
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

On the Block Error Rate Performance of Spatially Coupled LDPC Codes for Streaming
Applications

Mitchell, David G. M.; Pusane, Ali E.; Lentmaier, Michael; Costello, Jr., Daniel J.

Published in:
Proc. IEEE Information Theory Workshop

DOI:
10.1109/ITW.2016.7606831

2016

Link to publication

Citation for published version (APA):
Mitchell, D. G. M., Pusane, A. E., Lentmaier, M., & Costello, Jr., D. J. (2016). On the Block Error Rate
Performance of Spatially Coupled LDPC Codes for Streaming Applications. In Proc. IEEE Information Theory
Workshop IEEE - Institute of Electrical and Electronics Engineers Inc..
https://doi.org/10.1109/ITW.2016.7606831

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/ITW.2016.7606831
https://portal.research.lu.se/en/publications/cf023068-1ea5-4657-bcfb-79235a770cbd
https://doi.org/10.1109/ITW.2016.7606831


On the Block Error Rate Performance of Spatially
Coupled LDPC Codes for Streaming Applications

David G. M. Mitchell⇤, Ali E. Pusane†, Michael Lentmaier‡, and Daniel J. Costello, Jr.§
⇤Klipsch School of Electrical and Computer Engineering, New Mexico State University, Las Cruces, USA, dgmm@nmsu.edu

†Dept. of Electrical and Electronics Engineering, Bogazici University, Istanbul, Turkey, ali.pusane@boun.edu.tr
‡Dept. of Electrical and Information Technology, Lund University, Lund, Sweden, Michael.Lentmaier@eit.lth.se

§Dept. of Electrical Engineering, University of Notre Dame, Notre Dame, USA, costello.2@nd.edu

Abstract—In this paper, we study the block error rate (BLER)

performance of spatially coupled low-density parity-check (SC-
LDPC) codes using a sliding window decoder suited for streaming
applications. Previous studies of SC-LDPC have focused on the
bit error rate (BER) performance or the frame error rate (FER)

performance over the entire length of the code. Here, we consider
protograph-based constructions of SC-LDPC codes in which a
window decoder continuously outputs blocks in a streaming
fashion, and we examine the BLER associated with these blocks.

We begin by examining the effect of protograph design on the
streaming BLER by varying the block size and the coupling width
in such a way that the overall constraint length of the SC-LDPC
code remains constant. Next, we investigate the BLER scaling
behavior with block size and coupling width. Lastly, we consider
the effect of employing an outer code to protect blocks, so that
small numbers of residual errors can be corrected by the outer
code. Simulation results for the additive white Gaussian noise
channel (AWGNC) are included and comparisons are made to
LDPC block codes (LDPC-BCs).

I. INTRODUCTION

Spatially coupled low-density parity-check (SC-LDPC)

codes [1], [2], [3] with sliding window decoding (WD) [2], [4]
are ideally suited for block-streaming applications in the sense
that decoded blocks are produced continuously without the
need to specify an overall frame length in advance. Because
SC-LDPC codes are convolutional codes, previous work has
mainly focused on their bit error rate (BER) performance
(e.g., [5]). Also, the finite-length scaling behavior of SC-LDPC
codes has been studied [6] with respect to the frame error rate

(FER), assuming flooding schedule block decoding over the
entire length of the code. However, when a window decoder
is used to decode a protograph-based SC-LDPC code for a
streaming application, a long continuous sequence of decoded
blocks is generated. In this case, the block error rate (BLER)

associated with these decoded blocks is also of interest.
In this paper, we examine the BLER of SC-LDPC codes

with continuous WD from several points of view. We first
consider how the protograph design can affect the BLER
performance. In particular, we begin with code designs having
small coupling width and large block size and then look at
the effect on the BLER of increasing the coupling width and
reducing the block size such that the overall constraint length
stays constant. Next, we examine how the BLER scales with
block size and coupling width. Finally, we consider employing
an outer code to clean up any residual errors that may remain
after the iterations in a particular window position are finished
and a block is ready to be decoded.

This work was partially supported by NSF Grant CCF-1161754 and
TUBITAK Grant 111E276.

0

(c)

(d)

0 1 2 0 1 2

0 1 2 L−1

(b)(a)

Fig. 1: Tanner graphs associated with (a) a (3, 6)-regular block protograph, (b)
an infinite chain of uncoupled (3, 6)-regular block protographs, (c) an infinite
chain of coupled (3, 6)-regular block protographs, and (d) a terminated chain
of coupled (3, 6)-regular block protographs with L = 9.

