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Preface

A doctoral thesis at Lund University either takes the form of a single, cohesive research
study (monograph) or a summary of research papers (compilation thesis), which the
doctoral student has written alone or together with one or several other authors. This
thesis belongs to the latter category and it covers a large portion of the research I con-
ducted during the past five years of my academic trajectory. All the papers included
in this work are, in one way or another, devoted to the development and/or applica-
tion of computer models for the simulation of intrinsically disordered proteins; hence
the thesis title. The investigation of molecular phenomena by computer simulation is
one of my passions, and my interest in protein disorder is partially derived from the
challenge it presents to the otherwise established panorama of protein modeling and
simulation. This work represents my modest contribution to understanding the limi-
tations of current protein models and the development, validation and application of
new ones.

This journey was long, hard and particularly eventful. The young and carefree par-
tygoer that arrived in Lund on the 10th of January 2012, bears little resemblance to
the 30 year old family man currently writing this thesis. Still, I would not have it any
other way, and it was all a part of a much needed maturing process as a researcher and
as an individual. All in all, I feel very privileged to have been able to undertake my
doctoral studies at such a prestigious institution, surrounded by a group of immensely
talented and knowledgeable people. In particular, I would like to express my gratitude
to Marie, my main supervisor and mentor, for all your patience and support. It cannot
have been easy to guide someone as headstrong (and at times obstinate) as myself. Yet,
we have always maintained a very healthy mutual understanding and your experience
as a researcher and as a parent have been absolutely invaluable to me. To Mikael, my
co-supervisor, thank you for all the fruitful discussions and technical advice. Your mas-
tery of simulation software programming and development is second to none. Since
day one, it has been a great advantage to be in a research group where simulation and
experiment go hand in hand. Therefore, I would like to thank my co-authors, whose
experimental results were essential for the validation of my work. To Stephanie, who
apart from being my colleague and co-author, was also my student/supervisee on three
separate occasions, thank you for making me realize how much I enjoy teaching. To
all my other colleagues and collaborators, I would like to say that it was an enriching
experience to work with such a skilled and diverse group of researchers. To end - and I
assume that this goes without saying - this thesis would not have materialized without
the extensive support of my family and friends. In particular, my partner Maria, who
has always been there for me, specially during rough times. I am greatly indebted to
you!

João Henriques
Lund, October 2016
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Popular scientific summary in English

Proteins are large, complex molecules that play many critical roles in the body and are
required for the structure, function, and regulation of the body’s tissues and organs. In
very simple terms, a protein can be defined as a linear chain of subunits called amino
acid residues¹. The individual amino acid residues are sequentially bonded together by
peptide bonds. There are 20 standard amino acids in nature and their specific order
of appearance in a protein chain is thought to determine its structure and function.
For a very long time it was assumed that the structure of a protein and its function
were mutually inclusive, and exceptions to the norm were often either “swept under
the rug” or branded as mere curiosities of little relevance. Around the turn of the
millennium, mounting evidence of structural disorder in a considerable amount of
otherwise perfectly functional proteins lead to a change in paradigm. It is now known
that structural disorder is not only abundant in all species, as it is also an advantage for
proteins involved in functions which benefit from structural malleability.

Despite the considerable, recent interest in the study of intrinsically disordered pro-
teins (likely due to their implication in a number of human diseases), the lack of a
well-defined structure represents a substantial obstacle to their structural characteriza-
tion by classic, high-resolution experimental methods. Some lower resolution methods
can provide information about the average shape and size of the collection of structures
that a disordered protein can attain in solution. However, computational methods are
generally necessary to aid in interpreting and complementing the information that can
be obtained from experimental data. One of such methods is the computer simulation
of proteins, where a computer model of the protein² is run for a certain period of time,
in order to observe and register the most relevant spatial arrangements which the pro-
tein may adopt and freely convert between. It is from this collection of arrangements
that interesting structural and thermodynamic properties can be calculated, making
computer simulations very powerful tools.

The papers³ included in this thesis deal with the development, validation and ap-
plication of computer simulation models for flexible and disordered proteins, both in
solution and at interfaces⁴. In Paper ii it was found that a simple physical model⁵ can

¹In stricter terms, this linear chain of amino acid residues is called a polypeptide, and a protein contains
at least one long polypeptide. Short polypeptides, containing less than 20–30 residues, are often referred
to as peptides instead of proteins.

²A computer model is a combination of algorithms and equations used to capture the behavior of the
system being modeled, i.e., a protein in this case.

³A scientific paper is a written (and preferentially published) report describing original research results.
⁴E.g., a charged surface.
⁵Where the protein is described at an intermediate level, i.e., the amino acid residues, which contain

several atoms on their own, are simply represented as a single sphere. As such, the complete protein ends
up resembling a pearl necklace, where each amino acid residue is a pearl bead. This type of model is
usually referred to as a coarse-grained model.

v



be used to mimic the properties of flexible proteins, helping to understand how and
why these proteins adsorb to surfaces under certain conditions. In Paper iii, the same
simple model shown that two disordered proteins from different sources (saliva and
milk) have very similar properties in solution and when adsorbed to surfaces. Thus,
it was hypothesized that it may be possible to use one of them as a substitute for the
other under a pharmaceutical context. Paper i was the catalyst for a series of studies
(Papers iv – vi) involving more detailed protein models⁶. Among other things, this
study provided an indication that the atomistic models used until then, for the simula-
tion of proteins with well-defined structures, may not be applicable to their disordered
counterparts. This was later confirmed in Paper iv, by evaluating several such mod-
els against experimental evidence. A similar evaluation was conducted for two new
independent approaches developed with disordered proteins in mind. The results (pre-
sented in Papers iv and v) were shown to be in excellent agreement with each other and
with experiment, which represents a considerable step forward in the search for accu-
rate and predictive models for the simulation of disordered proteins. Finally, in Paper
vi, one of the new atomistic models was used to perform the structural characterization
of a disordered peptide conjugated to a small molecule, which has been shown to pos-
sess promising therapeutical applications. The value of computer simulations is well
illustrated in this study, as the insight obtainable from experiment is limited⁷ and it is
only through the analysis of the simulations that a possible link between the average
conjugate structure and its increased antifungal activity was established.

⁶These models describe the protein at an atomistic level, and are thus usually referred to as “atomistic”
models.

⁷Only the peptide part of the conjugate is detected by the instrument.
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Resumo simplificado em Português

As proteínas são macromoléculas biológicas constituídas por uma ou mais cadeias de
aminoácidos. Encontram-se presentes em todos os seres vivos e participam em pratica-
mente todos os processos celulares, desempenhando um vasto conjunto de funções no
organismo. Na natureza, existem 20 aminoácidos principais e a sua sequência, i.e., a or-
dem de aparição dos mesmos ao longo da cadeia, é tida como sendo determinante para
a estrutura e função de uma proteína. Durante um longo período de tempo pensou-
se que função de uma proteína estaria intimamente relacionada com a existência de
uma única estrutura bem definida (a estrutura nativa), e eventuais excepções à regra
foram consistentemente ignoradas ou tratadas como meras curiosidades sem relevância
biológica. Por volta do virar do milénio, começou a ser evidente que um número con-
siderável de proteínas possuem desordem estrutural parcial ou total. No entanto, estas
proteínas mantêm-se perfeitamente funcionais no organismo, o que obrigou a uma
mudança de paradigma. Hoje em dia é sabido que a desordem estrutural é abundante
em todas as espécies, sendo altamente vantajosa para proteínas cujas funções requerem
maleabilidade estrutural.

Apesar da forte aposta no estudo das proteínas intrinsecamente desordenadas (de-
vido ao seu envolvimento em várias doenças graves), a ausência de uma estrutura estável
e bem definida representa um grande obstáculo à sua caracterização através dos méto-
dos experimentais de alta definição mais comuns. Alguns métodos de menor definição
podem ser usados de modo a obter uma ideia do formato e da dimensão média de
uma proteína desordenada em solução. No entanto, este tipo de informação é relativa-
mente limitado, e é cada vez mais práctica comum recorrer a métodos computacionais
para complementar e ajudar a interpretar estes dados experimentais. Na simulação de
proteínas, um modelo computacional - i.e, um conjunto de algorítmos e equações de-
senvolvidos de modo a capturar o comportamento do sistema em estudo - é executado
durante um período de tempo necessário para gerar (e guardar) o conjunto de confor-
mações representativas do sistema em causa. É a partir deste conjunto de conformações
que um número de importantes características estruturais e propriedades termodinâ-
micas podem ser calculadas, o que faz com que simulação computacional seja uma
ferramenta muito poderosa e importante.

O trabalho incluído nesta tese de doutoramento foca-se no desenvolvimento, vali-
dação e aplicação de diferentes modelos para a simulação computacional de proteínas
intrinsecamente desordenadas, tanto em solução como em contacto com superfícies.
De forma geral, os resultados aqui apresentados representam uma contribuição posi-
tiva para o avanço desta área do conhecimento científico, demonstrando de forma clara
a utilidade e precisão dos modelos mais recentes.
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Modeling and simulation of
intrinsically disordered proteins:

1 An introduction to protein disorder

Until around the turn of the millennium, evidence steadily accumulated that a well-
defined structure is the prerequisite of protein function. This structure–function paradigm
became so deeply ingrained that most biology and biochemistry textbooks relied, al-
most exclusively, in this notion in order to explain biological phenomena at the molec-
ular level (Tompa 2012). However, after the first experimental observations of disorder
in a few dozen proteins, it quickly became apparent that proteins and protein domains
whose native and functional state is intrinsically unstructured⁸ are common across the
three domains of life⁹, with special incidence in eukaryotic proteomes¹⁰. This real-
ization forced a transition in paradigm (Wright & Dyson 1999), and it is now widely
accepted that “unstructural” biology is an integral part of molecular biology (Tompa
2011).

A large collection of names can be found in the literature when describing disor-
dered proteins¹¹. In this work, the terms “intrinsically disordered” and “flexible” are
preferred, with the latter being employed almost exclusively when referring to coarse-
grained models. Notice that Dunker et al. (2013)¹² support the use of a single common
term to describe these proteins, and “intrinsically disordered proteins” or IDPs is sug-
gested as the most appropriate nomenclature.

⁸In part or in full.
⁹Bacteria, Archaea and Eukarya.
¹⁰More than one third of eukaryotic proteins have been shown to contain intrinsically disordered re-

gions of over 30 amino acid residues in length (Ward et al. 2004).
¹¹Floppy, pliable, rheomorphic, flexible, mobile, partially folded, natively denatured, natively un-

folded, natively disordered, intrinsically unstructured, intrinsically denatured, intrinsically unfolded,
intrinsically disordered, vulnerable, chameleon, malleable, 4D, protein clouds, dancing proteins, pro-
teins waiting for partners, and several other names often representing different combinations of “na-
tively/naturally/inherently/intrinsically” with “unfolded/unstructured/disordered/denatured” (Dunker
et al. 2013).

¹²Whose authors are some of the most prominent figures in protein disorder research.
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Table 1: List of IDPs studied in the publications included in this work and some of their fundamental physicochemical prop-
erties. Histatin 5 4−15 corresponds to the active segment of Histatin 5, i.e., the contiguous amino acid sequence
from residues 4 to 15. It does not exist in vivo. The percentage of disorder-promoting residues is calculated ac-
cording to the key disorder-promoting amino acids residues as listed by Williams et al. (2001). pI is the isoelectric
point, that is, the pH value for which the protein has a net charge of zero. FCR and NCPR stand for fraction of
charged residues and net charge per residue, respectively, as defined by Das et al. (2015).

Histatin 5 Histatin 5 4−15 β-casein PRP-1

Paper(s) i, iv–vi vi ii, iii iii
Organism Homo sapiens – Bos taurus Homo sapiens
Uniprot ID P15516 P15516 P02666 P02810
Seq. position 20–43 23–34 16–224 17–166
Sequence length 24 12 209 150
 disorder-promoting res. 54.2 58.3 54.6 84.7
 titrable res. 66.7 66.7 21.1 17.3
 hydrophilic res. 83.3 75.0 47.5 66.0
 hydrophobic res. 16.7 25.0 52.6 34.0
pI 10.3 11.2 5.2 4.6
Net charge (pH ) 5.4 5.1 −7.6 −7.0
FCR 0.40 0.44 0.18 0.16
NCPR 0.23 0.44 0.04 0.05

This class of proteins is characterized by broad structural, dynamic and functional
characteristics. More specifically, IDPs can be classified into distinct conformational
classes based on their amino acid compositions, and - from a functional point of view -
IDPs are often implicated in important cellular processes that include cell division and
signaling, intracellular transport, bacterial translocation, cell mechanics, protein degra-
dation, posttranscriptional regulation, and cell cycle control (Das et al. 2015). These
functions typically require binding to multiple partners, where high-specificity and/or
low-affinity interactions play a crucial role, and they are only possible due to the intrin-
sic disorder of these proteins. Just as with their folded counterparts, numerous IDPs are
also associated with human diseases, including cancer, cardiovascular disease, amyloi-
doses, neurodegenerative diseases, and diabetes (Uversky et al. 2008). The association
with pathology is, no doubt, one of the main reasons behind the fast-growing interest
in these proteins.

Curiously, the IDPs studied in the publications included in this work (Histatin 5, β-
casein and PRP-1; see Table 1) are not believed to be the cause of any known disease(s).
They may, however, present potential pharmaceutical applications. In particular, His-
tatin 5 (Oppenheim et al. 1988) and its active fragment Histatin 5 4−15 (Wei & Bobek
2005), belong to the Histatin protein family, which is composed of closely related sali-
vary and histidine-rich IDPs with a myriad of functions, from the maintenance of oral
health to the integrity of the tooth surface. However, it is their high efficacy against
fungal infections, namely the blastospore and the germinated form of Candida albicans
(Xu et al. 1991), that is their most interesting characteristic, given the possibility of us-
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ing enhanced Histatin 5 variants in therapeutic contexts. The proline-rich protein 1 or
PRP-1 (Wong & Bennick 1980), is another salivary IDP with interesting pharmaceuti-
cal applications. It belongs to the proline-rich protein family (PRPs) (Hay et al. 1988),
which are involved in the remineralization of the teeth and in tissue coating, being thus
essential for the maintenance of the tooth enamel (Bennick 1982). PRPs account for
approximately 70% of all salivary proteins (Schenkels et al. 1995), making them an
essential constituent of saliva substitutes for people suffering from xerostomia¹³. Un-
fortunately, these proteins can only be found in saliva, and in very small concentrations,
making it very hard to purify them in the amounts necessary for academic and indus-
trial purposes. Interestingly, a family of milk proteins called caseins have been shown
to possess anticariogenic and remineralizing properties similar to those of PRP-1. β-
casein (Ribadeau et al. 1972) is one of the most representative members of its family,
constituting up to 45% of all caseins (Farrell et al. 2004), and like PRP-1 it is also an
IDP (Tompa 2002). Furthermore, while not a PRP per se, its sequence also contains a
high number of proline residues. Thus, it has been hypothesized that β-casein could
be used as a cheap and highly available alternative for PRP-1.

