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S A M M A N FAT T N I N G

En av de största utmaningarna inom biologin är att förstå hur storleken och
formen av olika organ, t ex blad och blommor, regleras. Vi vet att specifika
gener påverkar och att tillväxthormoner spelar en stor roll. Samtidigt har
det visat sig att fysikaliska egenskaper hos växternas cellväggar är viktigast
för att skapa tillväxt i specifika riktningar. När växter växer och nya organ
bildas deformeras celler och vävnader vilket innebär att växten kan utsättas
för stora fysiska påfrestningar. Det har visats att cellväggen kan förstärkas i
vissa riktningar genom att reglera riktningen på cellväggens cellulosafibrer.
Det intressanta är att fysiska krafter påverkar fibrerna vilket gör att växten
kan hålla emot i de riktningar där påfrestningarna är som störst. Samtidigt
leder detta till robust tillväxt i vissa riktningar, vilket gör att en växt till
exempel kan växa upp mot ljuset.

Denna avhandling avser att genom datormodellering, pröva några av de
hypoteser som ligger till grund för hur mekaniska signaler kan påverka
tillväxten av vävnader och nya organ i växter. För att kunna göra detta
har vi utvecklat nya mekaniska modeller som inkluderar egenskaper så-
som elasticitet, mekanisk anisotropi och tillväxthastigheter som alla tillåts
variera i såväl rum som tid. Vi har utgått från Saint-Venants modell, som
är en beskrivning av töjningsegenskaper hos ett material, och utökat denna
beskrivning så att hänsyn kan tas till att material även kan vara anisotropiska,
dvs vara starkare i en specifik riktning. Vi har använt platta element där
spänningar går parallellt med planet för att beskriva cellväggen. Denna
förenkling har vi validerat genom att jämföra resultaten från vår modell,
med resultaten från en finit element modell där skalelement istället för
plattor har använts. Vi visar att skillnaderna mellan dessa två modeller är
försumbara.

I utkanten av växtskottet så bestäms riktningen av celltillväxten främst
av orienteringen av cellulosafibrer. Detta kan i vår modell förklaras genom
att låta den maximala spänningsriktningen återkoppla till orienteringen av
växtcellens cellolusafibrer. Det kan noteras att graden av anisotropi hos det
underliggande materialet, som vi kan justera i vår modell, kan beskriva
anisotropin i utläggandet av fibrer i cellväggen.

Vi har även undersökt hur graden och riktningen av anisotropi påverkar
mekaniken i en förenklad modell där relationen mellan töjning och spän-
ning följer en klassisk linjär modell, Hookes lag. Vi visar att en sådan
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återkoppling mellan töjning och spänning kan ses som en energiminimer-
ing. Även om mekanismen bakom återkopplingen mellan töjning och spän-
ning fortfarande inte är helt känd, så kan minimeringen av energi ha varit
avgörande i den evolutionära utvecklingen av hur celler påverkas av både
spänning och töjning.

Vi har även introducerat kontinuerlig tillväxt i modellen, och vi har visat
att resultaten för flera olika rumsliga uppdelningar av modellen alla kon-
vergerar när vi närmar oss mekanisk jämvikt. Vi inkluderar även delning
av celler i modellen, där vi minimerar diskontinuiteter hos mekaniska vari-
abler före och efter att en celldelning ägt rum.

Till skillnad från många tidigare modeller där spänning reglerar tillväxt,
så har vi undersökt vad som händer när en signal som istället kommer från
töjning reglerar tillväxten. Vi har jämfört spännings- med töjnings-baserad
tillväxt, och visat att en tillväxt som beror på graden av töjning, tillsam-
mans med en återkoppling från spänning till den mekaniska anisotropin,
resulterar i deformationer som kan ge upphov till de former man ser hos
växter. Vi visar också hur en sådan modell kan klara av att återskapa cel-
lulosafiberdynamiken som har observerats i flera organ i växter, t ex rötter
och hypokotyler i växtfrön.

De olika symmetriska former som finns i växter har inpirerat veten-
skapsmän och konstnärer i århundranden. Samtidigt är storleken och for-
men på växtens organ otroligt viktig för till exempel hur stora frukter och
trädstammar som bildas, och en bättre förståelse för hur detta regleras gör
att vi kan förbättra produktionen inom jordbruk och skogsindustri.
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1
I N T R O D U C T I O N

Understanding the relation between form and function in biological sys-
tems is a challenge [1]. The abundance of data together with the complexity
and beauty of problems within this area are attracting experts representing
a diverse range of interests. Here, the borderlines between different fields
of science, in particular biology, mathematics and physics are becoming
blurred. Being facilitated by computers, it is now possible to use the power
of mathematics and physics for developing models to reduce the cost and
increase the efficiency of cumbersome experimental hypotheses testing. Al-
though it is never possible to replace experiments by purely theoretical
analysis, modelling approaches are crucial to understand how such com-
plex systems function and evolve [2, 3].

The extent of parameters and variables that are being identified in bi-
ological processes, is the main motivation for Systems Biology as an inter-
disciplinary field [2]. In a systems approach the effort is to decompose
a complex network of variables to smaller modules as building blocks of
the organism. This systematic simplification allows us to understand the
system-wide interactions while low-level details are not confusing the pic-
ture [4]. Through multi-scale modelling, systems biologists try to analyse
the behaviour of the building blocks at the fine scale and simplify it while
keeping its important features. Later, these simplified modules are com-
bined into higher level structures to achieve wider understanding of the
system [5].

Biologists often perturb the organisms in experiments. This happens
both unintentionally when they perform a measurement and when they
test their predictions to support their hypotheses. In both cases modelling
provides complementary possibilities, for either analysing the results of
the measurements or comparing the results of the experiments with the
outputs of the often complicated hypotheses.

The shape is indispensable to the functions of an organism [1]. The spe-
cific morphologies arise through targeted growth [6]. In biology, the term
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2 introduction

Morphodynamics refers to the evolution of shape in the life span of living
systems. The large deformations cannot occur without the mechanics be-
ing involved [7]. The elastic and plastic responses of the material to the
forces determine the final shape of any tissue. Even if there is no mechan-
ical signal regulating the dynamics of the shape, material properties and
underlying laws of mechanics are crucial to understand morphogenesis [8].
The addition of the 4D morphodynamical events transfers Systems Biology
to Computational Morphodynamics.

When described as a dynamical system, a living organism has to be char-
acterised by a huge number of variables and parameters [9]. Normally such
large degrees of freedom could push a system toward chaotic behaviours
[4]. But conversely, life is very robust! This is mainly achieved by tying
the enormous degrees of freedom via carefully designed feedbacks. Such
mechanisms confine the dynamics of the system to specific domains in their
phase space. These domains are related to the specific functions of the sys-
tem [2, 10]. The connections between different biological components of
a system or signalling pathways are often redundant, providing the sys-
tem with more robustness. During evolution every possibility is used to
increase the robustness and adaptability [11]. Mechanics as a fundamen-
tal feature of the material is capable to be involved in such processes and
should not be disregarded as a fitness factor.

It is not easy to develop mechanical models for a living tissue. Such tis-
sues have almost all the features that are disregarded from simplified classi-
cal material models. In general biomaterials are extremely inhomogeneous,
composite, anisotropic and dynamically adaptive to the environment. In
fact, these complicating factors play some important roles in morphogen-
esis [7, 12]. The complexity is a reason why despite the long history of
continuum mechanics, mechanical models appropriate for simulating finite
growth still need to be improved.

The previously developed material models for engineering purposes are
described by parameters that are, in many cases, hardly understandable
from a biological perspective. A proper material model to be included in a
multi modular model in Computational Morphodynamics must be as sim-
ple as possible while it still can accurately represent the main features of
living tissue such as heterogeneity, anisotropy and growth as well as the
dynamics of these features. Furthermore the parameters that such material
model is based on, must be biologically understandable. The latter is be-
cause finally we need to connect such models to models of other biological
modules, e.g. gene regulatory networks. For example, the plant hormone
auxin is involved in many growth related processes [13–16]. One can aim
at comparing hypotheses based on either auxin softening material or in-
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creasing the growth rate. A material model in which these two factors are
not explicitly stated can lead to ambiguities. In addition, when extending
the models to include more modules, the number of parameters increases
which makes computational models costly and complicated. This is why it
is crucial to have the lowest possible number of parameters for including
the important features of the material when describing morphogenesis.

The main focus of this thesis is to develop a mechanical model for a grow-
ing plant tissue. The model framework is developed to evaluate mechan-
ical signals while taking specific features of the plant tissue into account.
Such features include material elasticity, compressibility and anisotropy as
well as spatial and temporal heterogeneity of the tissue [Papers I-IV]. Some
other variables in the system like turgor pressure and shape-related factors
like curvature are also of great importance. We try to consider potential
feedback mechanisms in two directions. First we investigate the conse-
quences of regulating tissue properties (e.g. orientation of microtubules)
by mechanical signals (e.g. maximal stress orientation) [Paper I]. Further-
more we try to consider the possibility of material parameters being regu-
lated by non-mechanical components of the system, e.g. the impact of the
plant hormone auxin on elasticity and anisotropy. We investigate the ad-
vantages of some already hypothesised feedbacks like stress feedback to
the orientation of microtubules from a theoretical perspective and in re-
lation with energy optimization [Paper II]. Later we develop a model for
sustainable growth to capture highly anisotropic and large deformations
necessary for emergence of patterns and shapes in plant tissues [Paper III].
The growth is parametrized to have the possibility of being regulated by
mechanical or non-mechanical signals. As cell division is an inseparable
part of the growth process, we take special care to make our model capa-
ble of including cell divisions in the growth process. We use different but
relevant rules for division while minimising the temporal discontinuity of
the mechanical variables [Paper III]. Later we compare stress versus strain
as potential growth regulators when the tissue anisotropy is controlled by
stress [Paper IV]. We show that regulation of growth by strain while tissue
anisotropy is controlled by stress leads to growth patterns and directions
similar to those in plants [Paper IV]. Finally, we investigate different pos-
sibilities for tissue properties and forces for emergence of specific stress
patterns in plant root cells [Paper V].

1.1 biological background

Here follows a short summary of the key concepts in plant morphogenesis.
After a brief description of morphogenetic processes in plants, the main fea-
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tures of the plant cell wall, which play a large role in plant patterning, are
introduced. Next, the importance of Cortical Microtubules (CMT) in relation
with cell wall properties and growth is shortly discussed. Finally, in this
section, the experimental approaches for quantifying plant deformations
and material properties as well as the limitations for achieving the desired
accuracy are presented.

Figure 1.1: Shoot Apical Meristem. A confocal microscopy picture of a SAM. The
pool of stem cells at the Central Zone is surrounded by the Peripheral Zone
in which cells have higher growth rates [17]. The new organs (Primordia)
that grow out from periphery form the Phyllotactic Pattern. (Courtesy
of Benoit Landerin, Jönsson Group, Sainsbury Laboratory, University of
Cambridge)
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1.1.1 Morphogenesis in plants

Functionality of biological systems in general and plants in particular de-
pends highly on their shapes. Unlike animals, plants grow and deform
throughout their lives. The initiation of organ patterning, e.g. phyllotaxis,
in most plants, takes place in a small region of a few hundred micrometers
in size at the very tip of the aerial part of the plant. This region is called
the Shoot Apical Meristem (SAM) [18] (Fig. 1.1). The SAM holds a pool of
stem cells, which is maintained at the very center of the shoot, in which two
distinct regions in terms of expression of genes are recognized and known
as Central Zone (CZ) and Peripheral Zone (PZ) [18]. Whitin the CZ, in which
the tissue is mechanically isotropic, the pool of stem cells is maintained,
and the new buds that later will turn into leaves or flowers grow out from
the PZ. The growth is highly heterogeneous throughout the SAM and the
same is true for material elasticity and anisotropy [17, 19, 20]. Although
the SAM is not the only domain in plants that is responsible for patterning,
understanding the mechanisms for morphogenesis in the SAM is key to
the whole development of shape in a plant tissue. This is mainly due to
many similarities that growth-related processes possess in different plant
domains.

1.1.2 The plant cell wall

Plants are frequently considered as pressure vessels [21]. This is due to
the high intracellular turgor pressure which is about about three times the
pressure in a car tyre and is mostly held back by the rigid interconnected
network of cell walls. Unlike animal cells, plant cells possess a rigid wall
adjacent to their plasma membrane [22]. This gives the plant tissue strength
to withstand the stresses resulting from environmental factors such as wind
and gravity [23], as well as the internal turgor pressure. Furthermore, cell
walls are the final mediators of plant growth which is regulated by hor-
monal signalling and genetic networks [24]. They are also responsible for
responding to the environment [25]. The material in the walls is composite
with the main components cooperating to facilitate the dynamics in over-
all material properties needed during growth. Cellulose microfibrils play
the most important role in mechanics, providing stiffness and guiding the
growth direction [21]. Hemicellulose makes the material extensible and
able to grow while a pectin matrix glues all the components to form a com-
posite [26, 27]

The degree of alignment of fibres determines the degree of mechanical
anisotropy of the material which can be different both spatially and tempo-
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Figure 1.2: Cortical microtubules and CESA complexes A,C) Cortical microtubules
marked by a GFP reporter where in C the distribution of their orienta-
tion is highly anisotropic. B,D) Tracks of cellulose synthesis complexes
that are guided by microtubules in the same walls as in A and C re-
spectively which is a proxy for orientation of microfibrils. (Courtesy of
Arun Sampathkumar, Max Planck Institute of Molecular Plant Physiology,
Potsdam, Germany)

rally [6, 22]. From a modelling perspective the cell walls can be considered
as planar objects [Paper I]. The average plant cell diameter is about 5-10 µm
in the Arabidopsis SAM while the average wall thickness is about 100 nm in-
side the plant tissue and they are about 10 times thicker in outer layer of the
epidermis [28]. Considering cell walls as planar objects has the advantage
of allowing usage of more efficient modelling approaches for evaluating
mechanical signals within them.

1.1.3 Cortical microtubules and cellulose microfibrils

Microtubules are long polymers which are one of the most important com-
ponents of the intracellular cytoskeleton [29]. They serve various tasks in
all eukaryotic cells including nucleic and cell division as well as intracel-
lular transport. They continuously polymerize from their "plus end" and
de-polymerise from their "minus end" giving rise to a dynamical behaviour
in their distribution and alignment within the cells. In plant cells, micro-
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tubules that are adjacent to the cortex and called "cortical" are able to guide
cellulose synthase complexes that deposit fibres on the cell wall on the other
side of the plasma membrane [20, 30]. This is the reason why the alignment
of microtubules is considered as a proxy for the direction of the latest layer
of cellulose microfibrils that are responsible for mechanical properties of
the wall [31]. Cellulose fibres are very stiff [32]. The have been regarded
as a key factor in anisotropic elongation of the cells [21]. The alignment of
microtubules, and consequently fibres, varies throughout the plant tissue.
In the SAM, where a complicated growth pattern emerges, directionality of
microtubules provides valuable information about anisotropic properties of
the tissue. It has been shown that in the central zone of the meristem cor-
tical microtubules show a random alignment whereas they become more
aligned in a circumferential direction in the peripheral zone [33]. CMTs
become highly aligned at the boundary between central zone and newly
grown primordia [33]. The study of these properties in relation to stress
fields generated by turgor pressure and shape of the tissue is central to this
thesis.

1.1.4 Experimental data and its limitations

From a mechanical modelling perspective, the experimental data of plant
tissue are highly limited. Green Florecent Protein (GFP) that emits green
light when exposed to ultraviolet light can be used to mark microtubules
[34, 35]. Visualizing microtubules by using confocal microscopy can then
give the information about concentration and alignment of microtubules as
well as their dynamics. However the quality of the data is decreasing for
deeper layers of the tissue, also for those walls that are parallel to the di-
rection of microscopy. Visualizing cellulose fibres is more challenging and
needs more manipulation of the tissue as they are inside the cell walls to-
gether with many other components of the composite material. This makes
the measurements limited to single time points. Quantifying growth rates
and deformations has also many difficulties. It is almost impossible to de-
compose the elastic and plastic deformations directly. Assuming that the
elasticity of the material can vary due to different processes comparing the
volumes of the cells and/or areas of the cell walls gives only the overall
deformation. Even if there is no interaction between their body and the en-
vironment, plants move as they grow. Due to these movements, providing
time series data where different time points can be directly compared is
extremely challenging [36].

Analysing the microscopic data is often done by advanced computational
methods that include various optimization methods to reduce noise and
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Figure 1.3: Orientation of microtubules in the meristem A) Microtubules are
marked in the meristem, using a GFP marker. B) The orientation of
microtubules is isotropic in the central zone. C) The boundary between
meristem and a growing primordium where microtubules are highly
organized.(Courtesy of Neha Bhatia, Heisler Group, EMBL, Heidelberg,
Germany)

extract the most interesting details. MorphoGraphX [37] , MARS [36] and
COSTANZA (http://dev.thep.lu.se/costanza/) are examples of the tools that are
used for extracting plant cells and structures in the Computational Mor-
phodynamics community.

Measuring material properties of the plant tissue is even more challeng-
ing. Atomic Force Microscopy (AFM) is the main tool that has been used to
measure the resistance of the tissue against poking [38–42]. The problem is
that such resistance can result from a combination of turgor pressure, tissue
elasticity and often highly complex geometry of the tissue [43]. Analysing
the AFM data is usually done by combining hypotheses where these com-
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Figure 1.4: Segmentation of confocal microscopy data by MARS. (Courtesy of
Yassin Refahi ,Weibing Yang and Niklas Korsbo, Jönsson Group, Sainsbury
Laboratory, University of Cambridge)

ponents of the overall resistance are combined in models, and the accuracy
of such approaches is questionable [43].

Above all, the effects of such experiments on plants can often be so severe
that they can not survive or lose their normal functionality. This makes the
experimental data ambiguous as it is then hard to access data on healthy
plant tissue in its "natural" state with a high level of confidence.

In general, all of these limitations make the experimental data to some
degree qualitative rather than quantitative. Still, the latest advances in mi-
croscopy and image processing tools as well as methods of perturbations
are promising enough to motivate modelling approaches.

1.2 the question

In this section, the purpose of the research in this thesis is described. Then,
some of the previous efforts on modelling mechanics in plants are briefly
introduced.

1.2.1 The aim

The most important mechanical variables are stress and strain. They repre-
sent the distribution of forces and deformations within a tissue. This thesis
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is an investigation, firstly on evaluating these mechanical signals through
modelling, and secondly on potential feedbacks between such signals and
anisotropic properties of the cell wall material. Later we extend our ques-
tions to the potential relation between the elastic deformations and growth
patterns in the tissue. We also study the advantages of those feedbacks
both from a purely theoretical point of view and for the possibilities that
they provide for plants to achieve anisotropic shape changes. For each
stage, we first develop a finite element model to test our hypotheses and
we make sure that the generated results are consistent with experiments.
While we try to keep our model as simple as possible, we include the key
features of the plant tissue in our continuous description of the material.
Such features include material compressibility and anisotropy, finite elastic
deformations, finite growth, spatial and temporal heterogeneity and cell
division. As a first step, we try to validate our models by applying them
on simple geometries. This is a standard method in FEM which is called
Patch Test Analysis. Later, we apply our verified models on more complex
geometries that are key to understand plant morphogenesis.

1.2.2 Prior art

Linear spring models are frequently used in models of plant mechanics
[33, 44]. These models cannot be extended to 3D with an accurate repre-
sentation of the interconnected network of walls as a continuous structure,
mainly because the structures built by finite number of simple springs do
not effectively resist against shear forces. Another problem is related to
defining accurate measures for stress and strain fields. Moreover, mechani-
cal anisotropy with a distinct anisotropy direction for cells may not be well
defined via simple springs.

Finite Element Methods (FEM), on the other hand, provide more rigorous
approaches for analysing mechanical problems in continua. FEMs are de-
signed for finding the approximate solution to partial differential equations
and are very well developed for solid mechanics [45]. They work well for
evaluating mechanical signals in an arrangement of cell walls [33, 42, 46].
However, FEM is computationally expensive. For achieving a certain level
of accuracy in analysing a multi-modular model, the computational cost
of numerical analysis of mechanical variables by FEM is much higher than
that of biochemical variables that in general follow much simpler differ-
ential equations. This difference becomes larger when important features
such as tissue anisotropy, heterogeneity and growth are included in the
analysis. The natural way to address this problem is to simplify the FEM
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models by adopting them with respect to specific properties of the plant
tissue structure.

Some recent mechanical models for plants fit into this description [47–
49]. The models developed and used in this thesis also follow a similar
approach. The most common simplification is to use planar elements. This
is mainly due to the almost planar structure of the plant cell walls. Also,
based on the important role of the epidermis, in many models the plant
is considered as a pressure vessel. We show that planar elements provide
adequate description for the outer faces of epidermal cell layer [Paper I]. In
case of mechanics being considered passively, it is only used to maintain
the tissue integrity. In such case, growth can be simulated by removing
the mechanical fields after each growth-related update of the tissue. This is
similar to models based on tissue growth determined by morphogens [47,
50]. However for investigating hypotheses that are based on mechanical
feedbacks there is a need for maintaining mechanical signals during growth.
This is highly crucial also when cell divisions are taken into account. Due
to the need for re-meshing after each cell division there are new degrees
of freedom that are added into the system via new elements and nodes.
Including such new information in equations with minimum discontinuity
in time is a challenge that has most often been disregarded or simplified in
models so far.

The existing models can represent many of the complicated but crucial
features of the plant tissue. Still, We try to improve modelling capabil-
ities for building and testing hypotheses with all the mentioned aspects
included.

1.3 methods and models

In this section follows a summary on the methods that are used in this the-
sis. The general trend is to use simple assumptions to keep the number of
model parameters as low as possible. Alongside simplicity, we include tis-
sue anisotropy, heterogeneity, growth and cell division as well as the possi-
bility of application of feedbacks between mechanical and non-mechanical
variables in our model. By including all of these details, we can test hy-
potheses based on any combination of them.

1.3.1 Spring model

Although we have not used simple springs thoroughly in our models, it is
possible to combine them with our continuous description of the material.
These models are based on Hooke’s Law for linear spring elements. The
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springs exchange forces between all the "vertices (nodes)" with which the
cells are represented. Multiple walls, represented by edges, meet at each
vertex [51]. For every two vertex,

Fji = k
uij

|uij|
|uij| − Lij

Lij
, (1)

where Fij is the force exerted from node j on node i, k is the spring constant
of the unit length, uij is the position vector of node j relative to node i and
Lij is the resting length of the spring between two nodes. The energy from
which such force can be calculated, does not depend on the angles between
the directions of the springs, that meet on nodes explicitly, therefore cells
lack realistic shear resistance. The direction of forces and deformations can
be determined for each spring. However, how such forces and deforma-
tions can be used to represent stress and strain fields in the continua, is
not well defined and often ambiguous. In these simple models, growth can
simply be included by updating the resting length of the springs [44, 52],
using e.g.

dLij

dt
= kgR(

|uij| − Lij

Lij
) , (2)

where R is the ramp function and is defined by:

R(x) =

0 i f x ≤ 0 ,

x i f x > 0 .
(3)

This is the most basic formulation of growth which is in close relation
with the classical growth model for plant cells first proposed by Lockhart
in 1965 [53].

1.3.2 Deformation field and strain measure

In continuum mechanics, displacement of the material points of a body is
expressed by a deformation function, Φ [54], as

x = Φ(X, t) , (4)

where x represents the current configuration of all the material points and
X is the corresponding configuration in undeformed (material) coordinates.
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The derivative of deformation function with respect to X is called deforma-
tion gradient tensor, F, and given by

F = ∇XΦ . (5)

A commonly used measure for strain is the Green-Lagrange strain tensor,
E, which is defined in terms of the deformation gradient tensor

E =
1
2
(FTF− I) , (6)

where T denotes transpose of a second order tensor, and I is the second
order identity tensor. We can note that for calculating strain, we only need
information about the reference and deformed states of the material.