II. PROTOGRAPH-BASED SC-LDPC CODES
AND WINDOW DECODING

A popular way of designing SC-LDPC codes is to use a
protograph representation of the code ensemble [7]. A block
code protograph is a small bipartite graph, with c variable
nodes and c�b check nodes, where c and b are typically small
integers and R = b/c is the code design rate. An example of
a block code protograph with c = 2 variable nodes of degree
3 and c� b = 1 check node of degree 6 is shown in Fig. 1(a).
If an M -fold graph cover is now formed by applying the
copy-and-permute, or graph lifting, operation [7], which can
be represented by placing a randomly selected permutation
of size M on each edge of the graph, a (3, 6)-regular LDPC

block code (LDPC-BC) ensemble results. The corresponding
(c � b) ⇥ c = (1, 2) base parity-check matrix in this case
is given by B = [3, 3], where the entries in B denote that
the check node in the graph is connected by 3 edges to each
variable node. The graph lifting operation is then equivalent to
replacing each entry in the base matrix B with the (modulo-
2) sum of 3 randomly chosen (and non-overlapping) M ⇥M
permutation matrices.

In Fig. 1(b), an infinite chain of uncoupled block code
protographs is shown. Selecting one of the possible codewords
from the (3, 6)-regular LDPC-BC represented by each of these
protographs can then be viewed as transmitting a sequence of
codewords from the rate R = 1/2 LDPC-BC over the channel.

Now consider spreading the edges of each protograph so
that they connect to one or more nearby protographs in the
chain in such a way that the degrees of all the nodes are



preserved [8], as illustrated in Fig. 1(c). This has the effect
of coupling the different protographs together in an infinite
chain, which is equivalent to introducing memory into the code
design, i.e., transitioning from a rate R = 1/2 block code
to a rate R = 1/2 convolutional code, where the memory

or coupling width w, representing the number of nearby pro-
tographs connected to a given protograph, equals 2 in this case.
This edge-spreading technique is equivalent to splitting the
block code base matrix B into w+ 1 component submatrices
B0,B1, . . . ,Bw, such that B = B0 + B1 + · · · + Bw. For
the case shown in Fig. 1(c), the edge spreading is given by
B = [3, 3] = B0 +B1 +B2 = [1, 1] + [1, 1] + [1, 1], and the
associated infinite convolutional code base matrix is

Bcc =

2

66666666664

B0

B1 B0
... B1

. . .

Bw

...
. . .

Bw

. . .

3

77777777775

, (1)

where the constraint length (the maximum width in symbols
of any row of Bcc) is given by ⌫ = 2(w+1). In what follows,
we refer to this as the [B0;B1; · · · ;Bw] = [1 1; 1 1; 1 1] edge
spreading.

If the graph lifting operation is now applied to the convolu-
tional protograph by placing randomly selected permutations
of size M on each edge of the graph, an unterminated (3, 6)-
regular SC-LDPC code ensemble with ⌫ = 2M(w+1) results,
where we note that the protograph has a slight irregularity
at the beginning. In particular, the first two check nodes
have reduced degrees, a property that leads to the wave-

like decoding effect characteristic of iterative decoding of
SC-LDPC codes and accounts for their improved thresholds
compared to the underlying block code ensemble [2], [3].

The coupled convolutional protograph can also be termi-
nated after L sections, resulting in reduced check node degrees
at both ends, as shown in Fig. 1(d), in which case the termi-
nated convolutional base matrix is of size (L+w)(c�b)⇥Lc.
Now applying the graph lifting operation results in a termi-
nated (3, 6)-regular SC-LDPC code ensemble, which can also
be viewed as an LDPC-BC. In what follows, we refer to a
codeword in this terminated SC-LDPC code, which has total
length 2ML, as a frame. The FER behavior of SC-LDPC
codes with flooding schedule decoding has been studied in
[6] from the perspective of how it scales as a function of both
the lifting factor M and the coupling length L. We note that
the code rate associated with this terminated SC-LDPC code
is slightly less than the rate R = 1/2 of the underlying LDPC-
BC. However, as L becomes large, the code rate R ! 1/2.