The absence of a well-defined structure in disordered proteins complicates the ap-
proach that must be taken when considering structural studies, since the most common
goal, that is, the determination of a unique high-resolution structure, is not attainable
for the isolated protein. Instead, the goal of such studies is usually to obtain information
on the collection¹⁴ of states that is sampled by the protein, including the estimation of
its average size, shape and flexibility; and the detection of residual secondary structure,
transient long-range contacts, and regions of restricted or enhanced mobility; with the
hope that such information may prove informative regarding the associated biological
function (Eliezer 2009). From an experimental point of view, this type of study can
be quite challenging and thus the evergrowing importance of computer modeling and
simulation of intrinsically disordered proteins (Rauscher & Pomès 2010).

¹³Xerostomia or “dry mouth syndrome” arises when there is a change in saliva composition, or if the
saliva flow is reduced. There are various possible causes for this, including Sjögrens syndrome, diabetes,
eating disorders, malnutrition and radiotherapy. It can be a side effect of various prescription drugs. Some
of the most severe symptoms associated with xerostomia are tooth decay, tooth loss and an increased risk
of infection (Napeñas et al. 2009).

¹⁴The most appropriate word here would be “ensemble”, a concept which will be addressed further
ahead in Section 2.1.
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2 Theoretical background

In this section, a brief overview of the theoretical foundations required to understand
how the properties of a system are connected to its microscopic behavior will be pre-
sented. As such, some of the most essential concepts of statistical thermodynamics and
classic statistical mechanics need to be addressed. Special emphasis will be put into the
theoretical description of the different types of intermolecular interactions, which are
of paramount importance to the development of protein models.

2.1 Statistical thermodynamics

The object of statistical thermodynamics is to provide the molecular interpretation of
equilibrium properties of macroscopic systems. In order to calculate macroscopic prop-
erties from molecular properties, it is necessary to set up postulates which allow us to
proceed directly with this task as far as mechanical thermodynamic properties are con-
cerned (e.g. pressure, energy, volume, number of molecules, etc). Non-mechanical
properties (e.g. temperature, entropy, free energy, chemical potential, etc) are handled
indirectly by classic thermodynamics. However, before presenting the postulates, we
must first introduce the concept of an ensemble of systems.

An ensemble can be defined as a mental collection of a very large number N of
systems, each constructed to be a replica, on a thermodynamic level, of the reference
thermodynamic systemwhose properties are being investigated. For a system of interest
with volume V, containing N molecules, immersed in a large heat bath at temperature
T, the assigned values of N, V and T are sufficient to determine its thermodynamic
state. The respective ensemble would consist of N systems, constructed to duplicate
the thermodynamic state (N, V, T ) and environment of the original system. All sys-
tems in the ensemble are identical from a thermodynamic point of view, but not on the
molecular level, given that there is an extremely large number of quantum states con-
sistent with the reference thermodynamic state. It is important to note that, due to the
many different quantum states represented in the various systems of the ensemble, the
calculated instantaneous value of any mechanical variable (not held constant) will dif-
fer depending on the quantum state. Hence, to obtain its average value, it is necessary
to average over these instantaneous values, a procedure which is commonly referred
to as “ensemble averaging”. With this, we arrive at the first postulate of statistical
thermodynamics:

The (long) time average of a mechanical variable A in the thermodynamic
system of interest is equal to the ensemble average of A, given that N → ∞.

The second postulate states:

In an ensemble representative of an isolated thermodynamic system, the sys-
tems of the ensemble are distributed with equal probability over all possible
quantum states.

5



(a) A non-equilibrated canonical ensem-
ble (withN systems) exchanges energy
with a very large heat bath.

(b) Energy equilibrium is achieved and the
net energy transfer between the ensem-
ble and the heat bath is zero.

(c)Thermal insulation can now be placed
around the ensemble.

(d)The ensemble can be removed from
the heat bath.

Figure 2.1: Thought experiment on how the canonical ensemble can be effectively treated as an isolated system, a con-
dition which is necessary in order to apply the ergodic hypothesis. Notice that the ensemble in (d) is still
considered canonical, given that each system is now in a “heat bath” composed of the remaining N − 1
systems.

The latter is usually called the “principle of a priori probabilities”, and the word “iso-
lated” is of key importance, since this postulate can be limited to the case of an isolated
system, where N, V and the energy E are kept constant. The representative ensem-
ble of such system is commonly called microcanonical. On the other hand, the first
postulate is applicable to all different thermodynamical environments, of which the
canonical (N, V, T ) and isothermal-isobaric (N, p, T )¹⁵ ensembles are the most rele-
vant for this work. When the first and second postulates are combined, we arrive at the

¹⁵p stands for pressure.
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so-called ergodic hypothesis, which implies that a single isolated system spends equal
amounts of time, over a long period of time, in each of the available quantum states.
In other words, all accessible quantum states are equiprobable over a long period of
time. The concept of ergodicity is of central importance for the statistical analysis of
computational chemistry and biophysics.

As a general rule, most textbooks dedicated to this subject nowmake use of the these
two postulates to derive the essential properties of the most commonly encountered
ensembles, generally starting from the simplest case, i.e., the microcanonical ensemble.
This is, however, out of the scope of this work, and I will instead focus on presenting
the essential properties of the canonical ensemble, which is of greater relevance for the
simulation of biophysical systems such as proteins in solution.

In the canonical ensemble, a given system has a fixed volume V, fixed number of
molecules N, and it is immersed in a very large¹⁶ heat bath at temperature T. A priori,
because the thermodynamic system is not isolated but in contact with a heat bath, the
energy of the system can fluctuate. However, once equilibrium is reached, thermal in-
sulation can be placed around the outer boundaries of the ensemble, and the ensemble
can be removed from the heat bath. In this procedure, the ensemble can be effectively
treated as an isolated system (see Figure 2.1). Thus, the ergodic hypothesis holds and the
basic statistical-mechanical equations that can be used to calculate the thermodynamic
properties of a closed, isothermal system, can be derived.

As is customary, we should start by introducing the probability that the system is
in any particular energy state Ej:

Pj(N,V,T ) =
e−Ej(N,V )/kT

Q(N,V,T )
, (2.1)

where
Q(N,V,T ) =

∑
j

e−Ej(N,V )/kT . (2.2)

Here,Q is the so-called partition function - the canonical ensemble partition function,
in this specific case - and it describes the equilibrium statistical properties of the system.
Partition functions are functions of the thermodynamic state variables, and most of the
aggregate thermodynamic variables of the system, such as the Helmholtz free energy
A, entropy S, pressure p, total energy E, and chemical potential µ can be expressed in

¹⁶So that the limit N → ∞ holds.
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terms of the partition function or its derivatives:

A(N,V,T ) = −kT lnQ(N,V,T ) , (2.3)

S = −
(
∂A
∂T

)
V, N

= kT
(
∂ lnQ
∂T

)
V, N

+ k lnQ , (2.4)

p = −
(
∂A
∂V

)
T, N

= kT
(
∂ lnQ
∂V

)
T, N

, (2.5)

E = −T 2
(
∂A/T
∂T

)
V, N

= kT 2
(
∂ lnQ
∂T

)
V, N

, (2.6)

µ =

(
∂A
∂N

)
T, V

= −kT
(
∂ lnQ
∂N

)
T, V

. (2.7)

For a more comprehensive, yet accessible, presentation of the subjects discussed in
this section, the reader is referred to Hill (1986, Chapters 1 and 2).

2.2 Classical statistical mechanics

The basics of statistical thermodynamics are commonly laid out from the quantum
perspective, as it often provides a more general postulatory foundation. It is, however,
worth noting that some of the most commonly used computer simulation methods for
the study of the trajectories of atoms and molecules, make use of the laws of classical
(Newtonian) mechanics for computing the motions within a system of interacting par-
ticles. Luckily, no results are obtainable from classical statistics which cannot be found
as limiting laws from quantum statistics.

In the classical approach, the canonical partition function becomes:

Q class =
1

N ! h 3N

∫
e−H(q, p)/kTdx1 . . . dpzN , (2.8)

where h is Planck’s constant,H(q, p)¹⁷ is the Hamiltonian of a N components system
with coordinates q¹⁸ and momenta p¹⁹. This expression differs markedly from its
quantum equivalent, as presented in Eq. 2.2. Firstly, the classical sum over all possible
quantum states of the system is, in fact, an integral, since the classical state can vary
continuously. Secondly, the classical energy is given by the Hamiltonian function,
which is defined as:

H(q, p) =
1
2m

(p2x1 + . . .+ p2zN)︸ ︷︷ ︸
Kinetic energy

+U(x1, . . . , zN)︸ ︷︷ ︸
Potential energy

. (2.9)

¹⁷Vectors are represented by upright boldface characters.
¹⁸q = x1, . . . , zN
¹⁹p = px1, . . . , pzN
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Integration of the kinetic term of the Hamiltonian can be carried out immediately, and
we obtain a simplified form of Eq. 2.8

Q class =
ZN

N ! Λ3N , (2.10)

where
Λ =

h

(2πm kT )1/2
(2.11)

and
ZN =

∫
V
e−U(x1,..., zN)/kTdx1 . . . dzN . (2.12)

Λ is the de Broglie wavelength and ZN is called the classical configuration integral.
The latter is of paramount importance for the calculation of the (canonical) ensemble
average of a given property A (in the classical approach)²⁰:

⟨A ⟩ =
∫
V A(x1, . . . , zN) e−U(x1,..., zN)/kTdx1 . . . dzN∫

V e−U(x1,..., zN)/kTdx1 . . . dzN
=

=

∫
V A(x1, . . . , zN) e−U(x1,..., zN)/kTdx1 . . . dzN

ZN
.

(2.13)

In-depth presentations of this subject, with examples of applications for simple
systems such as the ideal gas, are given by Kjellander (2012, Chapter 4) and Hill (1986,
Chapter 6).

2.3 Intermolecular interactions

Intermolecular forces embrace all forms of matter and (bio)chemically relevant systems,
such as a protein in solution, are no exception. According to Israelachvili (2011, Section
1.1), there are four distinct forces in nature. Strong and weak interactions, electromag-
netic and gravitational interactions. The first two occur between subatomic particles
and are the domain of nuclear and high-energy physics. The last one accounts for tidal
motion and cosmological phenomena, and in most cases can be safely neglected when
studying phenomena at the atomic scale. Electromagnetic forces, however, are usually
the source of all intermolecular interactions, dictating the properties of solids, liquids,
and gases, the behavior of particles in solution, chemical reactions, and the organiza-
tion of biological structures. Electromagnetic interactions can generally be divided into
two main groups:

Covalent – In this type of interaction, electron pairs are shared between atoms, giving
rise to a chemical bond. It is thus intramolecular, complex and quantum mechanical

²⁰Notice that A ̸= A. The latter usually stands for the Helmholtz free energy.
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(a) Two charged particles. (b) One charged particle and an ideal charged
surface.

Figure 2.2: Two types of charge–charge interactions. (a) Two charged particles qi and qj at a distance r, as in the Coulomb
interaction (Eq. 2.16). (b) A charged particle q and a uniformly charged surface with surface charge potential
Ψ0, as in the Gouy-Chapman theory (Eq. 2.21).

by nature. In simpler, non-quantum mechanical simulations methods, the covalent
bond is often approximated to a fixed length or as oscillating around an equilibrium
distance, such as in a harmonic potential. This will be discussed in further detail in the
next section.

Non-covalent – This class comprises the many different types of interactions or physi-
cal forces between non-bonded, discrete atoms and/or molecules. At least seven types
of non-covalent or non-bonded intermolecular interactions can be present in biologi-
cally relevant systems, such as proteins in solution. All of these interaction types will
presented in the following subsections. However, it should be noted that for most
protein modeling purposes, it is common practice to limit the number of non-bonded
interactions to be considered.

2.3.1 Charge–charge

As the name implies, charge–charge interactions describe the forces between two charged
particles²¹ and they are by far the strongest of the physical forces considered here. In
certain cases it can even be stronger than most chemical binding forces.

The electric field E due to a point charge i a distance r away is:

Ei =
qi

4πε0εr 2
, (2.14)

where ε0 and ε are the vacuum permittivity and the dielectric permittivity of the
medium, respectively. The interaction of this field with a second charge qj at r, gives

²¹By “particles” I mean atoms and/or molecules, as the latter can be also be regarded as a point charge
when represented in a simplified, coarse-grained formalism.
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rise to a force known as the Coulomb force or Coulomb Law (see Figure 2.2a):

F(r) = qjEi =
qiqj

4πε0εr 2
. (2.15)

The pair potential²² for the Coulomb interaction between two charges qi and qj is
therefore:

U(r)Coulomb =

∫ r

∞
−F(r) dr =

qiqj
4πε0εr

. (2.16)

Since qi = zi ec, where zi is the ionic valency of particle i and ec is the elementary
electron charge, we can further simplify Eq. 2.16 as:

U(r)Coulomb

kT
=

e 2c
4πε0εkT

zizj
r

⇔ βU(r)Coulomb = λB
zizj
r

, (2.17)

where λB is the so-called Bjerrum length and β = 1/kT.
In Eqs. 2.16 and 2.17, the only attenuation to the electrostatic interaction between

charges qi and qj is due to the dielectric permittivity of the medium ε. However, it is
often the case that themedium contains other ionic species, such as salt. The presence of
these ionic species further enhances the aforementioned electrostatic screening between
charges qi and qj. By making use of the Debye-Hückel theory, it is possible to arrive at
a “screened” version of the Coulomb potential, which is given by:

βU(r)Debye-Hückel = λB
zizj
r

e−κr , (2.18)

where κ is the inverse of the Debye (screening) length κ−1, which can be written as:

κ−1 =

(
ε0εkT
2NAe 2c I

)1/2
. (2.19)

In the previous equation, I is commonly referred to as the ionic strength and it is
expressed as:

I =
1
2

∑
k

z 2k ck , (2.20)

with ck being the concentration of ionic species k. It should be noted that the Debye-
Hückel theory is approximate and works best for monovalent ions due to weak ion
correlation effects²³. Furthermore, the electrostatic screening is overestimated when

²²Also referred to as free energy or available energy.
²³To arrive at Eq. 2.18, a major approximation is used, that is, ion-ion correlation effects are entirely

neglected. This means that we disregard the fact that ions of the same charge are repelled from the neigh-
borhood of each other and ions of opposite charges are attracted to each other. It also means that we
disregard the fact that ions cannot come closer to each other than the sum of their radii (Greberg et al.
1996). Luckily, for monovalent ions, this effect is not critical.
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Figure 2.3: Schematic representation of the interaction between a charged particle q and a permanent dipole µ (Eq. 2.23).
θ is the polar angle of the dipole.

the charges are in close contact, as a consequence of the continuum representation of
salt ions.