1.3.3 Strain energy and stress

Mathematically, for Hyperelastic materials, the way a material responds to
the strain field depends on the strain energy. In fact, all the properties
of the material and its expected behaviour must be encoded in the strain
energy expression that determines the stress field throughout the material
body as a function of a strain field [54]. The second Piola-Kirchhoff stress
tensor, S, which is the energy conjugate of the Green-Lagrange strain tensor
is introduced by

S =
∂W
∂E

, (7)

where W is the energy and E is the Green-Lagrange strain tensor.
In the continuum mechanics terminology a Material Model is a hypothe-

sized expression of energy in terms of strain. There are different models
that each describes a specific material. The complexity of the material is
mirrored in the corresponding energy expression. The simplest model for
linear elastic materials when the deformations are very small is Hooke’s
Law

W =
1
2
εT : C : ε , (8)

where ε is the second order infinitesimal strain tensor and C is the fourth or-
der stiffness tensor, which includes elasticity, compressibility and anisotropy
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properties of the material. Eqs. 7 and 8 can be used for driving the expres-
sion for the Cauchy stress tensor, œ,

σ = C : ε . (9)

When the strain is finite and not very small, the relation between stress
and strain can be non-linear. In this thesis we use the often used St. Venant-
Kirchoff description for the isotropic material energy density [54], given
by

Wiso =
λ

2
(trE)2 + µ trE2 . (10)

The material is parametrized in terms of λ and µ which are called Lame con-
stants and are related to material elasticity and compressibility by Young’s
modulus Y and Poisson’s ratio ν, respectively. The relations between these
parameters are given by

λ =
Yν

(1 + ν)(1− 2ν)
, µ =

Y
2(1 + ν)

. (11)

Due to the planar structure of plant cell walls, in plane stresses are domi-
nant and the assumption of a plane stress condition can be used. In such
condition, the stresses perpendicular to the plane of the walls are neglected
and Eqs. 5 become [54],

λ =
Yν

1− ν2 , µ =
Y

2(1 + ν)
. (12)

By using Eqs. 10 and 7 again we get an expression for stress

S = λ(trE)I + 2µE , (13)

These expressions only represent the isotropic material and need some
modifications in the case of material anisotropy. In case of infinitesimal
strain this anisotropy can be encoded in the stiffness tensor C but for fi-
nite strain, the St. Venant-Kirchoff description of energy (Eq.10) must be
modified.

1.3.4 Material anisotropy

For including anisotropy in the material when the strain is infinitesimal,
the classical way is to express the stress strain relation as
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 ε1

ε2

ε3

 =


1

Ym
− ν

Y 0

− ν′
Ym

1
Y 0

0 0 1
2G


 σ1

σ2

σ3

 , (14)

(15)

where Ym and Y are Young moduli of the stiffer and weaker principal di-
rections of the material, ν′ and ν are the corresponding Poison ratios and G
is the shear modulus [54] . This equation is written in the principal coordi-
nate system of the material. The symbols ε1,2,3 and σ1,2,3 are related to the
strain and stress components by

ε1 = εxx , ε2 = εyy , ε3 = εxy = εyx ,

σ1 = σxx , σ2 = σyy , σ3 = σxy = σyx . (16)

As a consequence of the plane stress assumption, stresses in the z direction
are neglected. Eq. 15 is a simplified version of Eq. 9 in which many of the
elements of C, ε and σ are set to zero or neglected due to the symmetries
and plane stress condition.

For finite strain Eq. 10 needs to be modified. We do this by penalizing
the energy in the specific direction of material anisotropy with higher stiff-
ness [Paper I]. For deriving the amount of penalty, first we partition the
isotropic energy in Eq. 10 into parts, each corresponding with one of the
principal directions. Then, we derive the general form of the additional
energy needed for anisotropy in the direction of a unit vector a as

∆Waniso =
∆λ

2
(aTEa)trE + ∆µ(aTE2a) , (17)

where

∆λ = λL − λT (18)

and

∆µ = µL − µT , (19)
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where λL, µL are Longitudinal Lame constants in a given direction ~a and
λT , µT are Transverse Lame constants in a plane transverse to a. Now the
full expression of the energy for anisotropic material becomes

W = Wiso + ∆Waniso . (20)

Again we can derive a correction term for the stress-strain relation, ∆S,
in Eq. 13, by using Eqs. 7 and 17, which gives

∆S =
∆λ

2

(
(aTEa)I + (trE)(a⊗ a)

)
+ ∆µ (E(a⊗ a) + (a⊗ a)E) . (21)

We have added this term to the stress tensor wherever the anisotropic ma-
terial has been considered [Papers I-IV].

1.3.5 Fundamental balance laws

The physics behind continuum mechanics can be summarized in terms of
balance equations for Mass, Energy, Linear and Angular Momentum.

The balance of mass can not be formulated without the knowledge about
input and output of mass in the system. Throughout this thesis we have
assumed that the mass density of the cell walls in the tissue is constant. This
might not be true but considering that we are not aiming at calculating the
accelerations (as we will see in the next section), the parameters such as
Young moduli and Poison ratios are sufficient to represent the role of the
material in the system. Furthermore, in most tissues we are investigating,
we have no indication of primary cell walls getting thicker or thinner over
the time scales we are interested in. So we always assume

dρ

dt
= 0 , (22)

where ρ is the mass density. Also, for deriving the balance equation for
energy we need to include not only all the components of the plant tissue
but also the inward and outward flows of energy. In our models we are
only focusing on plant cell walls and this is not enough for such derivation.
Neglecting the impact of temperature and different forms of energy on ma-
terial parameters is another major simplification that we apply. These as-
sumptions are commonly used by mechanical models developed for plant
tissue. Angular momentum balance is not needed to be explicitly included
in the model as it is encoded by the stress tensor symmetry.
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The most important balance equation in the system for calculating the
stress field is the one for linear momentum which results in Cauchy’s first
law of motion

ρ
dV
dt

+ ηV−∇ · S− ρb = 0 , (23)

where V is the velocity and b represents the body forces. The term ∇S
is traction generated by stress divergence and ηV is the damping force
resulting from viscosity of the medium. As shown in the next section we
can use this equation to calculate the equilibrium state of the stress field.

1.3.6 Quasi-static equilibrium

Considering the solidity of the plant cell walls the time needed for the
forces in the tissue to equilibrate is much shorter that the time interval
necessary for noticing the tissue dynamics resulting from growth. This
difference in time-scale allows us to neglect the first two terms on the left
hand side of Eq. 23. Integration of remaining terms over the domain of the
material gives the fundamental equation for balance of forces in continuum
mechanics [55],

δW =
∫

ω
S : δd dv−

∫
ω

b · δv dv−
∫

∂ω
τ · δv da = 0 , (24)

where δW is the variation of energy, which should be zero when the stress
field S is equilibrated by the body forces b and traction forces τ on the
boundary (∂ω) of the region of interest (ω) within the continuum. After
each update in the material we make sure that this equation is satisfied.

1.3.7 Spatial discretisation

Generally, FEMs are methods for discretisation of the domains of partial
differential equations when numerical solutions are needed [45]. Although
these methods share many basic principles, they are highly problem de-
pendent when considering details. Due to the cell wall geometry, using
planar elements is a relevant approximation. We have mainly used trian-
gular plates for discreetizing the cell walls in this thesis. The deformation
gradient tensor F can be derived in terms of position of the nodes in the



18 introduction

resting and deformed states of the element [56]. The i’th shape vector Di is
related to node Pi in the resting shape (Fig. 1B in Paper I) and

Di =
1

AP
(Pj − Pk)

⊥; εijk = 1 , (25)

where AP is the resting area of the element, εijk is the permutation symbol
and X⊥ is orthogonal to the vector X. In this case the expression for F
becomes [56]

F = Qi ⊗Di , (26)

where Qi is the position vector of the i’th node in the deformed shape. All
of the mechanical variables can be expressed in terms of the deformation
gradient tensor and by Eq. 26 they can be easily related to the resting and
current position vectors of the nodes.

In Paper I, we also compare the simulation results of planar elements
with those of standard shell elements. Spatial discretisation by shells is
well developed and can be found in standard textbooks [55].

1.3.8 Modelling growth in continua

We model growth by updating the resting configuration. The overall de-
formation, Feg, can then be expressed as a combination of deformations
by

Feg = FeFg(t) , (27)

where Fe represents the elastic component of deformation and Fg(t) is the
growth tensor at time t. After an infinitesimal time step δt the resting
configuration X0 is given by

X0(t + δt)− X0(t) = fgX0(t)δt , (28)

where fg is the differential growth tensor which can be related to the overall
growth tensor by

Fg(t) = exp
[ ∫ t

0
fg(t′)dt′

]
. (29)
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The most general form of the growth tensor that we use in our models
(Paper III) is in the form of

fg = krateΣiR(gi − gt)|gi 〉 〈 gi|
= krate|FTe Fe|−1ΣiR(Gi − Gt)FTe |Gi 〉 〈Gi|Fe , (30)

where krate is the growth rate, R is the ramp function defined by Eq. 3,
Gi and |Gi〉 are the i’th principal value and vector of growth signal and Gt
is the growth threshold in the current configuration. The corresponding
variables in the resting configuration are gi, |gi〉 and gt respectively. The
growth signal can be hypothesised as stress, strain or a non-mechanical
signal, e.g. a morphogen.

1.3.9 Cell division

A consequence of large deformations during growth is the need for cell
division and re-meshing the tissue description. As the growth field might
be incompatible, cell division cannot be performed in the resting configu-
ration. To avoid discontinuity of the strain field when a cell divides we
have to estimate the resting configuration of the daughter cell walls with
the constraint of maintaining the strain from the mother cell wall. The bio-
logical motivation is that cell division is a continuous process in which the
material is slowly deposited in a new wall [57]. In the model, this can be
done via a reverse calculation of the resting shape, granted that we know
the average strain field in the current configuration.

The Eulerian-Almansi finite strain tensor, e, is a measure for strain in
the current configuration and can be expressed in terms of the deformation
gradient tensor as

e =
1
2
(I− F−1F−T) . (31)

In Paper III, we show that the resting length of each element edge can be
estimated via

L = [Σi(1− 2ei) 〈 l|ei 〉2]
1
2 , (32)

where ei and |ei > are the i’th eigenvalue and eigenvector of the average
Almansi strain tensor of the mother cell wall and |l > is the corresponding
element edge vector in the current configuration.
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This method does not depend on the plane of division. The criteria which
determine how the cell division occurs specifies the direction and position
of the emerging wall and the necessary re-meshing.

1.3.10 Feedbacks within mechanics and beyond

The pressure inside the plant tissue is the main source of stress. In addi-
tion, the shape (mainly curvature on epidermis) has a major role on both
magnitude and degree of anisotropy of the stress field. On the other hand,
the shape itself is the result of the growth field. The material properties in-
cluding the stiffness as well as degree and direction of material anisotropy
determine the resulting strain field via the strain energy expression. The
relations between all the mentioned parameters and variables are dictated
by the laws of physics.

Models for bridging between mechanical and biological components of
the plant tissue, have often included auxin, PIN and cortical microtubules
[28, 46, 58]. The plant hormone auxin is supposed to be highly involved
in the growth-related processes while a protein family known as PIN (PIN-
FORMED) are responsible for cell polarity and active transport of auxin.
Also, cortical microtubules are related to tissue anisotropy through their
role in guiding the fibre deposition processes in the primary cell walls.
Much bulk of the research on plant mechanics, including this thesis, is
focused on the relation between stress and tissue anisotropy via CMT or-
ganisation [33]. It has been shown in some models that stress can be
considered as the main regulator of PIN polarity in cells for generating
patterns of auxin concentration via active transport [46]. Also auxin is
suggested as a growth regulator due to its role in altering material prop-
erties of the cell wall [13–16]. Although the description of main regulators
of growth in plant tissues yet needs to be improved, in different models,
stress, strain and morphogen-based mechanisms have been assumed to be
involved [33, 47–49, 53]. In this thesis we have provided tools to use any
of these signals [Paper III] and in particular compared possibilities of the
growth being regulated by stress or strain [Paper IV]. The stress feedback to
the direction of material anisotropy and also stress anisotropy feedback to
the degree of material anisotropy are used in Papers I, II and IV. In Papers
III and IV there are examples of regulating the growth based on mechani-
cal signals such as stress or strain and also non-mechanical signals such as
auxin.
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Figure 1.5: A potential model for feedback network among mechanical and bio-
logical parameters and variables in plant tissue. Y is overall elasticity, k
represents mechanical anisotropy and a is the vector of anisotropy direc-
tion. CMT is the short term for Cortical Microtubules. The mechanical
parameters and variables are in gray boxes and the molecular variables
are in green boxes. The arrows and lines in black show physical con-
nections. There are strong experimental evidences for blue arrows. The
two dashed arrows in blue are the connections that are currently under
investigation. The red arrows are proposed in different growth models
(including in this thesis). We have not used PIN dynamics in our models.

1.3.11 Numerical solvers

Throughout this thesis we develop mechanical models. The computational
cost however is greatly dependent on the solvers that are used. In our
multi-modular model, as dynamics of the system in biochemical modules
are of high interest, explicit solvers are used. For non-stiff problems we
use an adaptive 5th order Runge Kutta Fehlberg method [59]. Occasion-
ally, when we encounter stiff problems with short temporal discontinuity
of the parameters we switch to the 4th order Runge Kutta with fixed step
size. However in continuum mechanics implicit solvers are more efficient.
The development of implicit solvers is a remaining step in our project and
should be taken in the near future.
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paper i :

Stress and strain provide positional and directional cues in development

Coordinated changes in material properties in the plant tissue is a key to
the development of shape in plant organs [1, 2]. A fundamental question is
how plants manage to control the cell wall anisotropy and achieve desired
deformation patterns. For investigating questions and trying different hy-
potheses, in Paper I, we first develop a mechanical model based on a finite
element method for planar elements [3]. We adopt the model to include
dynamical anisotropy of the tissue. Next we validate the anisotropic plate
model versus a standard "Shell" finite element method [4] and show that
the results agree in the case of tissue pressure simulations of the epidermis.
In our model it is possible to tune both direction and degree of anisotropy
of the cell walls. This represents anisotropic deposition of fibres. Later we
apply feedbacks to the direction of anisotropy of the tissue from stress and
perpendicular direction to strain. In the presence of material anisotropy,
stress and strain can have different directions and these two scenarios have
different impacts on the dynamics of the system. We show that stress-fibre
feedback can produce anisotropy patterns similar to what is observed in
different domains of the plants. The results are opposite for a strain-fibre
feedback, which alters those patterns with anisotropic patterns not agree-
ing with experiments. Furthermore, we show that the stress-fibre feed-
back model can generate zones of different mechanical properties in the
radial direction of the plant shoot. Such zones are similar to the previously
identified regions of specific gene expressions. Also the elastic deforma-
tions resulting from stress-fibre feedback are in favour of growth patterns
seen in experimental measurements. Such deformations are necessary for
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anisotropic growth and a key factor in plant morphogenesis.

My contribution: The initial idea of the project was conceived by H.J. and
P.K.. I added more details to the initial plan. I derived the mathematical
formulation of the model with inputs from P.K. and extended the software
for anisotropic mechanical model of plates. I performed all the simulations
for plates and generated all the figures except those of the "Shell" model. I
analysed the data together with H.J. and P.K. and contributed to the writing
of the manuscript.

paper ii :

Morphogenesis can be guided by the dynamic generation of anisotropic
wall material optimizing strain energy.

In this paper we analysed the stress-fibre feedback model from a theoret-
ical point of view. The dynamics of any system toward its mechanical
equilibrium can be derived by minimization of strain energy [5]. In the
plant tissue, both the degree of mechanical anisotropy and its direction are
dynamical variables. We ask whether the stress-fibre feedback with all of
its favourable results for plant morphogenesis, is also in favour of elastic
energy minimization. First, we try this idea on a linear elastic material
model. We parametrize the energy in terms of the angle between the maxi-
mal stress direction with the stiffest direction of the material and the degree
of material anisotropy. We assume the constraint of constant overall mate-
rial stiffness, which is equivalent to constant fibre content in the cell wall.
We show that, minimization of elastic energy is equivalent to the align-
ment of the direction of material with highest stiffness with maximal stress
direction. Furthermore, we minimize the energy respect to the degree of
material anisotropy and derive an analytical relation between material and
stress anisotropies at the minimum energy. The direction and anisotropy of
stress on epidermis is prescribed by turgor pressure and curvature of the
surface and correlated with orientation of cortical microtubules and fibres
in the same domains [6, 7]. Therefore we tried the stress-fibre feedback
model, which is developed in Paper I, on a pressurized template with sim-
ilar curvatures as in the shoot apical meristem while observing the overall
elastic energy. We showed while stress-fibre feedback mechanism aligns the
directions of material anisotropy with maximal stress, the elastic energy de-
clines. The elastic energy declines further, after applying the stress-fibre
feedback for degree of material anisotropy.
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My contribution: I conceived the idea of the project with inputs from
H.J.. I did the mathematical derivations. I developed the software and
performed all of the simulations. I analysed the data together with H.J.
and P.K.. I generated all of the figures and contributed to the writing of the
manuscript.

paper iii :

A continuous growth model for plant tissue.

The large deformations leading to organogenesis in plants are generated by
residual growth in the cell walls. Analysing growth at such a detailed level
needs a continuous description of the tissue. There are models developed
for this purpose [8], each based on specific assumptions. Due to the com-
plexity of the growth process and different possibilities for its regulation,
we aimed at developing a growth model, in which all the key features of
the tissue that potentially can coordinate growth are included. We repre-
sent a general form for the continuous growth process. In our description
a mechanical signal, e.g. strain or stress, as well as a non-mechanical signal,
e.g. a morphogen, can regulate the growth rates and directions. Due to the
importance of stability of such model we compare its results when applied
on templates of different resolution in spatial discretiation. We show that
such results converge by improving the closeness of growth dynamics to
the mechanical equilibrium where all the forces in the tissue are balanced.
We show how this model is able to use stress or strain as well as a growth
field prescribed by a morphogen to coordinate growth. We demonstrate the
differences between such results even under the same material properties
and stress condition in the tissue. This stresses the importance of a careful
comparison between different candidates used as growth regulators. Fi-
nally, we introduce an approximate method for implementing cell division
and re-meshing. While it is possible to use different cell division rules in
our model we always minimize the discontinuity of the mechanical signals
between their values before and after cell division. The above mentioned
aspects of such model allows us to ask fundamental questions about the
potential underlying feedback mechanisms involved in growth-related pro-
cesses.

My contribution: I conceived the idea of the project with inputs from H.J.
and P.K.. I did the mathematical derivations. I developed the software and
performed all of the simulations. I analysed the data together with H.J. and
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P.K.. I generated all of the figures and wrote the paper together with H.J.
and P.K..

paper iv :

Anisotropic growth in plants can result from stress feedback on wall ma-
terial and strain-regulated growth.

Here we combine models developed in Papers I and III. We introduced
stress-fibre feedback as a regulator of anisotropy direction of the tissue in
Paper I. We showed advantages of such feedback mechanism for generat-
ing realistic patterns of anisotropy in plant tissues. By using the growth
model introduced in Paper III, we can compare different growth signals
working alongside with the stress-fibre feedback mechanism. In this paper
we compare stress and strain as growth signals. These two can be decom-
posed when the material elasticity and stress field are both anisotropic. We
show that regardless of tissue anisotropy, a stress signal fails to generate
favourable growth patterns for organ formation and development. Con-
versely, strain provides growth coordination that fits very well in many
important domains. According to our results the classic growth model for
plant tissue, introduced by James A. Lockhart in 1965 [9], needs to be in-
terpreted correctly. Although, strain based growth is able to work nicely
together with stress-fibre feedback mechanism to generate anisotropic pat-
tern on a stem, it is not enough to describe the observed slow growth in
the central zone of the shoot meristem. We revisit our previously made
assumption about constant overall elasticity throughout the epidermis. We
show that if there is a softening factor, e.g. auxin, at the shoot, the shape
and curvature are maintained during growth. Next, we show that with
such assumption, it is possible to tune the radius of the stem by the rate
of morphogen production, which defines the area at the shoot apex with
a concentration above a threshold value. Finally, we show that the stress-
fibre feedback mechanism together with a strain based growth can describe
the transient reversal of the cortical microtubules when growth has a layer
dependent rate.

My contribution: I conceived the idea of the project with inputs from H.J. I
modified the software and performed all of the simulations. I analysed the
data together with H.J.. I generated all of the figures and wrote the paper
together with H.J..
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paper v :

A model analysis of mechanisms for radial microtubular patterns at root
hair initiation sites.

This paper is an investigation of the growth process of plant root hairs. The
growth of root hairs involve extremely anisotropic shape changes governed
by tip growth. Investigating the patterns of material properties as well as
stresses in the tissue can reveal information about the initiation process
of root hairs. In the experiments we observed a star like arrangement of
microtubules which forms before initiation of root hairs. Due to the correla-
tion between microtubules and stress pattern in other domains of the plant
tissue, we investigate if these patterns can be generated by stress. We map
such stress patterns into patterns of material elasticity as well as forces that
can be applied on the tissue. We show that there are two possibilities for the
formation of such stress patterns. Local addition of material and increased
local tension both can produce such arrangement of stress directions. Also,
we implement a molecular model for interactions between ROP and auxin
and show that a cell polarity driven by auxin concentration can lead to a
patch of activated ROP at the basal side of the epidermal root cell.

My contribution: All of the authors conceived the idea of the project. I did
the trial run of mechanical simulations and contributed to analysing the
data. I edited the manuscript.
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Morphogenesis of organs necessarily involves mechanical interactions and changes
in mechanical properties of a tissue. A long standing question is how such changes
are directed and coordinated on cell to tissue scale. Growing evidence suggests
that mechanical cues are participating in control of the expansion and growth in de-
velopment. We introduce a mechanical model for describing dynamical anisotropy
in plant cell walls in which both the degree of material anisotropy and anisotropy
direction are regulated by stress anisotropy as a model for the deposition of cel-
lulose fibers in primary plant cell walls. We show that the finite element shell
model and the more simple triangular biquadratic springs approach using flat two-
dimensional elements provide equally adequate descriptions of the cell mechanics
in tissue pressure simulations of the epidermis. In the case of a growing organ,
where circumferentially organized fibers act as a main controller of longitudinal
growth, we show that the fiber direction can be correlated with both maximal stress
direction and orthogonal to maximal strain direction. However, when dynamic up-
dates of the fiber direction are introduced, the mechanical stress provides a robust
directional cue for the circumferential organization of the fibers, while the strain
model leads to an unstable situation where the fibers reorient longitudinally. Our
investigation of the more complex shape and growth patterns in the shoot apical
meristem where new organs are initiated shows that a stress based feedback on
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fiber directions is capable of reproducing main features of known fiber directions,
deformations and material properties in different regions of the shoot. Especially,
we show that the purely mechanical model can create distinct regions in the radial
direction where cells are expanding slowly and isotropically in the central zone and
faster and in a radial direction at the periphery, which is a well known behavior in
the meristem.

i.1 author summary

Development is dependent on a coordination between cell differentiation
and morphogenesis. Plants, that lack cell migration, control directional
growth by adjusting cellulose fiber directions to form the organ shapes and
it has recently been shown that mechanical cues can guide the fibers. We
developed detailed mechanical models to investigate how fiber directions
may be listening to mechanical cues and what consequences this have for
positional and directional growth patterns. We could show that a model
where fibers align to maximal stress dirtections spontaneously generates a
radial zonation in the shoot, with the known slowly growing center and
faster growing peripheral region. This connects mechanics with the gene
expression important for stem cell maintenance, which are expressed in a
similar pattern. We also showed that the stress model is robust in defining
anisotropically growing organs, which stress the importance of stress in
generating correct organ shapes in plants.

i.2 introduction

Mechanical forces are integral part of any living system and recent data is
confirming their importance as signaling cues in animal and plant devel-
opment [1–3]. This may be especially important for plants which have to
sustain large environmental forces while achieving shape and form which
can be advantageous in their habitat [4]. Due to lack of cell migration,
plants require changes in mechanical properties of the tissue on the cellular
scale for facilitating directional growth of organs.