For BP decoding of a terminated SC-LDPC code, the flood-
ing schedule decoder architecture for an LDPC-BC includes
all the variables nodes in a block, which equals cML, i.e., the
total frame length. However, in a single iteration, the localized
structure of the graph implies that messages cannot be passed
between variable nodes separated by more than one constraint
length. This observation has spurred interest in a modified WD
architecture for SC-LPDC codes with much reduced latency
and memory requirements [2], [4], where the required window

. . .

cM

cMW

Decoded
symbols

Target 
symbols

Fig. 2: Example of a window decoder with W = 4 operating on the
protograph of a (3, 6)-regular SC-LDPC code. The window moves from left
to right and is shown in the second position.

size is typically just a few constraint lengths, resulting in
greatly reduced memory and latency requirements compared to
the flooding schedule block decoder. The concept of a window
decoder is illustrated in Fig. 2. Assuming a window size of
cMW symbols, where the window span W is the number of
protograph sections within the window, a parallel message-
passing schedule is used until some stopping criterion is met
or a fixed number of iterations has been performed, after which
the window shifts and the cM target symbols shifted out of the
window are decoded. This results in both a decoding latency

and a required decoder memory of cMW symbols, equal to
the window size. The key feature of a window decoder is that,
since typically W ⌧ L, the latency and memory requirements
of a window decoder are much less than for the flooding
schedule block decoder.

Because the initial few (depending on the coupling width
w) positions of the window include the part of the graph
with reduced check node degrees, the information passed
to variable nodes during the iterations associated with these
initial window positions is highly reliable. The design of the
window decoder insures that this highly reliable information
then propagates down the chain as the window is shifted.

Since SC-LDPC codes are convolutional codes, research to
date (e.g., [5]) has focused on their BER performance, similar
to the way convolutional codes are viewed with, say, Viterbi
decoding. However, when using the protograph constructions
described above combined with WD, a block of cM target
symbols is decoded each time the window shifts, making it
natural to also consider their BLER performance, a view we
adopt in this paper. In the remaining sections, we investigate
several aspects of the BLER performance of SC-LDPC codes
with WD, where decoded blocks are output sequentially from
the decoder in a block streaming fashion. Throughout the pa-
per, we consider (3, 6)-regular SC-LDPC codes as an example,
but the techniques discussed are applicable to all SC-LDPC
codes, including irregular designs.

III. THE EFFECT OF PROTOGRAPH DESIGN

In Fig. 1(c), we considered a (3, 6)-regular SC-LDPC code
with the w = 2 [1 1; 1 1; 1 1] edge spreading. However, this is
just one of many possible edge spreadings that can be obtained
by varying the coupling width w and the particular connections
between protograph sections. For example, for w = 1, three
distinct edge spreadings are possible without zero entries, viz.,
[2 2; 1 1], [2 1; 1 2], and [1 1; 2 2]. The [2 2; 1 1] edge spreading
was originally proposed in [4] as a way of reducing the
window size, which determines the decoding latency, of SC-
LDPC codes, and the iterative WD threshold behavior of each
of these edge spreadings was examined in [9].



TABLE I: Parameters for example edge spreadings.

Edge spreading w W M N ⌫ S
[2 1; 1 2] 1 12 1500 3000 6000 36, 000
[1 1; 1 1; 1 1] 2 18 1000 2000 6000 36, 000
[1 1; 0 0; 1 0; 1 1] 3 24 750 1500 6000 36, 000
[1 1; 0 1; 0 0; 1 0; 1 1] 4 30 600 1200 6000 36, 000

In this section, we take a somewhat different view of varying
the coupling width w. Note that, if the lifting factor M remains
constant in the above example, reducing w from 2 to 1 has the
effect of also reducing the constraint length ⌫ = 2M(w + 1).
Since the minimum free distance of regular SC-LDPC codes
is known to grow linearly with ⌫ [10], reducing w gives us a
weaker code, with an expected negative impact on error floor
performance. In other words, reducing w without increasing
M results in a smaller decoding latency at a cost of worse
performance in the error floor. Since we wish to examine the
effect of protograph design on the BLER of SC-LDPC codes,
with an emphasis on the error floor, we begin by varying both
w and M while holding ⌫ constant.

