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Sven Gestegård Robertz, Denis Störkle
Dept. of Computer Science
Lund University, Sweden

Email: klas.nilsson@cs.lth.se

Anders Blomdell, Rolf Johansson
Magnus Linderoth, Anders Nilsson
Anders Robertsson, Andreas Stolt

Dept of Automatic Control
Lund University, Sweden

Herman Bruyninckx
Dept. of Mechanical Engineering

K.U.Leuven, Belgium

Abstract—Robots used in manufacturing today are tailored
to their tasks by system integration based on expert knowledge
concerning both production and machine control. For upcom-
ing new generations of even more flexible robot solutions, in
applications such as dexterous assembly, the robot setup and
programming gets even more challenging. Reuse of solutions in
terms of parameters, controls, process tuning, and of software
modules in general then gets increasingly important.

There has been valuable progress within reuse of automation
solutions when machines comply with standards and behave
according to nominal models. However, more flexible robots
with sensor-based manipulation skills and cognitive functions
for human interaction are far too complex to manage, and
solutions are rarely reusable since knowledge is either implicit in
imperative software or not captured in machine readable form.

We propose techniques that build on existing knowledge by
converting structured data into an RDF-based knowledge base.
By enhancements of industrial control systems and available
engineering tools, such knowledge can be gradually extended as
part of the interaction during the definition of the robot task.

I. INTRODUCTION

Productivity in manufacturing is the basis for competitive-
ness, and thereby the basis for developments and businesses
within and around manufacturing systems. Manufacturing,
being the transformation of resources into products that meet
market needs, is the key to our wealth, now and in the future
when those resources are increasingly recycled and scarce.
In other words, on an overall level, to live well we have to
manufacture well.

The need for productivity clearly implies the need for
performance. In long-batch large-volume production, high-
performance motions and processes can be achieved by ex-
tensive engineering, leading to for instance fixed automa-
tion or special purpose machines. Today, however, the other
cornerstone of productivity is flexibility, which is to meet
variations in products (customizations, change of suppliers,
etc.), processes (environmental changes, etc.), and resources
(continual improvements of equipment, lowering machine
costs, etc.). For the combination of flexibility and performance,
in manufacturing just as in software and control, a model-
based approach is appropriate.

A. Model-based system integration

With the aim of facilitating system integration and to make
system integration solutions reusable, modeling for automation
systems has been subject to extensive work and standard-
ization, for instance according to AutomationML that has a
basic structure for products, processes and resources [1], [2].
However, while such models facilitate transfer of production
setup data, the approach is classical and limited in the sense
that systems are engineered based on the nominal/desired
behavior, with variations during production taken care of
by sensing and actions that are engineered to manage those
variations. For instance, variations in the location of a part can
be sensed (e.g., by a touch sensor or via vision), or motions can
be designed to physically cope with the expected variations.

The necessary adjustments during startup of a new produc-
tion line can of course be extensive and costly, and that is also
why automation is not yet productive in one-off (or very short
series) production. Problems to consider include:

• Competing stakeholders and technology providers try to
make customers dependent on their specific solutions, and
incompatibilities follow when there are business reason
for going outside standards.

• When standards are appropriate or enforced by customers
or legal aspects, they are typically too slow in adopting
new technologies.

• Even when standards apply and vendors agree, there are
human errors and product generations that make things
incompatible, typically in a way that no single component
can be pinpointed as the failing one.

The situation is particularly difficult in automation due to
the large number of heterogeneous techniques that are to be
integrated, and robots for assembly and machining are perhaps
the most difficult case due to uncertainties in combination
with force interaction. Thus, efficient engineering works within
business units or stakeholder organizations, but for the overall
system integration we have to realize that a different way
of thinking is crucial. Since part of the thinking has to be
embedded into the systems, we have arrived to the need for
cognitive systems.
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B. Cognitive robots in manufacturing

In the EU FP7 work program [3] that is the basis for our
projects, Section 2.4 (p 27) about Challenge 2 on “Cognitive
Systems, Interaction, Robotics” states:

Engineering systems with the capability to sense
and understand an unstructured environment is a
challenge which goes beyond today’s systems engi-
neering paradigm. Present day systems engineering
relies on specifying every eventuality a system will
have to cope with in the execution of its task(s), and
programming the appropriate response in each case.