The mechanical properties of plant tissue can be linked down to the prop-
erties of cell walls. The walls are composed of a network of cellulose mi-
crofibrils interconnected by polysaccharides and xyloglucans [5–7], which
constitute the structurally strong element of plant tissue providing support
against turgor pressure and internal tension. From a mechanical point of
view, the walls can be considered to be thin visco-elastic elements.

The epidermis of plant tissue is thought to play a special role in morpho-
genesis [8, 9]. It is generally more mechanically stiff than internal tissues,
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which suggest a ’tissue pressure’ model where tensional forces in the epi-
dermis are generated by the pressure and growth of the internal cells [8].
Under action of hormones or enzymes the epidermis can experience sub-
stantial changes in its mechanical properties [10–12], which is determinant
in the outgrowth of plant organs. The prevailing idea of how an isotropic
tissue pressure generates anisotropic growth has to do with anisotropy of
plant material. The cellulose microfibrils, which have been shown to have
highly organized directional pattern in epidermis [13, 14], restrict the elastic
expansion of a tissue in direction parallel to them. The organization of the
wall fibers is regulated by the cells via deposition of cortical microtubules
[15]. This fact has been exploited by experiments which often use micro-
tubule direction as a proxy for fiber direction. While directional fibers can
translate the isotropic forces into specific strain directions, additional mech-
anisms for long-term plastic anisotropic growth are also needed. The data
suggests that such growth is the result of a molecular break and slip behav-
ior with new material constantly added to the walls [16, 17], where plastic
growth is triggered by the stresses in the wall exceeding yield threshold.
When anisotropic material is generated by adding strong fibers, the pic-
ture becomes more complex, and the idea how the growth proceeds is that
weaker molecules connecting the fibers break and allow for extension in
the direction perpendicular to the fiber [17]. While simple models of plant
growth have been developed, a model for complete plant tissues compati-
ble with the stress-based growth and anisotropic cell wall material is yet to
be defined [18–20].

The composition of the plant cell wall has to be controlled by the genetic
program of the cell allowing large degree of adaptivity for the whole plant,
existence of specialized tissue types and the wealth of plant forms. How-
ever, as recent evidence [3, 21] and previous ideas [22] suggest, it is likely
that the reciprocal signaling, linking the mechanical state of the tissue and
cell walls to biochemical process takes place too, connecting growth rate
and direction with mechanical properties of the plant tissue in a feedback
loop. Molecular details of the mechanism of such two way relation between
mechanics and cell functions are still elusive and require further investiga-
tion [7]. Especially, the organization of the cellulose fibers, leading to a
directional growth may be determined by several cues. One suggestion is
to align the fibers orthogonally to the maximal strain direction. This has
been proposed for anisotropically growing tissues [23, 24]. Another sug-
gestion is to organize the fibers in the maximal stress direction [25], which
found support in the patterns observed in the plant meristem [3, 26]. In
a situation of isotropic mechanical materials the two ideas would be easy
to discriminate among given that maximal principal strain and stress in
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such situation point in the same direction. However, in the case of mechan-
ically anisotropic plant walls, maximal strain and stress may very well be
orthogonal and it may not be easy to discern between the two rules of fiber
alignment. The situation is complicated further by the fact that a change
in the fiber direction will lead to a change in stresses and strains resulting
from the same external load. This complex feedback loop makes it difficult
to predict a priori if stress or strain directions can act as stable inputs for
shape generation, even if their directions are easily predicted given the ma-
terial anisotropy. The intricate dynamics of fiber alignment resulting from
such feedbacks has yet to be investigated in more detail.

Mechanical strains and stresses in the tissue, are not easily measurable
quantities, and reliable mechanical models of biological materials can offer
significant help to quantitatively predict both magnitude and direction of
the strains and stresses. Within such models, given the material properties
and loading forces, one can accurately describe the mechanical response
of the tissue and test different scenarios of its coupling to biochemical sig-
nals. There exists a large variety of finite element or particle based methods
which can be applied when modeling mechanical interactions of different
materials [27]. These methods, however, are usually quite computation-
ally intensive and large scale cellular models are not always feasible within
them. In addition those methods have not been designed and optimized
to cope with dynamic complexity of biological materials and growth of
the tissue, which means rapid changes to cellular topology and material
composition of the models.

Given the geometry of a plant cell wall, where the thickness is often
more than an order of magnitude smaller than its planar extension, finite
element method (FEM) shell models provide an adequate description since
they are specifically designed for thin curved surfaces and describe ten-
sile and bending behavior (Figure 1A) [28, 29]. More recently, Triangular
Biquadratic Spring (TRBS) models have been developed to describe two-
dimensional elastic elements [30]. TRBS has the benefit that a model can
describe the mechanical variables encoded just in the resting and current
lengths of the triangular edges ({Li}, {li} in Figure 1B), and hence provide a
simplistic description of two-dimensional mechanical elements. The TRBS
implementation has been shown to accurately represent continuum prop-
erties of mechanics [30]. However, since bending energy is disregarded, it
is less obvious that such models can provide a good description of plant
walls that typically consists of curved structures.
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Figure I.1: Mechanical models and templates. (A) Geometry of a quadrilateral
shell element for the finite element method. The thin three-dimensional
surface is parametrized by a two-dimensional shell with implicit thick-
ness and set of director vectors D (Supporting information). (B) An el-
ement used in the triangular biquadratic spring model. Pi, Qi and Li, li
represent positions and edge lengths in resting and deformed state, re-
spectively. The strain tensor can be expressed in terms of edges of the ele-
ment in resting and deformed states. (C) The quadrilateral patch used for
comparing triangular biquadratic springs and finite element shell mod-
els. (D, E) Different templates representing selected plant-like geometries
used in tissue pressure simulations.
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In this paper we develop two implementations of a mechanical model for
anisotropic plant wall material: a FEM shell model and a TRBS of plates.
We compare the models in in-plane loading simulations and in tissue pres-
sure models of the plant epidermis leading to additional bending forces in
shells (Figure 1C-E). We analyze the relation between maximal (first prin-
cipal) stress and strain direction under different loading forces. We use
the models to analyze different proposed mechanisms of coupling between
mechanical cues and alignment of material anisotropy of cells, based on
perception of either maximal stress direction (MSD) or the direction orthog-
onal to maximal strain (OsD). We apply the models to different geometries
representing different tissues in plants in order to evaluate their potential
for explaining cellulose fibril patterns and growth patterns observed in epi-
dermal plant tissues (Figure 1D-E).

i.3 results

i.3.1 Shell Finite Elements and Triangular Biquadratic Springs offer an adequate
description of anisotropic plant wall material

One of our goals was to establish an efficient computational method and
reliable material model that can be used to simulate the behavior of plant
walls. Especially, we aimed to investigate whether a Triangular Biquadratic
Spring implementation can provide a reliable description, given that it is
a two-dimensional representation and that it does not explicitly include
any bending behavior. To do this we developed a TRBS model and com-
pared the results with a finite element method shell model (Methods and
Supporting information).

To describe the anisotropic wall material, we used a hyperelastic strain
energy density formalism applicable to large strain deformations (Support-
ing information). For the isotropic part we used a St. Venant-Kirchoff
description [3, 30], and developed an anisotropic material model penaliz-
ing extension in a defined fiber direction (Equations 1,3 and Supporting
information).

First, we tested a quadrilateral mechanically isotropic square patch of ele-
ments under different loading conditions and different material properties
(Figure 1C). When we applied a uniaxial tension, the stress-strain relation
completely agreed between both methods (Figure 2A-B). The quantitative
agreement was confirmed for a wide range of Young modulus and Pois-
son ratio configurations when tested on isotropic loading force conditions
with a difference less than 0.1 percent between two models (Figure 2C, Fig-
ure S1A). Note that the principal stress value is monotonically increasing
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function of not only the Young modulus but also of the Poisson ratio for
this mechanical model (Figure 2B). We extended the uniaxial tension tests
into a large deformation regime to demonstrate the well known deficiency
of this material model, where uniaxial loading force can result in infinite
stresses and zero volume at finite strains [31]. We found that this deficiency
appeared especially when the Poisson ratio is high (Figure 2A-B). In simu-
lations of plant tissues, we do not expect strains to exceed several percent,
which corresponds to the typical values 5-10% encountered in experiments
[32], and as such the model provides an appropriate description of plant
wall material.

Next, we analyzed the behavior of the anisotropic material model for the
square patch of elements under biaxial loading forces. Under isotropic load-
ing forces an increased degree of material anisotropy led to an increased
difference between the magnitude of principal stresses (Figure S1B), and
the maximal stress and strain directions were perpendicular to the fiber
direction. When we applied an anisotropic loading force, the behavior de-
pended on the angle between the maximal force direction and the direction
of the material anisotropy axis (Figure 2D). When the material anisotropy
direction coincided with the dominant loading force direction the maxi-
mal principal stress value were lower compared to when those directions
were perpendicular. This can have profound implications for plant wall
mechanics. Since stresses are responsible for triggering inelastic behavior
and breakage of brittle components of a material [33], a plant cell’s ability
to control the amount of stress in the tissue by adjusting its anisotropy can
be a way to direct growth given the stress magnitude’s relation to the yield
stresses of the wall material [5].

To test how important the lack of a bending resistance is in the TRBS
model we compared principal stress pattern, principal strain value and
deformation with the FEM shell model for a pressurized quadrilateral plate
(Figure 1C, 2E), for different plant-based geometries (Figure 1E, Figure S1C-
D), and a saddle-like template (Figure S1E).

The results showed good agreement between the two methods for the
pressurized quad suggesting that the deformation in our tissue pressure
model is dominated by tensile and not bending behavior (Figure 2E), al-
though we found small quantitative differences. For example, the nor-
malized distribution of equivalent von Mises strain for TRBS model had
a slightly higher average (0.052 vs. 0.049) (Figure 2F) indicating the lack of
bending energy at the junctions. The similarity held for most geometries
tested (Figure S1C-D), although templates where compressive forces gener-
ated buckling were an exception (Figure S1E). However, even in this case
the general pattern and distribution of stresses was in good agreement
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Figure I.2: Comparing triangular biquadratic springs and finite element shell
models. (A, B) Uniaxial stretching test on a quadrilateral patch shows
prefect agreement within numerical accuracy between both methods for
principal stress and area ratio versus deflection of top right corner of the
quad. Isotropic material (Young modulus = 400 kPa, Poisson ratio = 0.2
and 0.4, thickness = 0.01 m, size = 1 m, force = 8 kN). (A) Principal stress.
(B) Area ratio. (C) Principal stress value for isotropically loaded...
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Figure I.2: ... patch with 2kN force for the same patch using TRBS method where
Young modulus and Poisson ratio were varied. The difference between
principal stress value in TRBS method and integrated principal stress
over thickness in FEM shell model is less than 0.1% (Figure S1A)(D) First
and second principal stress values for the same patch of anisotropic mate-
rial with transverse and longitudinal Young modulus of 400 and 800 kPa
respectively and Poisson ratio of 0.2, under 0.8 kN and 0.2 kN anisotropic
loading force. The anisotropy direction was varied between 0 (maximal
force direction) and 180 deg. (E, F) bending test results from pressuriz-
ing a patch of elements. (E) Principal stress direction and principal strain
value for TRBS (left) and shell (right). Material is isotropic with Young
modulus 400 kPa and Poisson ratio 0.2. Number of elements is 400 and
250 for shells and TRBS, respectively. (F) Distribution of equivalent Mises
strain value over elements. TRBS elements show slightly higher strain
value because of the lack of bending energy. Average equivalent Mises
strain over elements: 0.0523 and 0.0492 for TRBS and shell, respectively.

between both methods. The similarities of the two methods indicate that
tensile forces may dominate over bending forces, but also that although the
TRBS approach does not explicitly account for bending energies at individ-
ual edges, the triangulated mesh structure may still incorporate a resistance
towards bending via stretch and compression of the elements induced by
bending.

In conclusion, we have shown that TRBS and shell finite element models
agree for describing anisotropic wall material in two dimensions in a wide
range of material anisotropy and applied forces. Although quantitative dif-
ferences appear, the methods also show high degree of similarity in the
case where three-dimensional structures are pressurized and where bend-
ing forces are induced. We could also see that in a situation of anisotropic
loading forces and an anisotropic material, a complex relation between the
maximal directions of the load, strains and stresses appear, indicating that
plant cells can control these aspects if it is able to control the fiber direc-
tions.

i.3.2 Mechanical strain and stress are not equivalent signals in presence of mate-
rial anisotropy and loading force anisotropy.

To analyze the relation between resulting stress and strain directions given
different loading forces and fiber directions we first investigated a situa-
tion where the direction of maximal applied force coincide with the fiber
direction in a simple square shape. The maximal stress direction always
followed the maximal loading force direction. Depending on the degree
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of anisotropy for the applied force and the material properties used, the
resulting maximal direction of strain was either parallel or perpendicu-
lar to the maximal stress direction marking distinct regions in the (force-
anisotropy, material-anisotropy) parameter space (Figure 3A). As expected,
for isotropic materials the maximal principal stress and strain directions
coincided with the maximal applied force direction. For anisotropic ma-
terials and anisotropic loads we obtained a region where maximal stress
and strain directions can be perpendicular (black region in Figure 3A). The
extension of this region was dependent on the Poisson ratio of the ma-
terial (Figure S2A-C). Given a fixed material anisotropy (dashed line in
Figure 3A), isotropic loading leads to parallel directions of the maximal
principal stress and strain. A higher directional force can be resisted by the
stronger component of the material leading to a maximal strain direction
perpendicular to the maximal force. However, when the forces are highly
anisotropic they overcome the resistance of the stronger component of the
material and the maximal strain will follow in the direction of the applied
force.

This pinpoints the fact that potential cellulose fibril orienting mecha-
nisms based on the feedback from either stress or strain will behave dif-
ferently from each other in some parts of a tissue even if in another part
they would show consistent behavior. We used the model to analyze the
anisotropic growth of shapes resembling plant organs, where the alignment
of fibers in epidermal tissues is thought to guide growth. We simulated a
cylindrically shaped tissue using the tissue pressure model and mechan-
ical parameters with values from experimental estimates [34–36]. We set
the fiber direction to be circumferential to match observed microtubule di-
rections in the epidermis of several plant tissues [3, 37–39]. This led to
maximal principal direction of stress in a circumferential and strain in a
perpendicular, longitudinal direction (Figure 3B-C). If we use strain as a
proxy for growth (see Discussion) the result of this simulation corresponds
to the idea that organ growth is perpendicular to the fiber direction, extend-
ing the organ along the main axis.

The circumferential fiber direction seems to be explainable equally well
by a model where fibers orient perpendicular to the maximal strain (OsD)
as by a model where fiber orient in the direction of the maximal stress
direction (MSD), both suggested as informative signals for fiber directions
in plant tissues [3, 23, 24, 40]. To analyze these potential signaling cues
for the fiber directions, we introduced a dynamic description of the wall
mechanics, where the deposition of new cellulose fibers leads to changes in
magnitude and direction of the mechanical anisotropy of individual plant
walls (Methods, Equations 7-9). We assumed a constant addition of fibers



I.3 results 43

in the walls with the anisotropy of the deposition guided by the anisotropy
of the directional signal, i.e if the input signal is isotropic, the material will
be isotropic, while an anisotropic input signal will result in an anisotropic
material.

Interestingly, the MSD and OsD hypotheses gave very different results,
in spite of the fact that maximal strain and stress directions were perpen-
dicular in the fixed fiber direction situation. In case of the stress based feed-
back, the fiber direction was identical to the fixed anisotropy direction case
(Figure 3E-F), whereas in the case of (orthogonal) strain based feedback the
initial, circumferential fiber direction became unstable and subsequently re-
organized into a longitudinal direction (Figure 3H-K, Movie S1), in contrast
to the circumferential orientation of microtubules suggested by experimen-
tal data. A more detailed analysis of the influence of material and load-
ing force anisotropy for the MSD and OsD material models showed that
the former model results in regions of mutually parallel and orthogonal
strain and stress (Figure 3D). The extension of the region with perpendicu-
lar stress and strain directions was similar to the static anisotropy direction
case (Figure 3A,D), indicating that this configuration represents a stable sit-
uation for the MSD dynamical model (Figure 3E, Figure S3). In the OsD
model, the region of orthogonality between stress and strain disappeared
completely (Figure 3G), indicating that this is an unstable situation for the
OsD dynamical model (Figure S3). Independently of the anisotropy of the
forces causing elastic deformation, the main principal stress and strain di-
rections always became parallel (Figure 3H-K).

In conclusion, we have shown that in a situation where internal tissue
is providing tension to the epidermis, an extension along the maximal axis
of the organ can be explained by fibers resisting strain in the circumfer-
ential direction. This was clearly seen in a model where static fibers are
laid out according to the experimentally suggested pattern which results
in the strain orthogonal to the fiber direction. In the situation where fiber
directions are allowed to be oriented by mechanical cues, more intricate dy-
namics was generated. A model where fibers are aligned in the direction of
main stress robustly preserved the circumferential directions of the fibers,
as seen in experiments. On the contrary, a model where the fiber orienta-
tion is aligned perpendicularly to the maximal strain direction led to the
initial circumferential fiber pattern becoming unstable and reorienting to
the longitudinal direction.
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Figure I.3: Comparison between stress and strain based feedback models. The
results of the three distinct relations between mechanical stress/strain
and anisotropy of the material in different loading force situations are
analyzed. The first row (A, B, and C) pertains to the predefined and
static direction of material anisotropy. The second row (D, C and F)
describes the results of stress feedback model and the third row (G, H
and K) the orthogonal strain feedback model. The first column (A, D and
G)...
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Figure I.3: ...presents the results of the simulation of anisotropic biaxial loading of a
square patch from Figure 1C. For varied anisotropy of the loading force
(vertical axis in the graphs) and the ratio of Young moduli along each of
the load directions (horizontal axis in the graphs), the cosine of the angle
between maximal stress and strain directions is plotted with the gray-
scale map. Force anisotropy and stiffness ratio in A, D and G are calcu-
lated by FL−FT

FL
and YL

YT
, respectively. Force anisotropy 0 corresponds to

isotropic loading and stiffness ratio 1 to isotropic material case. The gray
dashed line in panel A and circles in panel D are discussed in method sec-
tion. The second column (B, E and H) shows the equilibrium state of fiber
directions (red lines) in the cylindrical part of the tissue pressure model
simulation for the template shown in the Figure 1D. The third column
(C, F and K) pictures the distributions of the stress, strain and fiber di-
rections in the cells with respect to circumferential (horizontal) direction
resulting from the tissue pressure model simulation. (A) For the fixed
anisotropy direction we observe distinct regions in the parameter space
where maximal stress and strain are either mutually parallel (white) or
perpendicular (black). (D) The identity of these regions is maintained by
the stress feedback model. The yellow circle in D shows the approximate
value for force and material anisotropy on the side of cylinder where
anisotropic curvature results in force anisotropy about 0.5. (G) The dis-
tinct regions disappear for orthogonal strain feedback and we observe
only parallel alignment of maximal stress and strain. (B) The material
anisotropy (fiber) direction is set to circumferential. (E) The same, cir-
cumferential alignment of the fibers results from stress feedback model.
(H) In the orthogonal strain feedback model circumferential alignment
of the fibers is not stable and the fibers align in the longitudinal direc-
tion. (C) With no feedback mechanism present and the fibers prealigned
and set circumferentially the stress becomes parallel to the fiber direction
while strain is perpendicular to them. (F) When fibers are dynamically
aligned in the direction of the maximal stress the circumferential orienta-
tion of them arises spontaneously. The strain is perpendicular to fibers as
well. (K) In the case when fibers are dynamically updated to match the
direction orthogonal to maximal strain they align longitudinally while
both stress and strain are perpendicular to them. The parameters used
in the simulation with the pressurized template in Figure 1D were: thick-
ness h = 1 µm, cell size 10 to 20 µm, P = 0.1 MPa, ν = 0.2, Ymatrix = 50

MPa, Yf iber = 120 MPa, fiber model with K = 0.4 and n = 2, deformation
is between 5% to 10% (B)6%, (E) 6%, (H) 10%).
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i.3.3 A stress feedback model results in a radial zonation and gives an explanation
to strain patterns in the shoot apical meristem

To test the stress feedback together with our fiber material model on a
template with regions of varying curvature, we applied the tissue pressure
model on a paraboloid template, as a proxy for a bare meristem, in which
the curvature is isotropic at the apex and smoothly becomes anisotropic
in the periphery (Figure 1E). The dynamical changes of material proper-
ties in the cells resulted in a region of isotropic material at the center and
anisotropic towards the periphery (Figure 4C), corresponding to isotropic
stresses in the center and anisotropic in the periphery (Figure S5B). The
dominant fiber direction showed circumferential orientation around the
central zone (Figure 4A), as previously reported in experiments and mod-
els [3, 40]. Remarkably, the switch from isotropic to anisotropic material
(and stresses) in the radial direction was quite rapid, creating a sponta-
neous zonation of the meristem purely from mechanical interactions. This
behavior is the result of the fact that the boundaries between the regions
of parallel and perpendicular alignment of maximal stress and strain are
very sharp in the parameter space of material and loading force anisotropy
(Figure 4A, D, cf. circles in Figure 3D). Therefore, even though these param-
eters change smoothly in the radial direction of the meristem the material
model creates an abrupt transition between the regions. The extension of
these regions depended on model parameters, but the switch-like behavior
was a robust feature of the stress feedback model (Figure S4).

The meristem has a central zone with slowly growing and dividing cells,
and a peripheral zone where cells expand faster [41–43]. The cell expansion
rates in the simulations also reflected the zonation (Figure 4B). The model
predicted a slower isotropic expansion in the central zone and a higher ra-
dially oriented expansion rate in the periphery, correlating well with strain
directions reported for meristems [42].