With this in mind, we choose to examine and com-
pare the following protograph edge spreadings for (3, 6)-
regular codes: [2 1; 1 2], [1 1; 1 1; 1 1], [1 1; 0 1; 1 0; 1 1], and
[1 1; 0 1; 0 0; 1 0; 1 1], corresponding to w = 1, 2, 3, and 4,
respectively. The [2 1; 1 2] edge spreading was shown in [9]
to have the best WD threshold among the possible w = 1
cases, and [1 1; 1 1; 1 1] is the classic w = 2 edge spreading
most studied in the literature. To the best of our knowledge,
the proposed w = 3 and w = 4 edge spreadings have not been
previously considered. The likely reason for this is that larger
coupling widths w necessitate the use of larger window spans
W , thus increasing latency and memory requirements if M is
held constant. However, if we reduce M as w is increased, in
order to hold ⌫ constant, there is no reason not to consider
edge spreadings with larger w.

Experience with WD (see, e.g., [4], [11], [12]) has shown
that it is necessary to have a sufficiently large window size,
typically a small integer multiple of the constraint length ⌫,
in order not to suffer a performance loss relative to standard
block (high latency) decoding. With this in mind, along with
the requirement that w and M be varied in such a way that
⌫ stays constant, we considered the sets of parameters shown
in Table I for the four edge spreadings given above, where
N = 2M is the number of target symbols in a block, or the
block size, and S = 2MW = NW is the window size in
symbols. In our example, we set 2MW = 12M(w + 1), or
W = 6(w + 1), to ensure good WD performance, but this
could be decreased if a lower latency is desired.

Binary-input additive white Gaussian noise channel
(AWGNC) simulation results showing the BLER performance
of these different edge spreadings in a block-streaming en-
vironment, along with results for (3, 6)-regular LDPC-BCs,
denoted by B(3, 6), with the same values of N , are presented
in Fig. 3. In comparing the SC-LDPC codes to the LDPC-
BCs, we note that the SC-LDPC codes enjoy a considerable
coding gain and that the gain increases as the block size N
decreases. This is due to the fact that the decoding latency S of
the SC-LDPC codes is larger than the block size (latency) N of
the LDPC-BCs and that this latency advantage increases as N
decreases (see Table I). However, after the fixed initial delay of

Eb/N0

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

B
L
E
R

af
te
r
d
ec
od

in
g

10
-4

10
-3

10
-2

10
-1

10
0

B(3, 6) N = 1200
B(3, 6) N = 1500
B(3, 6) N = 2000
B(3, 6) N = 3000
[1 1;0 1;0 0;1 0;1 1]N =1200
[1 1; 0 1; 1 0; 1 1] N = 1500
[1 1; 1 1; 1 1] N = 2000
[2 1; 1 2] N = 3000

Fig. 3: BLERs for SC-LDPC codes with fixed ⌫ and LDPC-BCs.

S, the SC-LDPC codes produce decoded blocks of size N in a
continuous fashion, a nice feature for streaming applications.
In addition, on an equal latency basis, SC-LDPC codes are
known to outperform LDPC-BCs in terms of the BER, as
reported in [11], [12]. Finally, we also note that, no matter how
large N becomes, (3, 6)-regular LDPC-BCs can never perform
better than 1.11dB, their iterative decoding threshold, whereas
(3, 6)-regular SC-LDPC codes can approach their threshold of
0.46dB for large constraint length ⌫.

It is worth pointing out that the “protograph stretching”
considered above can be continued in the same fashion by
increasing w further and reducing M such that ⌫ remains
constant. This results in protographs with larger coupling
widths and smaller lifting factors, the limiting case of which is
a graph with large w, lifting factor M = 1, and N = 2 target
symbols in each block. This corresponds to the classic view
of a rate R = 1/2 LDPC convolutional code obtained directly
from an already-designed LDPC block code by applying the
cut-and-paste, or unwrapping, procedure first presented in [1].
It also corresponds to the case where the BER and BLER
performance measures are essentially equivalent. Indeed, we
begin to see this trend in Fig. 3, where the BLERs of the
SC-LDPC codes are improving as N gets smaller, i.e., they
are starting to tend towards the BER results. An interesting
question that we plan to pursue in future research is to examine
how WD of SC-LDPC codes behaves as one varies w and M
over such a wide range of possible values.

IV. BLER FINITE-LENGTH SCALING BEHAVIOR

As we noted earlier, the strength of an SC-LDPC code
depends on its free distance, which, for regular codes, is known
to grow linearly with the constraint length ⌫ = cM(w + 1).
Another interesting question about SC-LDPC codes with WD
is how the BLER performance scales with ⌫, or more specifi-
cally, with the lifting factor M and coupling width w. AWGNC
simulation results exploring the scaling behavior of WD are
shown in Fig. 4. In one instance, the w = 2 [11; 11; 11] edge
spreading is assumed and the values of M shown in Table II
are simulated. In this case, the results illustrate the BLER
scaling as a function of M , for fixed w. In the other case,
the lifting factor is fixed at M = 750, and the four edge



TABLE II: Simulation parameters for the w = 2 [1 1; 1 1; 1 1] edge spreading.