Challenge 2 aims to extend systems engineering
to the design of systems that can carry out useful
tasks ... in circumstances that were not planned for
explicitly at design time.

Research and development efforts should aim at
generating actual design principles. They will con-
tribute to establishing scientific foundations for such
principles. Alternatively, they may aim to achieve
significant engineering progress, e.g. through inte-
gration.

The anticipated approaches can of course be seen as extensions
of model-driven systems engineering, with more dynamism
(design subject to change during system operation) and flexible
definitions of what is data and what is meta-data. Nevertheless,
the quote very well captures the challenges of our work, and
it means we need to bring semantics into system integration
such that not only data is structured into information, but also
that there are machine readable definitions of the meaning of
information. That forms what we refer to as knowledge, which
should be declarative rather than normative.

Robots comprise the key challenge due to their flexibility
(not designed for a specific application), their compliance due
to the dexterous mechanical design (e.g. compared to CNC
machines), and their motion deviations when process forces
are present (e.g. during assembly and machining). The nominal
models (such as inverse kinematics) only covers a small part
of the information needed for productivity in manufacturing.
Robots at manual workplaces, in close interaction with humans
that have a variety of expectations on what a robot can do,
make the cognitive approach even more tractable.

Today, most knowledge about how to deal with uncertainties
during setup and programming resides in the head of system
integrators and advanced users. Reuse and support for less
advanced users would require knowledge to be acquired and
utilized within the system and its components. Many such
attempts have been proposed over the years, but it is important
to take into consideration:

• Experienced system integrators and expert users are very
busy persons that make a profit out of their knowledge,
and they will of course not spend time on entering their
knowledge into some fantastic expert system unless they
get immediate return on investment.

• Tasks today describe the nominal case, while manage-
ment of variations are implicit in terms of the sensor data

processing it entails. To enable reuse, the use of sensing
(and motion settings that contribute to robustness) need to
be made explicit in, telling “why” and “when” in addition
to the standard “how”.

• Basically production systems today do rarely fail, because
when they did during startup there were the experts fixing
it, which means making the system robust in accordance
with available human experiences. Hence, a cognitive
approach should gather information from failure situation
and how they were fixed.

• Solutions have to match business models (should be
profitable to use, from week one), responsibilities (who
are to be contacted in each error situation), safety (can
certification be done easily when needed), and IPR issues
(who owns the obtained knowledge).

A widely applicable approach considering these items such
that it builds on existing tools and practices, but enables
cognitive functions to be added, is the topic of this paper.

C. Approach and methodology

Cognitive robotics is still in its beginning with many fun-
damental difficulties when it comes to autonomous behaviors
and human interaction in fully unstructured environments [4],
[5]. To reach industrial use within a reasonable number of
years, our approach is to do full scale prototyping to confront
scientific claims with real application settings. As a step in
that direction, industrial collaboration with relevant laboratory
setups forms our methodology.

We start with actual data from description of systems and
processes (but not with predefined models), then making use of
whatever structure there is (e.g., from XML schemas and from
data types that are part of component interfaces) but converting
it into the RDF-based triple store [6]. By linking the data
together based on the relation, that RDF data forms graphs that
we also refer to in terms of predicate argument structures. That
also permits graphs to be combined in new ways over Internet
connections [7], and representation of semantic information
is supported, just like the semantic web but now focused on
robotics in manufacturing. The predicate-argument structure is
also the main representation in natural language understanding,
which we are also interested in for the human-robot interaction
later on.

Based on actually obtained data, structure and knowledge
will be inferred. For building the actual systems, considering
robotics research being a small domain compared to networked
software in general, it is crucial to build systems based on
available standards and (freely) available software packages.
The aim is then to create a portable system that seamlessly
integrate with current engineering practices and facilitates
stepwise refinement of knowledge, ranging from low-level
motion control with adaptive functions and up to interactive
task definitions including explicit models of uncertainties and
the intention of motions in the context of manufacturing.