Next, we looked in more detail on the effects of the dynamic update
of material anisotropy direction and intensity on a geometry where a pri-
mordia appears at the periphery of the meristem with a valley in between
(Figure 1E). Previously, we have shown that a tissue pressure model of
the epidermis, applied to a meristem shape leads to isotropic stress in the
central part while the valley in between the meristem and a primordium
develops anisotropic stress. A simple spring model using a stress feedback
generated fiber directions comparable to the measured microtubule direc-
tions in different areas of the meristem[3]. In the TRBS model, the stress
feedback led to similar material fiber patterns (Figure 4D, Movie S2), while
the strain feedback model failed to describe these directions (Figure S5E,
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Figure I.4: Zonation properties of the stress feedback model in meristem-like
geometries. (A) The stress feedback together with fiber model for a
paraboloid representing the geometry in the central zone and its close
neighborhood results in two distinct zones where maximal stress and
strain directions are either parallel (white) or perpendicular (black). The
red lines (here and panel D) are showing fiber directions (B, C) Area
expansion and material anisotropy (stiffness ratio) show different prop-
erties in these two regions. The elastic deformation is larger and radially
oriented in PZ and material is anisotropic whereas in the central zone
deformation is lower and material becomes more isotropic. The blue
lines (in the panels B and E) are showing the maximal strain directions.
(D, E, F) The same results as A, B and C respectively for a meristem-
like template seen in Figure 1E. Strain and stress are aligned at the apex
and valley because of almost isotropic material and anisotropic stress re-
spectively. For the meristem-like template due to the large variability of
stress value in different regions the absolute stress anisotropy measure
with Smax = 8MPa is used. The parameters used for pressurized tem-
plates in Figure 1E were: thickness h = 1 µm, cell size about 10 µm, P for
paraboloid = 0.05 MPa and for meristem = 0.08 MPa, ν = 0.2 , Ymatrix for
paraboloid = 40 MPa and for meristem = 50 MPa, Yf iber for paraboloid
= 100 MPa and for meristem = 150 MPa, fiber model with K = 0.4 , n =
2. The deformation is within 5% to 7% for paraboloid and within 1% to
9% for meristem.
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In summary, we have shown that a stress feedback model is able to ex-
plain the microtubular organization seen in experiments. The feedback
generates a relatively sharp zonation within the meristem based on the
relation between maximal stress and strain directions, providing a purely
mechanics-based explanation to strain magnitudes and directions described
in experiments, where the central zone has a lower isotropic expansion and
the periphery a larger radially directed strain in spite of the circumferential
stress direction. The model also predicts that highly anisotropic stresses
generated in the boundary between the meristem and a primordium can
lead to a maximal strain direction parallel to the main stress direction in
this region.

i.3.4 Stress and strain based feedback mechanisms have different impact on tissue
geometry

Next we analyzed how dynamic properties of wall material effect the elastic
deformations locally and at a tissue scale. When anisotropic forces are ap-
plied (i.e. when curvature is higher in one direction in our tissue pressure
models), the maximal stress feedback model always aligns the fibers par-
allel to the maximal force. This will resist against the deformation in this
direction and procure locally isotropic deformation. Even in the case with
strong anisotropy of the loading forces where maximal strain and stress
are parallel (Figure 3Bi, cf. boundary region between meristem and pri-
mordia) the stress feedback model leads to more isotropic strain compared
to an isotropic material of the same total stiffness. Since the strain feed-
back model is aligning the fibers perpendicular to the loading forces this
feedback will tend to increase local strain anisotropies.

To quantify these differences, we tested both material anisotropy feed-
back mechanisms within the TRBS model where geometries with different
degree of shape anisotropy where pressurized (Figure 5). When compared
to isotropic material, the stress feedback model resulted in more isotropic
strain, and the difference was increasing with the anisotropy of the geom-
etry and hence the loading force (Figure 5C). In contrast, the strain based
feedback model led to increased strain anisotropy when compared to an
isotropic material (Figure 5C). This local difference had an impact on the
resulting global deformation of the structure, where the stress feedback
model promoted the maintenance of the geometrical anisotropy while or-
thogonal strain feedback model led to decreasing of this anisotropy (Fig-
ure 5A-B).
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Figure I.5: Feedback impact on geometry. (A, B, C) Comparing stress and perpen-
dicular to strain feedback models for a set of templates with different
geometric anisotropies which is considered here as the ratio between
principal axes. This ratio is 1 for the sphere and increases for more elon-
gated templates. (A) Three different set of simulations are performed for
all templates. Isotropic material with Young modulus 8 GPa (not shown)
and anisotropic material with longitudinal and transverse Young ...
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Figure I.5: ... moduli 12 and 4 GPa respectively, with stress feedback (red) and per-
pendicular to strain feedback (white). Higher anisotropic growth can
be seen for the red template in which stress feedback is used. (B) The
deformed shape anisotropy versus resting shape anisotropy for different
feedback scenarios that are normalized to the same results for isotropic
material with the same overall stiffness. The results show that even for a
low deformation stress feedback increases shape anisotropy whereas per-
pendicular to strain feedback decreases this value indicating that strain
based feedback pushes the geometry toward symmetry. (C) Averaged
strain anisotropy over elements for simulations with the two feedback
mechanisms that are normalized to the same value for isotropic tem-
plate are plotted versus resting shape anisotropy. In case of stress feed-
back the results are consistently lower than strain feedback. (D) Com-
paring deformations resulting from different feedback scenarios for the
meristem-like pressurized template with the same parameters as Figure
4. More anisotropic growth in the red template (stress feedback) helps
the meristem and the primordium to grow outward. The material pa-
rameters used in simulation are: ν = 0.2, thickness h = 0.01 m, pressure
P = 1.5 MPa. The radius of the sphere is r 1 m.

Next we tested the material models on our meristem-like template. The
stress feedback model resulted in a more prominent anisotropic shape
change at the meristem and primordium apices, promoting the upward
movement of the shoot and a more directed shape change of the primordia
(Figure 5D). Also, the stress based feedback model resulted in a more pro-
nounced boundary between the meristem and the new organ (Figure 5D,
Movie S2). The changes of these features of the meristem have been seen
experimentally when comparing wild-type plants and plants treated with
oryzalin, a drug that depolymerizes microtubules and is assumed to lead
to a more isotropic material [44].

In summary, a stress feedback to fiber directions leads to the ability for
plant walls to resist internal forces, which locally generates more isotropic
elastic strains, and which at the same time counteracts to the tissue pressure
forces acting towards isotropic curvature and hence maintains the shape of
anisotropic structures.

i.4 discussion

The coordination of the changes in mechanical properties across a grow-
ing plant tissue is crucial for the creation of the complicated forms and
shapes observed in plants [7, 21]. In the shoot apical meristem a connec-
tion between the organization of mechanical anisotropy of the tissue and
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perception of mechanical stress signals has been suggested [3, 40], while
a competing idea that fibers organize perpendicular to the strain direction
has emerged given the correlation between growth and fiber directions in
anisotropically growing organs [23, 24]. Here we analyzed two models com-
paring these mechanisms of the feedback between mechanical cues and the
orientation of cellulose microfibrils. Our simulations confirm that when
looking at the stress and strain patterns in the epidermis on a stem-like
geometry, where fibers are fixed to be aligned circumferentially, maximal
stress is circumferential and maximal strain is in the longitudinal direction,
in accord with both ideas for organizing fiber directions. However, when
models of dynamical orientation of mechanical anisotropy of the cell wall
material by stress versus strain were compared, we observed drastically
different behavior in each of the two models. In the stress based feedback
model the circumferential alignment of the fibers as well as perpendicular
orientation of maximal stress and strain directions can be robustly main-
tained (Figure 3E). In contrast, strain based feedback results in longitudinal
alignment of the fibers and parallel, circumferential directions of strain and
stress, which contradicts the experimentally reported orientation of the cel-
lulose fibrils and microtubules (Figure 3H).

When looking at the more complex shapes appearing around the shoot
apical meristem, the strain feedback model again failed to explain the mi-
crotubule patterns seen in experiments. The stress feedback model trans-
lated the smooth increase of anisotropic curvature in the radial direction to
a switching between different material properties in a central and a periph-
eral zone (Figure 4). It should be noted that even if there is an instant shift
of strain and stress directions from mutually parallel to perpendicular, this
does not represent a discontinuity in the model since the strain direction
is degenerated (isotropic) when crossing these boundaries (Figure S5A,C).
A mechanical radial zonation has recently been suggested in experiments
and in models [32, 45], but in our material model the different properties of
the material in the different areas of the tissue are not dictated by arbitrary
specification of the separate regions. These are instead a natural conse-
quence of the stress feedback model reacting to the differences in shape,
curvature and stress response and stress anisotropy in different regions of
the meristem. Alignment between principal stress and strain directions in
the central zone is a consequence of isotropic material in this region. The
analogical alignment in the valley between the shoot and a primordium,
in spite of anisotropic material, is caused by highly anisotropic stress. The
perpendicular stress and strain directions in the periphery are a result of an
anisotropic material and anisotropic forces, but where the forces are coun-
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teracted enough by the fibers to create a perpendicular strain direction.
Such radial growth direction has been reported in experiments [42].

Spontaneously formed mechanical patterns are interesting in relation to
the known radial expression patterns in genes regulating differentiation
[46]. It has been recently shown that the stem cell regulator WUSCHEL,
expressed in the central regions of the shoot, moves between cells and di-
rectly represses genes important for differentiation, which is enough to
explain their expression in the periphery [47]. Addressing how this molec-
ular network interacts with the mechanical properties will be an interesting
question for the future. While there might not be a direct interaction, both
models do depend on the shape of the meristem and will hence affect each
other via the geometry. Our simulations performed on the templates re-
sembling the shapes of the stem and meristem with outgrowing primordia
show that a stress based feedback produces deformations which result in
more elongated shapes of outgrowing organs while strain feedback tends
to round and level the protrusions of the surface (Figure 5, Movie S2). In-
terestingly, this is a consequence of the stress based feedback having more
isotropic strain locally, compared to an isotropic material or a strain based
feedback mechanism.

We have compared the results of simulations using a Triangular Bi-
quadratic Spring description of continuous mechanics with more involved
and detailed simulations using a nonlinear shell Finite Element approach.
We found that both methods are in agreement in both stretching and bend-
ing in tissue pressure simulations that are of interest for models of epider-
mal plant tissue. This shows that TRBS, despite its simplified treatment of
geometry and lack of bending behavior, offers an adequate level of accu-
racy for the purpose of modeling plant tissue. The simplicity of the TRBS
method will prove useful for more complicated three dimensional mod-
els involving cell growth and proliferation and thus requiring changes in
model topology.

The assumption of modeling the internal cell layers as a simplified tissue
pressure contribution leaves room for improvements in future work, which
would allow for a more complex interaction between internal layers and
the epidermis [9, 11]. Our simulations suggest that this will improve the
description mainly in situations with a negative curvature and compressive
forces, e.g. in the boundary between the meristem and primordia. Our
simulations overestimate the strain rates in these regions and the lack of
internal tissue can lead to buckling (Figure S2E).

Another challenge will be to integrate current models with long-term
plastic growth of plant cell walls. Plastic growth is described as being trig-
gered by wall stresses above a yield stress, when a break and slip behavior
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is induced [48], while we have compared elastic strain in the simulations
with the plastic growth in experiments. While this might seem to be a
contradiction, as we show that often the stress and strain directions are
perpendicular, it would be easy to remedy this difference. Either stresses
in the isotropic matrix part of the wall could be used, which is the same
as the strain, or the growth direction could follow the maximal stresses,
but be oriented perpendicular to the fibers. Interestingly, our model pre-
dicts that a matrix stress idea and a stress perpendicular to fibers idea for
growth can be discerned by a detailed measuring of growth directions in
the boundary between the meristem and the new primordia, since there
the fiber and strain directions are parallel. In any scenario, the main stress
direction would not provide a good cue for plastic growth, since this would
counteract the possibility to generate anisotropically shaped organs.

The development of detailed mechanical models will be integral for un-
derstanding morphogenesis in development. It will open up new venues
of research for understanding whether mechanical cues are main drivers
of the shape changes, but more interestingly will allow the development
of integrated models where gene regulation and molecular signaling feed
back to each other for describing the combined effects of differentiation and
morphogenesis.

i.5 models

i.5.1 Material models of anisotropic tissue

There exist many material models which parametrize elastic energy in
terms of combination of deformation tensor invariants in different ways
and describe behavior of different types of materials. In the simplest
isotropic material case the TRBS uses a St. Venant-Kirchoff description,
which is an extension of a linear material model. The strain energy, Wiso, in
this material model becomes

Wiso =
λ

2
(trE)2 + µtrE2, (1)

where λ and µ are Lame coefficients and represent material elasticity and
E is Green-Lagrange strain tensor. The advantages of this model are the
simple energy form and a clear interpretation of material properties. We
assume plane stress condition where Lame constants can be expressed as
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λ =
Yν

1− ν2 , µ =
Y

2(1 + ν)
. (2)

here Y and ν are the Young modulus and Poisson ratio that represent stiff-
ness and incompressibility of the material, respectively.

In order to extend this material model for transversely isotropic mate-
rials we considered two sets of Lame constants, one for longitudinal and
one for transverse to anisotropy direction [49]. To ensure that the energy
expression is not over-penalized in the anisotropy direction we first equipar-
titioned the energy into three terms each corresponding to one of the prin-
cipal directions (anisotropy direction and two transverse directions). Then
we have penalized only the term corresponding to the anisotropy direction.
A procedure which do not take into account equipartitioning of the energy
overestimates the contribution of the anisotropic part [49]. The increased
energy cost of deformation in direction of the fiber, Waniso, is then described
by

Waniso =
∆λ

2
(~atE~a)trE + ∆µ(~atE2~a), (3)

where the anisotropic part contains invariants of a strain tensor E con-
structed with a vector in the direction of the fibers ~a. The ∆λ and ∆µ
are the differences between longitudinal and transverse Lame coefficients
which are in turn related to Young modulus in longitudinal and transverse
directions and Poisson ratio (Supporting information). The total energy, W,
including an isotropic term for the matrix and an anisotropic term for the
fiber becomes

W = Wiso + Waniso, (4)

which can be used for calculating the stress tensor and forces applied on
the nodes of the meshed structure (Supporting information).

i.5.2 Evaluating strain and stress and their anisotropy

The expression for St. Venant-Kirchoff energy (Eq. 1) is based on the Green-
Lagrange strain tensor, E, which can be expressed in terms of a deformation
tensor. The second Piola-Kirchhoff stress tensor, which is the energy con-
jugate of the Green-Lagrange strain tensor, yields the stress in the resting
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shape. For evaluating strain and stress in the deformed shape, which is the
current configuration, we calculated Almansi strain and its energy conju-
gate, Cauchy or true stress tensors, respectively (Supporting information).
The stress in case of TRBS was calculated under the assumption of plane
stress and in case of shell description we visualized the stress integrated
over thickness in order to be comparable to the corresponding values for
TRBS.

All of these tensors are two dimensional for TRBS elements and three
dimensional for shells. The relative stress (strain) anisotropy measure, a,
can be defined as

a =
S1 − S2

S1
(5)

where S1 and S2 are first and second stress (strain) eigenvalues respectively.
In most simulations the magnitudes of stresses (strains) are of the same

order of magnitude and such relative measure is appropriate. However, in
the case of our meristem-like template with outgrowing primorium, stress
(strain) magnitudes extend over a large range. In such a scenario, a relative
value can overestimate an anisotropy measure in regions of low stresses
(strains), and it is more appropriate to include the stress (strain) magnitude
itself in the measure. In this case we used

a =
S1 − S2

Smax
(6)

where Smax is the largest stress (strain) value throughout the template (ex-
cluding boundary effects). We have normalized the value of anisotropy
measure since we use as an input to the material model an expression as-
suming the value of this parameter to be between 0 and 1 (see next section).
In most cases the anisotropy measures based on both definitions follow the
same trend but in more complicated geometries, where strain and stress
values are small, there can be significant differences between the two mea-
sures (e.g. the primordial apical region in the meristem-like template).

i.5.3 Fiber model and updating material properties

Since plant tissue is characterized by different and dynamically changing
anisotropic material properties we have devised a model which allows
for smooth temporal and spatial changes of anisotropy. The model as-
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sumes that stress anisotropy plays a role in defining the degree of material
anisotropy while the average elastic strength of the material is maintained.
We used a non-linear relation between stress and material anisotropy which
saturates when stress anisotropy is maximal (Figure 6A). The relations be-
tween longitudinal, YL, and transverse, YT , Young modulus and anisotropy
measure, a, can be written as

YL = YMatrix + 0.5(1 +
an

(1− a)nKn + an )YFibre

YT = YMatrix + 0.5(1− an

(1− a)nKn + an )YFibre

(7)

where K and n are model parameters and YMatrix and YFibre are Young
moduli of the isotropic matrix and anisotropic fiber part respectively.

Figure I.6: The fiber model. Fibre model adjusts mechanical anisotropy based on
anisotropy measure dependent on stress or strain in such way that the
overall stiffness of the material is conserved. The plot shows result of
using K = 0.4, n = 2 and a between 0 and 1 in Equation 7. In our
simulations model parameters are chosen such that material is close to
its maximum anisotropy when stress anisotropy is about 0.5.

We implemented a delay in the update of longitudinal and transverse
Young moduli (Fiber model) as well as anisotropy direction of individual
cells (stress feedback) to take into account different time scales of propaga-
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tion of mechanical and biochemical interactions. Such approach also results
in more stable simulations. The Euler steps for updating longitudinal and
transverse Young modulus are

∆Y = KY
rate∆t(Ynew −Yold). (8)

where KY
rate determines the time delay, ∆t is the time step, Yold is the current

value and Ynew is the new values calculated from Equation 7. Similarly the
update for anisotropy direction is done based on

~∆a = Ka
rate∆t(~S−~a) (9)

where ~a is the current anisotropy direction vector and ~S is the maximal
stress direction vector, and Ka

rate again sets the time delay.

i.5.4 Mechanical simulations

The mechanical simulations have been performed with in house developed
software optimized for simulations of cellular structures. Both methods
used in our simulations (TRBS and shells) are based on the FEM approach,
which relies on the division of the domain of interest into simpler geomet-
rical elements (meshing) and looking for the solution of the continuous
mechanics equations in the basis of the functions which are local to each
element. In case of FEM simulations we have used quadrilateral shell ele-
ments within extensible director formulation [28] (Figure 1A). The imple-
mentation of TRBS was based on the explicit procedure used previously
in simulation of biological materials [30] (Figure 1B). We triangulated the
polygonal cells via adding a vertex at the centroid position. Since we used
a single fiber direction in cells, we averaged stress or strain input from the
individual triangles. In our simulations both explicit Newark and implicit
solvers with Newton- Rapson iteration were used for the shells finite el-
ement implementation while explicit forth order and adaptive fifth order
Runge–Kutta methods were used for TRBS. The material parameters used
in the simulations of plant-like structures (Figures 3 and 4) were matched
to the experimental estimates from similar materials [34–36]. We have used
Young modulus in range 40 MPa - 50 MPa and 100 MPa - 120 MPa for
isotropic and anisotropic part of the material, respectively. Poisson ratio
was set to 0.2 and turgor pressure 0.2 MPa. We assumed the thickness of
epidermal material of 1 µm and a cell size of order 10 µm to 20 µm. In
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the fiber model we have used K = 0.4 − 0.5 and n = 2. For updating
anisotropy directions and material properties using the equations 8 and 9

we used Ka
rate ≈ 0.1 for anisotropy direction update and KY

rate ≈ 0.01 for ma-
terial properties update. As long as small values for update rates were used
the results were not sensitive to the exact value of those parameters. We
have used smaller update rates for material properties update, assuming
the change in material properties is a consequence of microtubular dynam-
ics and should be delayed respect to the anisotropy direction update. These
parameters resulted in the deformation of order 5% to 10% in agreement
with experimentally reported estimates [32]. We have used fixed (clamped)
boundary conditions for our simulations of pressurized templates, which
means that there was no deformation on the open boundary edges of the
simulated structures. Since such conditions are not exact for real plant or-
gans and can affect the results of simulations close to the boundary we
excluded those regions from the analysis. The effects of the boundary con-
ditions can be seen in Movie S2.
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Figure S1: Comparing triangular biquadratic springs and finite element shell models. (A) The
difference between principal stress value of triangular biquadratic springs model and integrated principal
stress over thickness in finite element shell model is subtle ( less than 0.1 %) ’Shell’ elements for the case
of isotropically loaded patch (compare with Fig. 2C, model parameters are the same in two models). (B)
The first and second principal stress values for our anisotropic material model become more different as
material becomes more anisotropic.The patch was isotropically loaded constantly with 2 KN when material
anisotropy was varied by keeping the transverse Young modulus constant (YT = 400kPa) and changing
the fiber Young modulus (400 < YL < 800kPa) for Poisson ratio(P=0.3). Elasticity ratio is the ratio
between longitudinal and transverse Young moduli. (C-E) Comparison between principal stress direction
and principal strain value in two models(left: TRBS, right: shell) for different pressurized templates show a
major similarity indicating the lack of bending energy in TRBS model is not important when deformation
is caused by internal pressure. (C) Isotropic material with Young modulus = 0 MPa, Poisson ratio = 0.2
,Pressure = 0.01 MPa (D) Isotropic material with Young modulus = 90 MPa, Poisson ratio = 0.2, Pressure
= 0.1 MPa (E) Isotropic material with Young modulus = 80 MPa, Poisson ratio = 0.2 ,Pressure = 0.05
MPa(F)for a saddle-like template where the compressive forces become important resulting in buckling,
the difference in deformation in two models is obvious.Isotropic material with Young modulus = 40 MPa,
Poisson ratio = 0.2 ,Pressure = 0.01 MPa
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Figure S2: Poisson ratio analysis Similar plot as Figure 3A for different values for Poisson ratio (A)
ν = 0,(B) ν = 0.2, (C) ν = 0.4. In the force/material anisotropy space the region where principal directions
of stress and strain are perpendicular is larger for lower values of Poisson ratio
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Figure S3: Fixed points of dynamical stress/strain based feedback updates of anisotropy direc-
tion. For the quadrilateral patch of anisotropic material with constant transverse and longitudinal Young
modulus as YT = 400kPa and YL = 1200kPa respectively and Poisson coefficient = 0.2 under anisotropic
loading Fx = 8kN and Fy = 4kN the direction of principal stress and perpendicular to the direction of
principal strain are plotted versus the angle of varying anisotropy direction. 0 value for the angles is corre-
sponding with maximal force direction. There is a fixed point at zero for both feedback systems which is
stable for stress feedback whereas extremely unstable for the perpendicular to maximal strain feedback.

A B C

Figure S4: Different zonation resulting from fiber model with different values for the K param-
eter. (A) K = 0.5, (B) K = 0.45, (C) K = 0.4.
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A B

C D
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Figure S5: Additional meristem-like template simulations. (A-D) Additional information about
Figure 4. (E) Anisotropy direction pattern for the same simulation as Figure 4D-F, using perpendicular to
strain feedback model and the fiber model with strain anisotropy measure. All of the model parameters are
the same except strain constant in Equation 6, Smax = 0.08
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Figure S6: Effect of axial loading. Adding regional axial tensile stress (red arrows) to the Tissue Pressure
model in different feedback scenarios. Axial stress is applied so that in the region between red arrows maximal
stress is axial with stress anisotropy about 0.6-0.7. In other regions maximal stress is circumferential with
stress anisotropy about 0.5. (A) Stress feedback. (B) Perpendicular to strain feedback. Material properties
and pressure are the same as Figure 3.
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i.7 supporting information

i.7.1 Details of Triangular Biquadratic Springs implementation

Strain energy formalism

The TRBS model, as most continuous mechanics methods, is based on the
minimization of strain energy. In the case of St. Venant-Kirchoff description
[30] this energy takes the form

WTRBS =
∫

Ω
wTRBSdΩ =

∫
Ω
(

λ

2
(trE)2 + µtrE2)dΩ, (1)

where E is a Green-Lagrange strain tensor and Lame parameters λ and µ
are related to Young’s modulus Y and Poisson’s ratio ν. In case of TRBS,
which are two dimensional elements, we assume plane stress condition and
relation between those material parameters becomes [50]

λ =
Yν

1− ν2 , µ =
Y

2(1 + ν)
. (2)

The Green-Lagrange strain tensor can be expressed in terms of Cauchy-
Green deformation tensor as

E =
1
2
(C− I). (3)

The Cauchy-Green deformation tensor is a function of deformation gra-
dient tensor F

C = FT F. (4)

The deformation gradient tensor F is the gradient of the deformation func-
tion Φ

F = ∇Φ (5)

It is possible to express Φ in terms of the position vectors of the nodes
in resting and deformed states of a triangular element. In this case the
expression for F becomes [30]

F = Qi ⊗ Di, (6)
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where Qi is the position vector of i’th node in the deformed shape and Di
is the shape vector corresponding with the node Pi in the resting shape
(Figure 1B)

Di =
1

AP
(Pj − Pk)

⊥ εijk = 1, (7)

where AP is the resting area of the element, εijk is the permutation symbol
and X⊥ is orthogonal to the vector X. Using these expressions, the Cauchy-
Green deformation tensor becomes

C = (Di ⊗ Dj)mn(Qi.Qj). (8)

In the above equations and through out the text the repeated indices are
summed over from 1 to 3, unless stated otherwise (we assume Einstein’s
summing convention).