M N ⌫ S
500 1000 3000 12, 000
750 1500 4500 18, 000
1000 2000 6000 24, 000
1250 2500 7500 30, 000

Eb/N0

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

B
L
E
R

af
te
r
d
ec
od

in
g

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

[1 1; 1 1; 1 1] ν = 3000
[1 1; 1 1; 1 1] ν = 4500
[1 1; 1 1; 1 1] ν = 6000
[1 1; 1 1; 1 1] ν = 7500
[2 1; 1 2] ν = 3000
[1 1; 0 1; 1 0; 1 1] ν = 6000
[1 1; 0 1; 0 0; 1 0; 1 1] ν = 7500

Fig. 4: Scaling behavior of BLERs for SC-LDPC codes with M and w.

spreadings in Table I with coupling widths w = 1, 2, 3, and 4,
are considered. Here the block size N = 1500 stays constant,
while the constraint lengths ⌫ and the window sizes S, which
increase with w, are the same as those in Table II. In this
case, the results show the BLER scaling as a function of w,
for fixed M .

In Fig. 4, we see that the BLER scales better with w than
with M . This behavior is notable, since it is well known that
increasing M results in stronger LDPC-BCs. However, since
SC-LDPC codes are convolutional, increasing the coupling
width (memory) w also increases the strength of the code, and
the results of Fig. 4 suggest that this is a somewhat stronger
factor in this case. It is also worth pointing out there is no
evidence of an error floor down to a BLER of 10�5, which
is consistent with the fact that regular SC-LDPC codes are
asymptotically good [10].

It is important to note here that these results indicate the
BLER scaling behavior of WD of SC-LDPC codes, in contrast
to the FER scaling behavior reported in [6]. In particular,
we look at BLER scaling as a function of M and the
coupling width w, which determine the window size, whereas
in [6] FER scaling is examined as a function of M and L,
which determine the frame length. Our results motivate further
analysis of the BLER scaling of SC-LDPC codes, which could
be performed using similar techniques to those reported in [6].

V. THE EFFECT OF AN OUTER CODE

One way to improve the BLER performance of an SC-LDPC
code in the error floor is to protect each block with an outer
code. We assume an SC-LDPC code with systematic encoding

(see, e.g., [13]) and an outer block code with parameters
[n, k, t] that protects each set of N/2 = M target information
symbols using a hard-decision bounded distance decoder. We
then consider three cases:

1) M is an integer multiple of n, i.e., M = dn, so that each
block of M target information symbols is protected by

d outer codewords of length n,
2) M = n, so that each block of target information symbols

is protected by exactly one outer codeword, and
3) n is an integer multiple of M , i.e., n = pM , so that each

outer codeword protects p blocks of target information
symbols.

We also assume that, in a given window position, the window
decoder performs a fixed number of iterations in the window
and then makes hard decisions based on the N target symbol
log-likelihood ratios (LLRs). The reliability of the information
symbol hard decisions is then checked using the outer code.
In case (1), if t or fewer errors are detected in any of the d
codewords comprising a block of target information symbols,
they are corrected by the outer code, and the LLRs of the
corrected information bits, as well as any affected parity bits,
are adjusted to the correct sign. If no errors are detected, the
LLRs are not adjusted. Case (2) is exactly like case (1) except
that there is only one outer codeword to check. In case (3),
the window decoder processes p blocks before the outer code
of length n = pM is applied.

Several remarks are in order concerning these possibilities:
• The overall concatenated code rate is reduced by a factor

of k/n, the rate of the outer code.
• The error-correcting-capability t of the outer code must

be kept small in order to reduce the rate loss.
• A small value of t is also desirable in order to minimize

decoding complexity.
• When an undetected error occurs, no corrections are

made, LLRs are not adjusted, and decoding proceeds as
if there was no outer code.

• When a miscorrection occurs, additional errors are intro-
duced and LLRs are wrongly adjusted, which may cause
error propagation into the next block of target symbols.

• The outer code can be designed to do a combination of
error detection and error correction, so that it could also
be used as a stopping rule for the iterative decoder.