Charge–charge intermolecular interactions are not restricted to “free” charged par-
ticles in solution. In fact, interactions occurring between charges fixed at a surface and
those free in solution play an important role in many different research fields. For
this particular work, the study of the interactions between proteins and charged sur-
faces, such as silica, are of great importance. The Gouy-Chapman theory relates surface
charge density to surface potential and ion distribution outside a planar surface. In this
theory, the surface is considered ideal, i.e., an infinite, uniformly charged planar surface
exposed to an electrolyte solution, and the potential at any distance r from the surface
is given by:

βΨ(r)Gouy-Chapman =
2
ec
ln

(
1+ Γ0 e−κr

1− Γ0 e−κr

)
, (2.21)

where
Γ0 = tanh

(
ecΨ0

4kT

)
, (2.22)

and Ψ0 is the potential at the charged surface (see Figure 2.2b).
To arrive at the final expressions for the charge–charge interactionwithin theDebye-

Hückel and Gouy-Chapman approaches (Eqs. 2.18 and 2.21, respectively), we must
solve the Poisson-Boltzmann equation under different conditions, and the reader is re-
ferred to Israelachvili (2011, Chapter 14) and Evans &Wennerström (1999, Section 3.8)
for more complete presentations of this subject.

2.3.2 Charge–dipole

Charge–dipole interactions occur between a charged particle and a polar molecule. For
a charge q at a distance r from the center of a point dipole µ at an angle θ (see Figure
2.3), the corresponding pair potential can be written as:

U(r, θ)charge–dipole = −q µ cos θ
4πε0εr 2

. (2.23)

At large separations or in a medium of high dielectric permittivity ε, the angle de-
pendence of this interaction falls below the thermal energy kT, and dipoles can rotate
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Figure 2.4: Schematic representation of the interaction between two permanent dipoles µi and µj (Eq.: 2.25). θi and θj

are the respective polar angles, and ϕ is the azimuthal angle.

freely. Therefore, we can produce an angle-averaged charge–dipole pair potential:

U(r)charge–dipole ≈ − q2µ2

6(4πε0ε)2kTr 4
for kT >

qµ
4πε0εr 2

. (2.24)

As can be seen, the interaction range decreases sharply, going from a 1/r 2 → 1/r 4

distance dependence.
For a practical demonstration of the derivation and approximations used in order

to arrive at Eq. 2.24, the reader is referred to Israelachvili (2011, Section 4.10). The same
rationale can be employed to obtain all other angle-averaged pair potentials presented
below.

2.3.3 Dipole–dipole

In the samemanner that a charge can interact with another charge or a polar molecule (a
permanent dipole), for two polar molecules near each other, with permanent dipoles µi
and µj, the dipole–dipole interaction can be expressed by the following pair potential:

U(r, θi, θj, ϕ)dipole–dipole = −
µiµj

4πε0εr 3
[
2 cos θi cos θj − sin θi sin θj cosϕ

]
. (2.25)

Notice that we now have to consider two polar angular dependencies θi and θj, and
one azimuthal angle ϕ, in order to describe all rotational degrees of freedom of the two
interacting dipoles (see Figure 2.4). However, as seen for the charge–dipole case, for
weak interactions (relative to the magnitude of kT ) it is possible to derive an angle-
averaged dipole–dipole pair potential:

U(r)Keesom = −
µ2i µ

2
j

3(4πε0ε)kTr 6
for kT >

µiµj
4πε0εr 3

. (2.26)

The angle-averaged dipole–dipole interaction between two permanent dipoles is one of
the three fundamental interactions contributing to the total van der Waals interaction
between atoms and molecules, and is commonly referred to as the Keesom interaction.
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(a) A positively charged particle emits an elec-
tric field in the vicinity of a non-polar particle
with polarizability α.

(b)The electric field from the positively charged
particle attracts the electron cloud of the non-
polar particle, resulting in its displacement
relative to the nucleus, effectively inducing a
dipole.

Figure 2.5: Schematic representation of the interaction between a charged particle q and a non-polar particle with po-
larizability α (Eq. 2.27). Here, the electron cloud is represented as a dashed circle/ellipse. The nucleus is
represented as a filled black circle.

2.3.4 Charge–non-polar

All atoms and molecules are polarizable under the influence of an external electric field
E. This is always true, regardless of whether these molecules were originally polar or
non-polar by nature. This polarizability α arises from the displacement of the electron
cloud relative to the positively charged nucleus, as a result of the applied field (see Figure
2.5). The polarization of an otherwise non-polar molecule is termed induced dipole.
The charge–non-polar or, more appropriately, charge–induced dipole interaction pair
potential is as follows:

U(r)charge–induced dipole = − q2α
2(4πε0ε)2r 4

. (2.27)

For non-polar molecules, α = α0. However, and as mentioned above, a permanent
dipole can also be (further) polarized, and thus:

α = α0 + αdipole = α0 +
µ2

3kT
, (2.28)
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making Eq. 2.27 of general application, that is, applicable to both non-polar and polar
molecules.

2.3.5 Dipole–non-polar

By analogy with the previous example, a polar molecule is also able to interact with a
non-polar molecule. The main difference is that in this case, the inducing field comes
from a permanent dipole instead of a charge. Thus, for a fixed dipole µ oriented at an
angle θ from a non-polar molecule with polarizability α0:

U(r, θ)dipole–induced dipole = − µ2α0(1+ 3 cos2 θ)
2(4πε0ε)2r 6

. (2.29)

The strength of this interaction is, however, commonly not strong enough to mutually
align the molecules, as is the case for charge–dipole and dipole–dipole interactions.
Therefore, the effective interaction is given by the angle-averaged energy:

U(r)Debye = −
µ2i α0i + µ2j α0j

(4πε0ε)2r 6
. (2.30)

This is the second of the three inverse sixth power contributions to the total van der
Waals interaction energy between molecules, and is often referred to as the Debye in-
teraction.

2.3.6 Non-polar–non-polar

In addition to purely electrostatic interactions involving charged or dipolar molecules,
there is another type of force, commonly known as dispersion or London force²⁴, that
acts between all atoms and molecules. This force constitutes the third contribution to
the total van der Waals interaction energy between molecules, and it is of paramount
importance, due to the fact that it is always present, independently of the properties
of the molecules being considered. Furthermore, this is the only possible interaction
between two non-polar molecules. Dispersion forces are quantum mechanical by na-
ture and their rigorous theoretical treatment is out of the scope of this work. In an
overly simplistic manner, we can think of it as follows: even though the time average
of the dipole moment of a non-polar atom (or molecule) is zero, at any given instant
there exists a finite dipole moment due to the anisotropic distribution of its electrons
around the nucleus. This instantaneous dipole generates an electric field that is capable
of polarizing a nearby non-polar atom (or molecule), effectively inducing a dipole (see
Figure 2.6).

²⁴Due to the major contribution of Fritz London to the study and understanding of the dispersion
interaction.
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(a) Two non-polar particles with polarizabilities
α have ⟨µ⟩ = 0.

(b) However, their instantaneous µ ≥ 0.

(c) An instantaneous dipole of sufficient mag-
nitude may induce a dipole on a sec-
ond non-polar particle, leading to a stable
instantaneous–induced dipolar interaction.

Figure 2.6: Schematic representation of the interaction between two non-polar particles with polarizabilities αi and αj.
Note that for strictly non-polar molecules α = α0, as in Eq. 2.31. The electron clouds are represented as
dashed circles/ellipses, and the nuclei are represented as filled black circles.

London’s result for the dispersion force is the following (London 1937):

U(r)London = −3
2

α0iα0j

(4πε0)2r 6
hνiνj

(νi + νj)
, (2.31)

where h is Planck’s constant, as encountered before, and ν is the orbiting frequency of
the electron. For two identical atoms, the previous equation reduces to:

U(r)London = − 3hνα2
0

4(4πε0)2r 6
. (2.32)

One of the most obvious shortcomings of London’s theory is that it cannot handle
the interaction of molecules in a solvent, as is readily noticed by the absence of the
solvent dielectric permittivity ε in Eqs. 2.31 and 2.32. McLachlan’s theory (McLachlan
1965) is an alternative and more comprehensive approach, which covers the effect of
the medium on dispersion forces in liquids.
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Figure 2.7: Graphical representation of the Coulomb and Lennard-Jones potentials (Eqs. 2.16 and 2.33, respectively),
along with the individual contributions to the latter, that is, Pauli repulsion and inverse sixth power attractive
distance dependence characteristic of van der Waals forces. The gray shaded area highlights the interaction
strength and range difference between Coulombic and van der Waals forces.

2.3.7 van der Waals forces

As brieflymentioned throughout the previous subsections, the three inverse sixth power
interaction potentials, namely the Keesom (Eq. 2.26), Debye (Eq. 2.30) and London
(Eq. 2.31) interactions, comprise what is known as the total van derWaals force. How-
ever, it is common to see the term “van der Waals” employed in a rather loose manner,
when referring to the latter of its constituents, that is, the London (or dispersion) in-
teraction between strictly neutral, non-polar molecules. This is a result of the natural
importance of this interaction, given its ubiquitous nature and often non-negligible
contribution to the overall interaction energy, whenever many of such interactions are
present in the system (which, more often than not, is the case).

That being said, the most commonly used mathematical expression used to model
van der Waals interactions is the Lennard-Jones potential:

U(r)Lennard-Jones = 4ϵ
[(σ

r

)12
−
(σ
r

)6]
, (2.33)

where σ is the interparticle distance for which the potential is zero, and ϵ is depth
of the potential. This potential is a composite, whose second term is responsible for
the attraction between two particles, having the same inverse sixth power form as all
the constituents of the total van der Waals force. This term alone is, however, not a
good representation of reality, because maximum attraction will occur at r = 0 with an
infinite strength and, in reality, two atoms or molecules cannot fully interpenetrate each
other. Hence the need to include a term that takes into account the so-called exchange
interaction or Pauli repulsion, which determines the closest interaction distance for

17



Figure 2.8: Example of a hydrogen bond network between water molecules. Even though four such interactions are
possible, the exact number of hydrogen bonds formed by a molecule of liquid water fluctuates with time and
depends on the temperature. The average number of hydrogen bonds per water molecule is around 3.59, for
the TIP4P water model at 25 ◦C (Jorgensen & Madura 1985).

two particles. This repulsive term can be modeled either as “hard wall”, i.e.,U(r) = ∞
when r is below a certain threshold, or as “soft repulsion”, by means of a 1/r 12 type of
potential.

Figure 2.7 shows the characteristic shape of the Lennard-Jones potential, along with
its individual terms. The Coulomb potential (recall Eq. 2.16) is also shown to exem-
plify the difference in strength and effective interaction range between charge–charge
interactions and van der Waals forces.

2.3.8 Hydrogen bond

The hydrogen bond can be described as a (mostly) electrostatic attraction between two
polar molecules, occurring when a hydrogen atom covalently bonded to a highly elec-
tronegative atom such as oxygen, nitrogen or fluoride experiences the electrostatic field
of another highly electronegative atom nearby. In simple terms, it can be considered a
particularly strong case of the dipole–dipole interaction, but while the latter is usually
not strong enough to lead to the mutual alignment of polar molecules in solution, the
former can lead to fairly strong interactions with considerable directional character (see
Figure 2.8). On a more rigorous theoretical ground, the nature of the hydrogen bond
appears to be much more complex (Weinhold 1997), and opinions regarding whether
it is purely electrostatic or if it also possesses some covalent character are divided in
reference journal publications (Isaacs et al. 1999; Ghanty et al. 2000) and textbooks
(Israelachvili 2011; Jackson 2006).

Apart from this controversy, it is widely recognized that hydrogen bonds play a key
role in chemistry and biochemistry, e.g., determining the three-dimensional structures
adopted by proteins and nucleic bases in DNA. Furthermore, the solvation of solute
molecules by water and, consequently, the hydrophobic effect²⁵, are also in great part

²⁵In simple terms, the hydrophobic effect can be described as the tendency of non-polar molecules to
aggregate in aqueous solution. This is a complex phenomenon, which is in part due to the strong inclina-
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due to the hydrogen bond interaction.
Despite its relevance, there is no simple equation for the interaction potential that

is satisfactorily predictive or accurate. The typical hydrogen bond strengths appears to
fall under a 1/r 2 distance dependence, but application of the charge–dipole interac-
tion pair potential (recall Eq. 2.23) is not possible since the magnitude of the partial
hydrogen charge is not known in advance.

tion of water molecules to form hydrogen bonds. By “clumping” all non-polar solute molecules together,
the solute surface area is minimized and the number of water–water hydrogen bonds is maximized. This
reduces the (considerable) energetic penalty arising from having to disrupt the bulk liquid structure in
order to accommodate for the solute (Israelachvili 2011; Jackson 2006, Sections 8.5 and 2.8, respectively).
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3 Modeling

In the previous section, the reader was presented with a brief overview of the foun-
dations of statistical thermodynamics, its extension to the classical limit, and the dif-
ferent types of (intra- and) intermolecular interactions between atoms and molecules
that, when taken together, make up the potential energy of the system. Obtaining a
good model function for the potential energy which can weight the configurations of
the system in a proper way is, in a way, the real secret behind the “art” of simulation
modeling.

Since classical mechanics does not consider properties that depend upon the elec-
tronic distribution in a molecule, several valid assumptions have to be taken in account.
The Born-Oppenheimer approximation, makes it possible to express the Hamiltonian
of a system as a function of the nuclear variables (only), since the rapid motions of the
electrons are averaged out. Therefore, the classical potential energy function, which is
often called a model, tries to describe as accurately as possible the energy of the sys-
tem using a rather simple model of the interactions within a system with contributions
from processes such as the stretching of bonds, the opening and closing of angles, the
rotations about single bonds (intramolecular forces); and non-bonded interactions (in-
termolecular forces), such as electrostatic and van der Waals interactions.

The degree of detail needed to preserve the dominant physical properties of a given
system can vary considerably. Just as the Born-Oppenheimer approximation is of-
ten employed to reduce the complexity of a system for which electronic detail is not
strictly necessary, even less detailed models - approximating molecules and building
block residues, such as amino acids, to simple spheres (see Figure 3.1b) - can also pro-
duce very satisfactory results. This type of approximate formulation is commonly re-
ferred to as coarse-graining or coarse-grainedmodeling. Atomisticmodels (see Figure
3.1a), while also approximate when compared to quantum mechanical solutions, de-
scribe the system at the atomic level. In this work, both coarse-grained and atomistic
models are used to describe systems of proteins in solution and in the presence of a
charged surface. The motivation for using one model or the other is heavily correlated
with the “scientific point of view” of each study, that is, what are the properties of in-
terest under investigation and does the model capture the essential features of system
accurately. Paraphrasing Einstein: “everything should be made as simple as possible,
but no simpler.”