The strain energy density is usually expressed in terms of invariants of
the strain tensor I1 = trE and I2 = trE2

wTRBS =
λ

2
I2
1 + µI2, (9)

or equivalently by Cauchy-Green tensor invariants I′1 = trC and I′2 = trC2

I1 =
1
2

I′1 − 1, (10)

I2 =
1
4

I′2 −
1
2

I′1 +
1
2

. (11)

These invariants can be calculated in terms of the angles of resting shape
αi, edges of resting and deformed shapes li, Li and areas of resting and
deformed shapes AP, AQ and the strain energy becomes [30]

wTRBS(Tp) =
kTP

i
4

(∆2li)2 + Σi 6=j
cTP

k
2

∆2li∆2lj, (12)

where k and c are tensile and angular stiffness of TRBS:

kTP
i =

2(λ + 2µ)cot2αi + 2µ

16AP
=

E(2cot2αi + 1− ν)

16(1− ν2)AP
, (13)
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cTP
k =

2(λ + 2µ)cotαicotαj − 2µ

16AP
=

E(2cotαicotαj − 1 + ν)

16(1− ν2)AP
. (14)

By taking derivative of W respect to Qi we can derive an expression for
force that is applied on the node i:

FTRBS
i (TP) = −

(
∂W(TP)

∂Qi

)T

= Σj 6=ik
TP
k ∆2lk(Qj −Qi) + Σj 6=i(c

TP
j ∆2li + cTP

i ∆2lj)(Qj −Qi).
(15)

This expression provides the force on each node entirely in terms of node
positions of triangular element in resting and deformed configurations.

Anisotropic TRBS by equipartition the energy expression

For the isotropic material we wrote strain energy density as:

wiso = wx + wy + wz

=
λ

2
(et

1Ee1)trE + µ(et
1E2e1)

+
λ

2
(et

2Ee2)trE + µ(et
2E2e2)

+
λ

2
(et

3Ee3)trE + µ(et
3E2e3),

(16)

where the ei, for i = 1...3 are versors of Cartesian coordinate system and
three terms present the equal parts corresponding to each of the x, y and z
directions. Analogically the energy corresponding with arbitrary direction
represented by the vector a we expressed as

wa =
λ

2
(~aTE~a)trE + µ(~aTE2~a). (17)

Now if we consider transversely isotropic material, which has different
mechanical properties in a single direction we can define

∆λ = λL − λT (18)

and

∆µ = µL − µT , (19)
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where λL, µL are Longitudinal Lame constants in a given direction ~a and
λT , µT are Transverse Lame constants in plane transverse to~a. These can be
related to the longitudinal YL and transverse YT Young modulus by the use
of the equation 2. With these definitions we introduced the term which has
to be added to isotropic strain energy to account for anisotropic material
having different mechanical properties in the given direction~a as

∆wa =
∆λ

2
I1 I4 + ∆µI5, (20)

where I1 = trE, I4 = ~aTE~a and I5 = ~aTE2~a are invariants of strain tensor
constructed with vector~a. These invariants are easily expressed in terms of
analogical invariants of Cauchy deformation tensor C, I′1 = trC, I′4 = ~aTC~a
and I′5 =~aTC2~a

I1 =
1
2
(trC− trI) =

1
2

I′1 − 1, (21)

I2 = tr
(

1
4
(C2 − 2C + I)

)
=

1
4

I′2 −
1
2

I′1 +
1
2

, (22)

I4 =
1
2
~aT(C− I)~a =

1
2

I′4 −
1
2

, (23)

I5 =
1
4
~aT(C2 − 2C + I)~a =

1
4

I′5 −
1
2

I′4 +
1
2

, (24)

which in terms of position vectors Qi and shape vectors Di become

I′1 = (Qi.Qj)(Di.Dj), (25)

I′2 = (Qm.Qn)(Qr.Qs)(Dn.Dr)(Dm.Ds), (26)

I′4 = (Qm.Qn)(~a.Dm)(~a.Dn), (27)

I′5 = (Qm.Qn)(Qr.Qs)(Dn.Dr)(~a.Dm)(~a.Ds), (28)

where we continue using Einstein’s summing convention.
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The anisotropic correction term for the TRBS force can be derived from
our definition of ∆wa (Equation 20) as

∆Fi = −AP
∂∆wa

∂Qi
= −AP

[
∆λ

2

(
I4

∂I1

∂Qi
+ I1

∂I4

∂Qi

)
+ ∆µ

∂I5

∂Qi

]
. (29)

Strain and Stress in TRBS

The strain is a local measure of deformation. There exist different strain
measures comparing the changes of relative material point positions be-
tween undeformed and deformed (current) configurations in different ways.
If we describe a motion of the particle as

x = Φ(X, t), (30)

where x is a position vector of particle in current configuration and X its
position in undeformed (material) coordinates, we can define a deformation
tensor

Fij =
∂Φi
∂Xj

. (31)

We use two strain measures: Green-Lagrange strain E, which operates
o n undeformed (material) coordinates and Euler-Almansi strain e relating
quantities in deformed (current) coordinates. These strains are defined by:

E =
1
2
(FT F− I) =

1
2
(C− I),

e =
1
2
(I − F−T F−1) =

1
2
(I − b−1),

(32)

where we introduced right C = FT F and left b = FFT Cauchy–Green de-
formation tensor. The strain tensors are energy conjugates of appropriate
stress measures. The second Piola–Kirchhoff stress tensor S is an energy
conjugate of Green-Lagrange strain E.

S =
∂W
∂E

(33)
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The Euler-Almansi strain e is a energy conjugate of the Cauchy stress tensor
œ which is related to second Piola–Kirchhoff stress by

σ =
1

det(F)
FSFT . (34)

In case of St.Venant-Kirchhoff material (1) these become:

S = λ(trE)I + 2µE (35)

and

σ =
AP
AQ

[FFT(λtrE) + 2µF
1
2
(C− I)FT ]

=
AP
AQ

[
(λtrE− µ)b + µb2

]
,

(36)

where we used the fact that for TRBS det(F) =
AQ
AP

, AP and AQ are the
areas of resting and deformed triangular element respectively. Analogically
the correction energy term from material anisotropy will give rise to stress
correction terms

∆S =
∂∆W

∂E
,

∆σ =
1

det(F)
F∆SFT .

(37)

Direct calculation from anisotropic energy (20) gives

∆S =
∆λ

2
(I4

∂I1

∂E
+ I1

∂I4

∂E
) + ∆µ

∂I5

∂E

=
∆λ

2
((aTEa)I + (trE)(a⊗ a)) + ∆µ(E(a⊗ a) + (a⊗ a)E).

(38)

Finally the expression for the Cauchy’s stress including effects of anisotropy
becomes

σ =
AP
AQ

F[S + ∆S]FT . (39)

The forces on the nodes of each element can be calculated alternatively
using the total second Piola-Kirchhoff stress

Fi = −APF(S + ∆S)Di. (40)
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i.7.2 Nonlinear Finite Element Method

The Finite Element Method is based on the weak formulation of elasticity
equations - the principle of virtual work. The variation of the work due to
the virtual rate of deformation tensor δd and velocities δv can be written
as [51]

δW =
∫

ω
œ : δd dv−

∫
ω

f · δv dv−
∫

∂ω
t · δv da = 0, (41)

where œ is Cauchy’s stress tensor, f and t are body forces and tractions re-
spectively. The standard procedure of solving this problem is linearization
and iterative steps with respect to trial deformation solution ϕk eg. by use
of the Newton-Raphson method. The equilibrium equations linearized in
the direction of increment u in ϕk can be written as:

DδW(ϕ, δv)[u] = DδWint(ϕ, δv)[u]− DδWext(ϕ, δv)[u], (42)

where

δWint(ϕ, δv)[u] =
∫

ω
œ : δd dv (43)

δWext(ϕ, δv)[u] =
∫

ω
f · δv dv +

∫
∂ω

t · δv da, (44)

are describing internal and external work components. A careful derivation
shows that linearization of the internal work can be expressed as:

DδWint(ϕ, δv)[u] =
∫

ω
δd : c : ffl dv +

∫
ω

œ : [(∇u)T∇δv] dv. (45)

Discretization of this equation will yield a stiffness matrix which because
of apparent symmetry of above equation in u and δv will be symmetric
too. The discretization of u and δv is performed with respect to the shape
vectors which provide a local support basis for the problem and which
specific form depends on the choice of the finite element discretization.

Shell kinematics

The shell description is essentially three-dimensional elasticity with spe-
cific kinematic and mechanical assumptions built in into the theory. Here
we will in short present extensible director formulation of shell element
kinematics which has been used for quadrilateral shell in the simulations
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[28]. The undeformed geometry of shell is described with respect to its
reference surface with the following relations:

X(ξi) = X̄(ξα) + D(ξi) (46)

X̄(ξα) =
n

∑
a=1

Na(ξα)X̄a (47)

D(ξi) =
n

∑
a=1

Na(ξα)za(ξ3)D̄a (48)

za(ξ3) = N+(ξ3)z+a + N−(ξ3)z−a (49)

N+(ξ3) =
1
2
(1 + ξ3), N−(ξ3) =

1
2
(1− ξ3), (50)

where Latin and Greek indices are assumed to span from 1 to 3 and from
1 to 2 respectively. The unit vector D is called the director and it describes
position of the body particle with respect to the point on the reference
surface X̄. This point in turn is described by the two dimensional shape
functions Na and nodal points of the element X̄a. The function za describes
the thickness of the element in terms of the distance from the reference
surface to the bottom and top surfaces. The similar interpolation is used to
describe the current configuration of the shell element and in consequence
the displacement vectors. The director vector in deformed configuration is
no longer required to be of unit length which takes into account thickness
changes.
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A mechanistic understanding of the regulation of morphogenesis is a main chal-
lenge in life science. In plants, physical forces generated by high intracellular pres-
sure and anisotropic mechanical properties of cell walls contribute to the growth
and generation of shape of the tissue. Plants transform isotropic pressure-driven
forces into anisotropic shapes by strengthening the walls in directions specified by
controlled synthesis of cellulose fibers. Recently, mechanical stresses have been
suggested as an important input signal for regulating growth directions and mor-
phogenesis. We show that it is energetically optimal to lay down the fibers in the
direction of maximal loading forces, and that there is a well defined strain energy
minimum with respect to the degree of anisotropy of the wall material given in-
ternal and external forces acting on the cell wall. Finally we show that the fiber
anisotropy patterns predicted by minimizing the strain energy match fiber patterns
appearing in the epidermis of various plant organs and we estimate the strain en-
ergy gain versus alternative wall compositions of similar strength.

75
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ii.1 introduction

Plants come in highly diverse forms, often with characteristic anisotropi-
cally shaped organs arranged in symmetric patterns [1]. Since plant cells
are tightly joined by their walls and cell migration is not present these
shapes are acquired by inhomogeneous growth and deformation [2, 3]. Cel-
lular growth is driven by high internal turgor pressure, and growth rate and
direction are guided by heterogeneous and anisotropic composition of the
cell walls [3]. The primary cell wall consists of a composite material built
from cellulose fibers connected via hemicellulose linkages and embedded
in a pectin matrix [4]. The regulation of mechanical properties of the cell
wall via its components is complex and combines genetic, hormonal and en-
vironmental inputs [5]. The importance of mechanics for pattern formation
in plant development has been highlighted in seminal work by Paul Green
[6] and others [7–9]. Moreover physical forces can feed back as spatial cues
for gene regulation and spatial regulation of molecules within cells [10–12].
Several models have explored these possibilities and combined molecular
and mechanical regulation of pattern formation in plants [10, 13].

Cell walls can have highly anisotropic mechanical stiffness properties,
mainly guided via the synthesis of cellulose fibers in specific directions
[2, 3]. The fiber synthesis is directed by cortical microtubules (MTs) form-
ing supra- and sub-cellular patterns [14, 15]. The idea that the cellulose
fibers align along maximal stress directions has recently been explored in
detail in epidermal tissue [7, 14–17]. The epidermis is a key in regulating
tissue growth [18, 19]. Generally its walls are thicker than in internal tissue
and internal growth and pressure lead to tensional forces along the epider-
mal surface. In such scenario cell and tissue surface curvatures prescribe
the stress directions, which have been shown to correlate with MT and cel-
lulose fiber directions (Fig. II.1) [14, 15]. A dynamic feedback from stress
directions to cell wall material anisotropy directions has been shown to be
sufficient to robustly guide anisotropic growth in several plant tissues[17].
In contrast to the situation in animal cells [20, 21], in plants the molecu-
lar details for sensing strains and stresses remain unclear [22], even though
genetic perturbations have been shown to diminish the response to mechan-
ical perturbations [15, 23].

In this Letter we report that an alignment of cellulose fibers along maxi-
mal principal stress directions is minimizing the mechanical strain energy
under the constraint of constant total material stiffness and with a constant
force distribution acting on the cell wall. In addition, we find that the de-
gree of material anisotropy also has a distinct energy minimum, i.e. for
specific anisotropic force load on a wall there exist an optimal anisotropic
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distribution of fibers. We also confirm that such an energy minimizing
principle can predict fiber orientations reported in the epidermis of differ-
ent plant structures.

Figure II.1: A) The distribution of expected stresses (red arrows) and observed mi-
crotubular directions (blue lines) on the shape resembling the plant
meristem with emerging primordium. Observe the alignment of mi-
crotubules and first principal direction of stress. B)The set up for a
patch test. A square patch of elements under varying load. Forces are
applied in x-y plane varying from anisotropic (uni-axial) to isotropic
(Fx = Fy). Red line shows maximal stress direction which is constant
due to constant maximal force direction. Green line depicts anisotropy
direction which is varied in [−45◦, 135◦]. C) The template with similar
geometrical properties to SAM.
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ii.2 results

ii.2.1 A dynamic alignment of fibers in the direction of maximal loading forces
minimizes mechanical strain energy

To simulate different force load distributions appearing in the plant epider-
mal wall tissue (cf. Fig. II.1 A) we use a simplified square patch descrip-
tion in which the the response of the different materials to varying bi-axial
loads can be analyzed (Fig. II.1 C). We employ a linear (Hook’s law) model,
where the strain energy, W, is given in terms of stress, σ, and strain, ε,
by W = 1

2 σijεij. Since the thickness of plant walls is small compared to
the extension in other dimensions we adopt a plane stress approximation.
Strongly aligned cellulose fibers in the walls can result in a large amount
of mechanical anisotropy, and hence we consider here a two dimensional
ortotropic material for which the constitutive equation in the compliance
form and Voigt notation can be written as [24]

 ε1

ε2

ε3

 =


1

Em
− ν

E 0

− ν′
Em

1
E 0

0 0 1
2G


 σ1

σ2

σ3

 , (1)

where E, Em and ν, ν′ are Young moduli and Poisson ratios in two or-
thogonal directions (here we assume Em > E). The required symmetry
of the compliance matrix restricts these parameters to satisfy the relation
Em/ν′ = E/ν and the expression for strain energy can be defined in terms
of material parameters and components of the stress tensor

W =
1
2
(

σ2
1

Em
+

σ2
2

E
− 2Vσ1σ2√

EEm
+

σ2
3

G
). (2)

In Eq. 2 we introduced V =
√

νν′ which is the geometric average of ν and
ν′ and is assumed constant in our analysis (a thermodynamic constraint on
ν and ν′ implies νν′ < 1 [24]). G is the shear modulus. We are interested
in studying variations of the strain energy with respect to change of ma-
terial properties including elasticity parameters and principal directions of
the material anisotropy. We consider time scales where turgor and tissue
pressure acting on the cell wall are not changing significantly, and hence
assume a constant stress field contribution to the strain energy. Firstly we
aim to analyze the impact of changing the angle, θ, between the largest
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principal stress direction and material anisotropy direction. In terms of this
angle and eigenvalues of the stress field, Σ + 2δ and Σ, the strain energy
can be rewritten as

W(θ) =
1
2
[
(Σ + δ + δ cos 2θ)2

Em
+

(Σ + δ− δ cos 2θ)2

E
(3)

− 2V√
EEm

(Σ + δ + δ cos 2θ)(Σ + δ− δ cos 2θ) +
δ2 sin2 2θ

G
]

Now we can take derivative of energy with respect to θ. This derivative
is a quantity analogical to a "force", which can help us understanding the
behavior of the material where the angle θ is a degree of freedom. The
derivative is given by

∂W
∂θ

=
2δ2

E
[(1− E

Em
)(

Σ
δ
+ 1)− (1−

√
E

Em
)2 cos 2θ] sin 2θ. (4)

where we substituted G by
√

EEm
2(1+

√
νν′)

. This expression is based on the anal-

ogy with isotropic material, where the shear modulus G is restricted to be
E

2(1+ν)
due to invariance of the stiffness tensor with respect to an arbitrary

rotation. For the anisotropic case we assume that G is bounded between
Gmin = E

2(1+ν)
and Gmax = Em

2(1+ν′) and we replace it with the geometric
average of Gmin and Gmax. This expression clearly shows the existence of
a minimum of the energy when the applied stress and material anisotropy
principal directions are aligned, θ = 0 (Fig. II.2A). A maximum appears
for θ = 90 deg and the energy difference between the minimum and maxi-
mum increases with increased stress anisotropy as measured by the stress
anisotropy coefficient, α = 1 − Σ/(Σ + 2δ), defined in range from zero
for an isotropic load to one for an infinitely anisotropic load. Hence if a
plant follows an energy minimizing principle when dynamically adjusting
the synthesis or reorganisation of cellulose fibers, it is predicted that walls
with isotropic tension should have unstable fiber orientation while walls
with highly anisotropic tension should robustly generate a specific fiber
orientation along the maximal stress direction. This behavior is also con-
firmed in simulations which use Saint Venant-Kirchhoff nonlinear strain
energy and thus extend beyond linear materials (Fig. II.2B).
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ii.2.2 There is an optimal degree of mechanical anisotropy in terms of mechanical
strain energy

Given that a plant can adjust not only the direction of cellulose fibers but
also the amount of these load bearing structures, we aim to understand also
how the degree of anisotropy influences the minimum of the strain energy.
Thus we introduce a material anisotropy coefficient, κ = 1− E/Em, simi-
lar to the previously defined stress anisotropy coefficient (α), ranging from
zero for an isotropic material to one for a material with highly anisotropic
material properties. The strain and hence the strain energy obviously de-
creases with decrease of loading forces or with increase of total material
stiffness. To avoid these effects, we assume overall stiffness of the material
and the total loading to be constant, i.e. Em + E = C and Σ + Σ + 2δ = F,
where C and F are constants. The constant overall material stiffness rep-
resents the amount of deposited cellulose fibers to stay roughly the same
in all plant walls of interest. The anisotropy of the material, in turn, is
controlled by the organization and alignment of these fibers. The constant
overall loading would represent roughly constant turgor and tissue pres-
sure in the epidermal tissue. With the above assumptions we can write the
strain energy, Eq. 4, for a material where the principal material and stress
directions align (Θ = 0) as

W =
F2

2C
2− κ

(2− α)2 [1 +
(1− α)2

1− κ
− 2V(1− α)√

1− κ
]. (5)

Taking the derivative of above equation with respect to the material
anisotropy coefficient, κ gives

∂W
∂κ

=
F2

2C(2− α)2 [−1 +
(1− α)2

(1− κ)2 −V
(1− α)κ

(1− κ)
3
2
]. (6)

For a specific value of κ ∈ [0 : 1], there is a unique value for α ∈ [0 : 1] where
∂W
∂κ = 0, which represents an energy minimum. Hence, if the majority of

cellulose fibers are aligned to the principal stress direction, an energetically
optimal configuration of number of aligned fibers exists. If there is no
contribution of the Poisson ratios (V = 0), Eq. 6 simplifies and results
in the strain energy with a minimum when material anisotropy is equal
to stress anisotropy κ = α (Fig. II.2C). The existence of a unique material
anisotropy coefficient corresponding to a strain energy minimum holds also
beyond the assumptions of constant material stiffness and linear material,
which led us to the simple analytic expressions (Eqs. 5-6), as confirmed in
numerical simulations using Saint Venant-Kirchhoff nonlinear strain energy
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Figure II.2: A) Energy landscape with respect to varied anisotropy direction and
stress anisotropy from equation 4. Material anisotropy is constant (κ =
0.5, see equation 5). White line shows that minimum energy for different
values of α is at θ = 0. B) Energy landscape with the same values as in A)
for all the parameters resulted from simulations on the patch shown in
(Fig. II.1B) at mechanical equilibrium. C) Energy landscape as a function
of material anisotropy(κ) and stress anisotropy(α). White line presents
the minimum energy for each value of κ. Different regions in SAM
are marked as CZ (central zone), PZ (peripheral zone), S (stem) and
V (the valley between the meristem and growing primordia) D) Result
analogical to C) using Saint Venant-Kirchhoff energy model for a patch
shown in (Fig. II.1B). E) Combined angle/kappa plot. For a given value
for κ there is a single set of values for anisotropy direction and material
anisotropy with minimum mechanical energy(white circle). F) Result
analogical to E coming from simulations using Saint Venant-Kirchhoff
energy model for a patch shown in (Fig. II.1B).
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(Fig. II.2D).
Plant cells have the ability to alter the directions of the cellulose fibers by

adjusting the directions of the cortical microtubules as well as the amount
of fibers layed out by regulating number and rates of cellulose production
of CESA complexes synthesizing the fibers [25, 26]. Hence, the angle be-
tween the principal directions of stress and material anisotropies, Θ, as
well as the material anisotropy coefficient, κ, are allowed to be altered si-
multaneously. Strikingly, our results show that a unique minimum exists
in the Θ, κ space given a constant anisotropic load (Fig. II.2E and F), and
the strain energy forms a continuous landscape with maximal derivatives
(Forces) in directions not always parallel to the Θ, κ coordinates.

ii.2.3 Several domains in plants produce mechanical anisotropy patterns correlat-
ing with the energy minimization principle

Having described the strain energy behavior across ranges in material and
stress anisotropies we next set out to map different regions in plant epider-
mal tissues according to their strain energy. The loading forces in a plant
epidermis under tension depend highly on the curvature, both at tissue and
subcellular resolution (Fig. II.1B) [7, 14, 15]. At the shoot apex, referred to as
the central zone (CZ), the curvature is isotropic, and at the side of the shoot,
the peripheral zone (PZ), and further down the stem (S), the curvature be-
comes increasingly anisotropic, where the stem shape can be approximated
as a cylinder with a predicted stress anisotropy α = 0.5. Even larger stress
anisotropy is expected at the boundary (B) between the shoot meristem
and developing organ buds (primordia) where the surface along the direc-
tion of the valley is convex and in the perpendicular direction is concave.
Tracing the strain energy minima when the stress anisotropy range from
zero to 0.5 we can identify the CZ as having isotropic material and PZ and
stem as having an increasingly higher anisotropic material (Fig. II.2C). This
correlates well with the assumed cellulose fiber anisotropy in these tissues,
as measured either by the fibers directly or by the direction of the cortical
microtubules (Fig. II.1A) [7, 14]. Similarly, a correlation between principal
stress directions and fiber/microtubule patterns in various tissue domains
implies that the angle between material anisotropy and maximal stress di-
rection is close to zero. Again, following the model behavior on a path from
isotropic (CZ) to highly anisotropic (S/B) shows that the energy difference
for different angles increases with the anisotropy (Fig. refp2:fig2A and B,
Fig. II.3D), and hence an energy minimizing model predicts the alignment
directions of fibers/microtubules seen in different epidermal tissue regions
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Figure II.3: The evolution of mechanical energy stored in the template shown in
(Fig. II.1D). Material anisotropy and stress feedback both on the direc-
tion and degree of anisotropy are introduced to the material (A-D). A)
Isotropic material B) Material is anisotropic. The degree of material
anisotropy and anisotropy direction both randomly vary from cell to
cell when the overall young modulus was kept constant. C) The ma-
terial is similar to B but a feedback from maximal stress direction is
applied to the anisotropy direction in each cell. D) Starting from fi-
nal result from C a feedback from stress anisotropy was applied to the
degree of material anisotropy. The results are close to mechanical equi-
librium(see methods). E-H) The material anisotropy of individual cells
in A-D respectively. I) The overall mechanical energy of the tissue dur-
ing the simulations regarding the figures A-D. Dashed lines show the
transient results before equilibrium. Solid lines show the results that
were approved by our equilibrium criteria. Black line shows the base
line resulted from isotropic material (A) Blue, red and green lines are
showing the overall energy of the figures B, C and D respectively.
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and that that the correlation is stronger in regions of highly anisotropic
forces [14, 27, 28].