II. PRELIMINARIES

With a goal of easy and productive usage of robots, we need
to care about system integration and robot programming steps
to reach that goal, but software and feedback-control difficul-
ties should be abstracted away from production engineering.
While that is the aim of the engineering tools, we are far away
from that situation today. This section presents some of the
overall issues that should be understood before an integrated
and practically applicable approach can be developed, and it
also contains references to related work.

A. Robot systems engineering

Since the start, some 50 years ago, of the domain of
robotics, large amounts of useful robotics functionalities have
been developed: controllers, planners, kinematics and dynam-
ics transformations, estimation and learning algorithms, con-
strained and multi-objective optimization, etc. An impressive
amount of human ingenuity, knowledge and experience has
found its way into many millions of lines of robotics software
code, integrating developments and insights from various “sup-
porting” domains, such as mechatronics, systems and control
theory, computer science, machine learning, (probabilistic)
logic, or computer vision.

The bad news, however, is that this steady growth of useful
functionalities has outpaced the speed with which developers
can use all those functionalities effectively, in ever more
complex robot systems. A major bottleneck is the amount
of knowledge that human developers have to master, before
they can integrate components, in such a way that they
can work together in the first place, and be exploited to
their full potential in the second place. As part of so called
Model-Driven Engineering (MDE), software functions are put
into composable components that should be designed such
that “pure” knowledge is separated from application-specific
configuration in particular contexts.

The trend in MDE is to generalize by defining (and stan-
dardizing) meta-data descriptions, and to improve efficiency
by better engineering principles and more powerful software-
development tools. Despite that, the closed-world mindset
remains, for instance in XML schemas that define what meta
data (or model data) is correct. However, things change, and
so do meta-data and agreed interfaces. Therefore, the semantic
web techniques provide a better basis for the composition and
usage of components, which means integration of knowledge
in an incremental manner that can stand inconsistencies and
human preferences. That is the aforementioned Open World
Assumption (OWA), which (at Page 11) in [8] is formulated
as :

An open world is one in which we must assume
at any time that new information could come to
light, and we may draw no conclusions that rely on
assuming that the information available at any one
point is all the information available.

Wikipedia provides a similar formulation according to
(http://en.wikipedia.org/wiki/Open world assumption):

Heuristically, the open world assumption applies
when we represent knowledge within a system as we
discover it, and where we cannot guarantee that we
have discovered or will discover complete informa-
tion. In the OWA, statements about knowledge that
are not included in or inferred from the knowledge
explicitly recorded in the system may be considered
unknown, rather than wrong or false.

Whereas MDE and software engineering teaches design first,
the OWA permits a data-first approach, and then gradual
introduction of the modeling concepts that actually appear. To
connect to actual engineering principles, the approach taken
here is to have components with self-descriptive interfaces
that also can be embedded in physical devices for real-time
operation, to store interface descriptions as initial knowledge
(see next subsection), and to support semantic tagging (grad-
ually by users) that is then stored in the knowledge base. That
way closed-world components can meet the open-world usage,
and loose coupling between subsystems is promoted. The self-
descriptive interfaces must use semantic tags that are described
in an ontology.

B. Obtaining initial knowledge

A large amount of information about products, equipment
(and other resources) and production processes, is available
in terms of documentation, programs, configurations or data-
sheets for devices. That information is mainly in text (or
available software can convert from native formats to text with
structure), and to separate structure from content it is common
to use XML. Clearly, it is useful to have some basic structure
for the fundamental definitions that even competitors can agree
on, which is what an ontology is useful for as explored in
our earlier work [9]. Such an ontology should be small, not
covering parts that competitors will not agree on anyway, and
it should not be normative in case of modeling alternatives.
Ontology data that fulfills certain requirements on consistency
and completeness can also be used to generate compilers and
for compilation into imperative code definitions [10].

Based on these insights, our project Rosetta started with
implementation of a Knowledge Integration Framework (KIF)
built on mainstream semantic web standards such as RDF,
and including transformation from text to knowledge-base data
[11]. Primary source documents are in the AutomationML
XML format. During import of such documents, the infor-
mation is converted to RDF and some basic knowledge about
the separation of products, resources and processes is used
to maintain some basic structure of the knowledge, such that
automation engineers can continue utilizing the information
via the well-known hierarchies (such as instances, system
units, and roles).