3.1 Coarse-grained modeling of flexible proteins

In the coarse-grained simulations performed in this work, the intrinsically disordered
proteins studied therein are modeled as flexible bead necklaces, where each amino acid
residue and the termini are coarse-grained into soft, interpenetrating spheres, with or
without point charges at their centers (depending on the nature of the given amino
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(a) Fully atomistic representation of a protein. (b) Coarse-grained representation of a protein,
where each amino acid residue (and the ter-
minal groups) are represented as spheres.

(c) Even more coarse-grained representation of a
protein, where the entire structure is modeled
as a single sphere.

Figure 3.1: Modeling of a penta-alanine peptide at different levels of detail. Despite the inherent differences between
the models, it is possible that all of them capture (some of) the essential physics of the system, as required for
different scientific endeavors.

acid residue). These charges are allowed to fluctuate during the simulation, in order to
account for protein charge regulation. Furthermore, whenever it is of interest, an ideal
surface with fixed charge density ρ is included in the simulation box. Solvent and salt
effects are modeled implicitly through the Bjerrum and inverse Debye screening lengths
(λB and κ, respectively; see Figure 3.2). The complete potential energy function for this
coarse-grained model has the following form:

U(x1, . . . , zN) = Ubonds + UPauli repulsion + Uhydrophobic + UDebye-Hückel

+ Utitration + ULennard-Jones + UGouy-Chapman︸ ︷︷ ︸
For surface adsorption simulations only.

. (3.1)

Notice that the last two terms are exclusive for surface adsorption simulations. All other
terms are considered necessary in maintaining the essential features of (disordered) pro-
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Figure 3.2: Illustration of a coarse-grained protein (β-casein, from Papers ii and iii) adsorbed onto a charged surface of
charge density ρ. Solvent and salt are modeled implicitly, through the Bjerrum length λB and the inverse Debye
screening length κ.

teins in solution. Further coarse graining would probably result in a non-representative
model, with little to no application for the studies at hand, because model details are
not only system specific but also tightly related to the goal of the study. The first five
terms in Eq. 3.1 are expressed as:

Ubonds =
∑
b

1
2
kb(rij − r0)2 , (3.2)

UPauli repulsion =
∑
i, j

4ϵr
(
σi + σj

2 rij

)12
, (3.3)

Uhydrophobic =
∑
i, j

ϵh for rij ≤ rcutoff , (3.4)

UDebye-Hückel =
∑
i, j

λB
zizj kT
rij

e−κrij , (3.5)

Utitration =
∑
i

kT ln 10 (pH− pKa i) , if i is protonated . (3.6)

The bonded term (Eq. 3.2; b stands for bond) keeps residues i and j connected while
allowing harmonic vibrations around the equilibrium bond distance r0, and kb is the
respective force constant. As mentioned above, protein residues are modeled as soft
spheres. The extent of this overlap is governed by a repulsive 1/r 12 distance dependence
(see Eq. 3.3), loosely referred to as Pauli repulsion, due to Wolfgang Pauli’s exclusion
principle²⁶. In this term, ϵr is a parameter whose magnitude is inversely proportional

²⁶Notice that Pauli’s exclusion principle was not exactly formulated for this case, as it is quantum
mechanical by nature, stating that two identical fermions cannot occupy the same quantum state simul-
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Figure 3.3: Difference between standard and shifted Lennard-Jones potentials (see Eqs. 2.33 and 3.7, respectively). For
simplicity ϵ and σ are assumed to be unity. In the shifted version, maximum attraction occurs exactly at r = σ,
while in the standard form it is verified at r = 21/6σ ≈ 1.222σ.

to the degree of overlap allowed between beads, and σi and σj are the radii of beads
i and j, respectively. In this model, two hydrophobic residues experience attraction
to each other through a square well potential of magnitude ϵh (see Eq. 3.4), within a
certain cutoff distance rcutoff . Charged residues interact according to the Debye-Hückel
theory (see Eq. 3.5), i.e., a “screened” version of the Coulomb potential as shown earlier
(recall Section 2.3.1). Finally, if the deprotonated state of a titrable amino acid residue
is chosen as the “reference state”, with no overall contribution to the potential energy
function, the contribution from the protonated state of the very same titrable residue
takes the form shown in Eq. 3.6, where pKa i is the negative logarithm of the acid
dissociation constant Ka for residue i.

As mentioned earlier, the last two terms in Eq. 3.1 are only applicable to simulations
where an ideal charged surface is also present, and can be expressed as:

ULennard-Jones =
∑
i

ϵs

[(
σi
ris

)12
− 2

(
σi
ris

)6
]

, (3.7)

UGouy-Chapman =
∑
i

2kT
ec

ln

(
1+ Γ0 e−κris

1− Γ0 e−κris

)
. (3.8)

The first surface-specific term of the potential energy function is a shifted Lennard-
Jones potential (see Eq. 3.7), which is used here to model non-electrostatic interactions
(dispersion forces) between protein residues and the charged surface. ϵs is the depth

taneously. However, the main idea behind this principle is often carried into classical physics, as two
particles cannot occupy the same exact position in space, at the same time.
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(a) Bond (Eq. 3.10). (b) Angle (Eq. 3.11).

(c) Proper dihedral (Eq. 3.12). (d) Improper dihedral (Eq. 3.13).

Figure 3.4: Schematic representation of the different “bonded” interactions present in this atomistic potential energy
function (Eq. 3.9).

of the potential, σi is the radius of particle i, and ris is the distance between particle
i and the surface s. As can be seen in Figure 3.3, the shifted Lennard-Jones potential
has a more convenient form for this particular type of interaction, due to the fact that
a particle will experience a maximum attraction towards the surface at close contact.
With a standard Lennard-Jones potential (recall Eq. 2.33), the dispersion interaction
between protein residues and the surface would be zero at the same distance, which is
not a good representation of this interaction. Electrostatic interactions between charged
residues and the charged surface are captured by using the Gouy-Chapman theory (see
Eq. 3.8 and recall Section 2.3.1). Γ0 is the same as in Eq. 2.22.

Finally, notice that (for simplicity) an informal summation notation is adopted
throughout this work. Lower and upper bounds are omitted, andmultiple summations
are generalized into a single summation sign running over several indices, separated by
commas.

3.2 Atomistic modeling of proteins

The atomistic simulations of IDPs, as presented in some of the publications included in
this work, were performed with an atomistic model distributed in the Gromacs molec-
ular dynamics simulation package (Hess et al. 2008; Pronk et al. 2013; Abraham et al.
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2015). In this model, the following expression for the potential energy function is usu-
ally used to describe a variety of biomolecular systems, ranging from simple molecules
to complex proteins, lipid bilayers and nucleic acids:

U(x1, . . . , zN) =Ubonds + Uangles + Uproper dihedrals + Uimproper dihedrals︸ ︷︷ ︸
bonded interactions

+UCoulomb + Uvan der Waals︸ ︷︷ ︸
non-bonded interactions

.
(3.9)

Here, the first two terms are related to the harmonic constraints in the bond (two-body)
and angle (three-body) values, respectively. The third and fourth terms are related to
the four-body dihedral angle torsions. Altogether, the following equations represent
the bonded interactions related with the covalently bonded atoms (van der Spoel et al.
2014):

Ubonds = U(rij) =
∑
b

1
2
kb(rij − r0)2 , (3.10)

Uangles = U(θijk) =
∑
θ

1
2
kθ(θijk − θ0)

2 , (3.11)

Uproper dihedrals = U(ϕijkl) =
∑
ϕ

kϕ
[
1+ cos(nϕijkl − δ)

]
, (3.12)

Uimproper dihedrals = U(ξijkl) =
∑
ξ

kξ(ξijkl − ξ0) . (3.13)

Eqs. 3.10 and 3.11 represent, respectively, the harmonic vibrations of bonds rij, around
the equilibrium bond length r0; and bond angles θijk, around the equilibrium angle
θ0 (see Figures 3.4a and 3.4b). kb and kθ represent the respective force constants. The
aforementioned operators are often regarded as “hard” degrees of freedom, due to the
substantial energies that are required to cause significant deformations from their ref-
erence values. Most variation in structure and relative energies is due to the complex
interplay between the torsional and non-bonded contributions. Torsional potentials
represent the ability (or inability) of a bond to rotate around its own longitudinal axis.
It is inherent to adjacent four-body dihedral angles ijkl. Proper dihedral angles (Eq.
3.12) are defined according to the IUPAC/IUB²⁷ convention, where ϕijkl is the angle
between the ijk and jkl planes, with zero corresponding to the cis configuration (see Fig-
ure 3.4c). The periodic behavior of these interactions can be described by a sinusoidal
function with periodicity n and phase δ, and kϕ establishes the height of the torsion en-
ergetic barrier. Some dihedrals, called improper dihedrals, are however meant to keep
planar groups planar (e.g. aromatic rings) or to prevent molecules from flipping over

²⁷International Union of Pure and Applied Chemistry / International Union of Biochemistry.
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to their mirror images. They are commonly written in the form of a harmonic term
(see Eq. 3.13) that treats out-of-plane distortions and maintain chirality (see Figure
3.4d). The potential energy due to an improper dihedral ξ depends on the equilibrium
dihedral ξ0, and the force constant kξ. The summation indices b, θ, ϕ and ξ stand for
any pair, triplet or quadruplet of atoms that form a bond, angle, proper or improper
dihedral, respectively.

For the non-bonded interactions in Eq. 3.9, UCoulomb is the Coulomb interaction
between two charges, as presented in Eq. 2.16, but here one must now account for all
pairs of interactions between charged particles in the system:

UCoulomb = U(rij) =
∑
i, j

qiqj
4πε0εrij

. (3.14)

The non-polar–non-polar component of the inverse sixth power van der Waals forces
is, once more, approximated by the use of a Lennard-Jones potential:

Uvan der Waals = U(rij) =
∑
i, j

4ϵij

[(
σij

rij

)12
−
(
σij

rij

)6
]

, (3.15)

where ϵij is the depth of the potential well, and σij is the finite distance at which the
interparticle potential is zero. The Lennard-Jones potential can be written in alternative
ways, and for this specific formulation ϵij and σij are calculated based on the Lorentz-
Berthelot combination rules:

ϵij =
√
ϵii ϵjj , (3.16)

σij =
1
2
(σii + σjj) . (3.17)

3.3 Explicit water models

The two previous subsections deal with computer modeling of proteins at different lev-
els of detail. However, apart from the coarse-grained model case, where the solvent is
treated implicitly, no mention has been made regarding how water, the solvent in all
the studies presented this work, can be explicitly modeled. As it happens, the appro-
priate treatment of solute–solvent and solvent–solvent interactions is a key factor for
the outcome of most atomistic simulations, yet, it is common to see most of the effort
in protein modeling and force field development being directed towards the protein
itself. Intrinsically disordered proteins are specially sensitive to the choice of the wa-
ter model, as they are significantly exposed to the solvent, due to the (often) extended
conformational ensembles they tend to adopt on solution (Best et al. 2014; Palazzesi
et al. 2014; Piana et al. 2015; Henriques et al. 2015; Rauscher et al. 2015; Ye et al. 2015;
Mercadante et al. 2015; Henriques & Skepö 2016).
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(a) 3-site water model. (b) 4-site water model.

Figure 3.5: Schematic representations of the structures of (a) 3-site and (b) 4-site water models. The 3-site water model
contains one interaction site per atom. Each atom has a partial charge q and a mass m. l is the O–H bond
length, and θ is the H–O–H angle. SPC and TIP3P are both 3-site water models. The 4-site water model
contains a dummy site M for the charge of the oxygen atom. The delocalization of the oxygen partial charge
improves the electrostatic distribution around the water molecule. TIP4P/2005s and TIP4P-D are examples of
4-site water models. There are more complex water models, where an additional number of dummy sites are
used to represent the lone pairs of the oxygen atom, for example. Note: l and θ are not represented in (b) for
schematic simplicity.

There is a multitude of water models which can be used to simulate water molecules
explicitly. For brevity, only the water models which were used in the publications in-
cluded in this thesis will be presented, that is, the simple point charge (SPC) (Berendsen
et al. 1981), TIP3P (Jorgensen et al. 1983), TIP4P/2005s (Abascal & Vega 2005; Best
et al. 2014) and the TIP4P-D (Piana et al. 2015) water models. All these models are
non-polarizable, i.e., the partial charges and dipole moments are conserved throughout
the simulation, regardless of the external electric fields they may eventually be exposed
to²⁸, and they can be categorized according to the respective number of interaction
sites they possess (see Figure 3.5). The interaction of explicit water molecules among
themselves and with the solute (and explicit salt ions, when applicable) is mediated
by the same potential energy function as presented before (recall Section 3.2). Bonded
and non-bonded interactions follow the same exact formalism, and the main difference
among water models is mainly related to howmany interactions sites are present in their
construction and, as equal or more importantly, their unique parameters for the equi-
librium bond length, angle, partial charges and van der Waals interaction strength (see
Table 2). The rationale behind the derivation of such parameters is largely responsible
for the effect that water will have, as a solvent, on other biomolecules.

As a final comment, it should be noted that despite the inclusion of explicit water
molecules in a simulation, the dielectric permittivity of the medium (which is also
water) is still considered whenever calculating the Coulomb force between any two
charged particles in the system, as all interactions are considered pairwise additive, and
the effect of all the other water molecules is approximated by a single averaged effect.
This is mainly due to the fact that many-body interactions are often impractical or even
impossible to solve, and we must settle for approximations.

²⁸As is also the case for the protein models presented before.
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Table 2: List of parameters for the water models used in this work. q, l and θ are the partial charge, bond length and angle,
respectively, as shown in Figure 3.5. σ and ϵ are the typical Lennard-Jones parameters, as encountered several
times before (recall Section 2.3.7, for example). For TIP4P/2005s, two ϵ values are tabulated. The value signaled
with * is used for the calculation of water–water and water–salt interactions, and † is specific to water–protein
interactions. σ and ϵ are zero for water hydrogen atoms, which means that these atoms do not contribute to the
van der Waals interaction term of the potential energy function (recall Eq. 3.9).

parameter units water model

SPC TIP3P TIP4P/2005s TIP4P-D

q(O) ec 0.82 0.834 0 0
q(H) ec 0.41 0.417 0.556 0.58
q(M) ec - - 1.113 −1.16
l Å 1 0.957 0.957 0.957
θ degrees 109.47 104.52 104.52 104.52

σ(O) Å 0.317 0.315 0.316 0.317
ϵ(O) kJmol−1 0.651 0.636 0.775∗ / 0.938† 0.937

3.4 Considerations about force fields

Models and force fields are necessarily interconnected, and it is often the case that they
are used interchangeably when referring to the functional form and parameter set used
to calculate the potential energy of a system of atoms and molecules (or just particles,
as in a coarse-grained approach). For the specific purpose of this work, it seems more
appropriate to make an explicit distinction between them. Here, a model reflects the
physical model that governs all the interactions in the system, and it takes the form of a
potential energy function (recall Eqs 3.1 and 3.9), with individual terms for specific types
of bonded and non-bonded interactions. On the other hand, in order to define a force
field, we must not only specify the functional form, but also its intrinsic parameters.
Variables like bond length rij, bond angle θijk, and dihedral angle ϕijkl, among others,
can be determined from the positions of each particle in the system. Yet, the various
constants for each potential term, such as the bond force constant kb and the reference
bond length r0, are specific to each force field.

