 25.3 24.8 0.2 12.5 30.8

BTN4 15.5 3.8 10.8 16.5 0.3 11.8 20.7 19.8 19.7 9.8 14.0 11.9 0.3 17.0 20.8

BTN5 18.9 3.9 8.0 16.7 0.1 12.1 21.8 23.6 13.5 13.3 13.6 15.8 0.1 10.5 15.0

BTN6 15.1 3.1 15.3 8.7 0.2 15.3 21.1 17.4 13.3 11.0 19.2 15.4 0.2 12.8 14.1

BTN7 10.6 3.1 7.8 10.9 0.1 9.3 18.5 16.6 11.4 6.9 14.5 8.4 0.1 11.8 11.9
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