Our conversion of the original tree-structured XML doc-
uments into graph-based knowledge (information intercon-
nected with relations and semantic data expressing the mean-
ing) has worked well for a variety of test cases. Therefore,
although much work remains to make it industrially useful and
maintainable, we do not see that part as the main problem. It
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Fig. 1. Harvesting information from XML documents for establishment of
automation knowledge.

should be noted, as indicated in Figure 1 and commented in
[11], data and knowledge sources can be distributed over the
Internet by means of the utilized semantic web techniques and
software packages. The top three remaining issues are:

1) AutomationML (and other sources) is focused on ex-
plicit production plant data, with the task descriptions
(e.g., in terms of state machines, robot programs, and
PLC data) being implicit and difficult to reuse. To
prepare for reusable task descriptions, we need a way
to represent both desired and actual engineering/user
decisions such that it can be captured and gradually
enhanced when things change.

2) Knowledge-based solutions (e.g., to the previous item)
need to be connected to existing engineering tools such
that current practices continue to work, but also such that
new knowledge-based features can be tried out without
major thresholds.

3) Productivity implies performance demands, and in com-
bination with OWA (the Open World Assumption) it
can be concluded that third parties should be able to
extend the sensing and motions control of any robot.
The issue is then how the high-level engineering tools
and knowledge-based techniques can be connected to
the low-level real-time control of physical motions.

The third item also implies that application-specific motion
control should be possible to map back to the user/engineering
level for human interaction, including the case with virtual
control when physical dynamic models are missing. For in-
stance, for visualization in an engineering environment without
a physics engine, force controlled motions can be emulated by
direct commanding of the position variations it is expected to
cope with.

C. Separation of concerns
The lack of reuse of information such as software and

formalized knowledge is a problem in many areas, and since
robotics and automation has to build on tools and principles
from other domains, we better ask ourselves what remedies can
possibly be applied. First of all, keeping the OWA in mind, it
is not about defining one new tool chain (in the open world
you cannot prescribe engineering environments), but portable
reference implementations of compositional solutions can be
useful. Most important is to find simple principles that can
be applied in different environments and for different types of
systems. As confirmed within our earlier FP6 projects RoSta,
SMErobot and PalCom the most central engineering approach
is to keep apart the following concerns [12]:

- Communication defines how agents communicate with
each other.

- Computation defines the implementation of the behavior
of individual agents. It thus determines what is being
communicated.

- Configuration defines the interaction structure, or con-
figuration. It states which agents exist in the system and
which agents can communicate with each other.

- Coordination defines patterns of interaction, i.e., it de-
termines when certain communications take place.

That is also well in line with other published results [13],
[14], [15], although there are variations such as splitting
configuration or treating configuration and coordination in the
same way [16].

The concept of separation of concerns is classic within com-
puter science, but we need practical examples from application
areas. Communication is typically based on connection-based
asynchronous messages, so that is not a major issue. In au-
tomation there is already a good practice about configuration,
which is what is done before the system is put into operation.
Thus: Keep computation and coordination apart.

D. Constraint-based task specification
The constraint-based task specification framework specifies

the relative motion of objects by imposing constraints. To be
able to specify these constraints a so called kinematic chain is
needed, and it consists of two object frames and two feature
frames. The first object frame is usually attached to the object
one wants to manipulate and the second object frame is usually
attached to the robot. The feature frames should be attached
to features on the object to manipulate and on the robot.
They should be chosen in such a way that the task constraints
become as easy as possible to specify.

A kinematic chain should have 6 degrees of freedom, and
they are distributed over the transformations between the
feature and the object frames [17]. These six degrees of free-
dom are represented by χf , the so called feature coordinates.
There might also be uncertainties in the pose between the
previously defined coordinate frames, which is represented by
an additional transformation between each of the previously
mentioned coordinate frames is introduced. These uncertainty
coordinates are denoted χu.