Next, we aimed at getting a quantitative estimation of the strain energy
gains possible by adopting direction and magnitude of material anisotropy
in plant-like structures. To do this we compared an isotropic material
model with anisotropic materials and directions (Fig II.3). Isotropic mate-
rial results in a smooth increase of strain energy on our meristem template
from the apex to the periphery, i.e. from isotropic to anisotropic stresses
(Fig. II.3A). Introducing anisotropic material with random directions in in-
dividual cells brings noise in the energy density and increases the total
energy by about 2% (Figs. II.3B, F and I). Allowing the adaptation of the
anisotropy directions in cells to the directions corresponding with optimal
strain energy (i.e. maximal stress direction) leads to a drop in strain energy
of about 7%, comparing to the previous case of random material anisotropy
(Figs. II.3C and G). Finally, adjusting the magnitude of the anisotropy in
the material according to the stress anisotropy leads to further reduction
in strain energy, about 2% comparing to previous case, and to smoothing
of the strain energy density in radial direction of the template (Figs. II.3 D
and H). Comparing an isotropic material and a material adapting to mini-
mal strain energy in both direction and magnitude, reveals that the energy
gain is in the order of 7% and that the gain is mainly in the regions of
anisotropic stresses. This shows that feedback mechanism adjusting mate-
rial anisotropy direction and magnitude based on direction and value of
principal stress leads to favorable configuration for mechanical structure of
the plant.

ii.3 discussions

Geometrical shape of organs is important feature for the plants allowing
them to survive or gain advantage in diverse environmental conditions.
This shape is generated by growth driven by intracellular pressure and ad-
justing mechanical properties of the cell walls [28, 29]. In procurement
anisotropic shapes, the alignment of cellulose fibers creating wall material
anisotropy plays an important role. Several intrinsic and extrinsic signals
have been proposed to alter fiber orientations in plant cells [14, 30, 31]. We
show that the previously proposed stress-based feedback is directly corre-
sponding to the strain energy minimizing mechanism. Potentially this can
play an important evolutionary role by optimizing the amount and con-
stituents of wall material to generate optimal fitness in terms of growth
and mechanical strength. The suggested energy decrease of 7% could rep-
resent appropriately less wall material which has to be used in building a
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structure which is still able to sustain forces from the same turgor pressure.
The energy minimizing mechanism in an epidermis under tension leads to
aligning fibers in direction of highest curvature. Interestingly, single cell
bacteria have been shown to add wall material in directions defined by the
the curvature [32–34], which again might be explained by an energy mini-
mizing mechanism in these highly pressurized cells, potentially extending
our results beyond the domain of plants. Finally, the suggested mechanism
of strengthening the wall material in specific directions and weakening in
others to optimally cope with loading forces resembles the engineering ap-
proach of topology optimization [35], where material properties are ad-
justed to optimally solve constraints of e.g. geometry and weight. In the
case of plants, the adaptation needs to be permanently adjusting given the
morphological changes, and our results show that the strain energy min-
imization provides a dynamic and adaptable mechanism for generating
optimal shapes via growth.
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Morphogenesis in plants and animals involves large irreversible deformations. In
plants, the response of the cell wall material to internal and external forces is deter-
mined by its mechanical properties. An appropriate model for plant tissue growth
must include key features such as anisotropic and heterogeneous elasticity and cell
dependent evaluation of mechanical signals such as osmotic pressure, stress and
strain. In addition, a growth model needs to cope with cell divisions as a necessary
part of the growth process. Here we develop such a growth model, which is capable
of employing not only mechanical signals but also morphogen dependent signals
for regulating growth. The model is based on a continuous equation for updating
the resting configuration of the tissue. Simultaneously, material properties can be
updated at a different time scale. We test the stability of our model by measuring
convergence of growth results for a tissue under the same mechanical and material
conditions but with different spatial discretizations. The model is able to maintain
a strain field in the tissue during re-meshing, which is of particular importance for
modelling cell division. We confirm the accuracy of our estimations in two and
three dimensional simulations. The approach results in a model implementation
that can be used to compare different growth hypotheses, while keeping residual
stresses and other mechanical variables updated and available for feeding back to
the growth and material properties.
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iii.1 introduction

Most of higher plants acquire their shape as a result of growth since cell
migration and apoptosis are not present and as such are not contributing
to morphogenesis. The plant cells are surrounded by rigid and tightly con-
nected cell walls and thus the changes in cell neighborhood topology are
mainly the result of the cell proliferation. High internal pressure in the
cells is the driving force of growth while heterogeneous and anisotropic
mechanical properties of the cell walls are instrumental in shape formation
[1, 2]. A classic growth model, introduced by James A. Lockhart in 1965,
suggest that cell extension is appearing when cells walls are under tension,
generated by cell pressure above a threshold value [3]. Long term growth
is, next to elastic and plastic deformation, a fundamental process of plant
tissue morphogenesis leading to organ formation. On a microscopic level it
is a complicated and carefully balanced process of mass deposition, stress
relaxation and geometrical expansion [4]. The plant cell walls are seen as
main mediators of this process, where their composite material plays an
important role. The primary cell walls consists of strong load bearing cellu-
lose fibers connected by xyloglucan molecules and residing in a matrix of
pectin molecules [5]. The plant cells can guide the synthesis of the cellulose
fibers in directions following cortical microtubules (MTs) and thereby they
can regulate the anisotropy of their wall material [6]. The exact microscopic
description of the plant cell wall growth is still a subject of active research,
but a simplistic illustration of process is given by the breakage of the xy-
loglucan molecules, leading to slippage between the cellulose fibers and
then addition of new material in between [2]. The more recent work has
introduced the idea of non-homogeneous growth at hotspots [7]. Further-
more, the importance of regulation of the pectin molecular state for growth
initiation has been investigated [8–10]. In addition to the physical descrip-
tion of the growth, it is well studied that molecular signals are important for
initiating the process. An example is auxin, a growth hormone suggested
to alter cell wall properties by different mechanisms to induce growth [11–
14]. Also involvement of other hormonal and genetic factors in the growth
process has been confirmed by altering the cell wall composition [15, 16]. It
is not yet fully understood which quantity is most important for generating
growth response in different plant tissues. Stress, strain ,strain energy or
morphogen field can be equally well considered as cues for growth and it is
probable that different combinations of them play roles in different growth
processes.

Plant growth has been modeled at a variety of resolutions, from discrete
and continuum descriptions at organ level down to microscopic scales of
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single cell walls. At the tissue and whole plant scale models are mainly
descriptive in nature, where for example L-systems has been used to build
models of plant structures [17, 18]. Growth models are often phenomeno-
logical in connecting growth to variables such s water uptake, nutrients
or environmental factors [19]. Tissue models where morphogen-driven
growth has been combined with mechanics have been used to describe
growth of leafs and flowers [20, 21]. The mechanical contribution in these
models, however, has been limited to maintenance of the integrity of the
tissue, while residual stresses have been disregarded by removal at each
update step [22]. At the microscopic scale, interactions between molecu-
lar components have been hypothesized, resulting in predictions of larger
scale mechanical behavior [23, 24], but experimental verifications at this res-
olution is still lacking. More recently, models at the cellular level, including
molecular signals and continuum descriptions of mechanical properties of
the cell walls, have been developed [25, 26]. Tensional stress has been sug-
gested as an input to guide the direction of cortical microtubules, and finite
element models were essential to connect the predicted stress directions to
the measured MT directions [27, 28]. The stress feedback model was fur-
ther shown to lead to robust initiation of anisotropic shape via anisotropic
material properties [29], while the need for isotropic wall mechanics at
the initiation of new organs was supported with another model [30]. The
use of atomic force microscopy for measuring mechanical properties of cell
walls in vivo has been useful for confirmation of predictions of such models
[28, 30]. Also, a 3D finite element model was used to show that the molecu-
lar input to growth is transformed to neighboring cells by variable mechani-
cal response of differently sized cells [26], and 3D mechanical stress models
have been used to feed back to subcellular molecular behavior within cells
[25].

With few exceptions [26, 31], the models at the cellular level have been
dealing with small elastic deformations. Thus a reliable mathematical de-
scription of growth in terms of continuous mechanics and practical im-
plementation of such description are crucial for relating these mechanical
quantities to growth. Here we present a model of finite growth and its
regulation by different signals in a plant tissue. The model is based on
separation of growth and elastic deformation processes by introduction of
growth dependent zero stress configuration [32] as time dependent refer-
ence point for constitutive equations. Our growth model can be used with
any material model and discretization. Here, due to the almost planar
shape of plant cell walls, we use the already developed material model for
anisotropic planar elements based on Saint Venant-Kirchhoff strain energy
[27–29]. We test different mechanical signals e.g. strain or stress, which can
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be evaluated directly from the mechanical variables, as well as mechani-
cally independent signals e.g. morphogens, as inputs to our growth model.
When mechanical signals are used their principal directions and values are
hypothesized to regulate the direction and rate of the growth.

iii.2 methods

Plant tissue, as a mechanical system, is restricted by relatively stiff walls
with a particularly rapid elastic response to any changes in forces and mate-
rial properties. This is necessity for the plants considering that they have to
keep the the cell walls intact under high stresses generated by turgor pres-
sure driving the growth [1, 2]. On the other hand, due to the relatively long
time which takes for molecular processes to produce macroscopic changes,
growth is a considerably slower then elastic response. We will take ad-
vantage of this difference in time scales and assume that at each time step
of the growth the stress field is statically balanced. In this section we first
discuss the fundamental force balance laws and derive the quasi static equa-
tion of motion. Next we introduce the continuous growth equation and test
its stability by comparing its performance over different spatial discretiza-
tions. Then we present equations explicitly including parameters by which
different signals can regulate principal directions and rates of the growth.
Special care is taken for describing cell division and the related re-meshing
process. Although our model does not depend on a specific strain energy
description, we derive the strain energy for an anisotropic material that is
used in our simulations based on a discretization of the tissue into triangu-
lar planar elements.

iii.2.1 Balance laws and the quasi static equation of motion

Deriving the balance laws of mass and energy is challenging since these
are not conserved quantities during growth. Energy is constantly provided
to a living tissue, and mass is added into the growing tissue continuously.
However, given that primary plant cell walls often grow in a plane with
thickness of the walls staying constant we assume that the density, ρ, of the
tissue is constant during growth

dρ

dt
= 0. (1)
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The balance of angular momentum is satisfied by stress tensor symmetry

Tij = Tji, (2)

and the balance of linear momentum gives Cauchy’s first law of motion

ρ
dV
dt

+ ηV −∇.T − ρb = 0, (3)

where V is the velocity, T is the stress tensor and b represents the body
forces. The term ∇T gives traction generated by stress divergence and ηV
is the damping force resulting from viscosity of the medium. Deposition of
new material to a plant cell wall is much slower than the elastic response
of the material that moves the material points toward their equilibrium
position. This difference is large enough to let us assume that the material
points are always in their mechanical equilibrium in which the forces are
balanced

∇.T + ρb = 0. (4)

Since we are interested in finding the equilibrium configuration and not
the dynamics of it we use over-damped, Langevin dynamics in which the
acceleration term is negligible and the velocity field of the material points
is determined by the yet unbalanced traction and body forces

ηV = ∇.T + ρb, (5)

or

dX
dτ

= ∇.T + ρb, (6)

where τ = t/η is time during which the material configuration X moves
towards its equilibrium Xeq. The viscosity of the media η is for our purpose
the parameter controlling the speed of convergence and does not have a
physical meaning. Our final result does not depend on this parameter as
we do not take the dynamics into account in the quasi-static case. The
equilibrium can be described by the integral

Xeq = X(τ = 0) +
∫ ∞

0
[∇.T + ρb] dτX0 , (7)

where X0 is the material resting configuration and is stated here to empha-
size the dependency of the integral upon this configuration. Ideally, the
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integral in Eq. 7 should be evaluated until Eq. 4 is satisfied. X(τ = 0)
is the configuration from which we start the integration and is equivalent
to neither X0 nor Xeq. Generally the uniqueness of equilibrium configura-
tion is not guaranteed and specifically for complicated configurations it is
likely to have several of them. However, if the distance between X(τ = 0)
and Xeq in phase space is small enough, it is not likely to encounter more
than a single equilibrium configuration during the integration. We can
reduce the size of the growth-related time step such that this uniqueness
is achieved throughout the integration interval, as will be described below.
This interval connects two closely related equilibrium configurations in two
consecutive time-points, where in each of the configurations Eq. 4 is satis-
fied. In practice, Eq. 7 can be used to set a numerical recipe for deriving an
approximate equilibrium configuration. This leads to the iterative update
equation

Xn+1 = Xn + [∇.T(Xn) + ρb(Xn)] δτ, (8)

where Xn is the material configuration at iteration n. This update should
be iterated until

∇.T(Xn) + ρb(Xn) < vc, (9)

where vc is an equilibrium velocity threshold. The stopping criteria 9 as-
sures closeness of the final configuration to the equilibrium state, which we
assume is unique within the neighborhood of integration.

iii.2.2 The growth tensor

The next step is to add growth, implemented as a deformation of the resting
configuration X0. The mapping between the resting and current configura-
tions, given as elastic deformation, is provided by the deformation gradient
tensor, Fe, defined by

Fe =
∂X
∂X0

. (10)

where X and X0 are current and resting configurations, respectively. The
subscript e is there to emphasis that this mapping describes only the elastic
deformation. We define growth as a continuous update of the resting con-
figuration that is assumed to be stress free but not necessarily compatible.
A source of incompatibility is the non-uniform growth field under which
adjacent elements can have different principal growth directions and rates.
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The overall mapping between initial resting configuration and current con-
figuration, Feg, is given by the product of growth and deformation gradient
tensors

Feg = FeFg(t) (11)

where Fg(t) is the finite growth tensor at time t.
We introduce growth as an update of the resting configuration after an

infinitesimal time step, δt, as

X0(t) → X0(t + δt) = Fg(t + δt)X0(0) (12)

= X0(t) + δX0 (13)

=
[
I + fg(δt)

]
X0(t) , (14)

where X0(0) is the initial resting configuration, which is constant, and fg is
the differential growth tensor. The relation between Fg and fg is given by

∂Fg

∂t
= fgFg, (15)

which in integral form becomes

Fg(t) = exp
[∫ t

0
fg(t′)dt′

]
. (16)

The evolving resting shape and its growth dynamics is described by the
difference equation

X0(t + δt)− X0(t) = fgX0(t)δt, (17)

leading to the differential equation

∂X0

∂t
= fgX0(t), (18)

with the solution

X0(t) = Fg(t)X0(0). (19)

The differential growth tensor fg generally depends on time and growth
signals. In these cases Eq. 16 becomes more complicated, but in the numer-
ical update via Eq. 17 we need to only update fg at each time step.
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The rest configuration X0 is piecewise compatible, i.e. each element is
compatible within itself. Incompatibility exists at the junctions between
elements. In the case of planar elements these junctions are the edges of
elements whereas for three dimensional elements, e.g. tetrahedrons, junc-
tions are given by faces. In practice, elements are connected via common
nodes at the corners. This by itself constrains all elements in the tissue
to stay intact in the current configuration. However, each element in the
resting configuration is allowed to be disconnected and stress free.

iii.2.3 Continuous growth

The current equilibrium configuration, Xeq = Xeq(Fg, M), is a function of
the growth tensor and a vector of all material parameters, M, and its time
derivative can be expressed as

∂Xeq

∂t
=

∂Xeq

∂Fg

∂Fg

∂t
+

∂Xeq

∂M
∂M
∂t

, (20)

where the subscript eq is to stress that the derivative should be evaluated
when all the material points are at equilibrium. Assuming that the source
of growth comes solely from evolution of the resting shape we keep only
the first term on the right hand side and by using Eq. 15 we have

dXeq

dt
=

∂Xeq

∂Fg
fgFg. (21)

This is the growth equation of a slow process compared to the elastic defor-
mation in which the material properties do not change.

iii.2.4 Time discretization of growth

In a numerical algorithm we must make sure that the current shape is at
the mechanical equilibrium at each time step. For a small step in time, δt,
from Eq. 21 we get

Xeq(t + δt)− Xeq(t) =
∂Xeq

∂Fg
fgδt, (22)

or

Xeq(t + δt) = Xeq(Fg) +
∂Xeq

∂Fg
δFg = Xeq(Fg + δFg), (23)
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Figure III.1: Illustration of the growth process. The resting configuration might
be compatible at growth-time zero but can become incompatible later,
while the current configuration stays compatible. The integration takes
place between two consecutive growth times. All variable notation is
defined in the main text.

which from Eqs. 7 and 17 can be rewritten as

Xeq(t + δt) = Xeq(t) +
∫ ∞

0
[∇.T + ρb]dτ(I+ fgδt)X0(t), (24)

or

Xn+1
eq = Xn

eq +
∫ ∞

0
[∇.T + ρb]dτ(I+ fgδt)Xn

0
. (25)

In Fig. III.1 the update of the equilibrium configuration between two con-
secutive time points is illustrated by the blue arrow. The integral on the
right hand side of Eq. 25 can be evaluated more easily if the consecutive
equilibrium configurations are close to each other. This is equivalent to
choosing a small step size for the growth.
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iii.2.5 The growth signal

A possibility for applying various inputs that connect the growth process
with mechanical or biochemical signals is required given the complexity
of the growth process. Assuming that the growth field generally can be
inhomogeneous and anisotropic, the growth tensor can be defined as

fg = ΣiF (gi)|gi 〉 〈 gi|, (26)

where gi and |gi〉 are the ith principal value and vector of growth signal in
the resting configuration. F (gi) is a function of the growth signal. This
function, due to the potentially complex processes in growth, can be non-
linear and possibly very complicated. Here, as an example, we assume a
simple piecewise linear relation between growth signal and rate given by

F (gi) = krateR(gi − gt). (27)

gt is the growth signal threshold above which growth occurs, krate is the
rate and R is the ramp function

R(x) =

0 i f x ≤ 0 ,

x i f x > 0 .
(28)

Finally we formulate the general growth tensor as

fg = krateΣiR(gi − gt)|gi 〉 〈 gi|
= krate|FTe Fe|−1ΣiR(Gi − Gt)FTe |Gi 〉 〈Gi|Fe . (29)

where Gi and |Gi〉 are the ith principal value and vector of growth signal
and Gt is the growth threshold, all given in the current configuration. Simi-
larly, gi, |gi〉 and gt are the corresponding values and vectors in the resting
configuration. Fe is the elastic deformation gradient tensor. For stress or
strain-based growth the growth tensor, can be defined as

fg = krateΣiR(Si − St)|Si 〉 〈 Si| (30)

where Si and Si〉 are the ith principal value and vector of strain or stress
in the resting configuration. St is the strain or stress threshold for growth.
This is more general than the growth equation, fg = krateR̄(S− St) used
in other models [31], where S and St are tensors of strain or stress and
corresponding threshold, respectively, and R̄ is a tensor ramp function.
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Unlike the above equation, Eq 26 is invariant under rotation and remains
unchanged in different coordinate systems.

In our model the growth signal can be stress, strain or any mechanics-
independent factor, e.g. a morphogen concentration. It is also possible to
have a growth scenario in which a combination of different factors regulates
the growth.

iii.2.6 Growing the elements in practice

Application of Eq. 18 on the resting configuration for each of its elements
after using Eq. 29 means that the growth equation corresponding with
each element edge is needed. The growth rate of each element edge should
be proportional to its resting length and a monotonic function of the differ-
ence between principal strain values and the threshold above which growth
occurs, i.e. given by

∂|l 〉
∂t

= fg|l 〉

= krateΣiR(gi − gt)|gi 〉 〈 gi|l 〉 . (31)

For the ith component of the edge element

∂li
∂t

= krateR(gi − gt)li. (32)

Here we have assumed that the growth rates of the components of the
element edges are proportional to their size and strength of the growth
signal in the corresponding direction.

iii.2.7 Residual stresses

In case of incompatible growth process we expect arising of residual stresses
i.e. stresses which are remaining in the tissue after loading forces are re-
moved. Then the stress, T, in Eqs. 3-9 includes both residual, Tr, and load-
ing, Tl , stresses

T = Tl + Tr. (33)

Note that residual stresses are divergence free. This follows from the as-
sumption that there are no external forces in the reference configuration
[33].
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Eqs. 3-9 are also true for net stresses, i.e.

∇.Tl + ρb = 0, (34)

and

∇.Tr = 0. (35)

The superposition principle allows us to add up the above equations and
Eq. 35 provides a recipe for evaluating the residual stresses by

Xeq =
∫ ∞

0
[∇.T]dτX0(Ttot), (36)

where Ttot is the total growth time and

X0(Ttot) = Fg(Ttot)X0 =

[∫ Ttot

0
exp( fgt)dt

]
X0. (37)

Note that the tissue always experiences the overall stress field. Decompos-
ing the stress into loading and residual components needs global informa-
tion, which is not available to the cells. However, this decomposition can
be of great importance when a stress field needs to be evaluated from the
shape of the current configuration. When residual stresses exist, the geo-
metrical information is not enough for the evaluation of the overall stress
field. Eq. 37 can be used after each stage in the growth process to eval-
uate residual stresses. When this is done iteratively, the appearance and
evolution of the residual stress field can be investigated.

iii.2.8 Cell division

Growth often involves large deformations in which cells divide multiple
times. Although a cell division includes various processes, e.g. mitosis and
microtubular bundle formation, in a mechanical view it can be simplified
to adding a new wall connected to existing walls. For the existing walls this
leads to addition of new degrees of freedom to the tissue without changing
the material properties or mechanical variables such as stress and strain
fields (Fig. III.2). At each cell division, a domain of the tissue that belongs
to the cell wall to be subdivided is replaced by new domains connected to
the new daughter cells. The positioning of a new wall by the cell it thought
to follow specific rules [34, 35]. Generally, the new wall created at division
connects to the old walls at the points that do not respect the arrangement
of the elements in existing mesh.
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Figure III.2: Cell division and remeshing. Main walls are in blue. The new main
wall resulted from division is in green. All the walls in yellow are the
internal walls which are the interface between triangular elements and
their resting lengths must be estimated after re-meshing.