The quality of the force field is heavily determined by the quality of its parameters.
Hence, force field parameterization is of extreme importance for bringing simulations
into a fully quantitative and accurate level. However, regardless of the parameterization
undergone for a certain force field, it will never be able to reproduce all properties of a
system. In fact, a force field will generally predict certain properties better than others.
Transferability of the functional form and its parameters is thus an important feature
of a force field. Ideally, we would like to use the same set of parameters to model a wide
range of molecules of interest. Yet, since force field parameters are generally obtained
from quantum mechanical calculations and/or by fitting experimental data for a finite
(and often related) set of compounds, it is not possible to obtain general parameters
that satisfy all molecular structures. Therefore, most force fields are designed to handle
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a series of related molecules. Some force fields can be designed to handle a wider range
of molecular systems, but the price for their generality comes in the form of a hefty
decrease in accuracy, which makes their use limited to rough initial guesses of how a
certain system may behave.

As an example, let us consider the case of the atomistic simulation of structured and
intrinsically disordered proteins, as presented in Paper iv. The same molecular dynam-
ics force fields and water models that have been traditionally used to simulate folded
proteins with considerable success, perform very poorly when employed in the simu-
lation of IDPs. Yet, at the most basic level, folded and disordered proteins can appear
virtually indistinguishable, as, by definition, single-chain proteins are just a sequence
of amino acid residues joined by peptide bonds²⁹. Thus, a priori, it may not be entirely
obvious why the aforementioned force fields and water models are not able to produce
good results for the simulation of IDPs. This shows that we must be very careful when
selecting a given model and set of parameters for the simulation of a specific system.
Preliminary testing is key and, for this specific example, we should not assume that a
set of parameters originally derived for folded proteins should be directly transferable
to unfolded and disordered proteins.

²⁹Note that this is a gross oversimplification. The full picture is clearly much more complicated than
this, because folded and disordered proteins are enriched in either order- and disorder-promoting amino
acid residues, respectively. This leads to completely different behaviors in aqueous solution.
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4 Monte Carlo simulations

The multidimensional integral over particle coordinates, that is, the classical configu-
ration integral (see Eq. 2.12), can only be analytically computed for a few exceptional
cases. In all other cases, approximations or numerical techniques must be used to be
able to compute the ensemble average of a given property (see Eq. 2.13). The Monte
Carlo method is one of such techniques. The simplest Monte Carlo technique is de-
nominated random sampling or brute force Monte Carlo. It works in the following
manner: Say we are interested in obtaining the average value of a given function f (x).
In this approach, the unweighted average ⟨ f (x)⟩ is determined by evaluating f (x) at
a large number N of x values randomly distributed over the phase space. At N → ∞,
this procedure should yield the correct value. However, while conceptually easy to
understand, this method is of little use to evaluate ensemble averages due to the fact
that most of the computational effort is spent on points where the Boltzmann factor
is negligible. It would instead be much more efficient to sample most points in the
regions of space that make important contributions to the integral. This concept is
called importance sampling.

4.1 The Metropolis method

The Metropolis method or algorithm, is one of the most recognized importance sam-
pling techniques for Monte Carlo simulations. It tackles the problem of solving Eq.
2.13 from a different perspective. Instead of focusing on the configuration integral,
we can instead try to determine the ratio of the two integrals. Metropolis et al. (1953)
showed that it is possible to devise an efficientMonte Carlo scheme to sample such a ra-
tio. We start by noticing that the ratio e−U(x1,..., zN)/kT/ZN in Eq. 2.13 is the probability
density of finding the system in a given configuration, that is:

P (x1, . . . , zN) ≡
e−U(x1,..., zN)/kT

ZN
. (4.1)

Thismeans that, if we were somehow able to randomly generate points in the coordinate
space according to this probability distribution, on average, the number of points ni
generated per unit volume is equal to LP (x1, . . . , zN), where L is the total number of
points generated, i.e.:

⟨A ⟩ ≈ 1
L

∑
i

niA(qi) . (4.2)

To generate points in configuration space with a relative probability proportional to the
Boltzmann factor, we start by defining an initial configuration q, hereupon denoted as
o (old), having a non-vanishing Boltzmann factor e−U(o)/kT. A new trial configuration
q′, from here on denoted as n (new), is then generated by adding a small random
displacement δ to o. The Boltzmann factor of this trial configuration is e−U(n)/kT. In

31



equilibrium, the transition probability from o to any available n states must be equal
to the transition probability from any of these n states back to o. This detailed balance
conditions means that:

P (o) π(o → n) = P (n) π(n → o) , (4.3)

where π(o → n) is the transition probability from an old configuration to a new one.
Thus, the probability of accepting a trial move from o to n is:

Pacc(o → n) =
π(o → n)

π(n → o)
=

P (n)
P (o)

= e−[U(n)−U(o)]/kT . (4.4)

Because the acceptance probability cannot exceed unity, we have to consider the fol-
lowing:

Pacc(o → n) =

{
e−[U(n)−U(o)]/kT if U(n) > U(o)
1 if U(n) ≤ U(o)

(4.5)

Clearly, whenever δU ≤ 0, the acceptance probability is unity and the trial move must
be accepted. However, to decide whether to accept or reject a trial move for which
δU > 0, a random number r is generated from a uniform distribution in the interval
[0, 1], and the following criterion is applied:

• r < e−[U(n)−U(o)]/kT, the trial move is accepted;

• r ≥ e−[U(n)−U(o)]/kT, the trial move is rejected.

The Metropolis algorithm is iterative, repeating the procedure described above until
convergence is achieved, generating a Markov chain. Moreover, by following these
rules, we guarantee the sampling of points in the coordinate space with probability
proportional to the Boltzmann factor, consistent with the theory of equilibrium statis-
tical mechanics (thus rendering the method ergodic).

To end, we can then compute average properties by summing them along the path
followed through all sampled configurations (recall Eq. 4.2).

4.2 Trial moves

Unlike molecular dynamics simulations, where Newton’s equations of motion define
the trajectories for all atoms in the system (as will be seen in Section 5), there is no
strict “recipe” for generating new trial moves in Monte Carlo simulations. Moreover,
even completely unreasonable and “unphysical” types of moves will eventually lead to
a proper sampling of the system’s coordinate space, given a long enough number of
iterations. However, this will most likely lead to a high trial move rejection rate, which
is exactly the opposite of what is usually aimed for, as - for obvious reasons - we are
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(a) Pivot move. (b) Crank shaft move.

Figure 4.1: Schematic illustration of the (a) pivot and (b) crank shaft trial moves. The gray shaded circles represent the two
randomly select particles from which the rotational axis (black dotted line) is defined. Dotted circles represent
the new positions of the moving particles.

generally interested in choosing the most efficient sampling procedure for the system
at hand.

Intrinsically disordered proteins are flexible by nature and can thus adopt many dif-
ferent conformations. The following five types of trial moves were found appropriate
for this type of system (Evers et al. 2012; Cragnell et al. 2016; Hyltegren et al. 2016),
and were thus employed in the studies of IDPs in solution and/or in the presence of a
charged surface (Papers i, ii and iii):

Atomic translation – A single particle of a group is selected for a spatial translation
within the simulation box. A displacement parameter sets the maximummagnitude of
the translation. This parameter is determined by considering the simulation box size,
the density of the system and the strength of the interactions. An optimal displacement
parameter maximizes the root mean square displacement during the simulation, while
asserting efficient sampling, i.e., maintaining a high trial move acceptance ratio.

Group translation and rotation – Similar to the atomic translation move, but instead
of focusing on a single particle, this move translates and rotates an entire group as a
whole. This move is of no consequence for a single protein in a box with both implicit
solvent and salt, given that the change in potential energy is always zero, as there are
no other interacting groups in the system. Therefore, within the Metropolis algorithm,
this trial move would always be accepted, providing no real advantages at the expense
of computational iterations and simulation time. On the other hand, this trial move
is of paramount importance for the proper sampling of systems consisting of multi-
ple explicit components, such as several interacting proteins, protein(s) in explicit salt,
protein(s) in the vicinity of a charged surface, etc.
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Pivot – This move and the next are specific to polymer-like molecules. Here, two
residues within a polymer chain are randomly selected and the vector that connects
them is used as the rotational axis for all the particles that sit at one of its ends (see
Figure 4.1a).

Crank shaft – Similar to the pivot move, but here the residues in between the two
randomly selected residues are rotated instead (see Figure 4.1b).

Titration – In order to study the charge regulation of a protein in solution and/or
in the presence of a charged surface, a so-called titration or charge swap move is neces-
sary. To allow charge fluctuations during the simulation, a trial charge swap is applied
to a randomly picked ionizable residue with an acceptance probability:

Pacc = min
[
1, e−[δU± ln 10(pH−pKa)]/kT

]
, (4.6)

where + is applied for protonation and − for deprotonation.

4.3 Example of a basic algorithm

Basic Metropolis Monte Carlo algorithm
Here is an example of a Monte Carlo algorithm for a system consisting of a
single protein in solution, using the Metropolis criteria for trial move accep-
tance or rejection:

1. Generate a random initial configuration (and protonation states) by
placing all protein residues at random location within the simulation
box.

2. Calculate the interaction energyU(o), based on the set of coordinates
(and protonation states).

3. Generate a random integer between [1, M ], where M is the total
number of trial move types.

4. Select the trial move type according to the outcome of the last step.

5. Execute the trial move.

6. Calculate the new interaction energy U(n), and:

(a) Accept the trial move if U(n) ≤ U(o).

(b) Otherwise, generate a random number r between [0, 1] and
accept trial move if r < e−δU/kT.

(c) If neither points no. 7 or 8 apply, reject the trial move and
restore the previous state.

7. Go back to point no. 2 and repeat.
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Points no. 2 to 7 constitute what is called a simulation loop. This main loop can be
arranged into a series of nested loops. It is common to have at least two loop levels (a
macro and a micro loop), such that a simulation with say, 107 total iterations, can be
“divided” into Nmacro and Mmicro loops, such that Nmacro × Mmicro = 107 iterations.
The main advantage of this procedure is that computationally expensive routines, such
as the calculation of the radius of gyration and other system properties, do not have
to be computed at every single iteration. These routines can instead be computed
once, every macro loop iteration, greatly reducing the number of sampling events, and
significantly increasing the performance of the simulation with no detrimental effect
on the accuracy of the final averages³⁰.

³⁰As long as that property is properly converged.
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5 Molecular dynamics simulations

Molecular dynamics solves Newton’s equations of motion for a given molecular sys-
tem, and ultimately generates the trajectories for all atoms in the system. Therefore,
it provides a way to calculate the microscopic interactions of the system, generating a
representative ensemble of configurations, which will be essential to the computation
of its macroscopic behavior.

5.1 Equations of motion

There are several different techniques that can be employed to solve the classical equa-
tions ofmotion for a system ofNmolecules interacting through a potentialU(x1, . . . , zN)
(see Eq. 3.9). Here, the Lagrangian equation of motion will be used, since it is con-
sidered to be the most fundamental form to describe motion (Allen & Tildesley 1987,
Section 3.1):

∂L
∂qk

=
d
dt

(
∂L
∂q̇k

)
. (5.1)

The Lagrangian function L(q, q̇) is defined in terms of kinetic and potential energies:

L = K− U , (5.2)

and is a function of the generalized coordinates qk and their time derivatives q̇k. New-
ton’s second law of motion states that:

A body of mass m, subject to a force F, undergoes an acceleration a, that has
the same direction as the force and a magnitude that is directly proportional
to the force and inversely proportional to the mass, i.e., F = ma.

Then, if we consider a system of atoms, with Cartesian coordinates ri and the usual
definitions of K and U (see Eqs. 2.9 and 3.9), Eq. 5.1 becomes:

Fi = mi r̈i , (5.3)

where mi is the mass and r̈i is the second time derivative of the Cartesian coordinates
(i.e., the acceleration) of atom i. The force Fi acting on each particle in the system can
be determined by the gradient of the potential energy U, relatively to the position of
each atom i:

Fi = ∇ri L = −∇ri U = −∂U
∂ri

. (5.4)

The gradient is a function of all the atomic coordinates q, of the N particles that con-
stitute the system at a given time.

Since forces are vectorial quantities and the potential energy is a scalar quantity,
it is only natural that in molecular dynamics, the forces are calculated as the nega-
tive derivatives of all the analytic expressions describing the potential energy function.
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Figure 5.1: Schematic representation of the leap-frog algorithm. Calculated positions r and velocities v “leapfrog” over
each other at each integration time step t, as in Eqs. 5.5 and 5.6. Velocities at integer time steps are then are
calculated according to Eq. 5.7.

Once the force acting on all atoms is calculated we can integrate Newton’s equation of
motion and obtain the particle’s new positions and velocities. However, this can only
be accomplished by using numerical methods, which will be discussed next.

For a comprehensive derivation of the equations of motion from the Lagrangian
formulation of classical mechanics see Frenkel & Smit (2002, Appendix A).

5.2 Finite difference methods

The equations of motion are solved assuming that the potential energy of the systemU,
is a continuous function of particle positions. Since the use of a continuous potential
implies that the motions of all particles are coupled together, the equations of motion
described in the previous section become a many-body problem, which is impossible
to solve analytically. Therefore, these equations are integrated using a finite difference
method.

There are several algorithms available for integrating the equations of motion using
finite difference methods. In a general way, these algorithms assume that the positions
and dynamic properties of a system can be approximated as Taylor series expansions,
in which the integration is done iteratively at a fixed time interval δt. The total force
on each particle at a time t is calculated as the vector sum of its interactions with other
particles. Once the force is determined, the accelerations of the particles are calculated.
The combination of the accelerations with the positions and velocities at time t (which
are known from the last iteration) enables the calculation of the new positions and
velocities at a time t + δt. This protocol is repeated for each and everyone of the
following time steps. However, there is one important assumption that needs to be
noted: the force is regarded as being constant during the time step of each iteration.

In this work, the leap-frog algorithm (Hockney & Eastwood 1988, Section 4.6) was
used for the integration of the equations of motion. Therefore, the following discus-
sion will be dedicated to it, and, for brevity, no other finite difference methods will be
addressed. This algorithm is derived from the basic Verlet scheme (which will not be
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presented here), but overcomes Verlet’s algorithm main deficiencies: its awkward han-
dling of the velocities (since this term is not present explicitly in the formulation), and
the inherent needless introduction of numerical imprecision through the introduction
of a small term to a difference of large terms, while generating the trajectory.