III. EXAMPLE APPLICATIONS AND EXPERIMENTS

The specifics for the following two application examples
(in terms of application context, algorithms, and control im-
plementations) are detailed in other recent publications. The
focus here is to illustrate the task specification and system
integration that we have used to experimentally verify the
targeted semantic approach. A complete description does not
fit into a few pages, but it deserves to be mentioned that all
the proposed concepts (although not yet in a single packaged
system) have been implemented and experimentally verified.

A. Force-controlled assembly
The assembly scenario in this paper is to assemble the

internals of an emergency stop button. An electric breaker
should be snapped into the middle one of five available slots,
and in this case the breaker can be grasped either on its long
or its short sides using a parallel gripper. Optionally, however,
more breakers for additional switching functions (such as
connecting alternative equipment upon the emergency stop)
can be placed in the adjacent slots, and then the grasping in
practice is constrained to the short sides of the breaker. With
the short side contact only, there is a rotational uncertainty
around the axis intersecting the two gripping points, which
can be handled in different ways:

a) All uncertainties in fixtures, feeder locations, grasping,
work-piece variations, and variations between robot in-
dividuals can be analyzed and (for the actual type of
robot at hand) motion specifications in terms of robot
programs can be engineered.

b) If the bottom part is accurately fixed at a known location
relative to the robot, we can make use of product data.
That is, by using angled fingers that grasp on the short
side but touches one long side such that the undesired
rotation would be fixed.

c) Sensor-based motions can be used, which could mean vi-
sion and/or force. While vision would be appropriate for
locating parts, we decided to implement the mounting
by means of force-torque (F/T) control, which permits
an online adaptation during the physical contact and the
F/T sensor can be used to detect when the mounting is
completed (by the force transient from the final snap).

Alternatives a and c were fully implemented (in laboratory
environments) and b will simply be finished just for complete-
ness. The algorithmic aspects including the F/T-control and the
detection of the final snap are detailed in [18]. Alternative b is
a production-suitable way of limiting the uncertainty (physical
solution by means of product-related finger design) avoids the
extensive production engineering of item a, as well as the need
for external sensors of item c (but then without snap feedback).

In the following alternative c implementation, force sensing
is used to resolve these uncertainties, and the motions have
been specified using the constraint-based task specification
methodology (iTaSC) [17]. The assembly task and the object
and feature frames related to it are shown in Figs. 2 and 3,
whereas Fig. 4 shows how the frames are related to the feature
coordinates.

x

y

z

o1

x

y

z
f1

x

y

z

f2

Fig. 2. Illustration of the different
coordinate frames in the assembly
task.
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Fig. 3. Illustration of the uncer-
tainty coordinate zu between the
two frames f2 and o2.
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χfIII
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w
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Fig. 4. Schematic description of the kinematic chain in the assembly task. w
denotes the world coordinate frame and q denotes the robot joint coordinates.

• Object frame o1 is attached to the box. It is related to the
world coordinate frame by a constant transformation.

• Feature frame f1 is attached to one end of the switch.
The orientation is the same as o1.

• Feature frame f2 has its origin in the same position as
f1, but the orientation is the same as the robot flange
frame.

• Object frame o2 coincides with the robot flange frame.

The feature coordinates χf are divided into three groups
depending on which frames they relate. The coordinates are

χfI = (x, y, z) o1→ f1
χfII = (ϕ, θ, ψ) f1→ f2
χfIII = (−) f2→ o2

The coordinates χfI give the position of the origin of f1
using Cartesian coordinates in o1. χfII describe the rotation
from f1 to f2 using Euler ZYX-angles. χfIII has no feature
coordinates, since the transformation between f2 and o2 is
fix. All feature coordinates were chosen as outputs:

y1 = x y2 = y y3 = z
y4 = ϕ y5 = θ y6 = ψ

Uncertainties in the task include the exact location of the
box and its orientation. They are however resolved using
guarded search motions, i.e., the motion is velocity controlled
in the search direction and stopped when a contact force is
detected. Once contact is made, it is maintained by using force
control, and hence no explicit uncertainty coordinates are used
to model this uncertainty. The exact position of the grasp is
also assumed to be uncertain, and the z-distance from f2 to
o2 (Fig. 3) is therefore modeled as an uncertainty coordinate
zu.