• The outer code can also be designed to work with soft

decisions, but this would increase decoding complexity.
Cases (2) and (3) allow the use of longer outer codes, thus
resulting in less rate loss for a fixed level of error correction.
Case (3) isn’t ideally suited for WD, however, since each
block of target symbols must wait for some (up to p � 1)
succeeding blocks to be processed before the outer code can
be applied, thus increasing the decoding latency. Case (2)
seems the most natural. But the use of an outer code with a
small error-correcting-capability t (to reduce rate loss) is not
likely to have much impact on waterfall performance, where
we expect incorrect blocks to contain significant numbers of
errors. Rather, it is more useful in the error floor, where we
expect incorrect blocks to contain only a few errors. Even here,
though, since (4, 2) absorbing sets are known to be the primary
cause of errors for iterative decoding of (3, 6)-regular codes
that have not been optimized for girth greater than 6 [14],
incorrect blocks could contain as many as 4 information bit
errors, and using a t = 4 outer code may entail an unacceptable
amount of rate loss and decoding complexity.

For a fixed t, case (1) has the disadvantage of a larger rate
loss compared to cases (2) and (3), due to the shorter block
length. However, since each codeword is capable of correcting
t errors, it will be able to correct at least some patterns of



Eb/N0

0.8 0.9 1 1.1 1.2 1.3 1.4

B
L
E
R

af
te
r
d
ec
od

in
g

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

[11;11;11] t = 0

[11;11;11] t = 1

(1)

(2)

Fig. 5: BLER performance of an SC-LDPC code with (1) no outer code
(t = 0) and (2) a [500, 491, 1] shortened BCH outer code.

weight greater than t, assuming the errors are distributed so
that no more than t occur in any one codeword. This allows us
to use low complexity and low rate loss t = 1 or t = 2 outer
codes, in contrast to the larger rate loss and greater decoding
complexity that would be needed to correct t = 4 errors with
an outer code of length n = M . Also, since we expect the
errors within a (4, 2) absorbing set to be somewhat localized,
the chances of having the errors distributed so that at most one
occurs in a codeword can be improved by interleaving the d
codewords covering a block of M target information symbols.

Preliminary simulation results (see Fig. 5) for the BLER
performance of SC-LDPC codes with WD and a low com-
plexity outer code used to correct t = 1 errors in a block
indicate that improved error floor performance is achieved at
the expense of a slight degradation in waterfall performance
due to the rate loss of the outer code. We focused on case
(2), where we chose a shortened BCH code with t = 1 as an
outer code. Specifically, we considered the w = 2 [1 1; 1 1; 1 1]
edge spreading with M = 500 and N = 1000, along with a
shortened BCH outer code of length n = M = 500, (d = 1,
no interleaving). In this case, the rate loss corresponds to a
loss in signal-to-noise ratio (SNR) of 0.079dB, which explains
the slight degradation in waterfall performance. On the other
hand, the improvement in error floor performance confirms our
expectation that, in this regime, the incorrect blocks contain
only a few errors.

It is also possible to use an outer code as a stopping rule for
the iterative decoder, with the intention of reducing the number
of computations (node updates) needed to achieve a certain
level of performance. Although this can be accomplished
by designing the outer code to do a combination of error
correction and error detection, as noted above, we can also
consider the simpler case of employing an outer CRC for error
detection only. In this scenario, the outer CRC is chosen to
cover exactly one block of M information symbols. Then, after
each iteration of the window decoder, the CRC on the set of
M information symbols is checked. If no errors are detected,
the block is assumed decoded and the window shifts. If errors
are detected, iterations continue up to some maximum number
of iterations, after which the block is decoded (even if errors
remain) and the window shifts.

VI. CONCLUDING REMARKS

Protograph-based SC-LDPC codes with WD are ideally
suited to a block-streaming environment, since the decoder
produces output blocks in a continuous fashion. In this paper,
we examined the block error rate (BLER) performance of SC-
LDPC codes with WD, where a block is the set of target
symbols output by the decoder each time the window shifts.
We considered three different aspects of the BLER: (1) how
it depends on the tradeoff between the graph lifting factor
M and the coupling width w when the constraint length ⌫
is held constant, (2) how it scales when either M or w is
increased while holding the other parameter constant, and (3)
how it behaves when a high-rate outer code is used to clean
up residual errors in a set of target symbols.