At a first step, the velocities v at time t+ 1
2δt are evaluated from both the velocities

at time t− 1
2δt and the accelerations a at time t:

v

(
t+

1
2
δt
)

= v

(
t− 1

2
δt
)
+ δta(t) . (5.5)

The positions r are then updated for a time t + δt, based on the velocities calculated
before together with the positions at time t:

r(t+ δt) = r(t) + δtv
(
t+

1
2
δt
)

. (5.6)

Finally, it is possible to determine the velocities, at time t, from the following expression:

v(t) =
1
2

[
v

(
t+

1
2
δt
)
+ v

(
t− 1

2
δt
)]

(5.7)

This last step is necessary so that the energy - as defined in Eq. 2.9 - at time t can be
determined, which requires positions and velocities computed at the same instant.

As can be see from Eqs. 5.5 and 5.6, the velocities leap over the coordinates to give
the next mid-step values at t + 1

2δt. After this is done, the positions leap over the
velocities, yielding their new values at t+ δt. The first step is performed again, giving a
new set of velocities at t+ 3

2δt, and so on (see Figure 5.1). Thus the name “leap-frog”.
For additional information about different finite difference methods, the reader is

referred to Allen & Tildesley (1987, Section 3.2) and Frenkel & Smit (2002, Sections
4.2.3 and 4.3.1).
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6 Simulation techniques

In Sections 4 and 5, the fundamentals of both Monte Carlo and molecular dynamics
simulations were formally presented. They constitute the kernel of the aforementioned
simulation methods. However, additional simulation techniques are needed in order to
run an efficient simulation. If we think of a simulation as a car, it can safely be said that
the engine is probably the most important part, but without chassis and wheels, it is
going nowhere. Since Monte Carlo and molecular dynamics programs share a number
of structural features, i.e., both start from an initial configuration of molecules, which
is then updated to a new set of configurations in a particular ensemble, ending up with
the calculation of observable properties by averaging over a finite number of iterations;
most of the ideas presented in this section are applicable to both simulation methods.
Particular exceptions will be noted explicitly.

6.1 Periodic boundary conditions

To simulate a “realistic” system consisting of a protein solution, the simulation box
would need to contain a great number of proteins and an even greater number of wa-
ter molecules and ions (for atomistic models). However, such a system would be too
complex and too expensive to simulate with current computational resources. Further-
more, even if it was computationally feasible to simulate such system, the percentage
of molecules in contact with the simulation box boundaries would be very large, e.g.
43% for a cubic crystal of 106 atoms³¹ (Frenkel & Smit 2002, Section 3.2.2). Thus,
to simulate bulk phases adequately, it is essential to choose boundary conditions that
mimic the presence of an infinite bulk surrounding the (central) model system. This is
achieved by employing periodic boundary conditions.

Periodic boundary conditions imply the replication of the solution containing vessel
in all directions, yielding a periodic array (see Figure 6.1a). If thementioned vessel is, for
example, a cubic box (since it is easier to visualize), this means that it will be surrounded
by images of itself throughout space to form an infinite lattice. The images and the
central box behave in a completely identical fashion. Whenever a molecule leaves the
central box, one of its images will enter through the opposite face (as exemplified by
the cartoon in Figure 6.1b). There are no walls at the boundary of the central box,
and no surface molecules. In fact, the box is not intended to serve as container of the
solution, it is just a convenient axis system for measuring the (internal) coordinates of
the system’s N molecules. Even though the cubic box is the simplest periodic system
to visualize and to program, maximum performance is generally achieved by using
system-dependent simulation box geometries. In fact, the cubic cell is potentially one
of the least desirable geometries³², specially for simulations containing explicit water

³¹This number increases even further as the size of the system is decreased.
³²Since folded proteins are often globular and IDPs generally act like random coils in solution.
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(a) Schematic representation of a 2-dimensional sys-
tem and its periodic images (only the first shell is
shown).

(b) Cartoon illustration depicting translation on a periodic system. Adapted from
Martín (2012).

Figure 6.1: Schematic representation of periodic boundary conditions. In (a), according to theminimum image convention,
a particle (central black square) may interact another particle in the neighboring cell (blue triangle) as long as
it is closer than the equivalent particle in its own simulation cell (gray shaded square). The interaction with the
latter is thus ignored.

molecules, as a considerable number of these molecules, present near the cube vertices,
are generally too far away from the solute to be able to interact appreciably. Still,
they must be explicitly accounted for in the potential energy calculations. Hence, it is
sensible to choose a periodic cell that reflects the underlying geometry of the system.
Take for example, the rhombic dodecahedron (see Figure 6.2a). It is one of the smallest
and most regular space-filling unit cells for which periodic boundary conditions may
be applied. Its volume is 71% of the volume of a cube having the same image distance
(see Figure 6.2).
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(a) Rhombic dodecahedron, taken
from Wikipedia (2016c).

(b) Cube, taken from Wikipedia
(2016a).

Figure 6.2: Side-by-side comparison of the shapes and sizes of (a) a cube and (b) a rhombic dodecahedron.

6.2 Potential truncation and the minimum image convention

The calculation of the potential energy of a system subject to periodic boundary con-
ditions implies several considerations. For a system of N particles it is not possible to
calculate the force on particle i, or those contributions to the potential energy involving
particle i, assuming pairwise additivity. This is because on top of having to include all
the interactions between particle i and the remaining N − 1 particles in the original
simulation box, we would also need to include the infinitely many interactions with
its images. This leads to an infinite sum, which is obviously impossible to calculate
in practice. However, it is often the case that in system consisting of, for example, a
protein in solution, most relevant interactions are relatively short-range³³, and we may
restrict this summation by making an approximation, i.e., it is possible to truncate the
potential by applying the minimum image convention.

The minimum image convention states that each particle should see, at most, just
one image of every other particle in the system. Thus, energy (and force) calculations are
made considering only the closest particles or particle images. This is possible through
the establishment of a spherical cutoff rc , which must not exceed half of the shortest
box vector. The interactions between all pairs of particles that are further apart than
the cutoff value are not considered (see Figure 6.1a).

As suggested above, the application of the minimum image convention represents
an approximation to the calculation of the “real” potential energy of the system. How-
ever, it is important to reiterate that this approximation is considered sensible in most
cases, as a large contribution to the potential energy (and forces) comes from neigh-
boring particles that are often closer to the reference particle than rc. In particular, for
a typical coarse-grained simulation of a single protein, where the solvent and salt are

³³Due to the shielding effect of the solvent (and salt).
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treated implicitly, it is feasible to effectively truncate all terms of the potential energy
function (recall Eq. 3.1), because the size of the simulation box can be increased signifi-
cantly³⁴ with little to no effect on the overall performance of the simulation. However,
for atomistic simulations containing explicit solvent and salt molecules, simulation per-
formance is a serious issue and the application of the minimum image convention is
generally limited to short-range non-bonded potentials such as the van der Waals term
in Eq. 3.9. Long-range potentials, such as the Coulomb interaction (Eq. 3.14), usually
display an interaction range greater than half the box length for a system of moderate
size (recall Figure 2.7), and need to be handled in a more elaborate fashion.

6.3 Long-range force handling

As mentioned in the previous subsection, van derWaals interactions decay rapidly with
the increasing distance between two interacting particles (recall Figure 2.7). This decay
is usually complete within half the simulation box length, and thus the minimum im-
age convention is applicable. Yet, whenever treating charge–charge interactions, this
is often not true. Therefore, methods for handling long-range forces are of significant
importance. Two of the most relevant are the generalized reaction field (Tironi et al.
1995) and the particle-mesh Ewald (Darden et al. 1993) methods, with the latter being
the current de facto method in most molecular dynamics simulation packages. A short
description of their main features will be made here.

Generalized reaction field –The reaction field method assumes that electrostatic inter-
actions of a reference particle i with other particles beyond a certain cutoff distance
can be handled in an average way, i.e., using macroscopic electrostatics, while the
short-range contribution arising from interactions with particles situated within the
same cutoff sphere is explicitly considered in the calculations. The particles outside the
spherical cutoff are considered to form a dielectric continuum, producing a reaction
field within the inner sphere or cavity. The generalized reaction field method is a de-
velopment of the original reaction field, in which the dielectric continuum beyond the
cutoff also has an ionic strength contribution. This method has the advantage of being
conceptually simple, easily implemented and efficient. Furthermore, the possibility of
introducing the ionic strength as an external parameter makes it even more attractive.
It does, however, suffer from two specific problems. First, there is a discontinuity in
the energy when the number of particles within the cutoff sphere of particle i changes.
This results in poor energy conservation. Second, one needs to know the external di-
electric constant beforehand.

Particle-mesh Ewald – The particle-mesh Ewald method is an improvement of the
original Ewald summation method, which was first introduced as a method to calcu-

³⁴To a point where rc can safely be made larger than any possible interaction range.
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late long-range interactions of the periodic images in crystals, and is now commonly
used for calculating long-range interactions in computational chemistry. The basic idea
behind the Ewald summation is that we can think of long-range interactions as having
two major contributions, i.e., (i) a short-range contribution, and (ii) a long-range con-
tribution which does not have a singularity. While the former can be easily handled
in real space, the latter is calculated in reciprocal space using a Fourier transform. The
advantage of this method is the rapid convergence of the energy compared with that
of a direct summation. The main drawback is that the computational cost of the re-
ciprocal part of the sum increases as N 2, which makes it impractical for large systems.
This issue is, however, solved by the particle-mesh Ewald method, in which the recip-
rocal space sum is approximated by a multidimensional interpolation, inspired by the
particle-mesh method of Hockney & Eastwood (1988, Section 1.5.2). The approximate
reciprocal energy and forces are expressed as convolutions and can thus be evaluated
quickly using fast Fourier transforms. The resulting algorithm scales as N lnN, and is
thus substantially faster than ordinary Ewald summation.

To end, it should be mentioned that the particle-mesh Ewald method is not re-
stricted to charge–charge interactions, and, if desired, can be used with van der Waals
interactions as well.

For more comprehensive presentations on how to handle long-range forces, the
reader is referred to Allen & Tildesley (1987, Section 5.5) and Frenkel & Smit (2002,
Chapter 12).

6.4 Neighbor lists

After having shown how to enhance the performance of computer simulations through
the truncation of short-range potentials and how to handle long-range forces, it is now
appropriate to introduce the concept of a neighbor list. By knowing which particles to
include in the non-bonded calculations within the established cutoff(s), it is possible
to avoid computationally intensive tasks such as looping over all N − 1 particles, de-
termining minimum images, calculating distances and checking if they are within the
cutoff. Since in the simulation of systems in the condensed phase the neighbors of a
given particle do not change significantly over a few iterations, it is possible to employ a
method for determining neighbor particles lying within the cutoff range. The resulting
“neighbor list” is updated every so many simulation steps, and is used to differenti-
ate which particles are to be included or not in the non-bonded calculations. Several
different neighbor list methods exist, but the main principle is the same as mentioned
above, i.e., saving CPU time by reducing the frequency of computationally intensive
tasks that are not strictly necessary at every simulation step.

Allen & Tildesley (1987, Section 5.3) and Frenkel & Smit (2002, Appendix F) pro-
vide an in-depth overview of this subject.
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6.5 Bond and angle constraints

The main objective behind the establishment of bond and angle constraints, in molec-
ular dynamics, is to enable bigger integration time steps without losing important con-
formational information. To achieve this, we have to institute a balanced compromise
between what motions and interactions can be treated in an approximate manner and
which need to be taken into account in their explicit form. For example, torsional mo-
tions are of lower frequency than bond vibrations, and the conformational information
that can be obtained from torsional motion analysis is of much higher importance than
that given by bond vibrations. Therefore, the iterative integration of the equations of
motion at say, 2 fs, is generally a good compromise. This is because most bonds vi-
brate with a frequency above this value. However, valuable torsional motions occur at
a lower frequency and are therefore explicitly followed with a 2 fs time step. Without
constraints, the time step in molecular dynamics simulation would be dictated by the
highest frequency motion present in the system, i.e., bond vibrations. This way, inte-
gration time steps would be too short and relevant simulation times (in the order of
micro- to millisecond) would be very difficult to achieve with today’s computational
resources.

Several methods for constraining bonds and angles in molecular dynamics exist,
but their individual presentation and discussion is inconsequential for this work. It
should, however, be noted that the words constraint and restraint should not be used
interchangeably. A constraint is a requirement that the system is forced to satisfy, that
is, a constrained bond is forced to adopt a specific value throughout the entirety of
the simulation. On the other hand, by applying a restraint on a bond, we are simply
encouraging the system to adopt this value. There is no attempt to force it to adopt the
value set as a restraint. In fact, the system is free to deviate from the optimal value, but
it will incur in a (considerable) energetic penalty.

6.6 Constant temperature and pressure

In the molecular dynamics method, the total energy of the system is a constant of
motion, and if we assume that the time averages are equivalent to ensemble averages,
then the time averages obtained in a conventional simulation are representative of the
ensemble averages in the microcanonical ensemble (N,V,E ). However, this is often
not the most convenient ensemble, as to mimic biologically relevant systems it would
be more appropriate to use the canonical (N,V,T ) or isothermal-isobaric (N, p,T )
ensembles.

There are several ways to control the temperature of the system. The simplest implies
scaling the velocities, achieved through the multiplication of the velocities at each time
step by a scaling factor λ. The Berendsen temperature coupling method (Berendsen
1991), maintains the temperature by coupling the system to an external heat bath that is
fixed at the desired temperature. The scaling of the velocities is done such that the rate
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of change of temperature is proportional to the difference in the temperature between
the bath and the system. The bath, thus, acts as a source of thermal energy, supplying
or removing heat from the system as needed. The following expression shows how the
temperature changes with regard to time:

dT
dt

=
T0 − T

τ
, (6.1)

where τ is the coupling parameter that determines how tightly the bath and the system
are coupled together. The scaling factor λ modifies the velocities of each particle every
nTC steps, and is expressed in the following manner:

λ =

[
1+

nTC δt
τT

(
T0

T
(
t− 1

2δt
) − 1

)]1/2
. (6.2)

The parameter τT is related to the time constant τ of the temperature coupling as
follows:

τ =
2CvτT
Ndf k

, (6.3)

with Cv being the heat capacity of the system and Ndf is the total number of degrees of
freedom.