Fig. 5. Interactive testing of the drilling skill with motions constraints
evaluated within the user dialog but in generic external code (as dynamically
loaded Java code) from the knowledge base.

The portability of the motions specifications were success-
fully verified by letting the neighbor robot hold the bottom
part, which corresponds to a dual-arm assembly operation. The
point is, since the iTaSC constraints are declarative with the
property of compositionality, it is well suited as a basis for
specification of motions below the symbolic level and on top
of the actual motion controls of a (set of) specific robot(s). We
then refer to the breaker mounting in terms of a skill SnapFit,
which has been implemented and experimentally verified.

B. Manually guided drilling

While the SnapFit illustrates how declarative (and KIF
suitable) knowledge (being part of what we will refer to as a
skill) can be used to specify the motion and the uncertainties,
the following prototyped drilling example exemplifies other
compositional skill properties such as boundary conditions
(depicted below) and rules for force interaction near singu-
larities (omitted for brevity). The following was implemented
and tested for the PlanarDrilling (Fig 6):

• F/T-control parameters (exposed and semantically tagged
for the KIF as for SnapFit) were set to force-control only
with the tool orientation fixed according to the vertical
drilling orientation.

• As for the SnapFit the F/T-control was accomplished via
an external skill- and motion-level controller.

• The force control was mapped to position interaction
during configuration and task description in ABB Robot-
Studio (ABB-RS, depicted in Fig 5).

• A bounding-box for permitted work-space for the manual
guidance was introduced. That could be from the pro-
duction engineering by selecting boundary conditions for
the skill at hand, or imposed from rules in the KIF and
then extending the description of the skill instance. Based

Fig. 6. Physical testing of the drilling skill with manual guidance (force-
controlled motions) implemented as a real-time extension with 4ms sampling
rate. Boundary conditions are evaluated by calling the corresponding C code.

on the declarative description, either code for real-time
force control or for the ABB-RS interaction control can
be generated.

• The overall coordination permits hand-over from iTaSC
motions to teach-pendant interaction and to explicit mo-
tions according to the robot language. In this case, using
ABB robots, there is always a piece of Rapid code that
represents the skilled motion on the user-programming
level, and this also works with the virtual control as part
of ABB-RS (see Fig 5 with the bounding-box visualized
as a semi-transparent surface to the left around the tool).

Note that the integration with KIF was done such that knowl-
edge about the native properties of the engineering tool (ABB-
RS) is kept on the KIF side, and code extending the ABB-RS
with semantic interactive functions is dynamically generated
and loaded into a JVM that interacts with native ABB-RS
code (in C#) via self-descriptive communication interfaces
([19] with descriptions generated from KIF data). This way,
production knowledge can be separated from engineering tool
design, and reuse is also improved by having configuration,
coordination and computation handled as separate concerns.

IV. BRINGING SEMANTICS INTO ROBOT AUTOMATION

The experiments verified the applicability of having declar-
ative information as the basis for the task and motion de-
scriptions including uncertainties and boundary conditions,
thereby facilitating the reuse of manufacturing solutions also
when products, processes and resources change (within those
stated boundaries). The two main questions now are: Who
will have the reasons to start using such an approach, and
how can initial usage contribute to gradual improvement of
the knowledge? The following proposes a possible solution
based on integrating semantic level information into existing
engineering practices and tools.



A. Skills

A key concept for the highly desired reuse of robot pro-
grams is that of so called Skills. At a first glance skills can
be perceived as capabilities of devices or equipment, provided
by abstract services that also can be compositions of lower
level skills/capabilities [20]. However, for robots, we found
that to be just a special case of a skill concept that better
promotes reuse. The reason is that robots can be comparably
inaccurate machines that (like humans but opposed to CNC
machines) need to adapt their motions to the task and to the
environment, and to also support interaction with humans the
knowledge how that adaptation is done need to be explicit.