Computer simulations were used to examine each of these
cases. The results indicated that substantial coding gains are
available with block streaming of SC-LDPC codes compared
to LDPC-BCs of the same block size, although the decoding of
SC-LDPC codes entails an initial delay of several blocks. They
also indicated that the BLER scales better with the coupling
width w than with the lifting factor M . Finally, the results
indicated that using an outer BCH code to clean up residual
errors improves the error floor performance at the cost of a
slight degradation in the waterfall performance.

REFERENCES

[1] A. Jiménez Felström and K. Sh. Zigangirov, “Time-varying periodic
convolutional codes with low-density parity-check matrices,” IEEE

Trans. Inf. Theory, vol. 45, no. 6, pp. 2181–2191, Sept. 1999.
[2] M. Lentmaier, A. Sridharan, D. J. Costello, Jr., and K. Sh. Zigangirov,

“Iterative decoding threshold analysis for LDPC convolutional codes,”
IEEE Trans. Inf. Theory, vol. 56, no. 10, pp. 5274–5289, Oct. 2010.

[3] S. Kudekar, T. J. Richardson, and R. L. Urbanke, “Threshold saturation
via spatial coupling: why convolutional LDPC ensembles perform so
well over the BEC,” IEEE Trans. Inf. Theory, 57:2, pp. 803–834, 2011.

[4] A. R. Iyengar, M. Papaleo, P. H. Siegel, J. K. Wolf, A. Vanelli-Coralli,
and G. E. Corazza, “Windowed decoding of protograph-based LDPC
convolutional codes over erasure channels,” IEEE Trans. Inf. Theory,
vol. 58, no. 4, pp. 2303–2320, Apr. 2012.

[5] A. E. Pusane, R. Smarandache, P. O. Vontobel, and D. J. Costello, Jr.,
“Deriving good LDPC convolutional codes from LDPC block codes,”
IEEE Trans. Inf. Theory, vol. 57, no. 2, pp. 835–857, Feb. 2011.

[6] P. Olmos and R. Urbanke, “A scaling law to predict the finite-length
performance of spatially-coupled LDPC codes,” IEEE Trans. Inf. Theory,
vol. 61, no. 6, pp. 3164–3184, June 2015.

[7] J. Thorpe, “Low-density parity-check (LDPC) codes constructed from
protographs,” Jet Propulsion Laboratory, Pasadena, CA, INP Progress
Report 42-154, Aug. 2003.

[8] D. G. M. Mitchell, M. Lentmaier, and D. J. Costello, Jr., “Spatially
coupled LDPC codes constructed from protographs,” IEEE Trans. Inf.

Theory, vol. 61, no. 9, pp. 4866–4889, Sep. 2015.
[9] L. Wei, D. G. M. Mitchell, T. Fuja, and D. J. Costello, Jr., “Design

of spatially coupled LDPC codes over GF(q) for windowed decoding,”
submitted to the IEEE Trans. Inf. Theory, 2014. [Online]. Available:
http://arxiv.org/abs/1411.4373

[10] D. G. M. Mitchell, A. E. Pusane, and D. J. Costello, Jr., “Minimum dis-
tance and trapping set analysis of protograph-based LDPC convolutional
codes,” IEEE Trans. Inf. Theory, vol. 59, no. 1, pp. 254–281, 2013.

[11] M. Lentmaier, M. M. Prenda, and G. Fettweis, “Efficient message
passing scheduling for terminated LDPC convolutional codes,” in Proc.

IEEE International Symposium on Inf. Theory, St. Petersburg, Russia,
Aug. 2011, pp. 1826–1830.

[12] K. Huang, D. G. M. Mitchell, L. Wei, X. Ma, and D. J. Costello, Jr.,
“Performance comparison of LDPC block and spatially coupled codes
over GF(q),” IEEE Trans. Comm., vol. 63, no. 3, pp. 592–604, 2015.

[13] A. E. Pusane, A. Jiménez Felström, A. Sridharan, M. Lentmaier, K. Sh.
Zigangirov, and D. J. Costello, Jr., “Implementation aspects of LDPC
convolutional codes,” IEEE Trans. Comm., 56:7, pp. 1060–1069, 2008.

[14] L. Dolecek, Z. Zhang, V. Anantharam, M. Wainwright, and B. Nikolić,
“Analysis of absorbing sets and fully absorbing sets of array-based
LDPC codes,” IEEE Trans. Inf. Theory, 56:1, pp. 181–201, 2010.