The Berendsen thermostat has one major drawback, that is, it suppresses the fluc-
tuations of the kinetic energy. This means that it does not generate a proper canonical
ensemble and, rigorously, the sampling will be incorrect. The velocity-rescaling ther-
mostat (Bussi et al. 2007) corrects this issue by introducing an additional stochastic
term that ensures a correct kinetic energy distribution:

dK = (K0 − K)
dt
τT

+ 2

√
KK0

Ndf

dW
√
τT

. (6.4)

Here, K is the kinetic energy and dW is a stochastic process called Wiener process. No
additional parameters are necessary and this thermostat produces a correct canonical
ensemble.

Most methods used to control the pressure are similar to those used for temperature
control. A scaling factor is once again present in the rationale behind these techniques,
and the pressure can be maintained at a constant value by simply scaling the volume
of the simulation box. By analogy with the Berendsen thermostat, a Berendsen baro-
stat also exists (Berendsen et al. 1984), but, once again, it does not yield the exact
isothermal-isobaric ensemble. Thus, a different approach is often recommended. The
Parrinello-Rahman pressure coupling (Parrinello & Rahman 1981; Nosé & Klein 1983)
gives the true isothermal-isobaric ensemble by the use of an extended Lagrangian, i.e.,
the Lagrangian (recall Eq. 5.2) is extended to contain additional, artificial terms, which
modify the Lagrangian equations of motion (Eq. 5.1) in such a way that the box volume
is considered as a dynamical variable.
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7 Simulation analyses

In this section, some of the most recurring types of analyses performed in the publica-
tions included in this thesis will be addressed.

7.1 Size, shape and stiffness

Since flexible, disordered proteins do not exhibit a stable 3-dimensional structure in so-
lution, fine structural analyses are often overlooked in favor of the calculation of more
coarse properties such as the average size, shape and stiffness. When taken together,
these properties should provide a good indication of which IDP conformational³⁵ class
(Das et al. 2015) the disordered protein being analyzed belongs to. Furthermore, these
three properties are also obtainable from experimental methods, such as small-angle
X-ray scattering, and being able to perform a direct comparison between the calculated
values and experimental reference is of paramount importance for simulation valida-
tion.

The size of an IDP is generally obtained through the calculation of the radius of
gyration:

Rg =
(∑

i ∥ri∥2mi∑
imi

)1/2

, (7.1)

where ∥ri∥ is the (Euclidean) distance between the position ri of atom/particle i and
the molecule’s center of mass, and mi is the mass of i. In simple terms, this property
describes how, on average, the components of a protein are distributed around its center
of mass.

The shape of a flexible polymer chain can either be obtained by normalizing the
end-to-end distance with the contour length³⁶, or by determining the so-called shape
factor, i.e., the ratio between the end-to-end distance and the radius of gyration. The
end-to-end distance, at any given instant, can be easily determined by the following
expression:

Rend-to-end =
√

∥rNT − rCT∥2 , (7.2)

where rNT and rCT are the positions of the N- and C-termini. For coarse-grained
models, these positions are taken from the center of mass of the terminal beads, and for
atomistic models these positions correspond to the α carbon of the terminal residues.

³⁵Notice the use of the word “conformational” instead of “configurational”. Until now, the latter has
been used rather loosely, but in the context of a chain molecule, i.e., where specific building blocks (e.g.
amino acid residues in a protein) appear in a specific order or sequence, a different “configuration” implies
a different ordering of these elements, i.e., a different sequence. However, what is actually meant here
is that the atoms of a protein can adopt a collection of different spatial arrangements, as a result of,
e.g., rotations about individual bonds, angles and dihedrals, without changing the protein’s amino acid
sequence. These spatial arrangements are, by definition, called “conformations”.

³⁶The length of the polymer at its maximum physically possible extension.
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Regardless of its size and shape, the stiffness or rigidity of a protein can be always be
roughly estimated by the magnitude of the variance (and standard deviation) associated
with the distribution of the sampled radii of gyration and the end-to-end distances.
In other words, the stiffness of a protein chain should be inversely proportional to
how much its average size and shape fluctuates (assuming equilibrium), and flexible
proteins should present a significant dispersion around the average radius of gyration
⟨Rg⟩, and average end-to-end distance ⟨Rend-to-end⟩. A stricter measure of stiffness can
be borrowed from polymer theory, where the persistence length³⁷ is the mechanical
property usually employed to quantify the stiffness of a freely jointed polymer chain.
Proteins, whether disordered or not, are heteropolymers of amino acids, and thus the
calculation of the persistence length should apply. Wemust, however, be aware that the
solutions in polymer theory often involve a number of approximations, and polymers
are, for example, often assumed to be infinitely long, which is far from true in the case
of some of the IDPs studied in the publications included in this work.

For comprehensive presentations about the structural properties of polymers/proteins
(in solution), in connection with polymer theory, the reader is referred to Evans &
Wennerström (1999, Section 7.1) and Jackson (2006, Chapter 3).

7.2 Total charge and charge capacitance

The net charge Z of a protein is easily determined by summing up all the (partial)
charges of the constituting atoms/particles:

Z =
∑
i

zi , (7.3)

where zi is the (partial) charge number of atom/particle i. For constant-pH simulations,
that is, simulations where titrable residues are allowed to protonate and deprotonate
according to the selected solution pH, the protein net charge will fluctuate around its
average value ⟨Z ⟩. The variance of the protein net charge is:

var(Z ) = ⟨Z 2⟩ − ⟨Z ⟩2 . (7.4)

It can be shown (see Lund & Jönsson (2013) for the mathematical proof ) that by ex-
posing the protein to an external potential Ψext, the response in ⟨Z ⟩ is:

∂⟨Z ⟩
∂Ψext

= ⟨Z 2⟩ − ⟨Z ⟩2 = C . (7.5)

Here, C is a capacitance, more specifically, the charge capacitance. C is an intrinsic
property of the protein, closely related to protein structure and sequence. It is also

³⁷The persistence length is defined as the length over which two parts of the chain keep their orienta-
tional correlation.
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a function of the solution conditions, such as pH and ionic strength. Moreover, the
charge capacitance can be used to estimate how an external potential, such as that from
a charged surface, influences the protonation state of a protein. The higher the charge
capacitance of a given protein, the higher is its ability to regulate its own (net) charge,
which often leads to rather interesting physical mechanisms.

As is immediately noticeable from Eqs. 7.4 and 7.5, C ≡ var(Z ), which means that
the calculation of the charge capacitance of a protein simulated with a constant-pH
method is rather trivial. Additionally,C can also be easily derived from the experimental
titration curve of a protein by the following relation (Lund & Jönsson 2013):

C = − ln 10
∂Z
∂pH

. (7.6)

7.3 Principal component analysis

The complete energy landscape of a molecule is a function of all conformational co-
ordinates, and it contains all the information required to build physically meaningful
conformation classes. However, the complete specification of the conformation of a
system ofN atoms requires 3N−6 internal coordinates, which is an intractable number
of dimensions, even for relatively small systems. Luckily, in most cases we are merely
interested in characterizing some sort of low-dimensional energy landscape that cap-
tures the relevant behavior of the system as a function of a small set of coordinates that
represent the system in a simple way. To reduce the complete (3N − 6)-dimensional
conformational space onto a low-dimensional representation that is able to retain the
most important features of the distribution of conformations, we can take advantage
of the principal component analysis (PCA) method.

PCA is a statistical procedure that uses an orthogonal transformation to convert a
set of observations of possibly correlated variables into a set of values of linearly uncor-
related variables called principal components. This transformation is defined in such
a way that the first principal component has the largest possible variance (that is, it
accounts for as much of the variability in the data as possible), and each succeeding
component in turn has the highest variance possible under the constraint that it is or-
thogonal to the preceding components. The resulting vectors form an uncorrelated
orthogonal basis set.

Although the number of principal components obtained from PCA are as many as
the original coordinates, the general idea is that we should keep only the amount needed
to reasonably capture the conformational distribution. Since the first two or three
principal components typically hold about 70–90% of the total variance³⁸, we typically
display this density as a function of the first two principal components. For a protein
system, it is also common practice to analyze the backbone atoms only, thus removing

³⁸This number is system-dependent.
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several dimensions of the complete landscape. Protein translation and rotation can also
be partially removed by fixing its center of mass and performing a least-squares fitting
of the trajectory to a reference structure. Due to the absence of experimental reference
structures for disordered proteins, it seems reasonable to use the the central structure
of the simulation, that is, the conformation i, among the N sampled conformations,
which minimizes the following dispersion measure (Campos & Baptista 2009):

Di =

 1
N− 1

∑
i, j

RMSD2
ij

1/2

, (7.7)

where RMSD is the root mean square deviation between conformations i and j ³⁹. In
non-mathematical terms, the central structure of a simulation is the protein conforma-
tion which differs the least from all other sampled conformations.

In order to construct a 3-dimensional energy landscape based on the two first prin-
cipal components, a (bivariate) kernel density estimator is used to define the proba-
bility density function P(r) at all points r⁴⁰, which can then be transformed into a
conditional free energy (or potential of mean force) - denoted here as E - through the
following relation:

E(r) = −kT ln
P(r)
Pmax

. (7.8)

Here, Pmax is the maximum value of P(r). Through this “normalization” a zero energy
is assigned to the maximum of the probability density. The resulting energy landscape
can not only be of aid in visualizing and comparing the conformational landscapes of
different simulations, but can also be further analyzed in order to determine which
groups of conformations belong to which minima, i.e., it can prove invaluable in iden-
tifying the distinct conformational classes of a protein (see Figure 7.1).

7.4 Small-angle X-ray scattering

Small-angle X-ray scattering (SAXS) is an experimental technique that allows the de-
termination of the dimensions, shape and flexibility of a protein in solution. Due to
the inherent difficulty in determining the structure-function specificities of intrinsi-
cally disordered proteins using classical structural methods, such as X-ray diffraction
or nuclear magnetic resonance (NMR), SAXS is becoming increasingly valuable. Not
only because it is effective, but also due to the fact that it is particularly well adapted
to the study of such proteins, being one of the few techniques that can characterize the
unfolded/disordered state of proteins (Receveur-Bréchot & Durand 2012).

³⁹RMSD(t1, t2) =
[

1∑
k mk

∑
k mk∥rk(t1)− rk(t2)∥2

]1/2
, for two different conformations obtained

at simulation times t1 and t2. rk and mk are the position and mass of atom k, respectively.
⁴⁰Here, r denotes the vector containing all values of the principal components being considered.
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Figure 7.1: Schematic representation of the 3-dimensional free energy landscape of a protein, obtained by using the first
two principal components (PCs). Different energy minima contain different protein conformational classes,
whose structural similarity is inherently related to how close they are located in the energy landscape.

A SAXS experiment measures the scattering intensity I(q) - upon variation of the
scattering angle 2θ - as a function of the scattering vector q ⁴¹ defined by:

q =
4π sin θ

λ
, (7.9)

where λ is the wavelength of the radiation. The corresponding real space distance d is,
according to Bragg’s law, obtained by the following expression:

d =
2π
q

. (7.10)

The scattering curve I(q) is expressed as:

I(q) = F(q) · S(q) , (7.11)

where F(q) is the form factor of the scattering object, containing all information about
the shape of the protein; and S(q) is the structure factorwhich contains information on
how particles interact with one another. For an ideal solution, that is, a solution diluted
to the point where no intermolecular interactions effectively exist, there is no significant
contribution from the structure factor (S(q) = 1) and the following approximation
holds true:

I(q) ≈ F(q) . (7.12)

⁴¹The use of q to define something else other than the (partial) charge of an atom or particle is a
particular exception of this section about SAXS.
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For non-ideal solutions, the structure factor only tends to 1 at medium to high q values.
Measurements at different protein concentrations and extrapolation to zero concentra-
tion are, therefore, often required to eliminate the contribution of the structure factor
on the measured scattering intensity at low angles. The size of the objects that can be
analyzed with SAXS typically range from a few to several hundred ångström, and the
maximum size of the object is limited by the smallest angle that the instrument can
attain for measuring the scattering intensity (Pusey 2002; Receveur-Bréchot & Durand
2012; Svergun & Koch 2003).

In a typical SAXS study, the scattering intensity curve (or form factor, recall Eq.
7.12) - where I(q) vs. q is followed - is the most common representation of the data, as it
represents not only the direct output of the instrument, but also allows the calculation
of the size of a particle in the form of the radius of gyration⁴². The interatomic distances
rwithin a protein can be accessed through the pair-distance distribution function P(r),
which is itself obtained by simply taking the Fourier transform of the scattering curve.
This particular representation is rather useful, as it provides a more human-readable
medium for the valuable information contained in the scattering curve. A simple vi-
sual inspection of P(r) usually provides great insight about the shape, anisotropy and
degree of compactness of a protein. Additionally, it also provides another way of de-
termining the radius of gyration, which is often considered superior when studying
proteins with extended conformations, as is the case with IDPs (Receveur-Bréchot &
Durand 2012). A third and final representation, where (q · Rg)2 · I(q) is plotted as a
function of q · Rg , provides an extremely useful way to quickly evaluate the globular
nature of a polypeptide chain without requiring the use of theoretical models. In this
representation, normally referred to as Kratky plot, globular proteins present a maxi-
mum value at q · Rg =

√
3 (see blue curve in Figure 7.2), regardless of the size of the

protein. Conversely, for a random chain, the curve keeps on rising, eventually reaching
a nearly flat region between q · Rg = 1.5 and 2, which may eventually keep increasing
for more rod-like, rigid polypeptide chains (see red and green curves in Figure 7.2).

The calculation of SAXS data from computer simulations is of great relevance for
the validation of protein models and force fields. This is even more important for
the specific case of unfolded and disordered proteins, for which X-ray diffraction and
NMR techniques are of very limited application, and the information obtained through
SAXS is one of the few available bridges between theory and experiment. There are
several methods for evaluating the solution scattering of biological molecules from their
simulation coordinates, and the main difference among them is on how the solvent
is modeled. Older protocols such as CRYSOL (Svergun et al. 1995) - which was first

⁴²There are different methods for deriving this property from the scattering curve, each having their
own pros and cons, but these will not be discussed here due to their irrelevance for the particular scope of
this work. The reader is instead referred to the work of Receveur-Bréchot & Durand (2012) for a succinct
presentation of these topics.
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Figure 7.2: Example of the different Kratky plots obtained for proteins belonging to various conformational classes. The
vertical black line marks all points with abscissa

√
3. The gray shaded rectangle highlights the area where

1.5 ≤ q < 2.

distributed in 1995⁴³ - generally treat the solvent as a continuous electron density, where
the solvation layer is described as a homogeneous excess electron density, typically 10%
to 15% higher than that of bulk water (Svergun et al. 1995). According to Chen &
Hub (2014), one of the main drawbacks of implicit solvent methods is that these often
require two to three free parameters, which are not easily measurable and differ between
solutes. In fact, as shown in the Supplementary Information of Paper iv, the default
value of the contrast of hydration shell ρ in CRYSOL appears to be ill-suited for use
with disordered proteins, and small changes in this value lead to markedly different
Kratky plots, which could definitely cause erroneous interpretations. Explicit solvent
methods, such as the recently developed WAXSiS (Chen & Hub 2014; Knight & Hub
2015), provide a more accurate model of solvation at the expense of a much higher
computational cost. Such methods should, however, be free parameter-free and are
required for the calculation of scattering patterns at wider angles (as in wide-angle X-
ray scattering, often abbreviated to WAXS), which expands the range of solution X-ray
scattering profiles from 4nm−1 to as much as 50nm−1, effectively paving the way to
a wealth of new structural information (Chen & Hub 2014).