At the same time, that knowledge also needs to be explicit
with respect to its dependencies and its properties (e.g.,
concerning its usage in the control systems for productive
work). To that end, and based on the separation of concerns
presented earlier, we bring forward the definitions of a Skill by
putting it into the context of hierarchical control as configured
coordination of actions/motions, which we found could be
accomplished in a coherent way on all levels. Specifically:

Task:
It was determined that the task level should be based
on symbolic information with compositional/additive
entities. Both the desired (abstract) task and the
actual (executable) task should be explicitly repre-
sented. Sharing, reuse and enhancement of knowl-
edge can be facilitated by a knowledge-integration
framework that interacts with the engineering and
operator interaction in a mixed-initiative manner.

Skill:
The coordinating skill level should accept robot in-
dependent symbolic specifications (including uncer-
tainties) of actions and motions. By means of com-
putations (generic solvers and code generated from
the symbolic level) and coordination (of real-time
interaction with the motion level), the robot specific
parts are synthesized such that motion specifications
get reusable. The same applies to perception skills.

Motion:
The combination of proprietary motion control (op-
timized for the robot and key applications) and
external control was shown to provide the desired
combination of flexibility and performance. Self-
descriptive interconnections with the skill and task
levels promote reuse of sensor-based motions.

The constraint-based task specification methodology
(iTaSC) [17] is a skill-suitable general framework that
makes it easy to algorithmically incorporate multiple sensors,
geometric uncertainties and to handle both redundant
manipulators and redundant tasks. Note that in the solution
approach b for the implementation for the SnapFit skill above,
the geometries imply that multiple breakers no longer can be
placed in any-order [21], but have to be placed sequentially
with the supporting side of the fingers on the free side.
Thus, low-level physical aspects relate to high-level symbolic

Fig. 7. The SnapFit state machine as an SFC

information; this is about knowledge integration not to be
confused with the common hierarchical control systems.

The SnapFit application example shows that not only high-
level knowledge (such as an assembly graph) and reusable
motion specifications (such as those based on iTaSC) are
needed, but also the real-time motion control that combines
microsecond latencies with semantic information about its
interfaces, parameters and properties. The benefit of having
coordination as a separate concern was experienced in the
SnapFit example.

An initial implementation using Stateflow was made as it
is an integrated Matlab tool. Due to the tight connection with
computations as done in Matlab however, all variables need to
have predefined sizes, which limited reuse. It is further on dif-
ficult to export the state machines in some appropriate format
for storage in the KIF-server, and the separation between the
state machine and the rest of the program is not very clear.

An alternative to implementing the state machine was done
by separating it totally from the control computations, by
replacing it with input and output ports communicating via a
real-time network connection [19]. The coordination in terms
of a state machine now being a separate concern, permitted
an implementation based on SFC as in AutomationML (or
JGrafChart, a Java based graphical SFC implementation). A
screenshot of the used state machine for the SnapFit is shown
in Fig 7.

Note that the SFC above expresses the nominal task in
an executable manner and without all possible error situa-
tion. Since application errors are expected to be unexpected
(otherwise they would be taken care of already), we need a
compositional meta-level description that can be queried via
the KIF upon operator interaction concerning the error. That
is what our RDF-based implementation is facilitating; Fig 8
shows the KIF-level representation that is more suitable for
error analysis.



Fig. 8. Finding the transition and the guard using KIF/RDF predicates, which
are represented semantically such that it provides meaning to an operator
reporting an error.
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Fig. 10. The Knowledge Integration Framework (KIF) gradually improving
the Knowledge Base (KB) by online connections to interactive users.

B. Knowledge-based robot programming

As indicated in the application examples, we keep the
established robot programming tools, which in addition to
the added KIF also maintains its connection to the native
control system (Fig 9). That is perfectly in line with the
configuration concern, but semantic tagging is needed for the
native connection via KIF. The Task Execution part added
contains iTaSC and extended control functions.

It is commonly believed that tool support for knowledge
integration may facilitate more flexible robot programming
and systems integration and thereby support the use of robots
in one-off or short series manufacturing. The experiences
reported above support that belief in principle, but the two
main questions (reasons to start and gradual improvement)
posed at the beginning of this section need to have good
answers.