Assuming each cell wall is meshed with some elements (Fig. III.2), the
new wall will divide connecting cell walls regardless of its mesh and the
arrangement of the elements. This will require re-meshing after each cell
division such that the new elements appear solely in walls connected to one
of the daughter cells. Consequently the dimensions, strains and stresses
for the new elements must be recalculated, and here we provide a recipe
for minimizing the difference in strains before and after the division in
individual cell walls.

Strain maintenance

We could perform the division in the resting configuration of the cell wall
if the elements are compatible, but this is not true after an incompatible
growth process. Still it is possible to divide the mother cell wall and re-
mesh the daughter cell walls in the compatible current configuration. As
the resting configuration is essential for evaluating the strain energy, we
then need to estimate this for each element based on the average strain
field of the daughter cell walls, which has to be inherited from the mother
cell wall. In such way we make sure that the strain field in a wall does not
go through an discontinuous change when a cell divides. If the average
Almansi strain tensor of the cell wall is known, it is possible to estimate
the resting edges of elements from their edge vectors and eigenvalues and
eigenvectors of the strain tensor. The Almansi strain in one dimension, εE,
is defined by

εE =
1
2
(

l2 − L2

l2 ), (38)
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where l and L are the current and resting lengths, respectively. We can
invert this relation to calculate the resting length in terms of strain and
current length

L = [(1− 2εE)l2]
1
2 . (39)

Similarly the Eulerian-Almansi finite strain tensor, S , is defined by

S =
1
2
(I − F−T F−1) (40)

where F−1 is the inverse and F−T is the inverse of the transpose of F. In-
spired by Eq. 39, the resting length of each element edge is estimated by

L = [Σi(1− 2Si) 〈 l|Si 〉2]
1
2 (41)

where Si and |Si 〉 are the ith eigenvalue and eigenvector of the average
Almansi tensor of the mother cell wall and |l 〉 is the corresponding element
edge vector in the current configuration.

Eq. 41 is equivalent to a transformation under the inverse of the average
stretch component of the deformation gradient tensors of all elements of a
cell wall.

iii.2.9 Saint Venant-Kirchhoff strain energy for anisotropic material and planar
triangular elements

We use the strain energy based on the well known Saint Venant-Kirchhoff
description

Wiso =
λ

2
(trE)2 + µtrE2, (42)

where E is the Green-Lagrange strain tensor and λ and µ are the Lame
coefficients of the material. We assume plane stress condition where the
Lame constants can be expressed as

λ =
Yν

1− ν2 , µ =
Y

2(1 + ν)
. (43)

Here Y and ν are the Young modulus and Poisson ratio that represent
stiffness and incompressibility of the material, respectively. The modified
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version of Saint Venant-Kirchhoff model for anisotropic material is given
by

W = Wiso + Waniso, (44)

where

Waniso =
∆λ

2
〈 a|E|a 〉 trE + ∆µ 〈 a|E2|a 〉 , (45)

|a 〉 is the anisotropy vector which shows the direction in the material with
the largest elasticity constant. The ∆λ and ∆µ are the differences between
longitudinal and transverse Lame coefficients which are in turn related to
Young modulus in longitudinal and transverse directions and Poisson ratio.

Elements are triangular plates under plane stress condition. It has been
shown that such a description is appropriate for describing the main me-
chanical features of different plant tissues domains in an epidermal pres-
sure model[29].

iii.3 results

To test the proposed growth model we perform simulations using a square
patch of material, a Saint Venant-Kirchhoff strain energy model allowing for
anisotropic material properties and triangular plate elements in the mesh.
Material parameters and stresses are chosen such that the elastic deforma-
tion is about 8 to 12 %. This value has been reported to be a relevant elastic
deformation in plants [36].

iii.3.1 The growth model can be made highly independent on spatial discretiza-
tion

The continuity of the growth model can be tested via comparing the result-
ing deformations for the same mechanical conditions but using different
spatial discretizations where the degrees of freedom of the tissue varies.
First, we investigate the convergence properties of the area expansion on
grown templates with different discretization resolution.

A template with isotropic material and discretized at three different res-
olutions from coarse to fine is used (Fig. III.3A). Forces are applied to grow
the template to about double the size. In the test cases we applied isotropic
loading forces (Fig. III.3B), uniaxial loading forces (Fig. III.3C), or forces
generated by applying a pressure from one side (Fig. III.3D).
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Figure III.3: Growth and different spatial discretizations. (A) A square template
meshed in three different sizes is used as initial configuration. (B, E,
H) The template is grown isotropically (C, F, I) The template is grown
uniaxially. (D, G, J) The template is grown in three dimensions by in-
flating it by applying pressure on one side. (B, C, D) The deformed
templates after growth. (E-J) Relative resting areas versus growth time
(different than simulation time) are presented for two different equilib-
rium thresholds, vc. The equilibrium threshold value is 0.01 for E and
F, 0.003 for H and I, 0.001 for G and 0.0004 for J. Elastic deformation
≈ 10% for A and B, ≈ 0 to 15% for C.
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Since growth is applied on the resting shape, we compared the area of
the resting shape as a function of time of growth for different discretiza-
tion resolutions (Figs. III.3E-J). As described in the Methods section (Eq. 9),
numerical simulations use an equilibrium threshold value (vc) to estimate
when the tissues is close enough to an elastic equilibrium between each
growth updates. Lowering this value leads to a convergence of the resting
shape areas for the different meshes (cf. Figs. III.3E-G with Figs. III.3H-J
where the value of vc has been lowered less than one third in H and I and
less than halved in J. This is particularly evident in the 2D simulations,
where it is possible to reduce the growth error by decreasing vc, at the cost
of longer simulation times. For example, when comparing the difference be-
tween meshes with more than one order of magnitude difference in number
of elements (N=31 vs N=518), the difference decreases from 20% and 15%
(Figs. III.3E and F) to 12% and 5% (Figs. III.3H and I) after the area of the
coarser mesh has been doubled when vc is less than one third. For the pres-
surized template (Figs. III.3D, G and J) it becomes more complicated and
the area convergence is not monotonic or might not happen at all. In case
of applying pressure load to the template, not only is the tissue growing,
but it is also changing the shape and curvature. Such shape changes are
mesh dependent in our description using (planar) plate elements and the
fine meshing will always be preferable if high resolution details of shape is
to be investigated.

While it is possible to tune the difference in growth between different
mesh resolutions, a finer mesh results in slower growth in general (using
the same vc). This is because after growing the elements, strain drops
to lower values and it takes a while for the template to regain its quasi-
equilibrium strain field, and this time is longer when using a fine mesh.
Consequently, principal growth values in Eq. 26 will be lower for the same
equilibrium threshold (vc).

In summary, we showed that continuous growth can be described using
our framework, and that it is important to make sure the system is close
to its elastic equilibrium for a mesh-independent error in describing the
growth of the tissue.

iii.3.2 Different input signals for growth can lead to heterogeneous residual stresses

Our approach allow for regulating growth by using mechanical or other
signals (Eqs. 26 and 29). It is of interest to compare the situations where
growth is controlled by stress or strain signals since these can differ in
the presence of material anisotropy in a tissue under anisotropic loading
forces. Anisotropic forces are expected in plant (epidermal) tissue and is a
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result from growth in neighboring tissue as well as the curvature of the tis-
sue. The anisotropic alignment of cellulose fibers in key tissue domains in
plants highlights the importance of such comparison, and although we will
disregard dynamical material anisotropy changes in our simulations, feed-
back between stresses and material anisotropy can be of great importance
for explaining robust material patterning in cells and tissues [28, 29].

To investigate the difference between strain and stress-based growth we
simulate an anisotropic patch of material loaded such that the stress is
anisotropic (Figs. III.4A and B). The material anisotropy and the stress
anisotropy and their directions are chosen to give the maximal strain di-
rection in the vertical direction and perpendicular to the horizontal maxi-
mal stress. Growing the tissue using Eq. 26 with either strain or stress as
growth promoting signals results in different growth fields and completely
different shapes (Fig. III.4 D and E). This provides an illustrative example
of how alternating the growth signal under the same mechanical conditions
can produce different growth patterns and ultimately shapes. In particular
it is important to discern between stress and strain as signals for growth
[29].

An alternative is to regulate growth by mechanically independent signals,
e.g via morphogens or morphogen gradients. To test such a case we assume
a growth field exists within the tissue (white bars in III.4C), and that it is in-
dependent of strain and stress signals. The material is isotropic and loaded
isotropically by application of a constant internal pressure (in 2D). Here,
the growth is regulated by the growth tensor ( fg in Eq. 29). The combined
vertical and horizontal maximal growth signals in the left and right parts
of the tissue generate an heterogeneous deformation (Fig. III.4F), where the
elasticity of the material still keeps it continuous. A consequence is that
a heterogeneous distribution in tissue stresses is generated (Fig. III.4F), in
stark contrast to the strain and stress based growth examples (Figs. III.4
D and E), which generate uniform but different stress and strain fields. If
the stress and strain fields are not uniform, due to non-uniformity of body
forces and/or material properties, a heterogeneous growth field can be pro-
duced also by mechanical signals. However, if the body forces and material
properties are uniform, stress and strain based growth has the built-in fea-
ture to reduce residual stresses.

In our approach it is possible to evaluate residual stresses if they exist
(Eqs. 33-37). After finite growth (Figs. III.4E-F), the body forces can be
removed and the tissue can be relaxed following Eq. 37. The remaining
stress field is a divergence free field [33]. While the examples using stress
and strain based growth lead to zero residual stresses (Figs. III.4 G and H),
the non-uniform growth signal results in tensile and compressive stresses in
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different domains of the tissue that arise from keeping the tissue compatible
and connected (Fig. III.4I).

Figure III.4: Shape changes, overall and residual stress fields under different
growth rules. (A,B) A patch of anisotropic material is loaded by
anisotropic stress so that the principal stress and strains are perpendic-
ular. (C) The same patch with isotropic material and isotropic stress can
be grown under a predefined non-uniform growth field (white lines).
Growth is given by Eq. 29. (D) Strain based growth results in vertical
growth. (E) Stress based growth generates horizontal growth. (F) The
result of the predefined non-uniform growth. (D,E,F) The color shows
maximal principal value of the overall stress field resulting from body
forces and residual stresses. (G,H,I) The maximal principal value of
the residual stress field, measured after removing the body forces and
letting the tissues relax.

We have shown the capabilities of the proposed model to employ differ-
ent growth signals and demonstrated how this impacts the morphogene-
sis in some simple examples. We explain how the shapes can be gener-
ated by stress and strain signals and using non-mechanical inputs in the
model. In particular, we evaluated how growth patterns relate to stress dis-
tributions, including how complex residual stresses can result when non-
uniform growth is applied.
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iii.3.3 The strain field is maintained during growth and cell division

The difference between the resting and deformed configurations is given by
the strain. Normally, by having the information about resting and current
configurations the strain field can be calculated. However, as discussed
in the Methods section, when cells divide new degrees of freedom need
to be introduced, e.g. new nodes and edges for the resting configuration.
This is done by interpolating the variables of the resting configuration in
a finite element discretization. As we average the strain tensor over each
cell wall, this tensor together with the values of the variables in the current
configuration can be used to perform the necessary interpolation (Eq. 41).

For validating how well the method is able to predict a resting shape,
we estimate the already known resting variables (here resting edges of tri-
angular elements) from the average strain tensor of each cell wall and the
current values of those variables. To do this we use elements of a collection
of cells in a strained tissue and compare them with the corresponding ex-
act values for a strained template in two and three dimensions (Fig. III.5).
For the 2D strain, the estimation is very accurate with an error (normalized
mean square error) of about 0.055, which is expected since the triangular
elements building up the cell wall experience quite homogeneous forces
in a single plane (Fig. III.5)C). In the 3D pressurized template, the error is
slightly larger (0.058), as a result of some cell walls becoming curved. The
errors in 3D are in general not high and the larger values come from curved
cell surfaces, that are mainly located at the boundary where the cells are
connecting the tissue to an infinitely stiff boundary in this simulation.

Next, growth is added to the template using an isotropic material where
the growth is regulated by a strain signal and where cells are allowed to
divide according to a shortest path rule after reaching a threshold size [34].
The accuracy of cell division performance is evaluated by comparing the
principal values of the average strain tensor of daughter cells with each
other and those of their mother cell before and after cell division. Differ-
ences are very low (Fig. III.6), and strikingly, even lower than in the non-
growing situation (cf. Fig. III.5). The reason for that is that when a cell
divides there is an update of the estimate of the resting edge connected
to a division plane, which decreases the error in further estimations. The
error is generally small and smaller in the 2D simulation (Fig. III.6D) then
in the 3D simulation (Fig. III.6E). The outliers in the 3D case are again com-
ing from the divisions that happen adjacent to the stiff boundary where
non-planar cell walls appear.
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Figure III.5: Resting shape estimation. (A,C,E) A tissue strained by an in-plane
isotropic stress. (B,D,F) A tissue strained into 3D by a pressure force
from one side. (A,B) The maximal strain is visualized on the current
shape. (C,D) The estimated, Le resting lengths of all edges are com-
pared with the known resting lengths, L. (E,F) The strain calculated
from the estimated resting lengths vs the train calculated from the
known resting lengths.
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Figure III.6: Growth and cell division. (A) Initial tissue. (B) The grown tissue with
cell division in 2D by isotropic forces applied. (C) The tissue grown
using a pressure force from below. (D) Normalized mean square error
(NMSE) is 0.002 (E) Error(NMSE) is 0.02 (including the outliers) (D-E)
S1,S2 are the first and second principal values of strain in the mother
cell before division, S1a and S2a are the principal values of strain in one
of the daughter cells labeled with "a" after division and similarly S1b
and S2b are the same values in the other daughter cell that is labeled
with "b".
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We have shown that the error in estimating the resting state from the
strain field and current configuration is quite low in our approach, includ-
ing in the case with growth and cell division that leads to re-meshing of
the wall discretization. Errors are increased close to the boundary, which
can easily be mediated by adding additional tissue between the boundary
and the region of interest or alternatively define more advanced boundary
conditions.

iii.4 discussion and conclusions

We have presented a way by which the processes of cell growth and divi-
sion can be incorporated in finite element simulations of a biological tissue
with particular focus on plant cell wall growth. The proposed formulation
allows for simulating biomechanical events for a prolonged period of time
and analyzing dynamic phenomena that extend over large periods of time.
This includes all morphogenetic events that can now be approached with
proper amount of mechanical details on cellular scale, and where feedback
from gene regulatory, hormonal, mechanical and environmental cues can
be incorporated at levels of material properties as well as for growth rates
and thresholds.

Inclusion of both growth and cell division causes several complications,
which have to be carefully taken care of in order for a model to present
consistent results. In particular, we show that our description of growth,
when implemented using Saint Venant-Kirchhoff strain energy on triangu-
lar plates, provides a mesh-independent growth (Fig. III.3). Importantly,
this includes the remeshing appearing at cell division, where we show
how to preserve the strain field in dynamics remeshing (Fig. III.6). Fur-
ther, we show how a variety of growth signals, including stress, strain or
morphogens can be applied by altering mechanical properties of the cell
walls, and how the residual stresses that result from different inputs can be
identified. In particular we show how strain and stress based growth leads
to less residual stresses, while a morphogen-based growth can lead to both
tensional and compressing residual stresses even if the tissue is pressurized
and only contain tensional stresses driving the growth (Fig. III.4). We have
used a simplistic linear growth rate, inspired by the Lockhart model of
growth [3], but our description allows for nonlinear inputs to growth rates
and other parameters leading to growth. The current formalism would for
example allow for adding growth in a consistent way to nonlinear changes
of material properties from molecular or stress inputs, as previously has
been applied in non-growth simulations where there was a nonlinear feed-
back from the plant hormone auxin on Young modulus [25], or a nonlinear
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feedback on material anisotropy from principal stress directions [27, 29].
Also, the use of a specific strain energy formalism and triangular springs in
our simulations is to exemplify possible applications, while the derivations
presented in the Methods section are more generally applicable. While we
have used examples of surfaces in two and three dimensions, there is noth-
ing preventing the construction of tissues of 3D cells surrounded by 2D
wall elements. Notably, we use two edges to connect two cell walls in our
current description, and the 3D extension will need to adopt to connecting
several cells by multiple edges and using two faces per mesh element to
connect neighboring cells.

Our approach has similarities with some recent efforts of modeling plant
cell wall growth [22, 26, 27, 31, 34, 37]. In several of these examples, 2D
tissues or surfaces in 3D were described [27, 34, 37], where the walls were
represented by 1D edge elements which cannot represent the material com-
plexity described using our 2D descriptions of cell wall mechanics. An
extension to this was to use proper 2D descriptions of the cell wall mechan-
ics, but still apply the growth on edges of the mesh independently [26].
Such growth description will fail to be mesh-independent and will not be
able to properly take into account anisotropies in material variables or in
stresses. Most similar to our approach is the 2D element growth described
in [31], where strain was applied as growth signal. The main difference is
our reference system invariant description, more easily handling properties
such as the growth threshold, and hence a more general methodology to
add growth signals from strains, stresses, morphogens or other signals.

The need for detailed mechanical models is increasingly apparent for
growth models in biology. Our work provides a rigorous way to include
growth in such simulations, and its generality in terms of possibilities to
include various input signals provides an important step towards models
of plant morphogenesis over long time scales. The connection to the cells
make it possible to connect the mechanical and growth description to 4D
cellular data generated for example by confocal microscopy. As such, our
description represents an essential model development within Computa-
tional Morphodynamics.
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Sizes and shapes of plants and their organs are essential for their functions and
evolutionary fitness. Given the lack of cell migration and apoptosis plant form is
created by heterogeneous and anisotropic growth. To gain a quantitative under-
standing of the genetics and physics behind morphogenesis is still one of the main
challenges in biology.

Using computational morphodynamics models we show how a feedback between
stresses and cell wall anisotropy together with a strain-based growth signal can lead
to shapes seen in different plant tissues. In particular, we show that the competing
idea of stress-based growth ultimately leads to shapes dissimilar to most plant or-
gans. Further, we combine morphogen and strain-based signals for growth and
elucidate how such models can generate different organ shapes and sizes. Finally,
we also show how stress-feedback on material anisotropy and cell-layer organized
growth together with strain-based growth are able to explain the reversal of the
direction of cortical microtubules for a transiently elongating organ, as has been
reported in for example hypocotyls and roots.

This work provides an improved quantitative description of plant cell growth.
Using this model, we show that a combination of general and cell-type specific
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hypotheses of molecular and physical interactions act in concert to regulate mor-
phogenesis via strain-based growth in plants.

iv.1 introduction

Plants have an astonishing variety of beautiful shapes generated mainly by
heterogeneous and anisotropic growth [1]. Growth is driven by turgor pres-
sure, guided by genetic and hormonal signals, and the anisotropic shapes
are generated by the alignment of stiff cellulose fibers in specific directions
[2]. In 1965, James Lockhart defined a growth rule for plant cells, where
the elongation rate of cells is proportional to the pressure above a yield
threshold [3]. Varieties of such growth model have recently been used in
highly detailed [4], spring-based [5], and 2D descriptions of plant cell walls
[6, 7].

While turgor pressure is providing the main forces for promoting growth,
plant cell walls are the main factor for restricting growth and providing
shapes via anisotropies in material stiffness [8, 9]. The cell wall is a com-
posite material, where the stiff cellulose fibers are interconnected by xy-
loglucan molecules and sitting in a pectin matrix [8]. Growth is suggested
to happen due to the breakage of connections between the cellulose fibers,
which leads to a microscale sliding of wall components. An influx of water
keeps the turgor pressure high while new material is added to keep the cell
walls at roughly the same thickness [3, 9]. Still, the growth process and the
wall material configuration are both highly complex and the development
of an optimal quantitative description continues to be a challenge [10, 11].

Anisotropic growth is suggested to mainly be a result of the strong align-
ment of the cellulose fibers in patterns orthogonal to the growth directions
[2]. The plant cells can control the direction since the cellulose fibrils are
synthesised along tracks following the directions of cortical microtubules
(MTs) [12, 13]. Several mechanisms have been suggested for regulating the
directions of MTs, including light, auxin, and physical stresses, and they are
all dependent on dynamical severing events where MTs are cut in a process
dependent on katanin proteins [14–16]. While changing light conditions or
auxin concentrations might not directly provide a directional cue, using the
maximal principal stress as a cue can provide both magnitude and direc-
tion [17–19], and the correlation between maximal stress direction and MT
alignment has been shown both at the tissue and subcellular scales [17, 20].

The cell pressure transforms into strains and stresses in the cell walls.
Given the 3D extension of the walls and the anisotropy in terms of stiffness
of the wall material, maximal strain and stress directions may not agree
between walls of a cell or even within a single cell wall [18]. Hence, it be-
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comes important to correctly interpret the growth rule defined by Lockhart
[3] in terms of strain and stress and to understand the consequences for
morphogenesis depending on the selected signal for growth. While Lock-
hart explicitly used stress for the wall elongation rates, as he was analysing
elongation in a single dimension, either stress or strain would have worked.
In addition, genes and hormones are involved in regulating plant growth
[21, 22], and a combined description is essential for quantitatively being
able to understand morphogenesis.

Several recent models include growth processes for plant development
beyond simple spring descriptions. At the tissue scale, finite element mod-
els have been used to generate mainly 2D shapes of plant organs where
growth has been promoted by morphogen [23, 24], or mechanical signals
[25]. A 3D effort combines morphogen signals with a Lockhart description
of growth [6] to show that mechanics can translate the maximal growth to
regions away from maximal morphogen levels. Another 3D example was
used to show that the outgrowth of primordia at the shoot can be promoted
by making the wall material isotropic at the primordia site [7, 26]. Neither
of these models includes cell divisions, which recently was included in a
non-mechanical geometrical description of embryo development [27].

Here, we develop a modeling framework where we can test different
hypotheses for promoting growth, based on previous work [18, 28]. We
apply the model to different plant tissues, to investigate hypotheses for
growth based on stress, strain and molecular inputs. First, we compare the
shapes generated when growth is promoted by strain or by stress. Then,
we analyse the shape of the shoot and the initial primordia formed at the
shoot when a combination of morphogen and mechanical-based signals is
promoting growth. We also compare loosening of the wall material as a
growth mechanism with a change in yield threshold. Finally, we propose a
rule for growth together with a stress feedback on material anisotropy that
is able to predict the reversal of microtubules at the growth of anisotropic
organs, following what has been reported in hypocotyls and roots [15, 29].

iv.2 results

iv.2.1 Growth promoted by elastic strain can predict growth domains compatible
with plant tissues

The distribution of stresses and their anisotropies in a pressurised epider-
mis is resulting from the shape of the organs and cells [17, 20, 30]. The cur-
vature determines the direction, size and anisotropic properties of stresses
(Fig. V.1A), while material anisotropy in different domains can be inferred
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from alignment properties of microtubules[13, 17]. Given the stresses and
material properties, a strain field arises. Analysing the growth rules for
small elements of a material is useful for understanding the complicated
deformations at tissue scale that are the integral of small and simpler incre-
ments. Such reduction, has the advantage of having countable number of
variables and parameters for building the fundamental hypotheses for how
growth is regulated. To better understand the differences between strain
and stresses as potential growth signals, we take advantage of such simpli-
fication and analyse a planar element (Figs. V.1 B-F). We consider measures
of force and deformation as stress and strain values and anisotropies (first
and second principal components), when both material anisotropy, κ (Eq. 2)
and stress anisotropy, α (Eq. 1), vary within a range between 0 (isotropic) to
0.8 (highly anisotropic) (Fig. V.1B-F).We assume constant overall material
elasticity across the tissue. Maximal stress and strain can be perpendicu-
lar or parallel in different regions in the parameter space (black and white
domains in Fig. V.1D), and the values of strain and stress show completely
different behaviours (Figs. V.1 B,E vs. C,F). While the stress value (and
direction) always follow the loading forces and has no dependence on ma-
terial anisotropy (Fig. V.1 C), the strain shows a more complex behavior,
where either large loading forces or large material anisotropy can lead to
large strains (Fig. V.1 B). The large material anisotropy causes the maximal
strain to be perpendicular to the maximal force direction (Fig. V.1 D).