⁴³A time where the transistor count in a typical microprocessor was between 1 and 5 million, in contrast
to the several thousand million transistors of nowadays (Wikipedia 2016b). It is thus understandable, that
researchers would generally attempt to avoid considering the many thousand water molecules usually
present in a medium sized simulation box when using an explicit water model.
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8 Summary of results and outlook

A short summary of the main results of each paper included in this work is presented
below. Notice that their respective numbering does not follow a chronological order.
These papers are organized according to their particular context instead, and we can
envision their division as follows:

• Introduction to the thematic (Paper i).

• Development and application of a coarse-grained model for the Monte Carlo
simulation of flexible (phospho)proteins, in bulk and near uniformly charged
surfaces (Papers ii and iii).

• Presentation of the inherent limitations of standard molecular dynamics force
fields for the simulation of IDPs. Assessment of the representativeness of pro-
tein disorder models. Application of new “IDP-tailored” force fields and water
models to the simulation of disordered proteins of relevance (Papers iv, v and
vi).

8.1 Paper i

In this first publication, the adsorption mechanism of the histidine rich, unstructured
protein Histatin 5 was studied as a function of pH, salt, and multivalent ions. This
study combined atomistic molecular dynamics and coarse-grained Metropolis Monte
Carlo simulations, as well as classical polymer density functional theory. This multi-
scale modeling⁴⁴ provided a consistent picture in good agreement with experimental
data, and the main conclusions were that: (i) proton charge fluctuations promote elec-
trostatic interactions with anionic surfaces through charge regulation; and (ii) specific
zinc(II)-histidine binding competes with protons and ensures (an unusually) constant
charge distribution over a broad pH interval, which further enhances surface adsorp-
tion. When taken together, these points suggest that charge regulation is a significant
driving force for the remarkably robust activity of histidine rich antimicrobial peptides.

Despite the success of this study, it became apparent that the calculated protein size,
more specifically, the radius of gyration, differed significantly between coarse-grained
and atomistic approaches. It was then hypothesized that the “true” Rg should proba-
bly lay in-between both models’ predictions, which was later confirmed though SAXS
measurements (Cragnell et al. 2016). The discrepancy between experiment and the
predictions from atomistic simulations would later become an important catalyst for
Paper iv.

⁴⁴Applying models with different levels of detail (and theory) for the calculation of particular system
properties.
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8.2 Paper ii

Experimental evidence from a previous study (Svensson et al. 2014) showed that the
strongly anionic (⟨Z ⟩ ≈ −18e at pH = 8.5) and flexible phosphoprotein β-casein ad-
sorbs onto negatively charged and hydrophilic silica surfaces. At first, this result appears
to be rather counterintuitive due to the fact that there should be a strong electrostatic
repulsion between the protein and the surface, as is supported by the application of a
coarse-grained model similar to the one used in Paper i, where the only protein-surface
interactions considered are of electrostatic nature, modeled according to the Gouy-
Chapman theory (recall Sections 2.3.1 and 3.1). However, protein adsorption is a com-
plex process that is controlled by several different mechanisms, e.g., (i) electrostatic
interactions between the protein and the surface, and (ii) between adsorbed proteins;
(iii) dispersion interactions; (iv) hydration effects; and (v) structural rearrangements
of the protein in order to balance conformational chain entropy with energetics. As
seen earlier in Sections 2.3.6 and 2.3.7, dispersion interactions are strictly attractive and
ubiquitous, and, while individually weak, if present in large numbers may present a
significant contribution the the overall system Hamiltonian. Given that β-casein is a
long⁴⁵ and flexible protein, it was hypothesized that not considering this type of inter-
action could be the reason behind the discrepancy between experiment and simulation.
Thus, a shifted Lennard-Jones potential (recall Section 3.1 and Figure 3.3) was included
in the model and it was found that a minimum interaction strength of 2.25 kT was
needed in order to promote adsorption and mimic experimental results⁴⁶. Addition-
ally, it was also found that considerable protein net charge fluctuations, due to phos-
phorylated serine saturation, only have a negligible contribution to the free energy of
adsorption.

8.3 Paper iii

The coarse-grained model developed in Paper ii was used to compare the properties
and behavior of β-casein and PRP-1, both in bulk and near a negatively charged sur-
face, in order to evaluate the possibility of using β-casein as a replacement for PRP-1
in pharmaceutical saliva substitutes and, possibly, dental products. Special attention
was dedicated to the study of the effect of varying pH, monovalent salt concentration
and charge saturation/insaturation of the phosphorylated serine residues (mimicking
the binding/release of calcium ions). Both disordered proteins were found to possess
very similar electrostatic properties in bulk, specially at physiological pH values and
when simulating calcium saturation. Furthermore, when studying surface adsorption
it was observed that both proteins attach to the surface in similar manners, relatively to

⁴⁵Its sequence contains 209 amino acid residues (recall Table 1).
⁴⁶A following study by Hyltegren et al. (2016), using the model developed here, found that an inter-

action strength of 2.9 kT is required when simulating Histatin 5, in order to obtain a simulation surface
coverage close to experimental reference.
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their respective sizes. In particular, the adsorption of both proteins onto the negatively
charged surface is strikingly similar under physiological pH and near physiological salt
concentrations. On average, however, PRP-1 appears to adsorb more strongly to the
surface, while β-casein is generally able to come into closer contact with it. The effect
of calcium saturation on surface adsorption was found to be almost negligible for both
proteins at high salt concentration.

8.4 Paper iv

This study was performed in light on the increasing number of publications - using
atomistic molecular dynamics simulations of unfolded and intrinsically disordered pro-
teins - suggesting that standard⁴⁷ force fields produce IDP conformational ensembles
that are overly collapsed, when compared to experimental reference. Thus, the main
goal of this study was to assess the applicability of several (then) state-of-the-art pro-
tein force fields for the simulation of Histatin 5, one of the recurrent IDP models used
by the Skepö group⁴⁸. The quality of the simulations was assessed in three comple-
mentary analyses: (i) protein shape and size comparison with experimental SAXS data
obtained by Cragnell et al. (2016); (ii) secondary structure prediction; (iii) (free) energy
landscape exploration and conformational class analysis (as discussed in Section 7.3).
The results showed that, indeed, standard force fields sample IDP conformations which
are too compact, being systematically unable to reproduce experimental evidence such
as the form factor, the Kratky plot, and the pair-distance distribution function (recall
Section 7.4). Moreover, the consistency of this deviation seems to suggest that the
problem may not be mainly due to protein-protein or water-water interactions, whose
parameterization varies the most between force fields and water models. In fact, as
originally proposed by Best et al. (2014), balanced protein-water interactions appear to
be the key to solving this issue, and additional simulations using a modified version of
the original TIP4P/2005 water model containing increased protein-water dispersion
interactions (recall the TIP4P/2005s water model in Table 2) produces results in very
good agreement with experiment.

8.5 Paper v

During the publication process of Paper iv, Piana et al. (2015) introduced a new, four-
point water model, called TIP4P-D⁴⁹, in which the water dispersion interaction is
augmented⁵⁰, and the remaining non-bonded parameters are optimized with respect

⁴⁷Here, “standard” stands for the commonly used protein force fields, not (specifically) developed with
IDPs in mind.

⁴⁸Due to its short size, i.e., 24 amino acid residues, and interesting pharmaceutical properties (recall
Section 1).

⁴⁹The “D” in the suffix stands dispersion.
⁵⁰Regardless of the specific intervening species, i.e., whether we consider water-water, protein-water or

protein-protein dispersion interactions.
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to experimental liquid water properties. Even though there was no opportunity to in-
clude this new model in that specific study, it was hypothesized that - judging from
the results shown in each respective publication - there was good reason to expect both
approaches to produce similar results for the system at hand. To assess the accuracy
of this statement, additional molecular dynamics simulations of Histatin 5 were per-
formed using the new water model in conjugation with a standard force field, shown
previously to produce poor results when used with the popular TIP3P water model⁵¹.
As predicted, the new simulation results were in excellent agreement with the approach
of Best et al. (2014), as studied in Paper iv.

Another focal point of this work was to collect and analyze the IDPs that had been
studied that far using these new approaches, and investigate how representative of pro-
tein disorder they are. With this in mind, an exhaustive analysis of several protein
properties of interest, such as the sequence length, amino acid residue content, fraction
of charged residues, and net charge per residue, was performed. The results were then
compared with different databases for intrinsically disordered and structured proteins.
In general terms, the IDPs used to test and validate the new IDP-tailored/aware ap-
proaches (Best et al. 2014; Piana et al. 2015) seem to be representative of disordered
protein sequences. However, most model proteins appear to be too short in compari-
son to the average IDP, and their sequences contain a bias toward hydrophilic amino
acid residues, with several key order- and disorder-promoting residues being clearly
misrepresented. It seems appropriate for future studies to address these issues.

8.6 Paper vi

Histatin 5 is an antimicrobial and disordered protein that acts as the first line of de-
fense against oral candidiasis. It has been shown that conjugation of its active fragment
(amino acid residues 4 to 15) with the polyamine spermidine has an even greater can-
didacidal effect (Tati et al. 2014). However, prior to this study, little to no knowledge
about the structure of these conjugates existed. As such, the aim of this study was to
characterize the structural properties of Histatin 5 4−15-spermidine conjugates by mak-
ing use of both theoretical and experimental methodologies, as is customary within the
Skepö research group. On the theoretical side, apart from the charge parameteriza-
tion of the conjugate and its implementation in the AMBER ff99SB-ILDN force field,
this study is a direct application of the methodology presented in Paper v. On the
experimental side, SAXS and circular dichroism measurements were performed. Once
more, very good agreement between simulation and experiment was acchieved, sug-
gesting that the force field, water model and parameterization are rather reliable, even
for short and strong polyelectrolytes, as is the case with the conjugates. The Histatin
5 4−15-spermidine conjugates were found to adopt extended and somewhat rigid con-
formations in aqueous solution, in contrast to what had been previously hypothesized

⁵¹For a comparison between water models, please refer back to Section 3.3.
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by Tati et al. (2014), i.e., that the conjugates should adopt relatively compact or globular
structures when compared to Histatin 5. No secondary structure was predicted in both
aqueous and organic solutions, and the results suggest that the increased antifungal ac-
tivity of the C-terminal conjugate(s), in comparison to the N-terminal counterpart(s),
could be explained by its slightly more extended and rigid conformational ensemble,
which allows spermidine to be more exposed to the solvent, thus making it easily ac-
cessible for recognition by the polyamine transporters in the cell.

This study also shows how valueable simulations are, given that, for example, the
SAXS measurements do not provide information for the entire conjugate, due to the
small contrast between the bonded spermidine molecule and the background, i.e., the
solvent. Thus, it was from the simulations alone, that it was observed that conjugation
with spermidine does not seem to affect the conformational ensemble of the active frag-
ment, as similar regions of coordinate space are sampled when simulating the fragment
alone and conjugated to spermidine in any of the four possible variants.

8.7 Outlook

The publications included in this work contain original research performed over the
past five years. During this period, and in global terms, considerable progress was
made on the modeling and simulation of intrinsically disordered proteins. This is spe-
cially true for the particular case of atomistic models and force fields, which despite
having enjoyed considerable success with the simulation of folded proteins for quite
some time, were recently shown to be inappropriate for the simulation of unfolded
and disordered proteins (Lindorff-Larsen et al. 2012; Best et al. 2014; Palazzesi et al.
2014; Piana et al. 2015; Henriques et al. 2015; Rauscher et al. 2015; Ye et al. 2015; Mer-
cadante et al. 2015). While there had been older reports where the atomistic simulation
of IDPs was shown to produce overly collapsed conformational ensembles when com-
pared to experimental evidence, it was only until about 2014 that several independent
groups started producing more thorough reports, fully dedicated to this subject. It
was also around that time that alternative solutions started being proposed, and by
mid-August 2015 - the date when the CECAM conference entitled “ Intrinsically Dis-
ordered Proteins: Bringing together Physics, Computation and Biology” was held in
Zurich, Switzerland - four different research groups had already proposed alternative
methods to deal with the clear deficiencies in commonly used simulation models and
force fields⁵². Since evidence suggests that the solvent plays a crucial role in shaping the
ensembles of intrinsically disordered proteins (Florová et al. 2010), most of these ap-
proaches involve modifications to the water parameters, thereby favoring protein−water
over protein−protein interactions, which effectively decreases the strength of hydropho-

⁵²(i–ii) The TIP4P/2005s and TIP4P-D water models by Best et al. (2014) and Piana et al. (2015),
respectively; (iii) the CHARMM22* force field of Piana et al. (2011) as shown by Rauscher et al. (2015);
and (iv) the Kirkwood−Buff derived force field by Mercadante et al. (2015).
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bic effect and produces more extended conformations, better matching experimental
evidence.

In spite of the considerable progress, the literature is still lacking studies where, ide-
ally, all of these new approaches are tested and compared exhaustively using a greater
number of unfolded and disordered model proteins, covering all different IDP con-
formational classes and a spanning a reasonable size range, from oligopeptides to large
IDPs containing several hundreds of amino acid residues. Such scientific endeavor
would no doubt require significant human and computational resources, but it ap-
pears well justified, as greater (and more appropriate) statistical sampling is needed in
order to assess how general and robust these approaches are. Additionally, on a more
fundamental level, it is equally important to proceed with the academic effort in under-
standing why folded and disordered proteins behave so differently in aqueous solution,
because it is only through a better understanding this topic that we can further improve
current models or even develop new ones.

To end, it is important to reiterate the importance of having a reliable model for
the simulation of IDPs, as deciphering their molecular mode of action at the struc-
tural level remains highly challenging from an experimental point of view (Receveur-
Bréchot & Durand 2012). In fact, as shown in Paper vi, the amount of information
obtainable from experimental methods is often limited and, sometimes, incomplete. A
well proven simulation model could provide a wealth of information at a level of detail
which unattainable by any other means, at a fraction of their cost. Take, for example,
the study of the temperature-induced collapse of IDPs in aqueous solution. This is a
rather interesting and somewhat counter-intuitive phenomenon, whose mechanism is
not fully understood. Computer simulations could, in principle, play a major role in
aiding its interpretation. However, as reported by Nettels et al. (2009), different mod-
els produce different (and often divergent) results when studying the variation of the
radius of gyration of IDPs as a function of temperature.
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