Starting to use knowledge-based features requires those
features to be added on the back of the existing tools. The
reason is that changing tool-sets for engineering is too costly
for the user, and a technology provider has no business reasons
for spend resources on vendor-independent solution. Hence,
we would like the developed ABB-RS extensions to be freely
available including source code. The new business opportunity
associated with the values of obtained or learned knowledge
we leave to industry. The presented way of obtaining initial
knowledge (automatically from XML documents), and the
seamless integration is ABB-RS, motivates the initial usage
among the ABB customers.

Gradual improvement of knowledge (which similar to an
induction proof in mathematics will lead to extensive use)
is accomplished by extending the instance hierarchy of the
engineering tool with popup menus for querying KIF, which
typically includes the registration of available instances (such
as work-pieces and selected type of robot) and obtaining
suggestions (such as an alternative choice of gripper) that
have been inferred from KIF and the available knowledge. The
user always stays in charge for selecting the most appropriate
option, and when doing so new knowledge is generated. Also
when no useful answer can be suggested by the system,
new knowledge (about what information that is missing) is
generated, and so on as depicted in Fig reffig:data2info.

The resulting in-process mixed-initiative integration of KIF
with the engineering tool can now be summarized as:

• Reasoning on the meta level will include also ”why” and
”how”, in addition to the standard ”what”. By linking and
storing such data, knowledge is created.

• The connection with engineering tools have to be inte-
grated behind the scenes such that complexity is hidden.
Interactivity and online usage of KIF is important. If the
knowledge base can initiate a dialog about a potential
issue that the user is unaware of.

• The networked data interfaces facilitate spreading and
keeping data consistent across an organization or between
organizations.

– Use reasoning and meta-level knowledge to deter-
mine if an action may be affected by, or possibly in
conflict with, earlier decision made by another party.

– Help engineers by informing them about previous
work that may affect their work, but that they may
not be aware of. That is applicable both to purely
technical details and standards/safety aspects.

• Another possibility is to let local system integration
contribute to knowledge transfer that has a value outside
the organization.

A special feature of our implementation (not detailed here for
brevity) is that only a small part is dependent on the specific
version of the engineering tools, which means that also the
knowledge-based support for reuse is reusable.



V. CONCLUSIONS

System integration still is a challenge in large-scale man-
ufacturing and traditional automation using machines that
perform according to normative models, but progress was
made in standardization (e.g., of interfaces, PLC programs,
and plant descriptions), modularization (e.g., by self-contained
units including processing and standard network interfaces)
and in engineering tools (supporting both vertical and hori-
zontal integration). Skilled technicians are still required for
the integration work, in which the closed-world assumption
applies. The closed-world assumption is a simplification that
promotes efficiency during development of specific tools and
components, as carried out by a variety of stakeholders using
state of the art methods such as model-driven engineering.

Motivated by the needs in small-scale manufacturing and by
the aim for reuse of solutions and knowledge in applications
such as assembly and machining, in which the deviations be-
tween actual and modeled behavior require human know-how,
it was found that system integration also should work under
open-world assumptions. Similar to Internet content, which is
practically unlimited and not complying with common defini-
tions except for some structure of meta-data and underlying
protocols, the desire to share (some, not beforehand known)
information and knowledge calls for a semantic approach.
That is, data and information can get meaning in the context
of the (always different) robot user. Therefore, the open-
world assumption applies to the integration of future agile
manufacturing systems, including robots performing sensor-
based motions in semi-structured uncertain environments.

The practical development of systems should thus be based
on techniques that already have proved successful on the
market, and extensions should be designed to promote usage
of third party solutions. On each level of control, there will
typically be a closed and an open part, at large coinciding
with native/proprietary subsystems and generic/open-source
extension respectively. Access to, and ownership of, acquired
or learned knowledge is a non-technical issue that remains
to be investigated. The developed prototype systems verify
the feasibility of the proposed concepts, which we claim
pave the way for system integration with versatile robots in
the upcoming open-world era. The described and prototyped
technique with piggybacking a semantic-level triple-store to
existing engineering tools is believed to be new.
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