By noticing the approximate degrees of tissue anisotropy and stress aniso-
tropies in different domains of the plant shoot (Fig. V.1A, [17]), these re-
gions can be represented in the parameter space of the patch analysis
(Figs. V.1 B-F). The central zone (CZ) at the very apex has isotropic forces
(given the isotropic curvature), and no clear anisotropy in material stiffness.
The curvature gradually decreases in the radial direction when tracing a
path from the CZ via the periphery of the shoot (PZ), to the stem region
(S). This leads to increased anisotropies in materials and stresses, where
α = 0.5 is expected at S given the close to cylindrical shape. Finally, the
largest anisotropic forces are predicted at the boundary (B) between the
shoot and an initiating primordium.

Interestingly, both strain and stress magnitudes increase when moving
from CZ via PZ to S (Figs. V.1 B, C), and this correlates with growth rates
reported [31]. However, when analysing maximal strain and stress values,
the corresponding directions need also to be considered (Fig. V.1D. Then
there is quite a striking difference: the maximal strain direction is radial in
PZ and axial in S, which predict plant growth patterns [31], while the max-
imal stress direction is circumferential in these regions. In CZ both stress
and strain are low, and isotropic as reported for growth in experiments [31].
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Figure IV.1: Comparing the strength of stress and strain signals versus different
values of stress and material anisotropy (A) A representation of the
shape in the shoot apical meristem. The key domains with distinct ma-
terial and stress anisotropies are marked with CZ as central zone, PZ
as peripheral zone, S as stem and B as boundary between shot and
primordium. In each domain arrows are indicating the direction and
values of principal stresses. (B,E) The strength of 1st (B) and 2nd (E)
strain signal is shown versus different values of stress and material
anisotropy for a planar patch of material. Different domains marked
in (A) are marked using approximate values of stress and material
anisotropy. (C,D) similar to B and E but for the strength of 1st and
2nd eigenvalues of stress. (D) Relative direction of maximal stress and
strain versus stress and material anisotropy. Those are perpendicular
in the black region and parallel in the white region.

Possibly, the boundary sits outside of the analysed domain in the parameter
space, as the stress anisotropy (and possibly material anisotropy) is high.
The boundary is a special case since the stresses are not fully determined
by curvature of the epidermis. Due to the negative curvature the internal
tissue becomes an important player for resisting stresses.

Using a patch simulation and testing large ranges of loading forces and
material anisotropies, it was possible to show similarities and differences
between using stress or strain as signal for plastic growth. In particular,
while the maximal values have some agreements, the two signals predict
completely opposite growth directions in the PZ and S, where the simu-
lations indicate that a strain model is in more agreement with measured
growth directions.
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iv.2.2 Correct interpretation of Lockhart’s growth model is required to generate
correct growth patterns in plant tissues

The detailed analysis of how stresses and strains change for different load-
ing forces and material properties from the previous section is of great
importance since such anisotropic properties of material and stresses are
both present in the plant epidermis. The analysis indicates that Lockhart’s
pressure description of growth regulation needs a careful interpretation to
predict growth magnitudes and directions in a more complex tissue situa-
tion. To understand how strain and stress signals used as plastic growth
promoters act on a tissue scale, we developed a cell-based model of an
epidermal tissue where any mechanical and non-mechanical signal can be
used to promote growth (Methods, [28]). We used a template of the epi-
dermis, which was pressurised from the inside (Fig. V.2A), and where each
cell has the same material model and the same growth and division rules
(Methods). It is the dynamical shape of the tissue that will lead to stress
and strain patterns for a single cell that then can feedback on growth of
this cell, while cells still interact mechanically with neighboring cells to
maintain the continuity of the whole tissue. Equation11 is used to regulate
growth in individual cells using principal values and directions of stress or
strain.

Applying plastic growth induced by stress leads to a spherical shape after
a period of growth (Fig. V.2B). This is since any anisotropy in the curvature
will generate an anisotropy in stress and extending the material more in this
high-stress direction will act to make the curvature more isotropic (until a
perfect spherical shape is achieved). Interestingly, using an isotropic ma-
terial or dynamical anisotropic material based on a stress feedback, which
potentially can hold back extension in most stressed directions, gives the
same result. This is because the stress pattern does not depend on material
anisotropy (Fig. V.1C, but only on the loading forces that would not change
when changing material.

If an isotropic material is used, strains and stresses are behaving exactly
the same, and if strain is provided as a growth signal together with an
isotropic material, again a more spherical shape would appear (cf. Fig. V.2B).
However, applying a strain based promotion of plastic growth together
with an anisotropic material where stress feeds back to the material (anisotr-
opic) stiffness, can lead to amplification of shape anisotropy (Fig. V.2C).
The stress feedback mechanism makes the material stiffer in the direction
of larger stress (curvature), and this can lead to higher strain values in the
axial direction. Such behavior occurs in a particular range of anisotropic
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Figure IV.2: Stress versus strain as growth signal. The template is pressurised
where there is a stress based growth or strain based growth dynam-
ics with a constant yield threshold. The cells divide after reaching
a threshold size. The division takes place close to the shortest path
within each cell. (A) The dome-like template which is used as the ini-
tial state of the simulation. (B) The final state of stress based growth
after a finite growth period. Using the isotropic or anisotropic mate-
rial does not alter the final state noticeably. (C) the final state of strain
based growth together with stress feedbak to the direction and degree
of anisotropy[18]

.

stress and anisotropic material stiffness, where maximal strain is perpendic-
ular to maximal stress (black region in Fig. V.1D). In the case of a cylindrical
symmetry (stress anisotropy α ≈ 0.5), which is very common in plants, a
material anisotropy (κ) above about 0.5 would lead to axial plastic growth
if the growth is promoted by strain. Generally this mechanism can amplify
or at least maintain the anisotropic curvature of the organ surfaces.

In summary, the model predicted that if mechanical signals are used as
the main promoter of plastic growth, a combination of growth promoted by
strain and material anisotropy promoted by stress leads to the generation
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of typical plant organ shapes. This means a reinterpretation of Lockhart’s
original idea where he discussed the pressure-driven cell growth in terms
of a stress-based cell wall elongation [3].

iv.2.3 A combination of strain and morphogen as input to growth prescribes the
shape and size of the tissue

In the previous section, the aim was to discern between different mechan-
ical inputs for plastic growth by comparing the resulting shapes. In those
simulations, all cells in the tissue behaved with exactly the same mechan-
ical rules. There is also a cell-type specific component to growth, and we
aim to address how this affect tissue shape by assuming that a morphogen
can influence the system by altering material properties and/or growth
parameters. The morphogen can be interpreted as genetic or hormonal
contributions, e.g. [21, 22].

First, we noticed that in the strain-induced growth simulation, which
resulted in an appropriate stem elongation, the tissue has a quite flat meris-
tem region (Fig. V.2C). Different plant species have differently shaped meris-
tems, and the vegetative meristem in Arabidopsis is one example of a flat
meristem [32]. Still, a paraboloid has been shown to provide an excellent
quantitative fit to the meristem surface shape for a large collection of meris-
tems of different sizes [33], and it is not trivial to generate these more
dome-like shapes in the strain-based simulations. The reason for the flat
structure is the lack of growth at the apex (Fig. V.2C), due to a strain lower
than the yield threshold. The threshold was set to avoid radial growth in
the stem region, and decreasing the threshold would lead to mainly axial
but also a radial component of growth at the stem.

Some radial growth at the stem might not be problematic, but the sim-
ulation pinpoints that a cell-type specific component to growth might be
needed for a more complex regulation of growth [21]. We explored a
scenario of a combined strain and morphogen input to the regulation of
growth by producing a diffusing morphogen at the center of the CZ (Meth-
ods). In this case, the morphogen reduced the strain yield threshold at high
concentrations (Eq. 16). This results in higher growth rates in the central do-
main and a more dome-like shape (Fig. IV.3 A, cf. Fig. V.2 C), visually more
resembling an Arabidopsis inflorescence shape [33]. Strikingly, adjusting the
morphogen production rate is directly influencing the meristem size and
thereby the stem radius (Fig. IV.3 B).
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Figure IV.3: Addition of morphogen to strain based growth. A) Similar to Fig. V.2C
together with dependence of the growth threshold on a morphogen con-
centration. B) By changing the production rate of the morphogen it is
possible to regulate the stem size. Here, the production rate is increased
from left to right. The template and all other model parameters are the
same in the three different cases. C) A second morphogen is employed
to destroy the fiber component of the composite material in the cell wall.
By successive addition of morphogen production to the patches of cells
in the peripheral zone a phyllotactic pattern is generated.

Next, a second morphogen was added at the sites of primordia initiation
in the PZ (Fig. IV.3 C). While there is a change of stress patterns from
circumferential around the shoot to circumferential around the primordia,
and increased growth in the primordia, the CZ part is relatively unaffected.
This morphogen can be interpreted as the plant hormone auxin [34], and
the effect of auxin was to lower the stiffness of the wall material (Eq. 15), as
proposed experimentally [35]. In this implementation the reduction is via
the fiber content and will result in lower stiffness in general, but also more
isotropic material [26].

We used two examples how a morphogen could effect the growth rate
by changing material properties in the wall (Eqs. 15, 16). Our experience
is that while the morphodynamical changes induced by these alterations
are quite similar, they are useful in terms of interpreting the mechanism
in the context of other experiments. While, auxin has been suggested to
weaken the walls, atomic force microscopy has been used to show that
the CZ actually has cells with stiffer walls [36]. Hence we implemented the
threshold-lowering mechanism for the morphogen produced in this region.
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We showed that the effect of morphogens can be added by adjusting
different growth parameters with similar effects, and that the combination
of morphogens and strain as input signals for growth rates allows for a
tunable system for morphogenesis. In particular, we showed how different
meristems shapes and sizes could be generated.

iv.2.4 Cell layer specific growth can predict microtubular dynamics in transiently
elongating plant cells

In multiple cases of transient cell elongation in plant tissues, for example
in hypocotyls and roots, the elongation direction is perpendicular to the
MT and fiber directions, and there is a correlation between the reduction
of growth and reorientation of the MTs in the elongating direction [29, 37].
Whether the reduction in elongation rate is caused by the MT reorientation
is still under debate [38].

Given that the geometry of the tissue is not changing drastically during
these events, it is of interest to see if a model using strain induced growth
together with a stress feedback on material anisotropy is able to predict
such dynamical events for the MTs. To investigate this, we model this sys-
tem by pressurizing a cylinder, resembling a hypocotyl or root epidermis
(Fig. IV.4A). Similar to the stem region in our previous simulations, material
anisotropy can be adjusted such that maximal strain is in the longitudinal
direction, although the maximal stress is in the circumferential (hoop) di-
rection (Fig. IV.4A). Adding plastic growth promoted by the strain does not
change this stress pattern (Fig. IV.4B). Similarly, if plastic growth would be
halted again, the stress pattern would not change, and the reorientation of
the MTs would not be predicted by a stress feedback model on MT direc-
tions.

So far, the model has only taken into account the growth of the epidermal
cells, although several layers contribute to the tissue growth. In particular,
tissue-cutting experiments suggest the internal cell layers to be under com-
pression in the longitudinal direction, compared to the epidermal tissue
[30]. This can be interpreted as the internal cell layers exert a ’force’ on
the epidermis in the longitudinal direction. For the cases when epidermal
and internal layers are either not growing or both growing (Figs. IV.4 D, E),
the stress patterns look the same (Figs. IV.4 A, B). However, if the growth
is halted in the epidermal layer while the internal cells are still expanding
(Fig. IV.4 F), a reversal of the stress can appear (Figs. IV.4 C, G).
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Figure IV.4: MT dynamics during transient cell elongation A hollow pressurized
cylinder as a model for a hypocotyl/root is used togther with strain
based growth. A) initial state. B) The state after a period of growth. C)
The result of halting growth together with application of an additional
axial force applied in the form of pressure to the system. D,E,F) Illustra-
tions for the assumptions that are made in A,B and C, respectively. The
reversal of direction of microtubules might be assumed as the result of
interaction between a growing interior and non-growth epidermal cell
layer. (G) A plot showing the values of stresses in hoop and axial di-
rections as well as the status of the growth process. On the left side of
the plot stresses results from isotropic pressure while the growth mech-
anism is on. Moving towards right in the plot we reach a time where
growth is halted in the epidermis. From here on we add an additional
axial force to the system while it is gradually increasing.

In summary, by adding cell-layer specific growth to the model, inspired
by expansion data [30], the stress can be used as a predictor for MT direc-
tions also in the dynamical situation of transient cell elongation [29, 37].

iv.3 discussion

We have defined a growth description that is able to predict morphogen-
esis in several plant tissues. The unifying idea is to use strain as a regu-
lator of growth, and by this generate anisotropic shapes (Fig. IV.5). This
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highlights the need of a specific interpretation of the Lockhart model [3],
where pressure above a yield threshold defined the elongation rate. Since
Lockhart related the pressure to stresses and stress yield thresholds in the
walls, it is a reinterpretation, but in his one-dimensional case, the strain
and stress would behave similarly. The cell pressure will generate both
strains and stresses in the walls, and in a situation of isotropic wall mate-
rial the maximal principal directions of these would agree. In the cases we
have investigated, walls can be anisotropic, and stresses and strains can be
perpendicular [18] (Fig. V.1). In particular, the use of strain for defining
growth instead of stress becomes important to predict published growth
data (Fig. V.1) [31], both in terms of magnitude and directions.

Figure IV.5: Possibilities for modelling growth Y is the overall elasticity, k repre-
sents mechanical anisotropy and a is the vector of anisotropy direction.
CMT is the short term for Cortical Microtubules. Mechanical param-
eters and variables are in gray boxes and biological variables are in
green boxes. Morphogen represents any biological component that can
regulate the growth process. This includes the plant hormone auxin.
The arrows and lines in black show physical connections. There are
strong experimental evidences for blue arrows that show the potential
feedback mechanisms between mechanical and biological components
of the system. The red arrows are mechanical candidates for growth
regulation.

We also showed that the implementation of growth, either by loosening
wall stiffness, or by changing the yield threshold can lead to very similar
shapes, and importantly, that a strain based growth by itself is not able
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to generate all possible shapes. For this, we propose a combined signal
for growth, where the strain input is integrated with morphogen signals
where the size and shape of the tissue after growth is highly tunable. In
our examples meristem shapes varied from flat to dome-shaped (Fig. V.2).
The morphogen was in this case provided from the apex, and the shapes
resemble those found when modeling tip-growing cells [39], although at
a different scale. In addition a second morphogen was shown to provide
primordia growth by adjusting cellulose fibers [26], with a reorganisation
of the stress patterns surrounding the buds.

An interesting dynamics of wall material anisotropy is given in slen-
der organs where cells elongate for a finite time, like the hypocotyl or
the root [29, 37]. Interestingly, as seen by visualising microtubule direc-
tions, the fibers are aligning transversely during the initial phase of highly
anisotropic growth in the longitudinal direction. At the time of growth de-
crease, the microtubules reorient towards the longitudinal direction, and it
is not well understood how this is regulated, neither if the reorientation is
causal of the halted growth [38]. We have previously shown that under the
assumption of tension in the epidermal tissue, a stress feedback would ro-
bustly align the microtubules in a transverse direction [18]. Here, we show
that this is still the case if plastic growth driven by strain is added. This is
also the case if growth from the internal cell layers provides a longitudinal
force onto the epidermal cells. But this is true only as long as new material
is continuously added, and the reversal, seen in experiments, comes from
the stopping of addition new wall material in the epidermal cells (Fig. IV.4).
Our model clearly predicts that the halting of growth in the epidermis leads
to the reorientation of the wall anisotropy, which in turn counteract growth,
hence generating a positive feedback system for halting growth. While the
additional cell-layer hypothesis is needed for predicting correct MT dynam-
ics in this case, the added hypothesis is based on data on residual stresses
in epidermis vs. internal cell layers [30].

Several growth models for plant tissue in 2D and 3D have been developed
recently. We argue that the way they grow the tissue lack several important
features for an optimal quantitative description of plant tissue growth. Ei-
ther they continuously remove stresses to avoid complications [23, 25], or
they grow edge elements independently, which can lead to a non-consistent
description if anisotropic material is taken into account [6]. Also, compared
with the effort in [7], which is the most similar model to ours, we propose
our description is simplified by being reference system free, and we have
a well defined algorithm to keep the strain field at cell divisions [28]. Our
model is compatible with anisotropic growth of anisotropic material and
allows for tracking residual stresses and keep strain fields after remeshing,
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which is essential for large deformations. As such, the model provides an
approach to truly investigate plant cell growth by combining morphogen
and mechanical signals as dynamical inputs.

iv.4 models

We extended material models and growth and division models from previ-
ous efforts [5, 17, 18, 28].

Measures of stress and material anisotropy

We measure stress anisotropy via

α = 1− Smin
Smax

, (1)

where Smin and Smax are the smallest and largest eigenvalues of the stress
tensor. Similarly we introduce material anisotropy by

κ = 1− YT
YL

, (2)

where again YT and YL are the smallest and largest elasticity constants of
the material in the material coordinate system of the planar element. The
assumption of constant overall material elasticity can be expressed as

YL + YT = Yoverall (3)

where Yoverall is constant.

iv.4.1 Material models of anisotropic tissue

We use St. Venant-Kirchoff description for the isotropic elastic energy [18],

Wiso =
λ

2
(trE)2 + µtrE2 , (4)
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where E is the Green-Lagrange strain tensor and λ and µ are the Lame
coefficients of the material. We assume plane stress condition where the
Lame constants can be expressed as

λ =
Yν

1− ν2 , µ =
Y

2(1 + ν)
, (5)

where Y and ν are the Young modulus and Poisson ratio, respectively. For
anisotropic material we add the following correction to the energy

Waniso =
∆λ

2
〈 a|E|a 〉 trE + ∆µ 〈 a|E2|a 〉 , (6)

where |a 〉 is the anisotropy vector, which shows the direction in the material
with the largest elasticity constant. The ∆λ and ∆µ are the differences
between longitudinal and transverse Lame coefficients which are in turn
related to Young modulus in longitudinal and transverse directions and
Poisson ratio.

Elements are triangular plates under plane stress condition that provide
an adequate description for the epidermis [18]. The stress tensor can then
be calculated via

S =
∂W
∂E

, (7)

where W = Wiso + Waniso. For spatial discretisation, we use triangular
plates[18].

iv.4.2 Regulating tissue anisotropy by stress feedback

For regulating material anisotropy in the simulations for Figs. V.2-IV.4, we
use the direction of maximal stress and stress anisotropy measure from
Eq. 1. In the model it is assumed that the overall elastic strength of the
material is maintained according to Eq. 3. Longitudinal and transverse
Young moduli are updated via simple Euler steps in time as

∆Y = KY
rate∆t(Ynew −Yold) , (8)

where KY
rate determines the rate of update, ∆t is the time step, Yold refers

to current values and Ynew indicates the new values of longitudinal and
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transverse Young moduli. Young moduli can be evaluated from the relation
between stress and material anisotropy via

YL = YMatrix + 0.5(1 +
αn

(1− α)nKn + αn )YFiber ,

YT = YMatrix + 0.5(1− αn

(1− α)nKn + αn )YFiber , (9)

where K and n are model parameters and YMatrix and YFiber are Young
moduli of the isotropic matrix and anisotropic fiber part, respectively.

The update for anisotropy direction is done based on

∆|a 〉 = Ka
rate∆t(|Sm 〉 − |a 〉) , (10)

where |a 〉 is the current anisotropy direction vector and |Sm 〉 is the maximal
stress direction vector. Ka

rate again sets the time delay.

iv.4.3 Continuous growth using mechanical signals

For stress or strain-based growth the growth tensor, can be defined as

fg = KG
rateΣiR(Si − Sth)|Si 〉 〈 Si| , (11)

where Si and Si〉 are the ith principal value and vector of strain or stress
in the resting configuration [28]. Sth is the strain or stress threshold for
growth. Krate is the growth rate and R is the ramp function defined by

R(x) =

0 i f x ≤ 0 ,

x i f x > 0 .
(12)

iv.4.4 Cell division

For cell division a volume threshold is considered above which cells divide.
The division rule we use is the shortest path in the cell that halves the cell
[5]. However the effect of division rule on deformations in tissue scale is
not studied in this paper.
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After each division we re-mesh the new cell walls and the resting shape
of new elements are approximated via

L = [Σi(1− 2Si) 〈 l|Si 〉2]
1
2 , (13)

where Si and |Si 〉 are the ith eigenvalue and eigenvector of the Almansi
tensor averaged over the elements of the mother cell and |l 〉 is the corre-
sponding element edge vector in the current configuration [28].

iv.4.5 Morphogen concentration

The dynamics of the concentration of morphogens in the cells is based on
constant production of the morphogen in one or a few cells at the tip where
the production rate is constant. The morphogen is degraded in all cells and
moves passively between cells according to a diffusion-like equation. For a
cell with index i this can be formulated via

dCi
dt

= ki
p − kdCi + kDΣj=1...nLij(Cj − Ci) , (14)

where ki
p is the production rate and is non zero only for one or a few cells at

the tip. kd is the degradation rate and kD is the diffusion (or permeability)
constant. The index j refers to one of the n neighbours of cell i and Lij is
the interface between the cell i and its jth neighbour. The sum over the cell
neighbours is in fact discretised form of ∇2C and introduces the diffusion
between adjacent cells.

iv.4.6 Reduction of stiffness versus growth threshold by morphogen

The effect of a morphogen on growth was implemented in two ways. It can
reduce the elasticity constant of the material

YFiber = YMax + (YMin −YMax)
Cn

Kn + Cn , (15)

where C is the morphogen concentration, K and n are parameters of the
nonlinear Hill function, YFiber is the elasticity constant of the fiber network
in the wall (Eq. 9) and YMax and YMin are the limits for elasticity constant
when C = 0 and C = ∞ respectively.
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Another implementation we used is the impact of morphogen on the
growth threshold

Sth = SthMax + (SthMin − SthMax)
Cn

Kn + Cn . (16)

This equation is the same as Eq. 15, which now is used for growth threshold
Sth and its upper and lower limits(SthMax, SthMin).

availability

The software used for the simulations are available upon request (http://dev
.thep.lu.se/Organism). File describing the models, the initial geometries
and solver configurations are provided as Supplemental Information.

author contributions

Both authors designed models and experiments. BB implemented and sim-
ulated all models. Both authors analysed data. Both authors wrote and
edited the paper.

acknowledgements

This work was supported by the Swedish Research Council (VR2013:4632),
the Gatsby Charitable Foundation (GAT3395/PR4), and the Knut and Alice
Wallenberg Foundation via project ShapeSystems (KAW2012.0050).

references

1. D. Barabe and R. Jean, Symmetry in plants. World Scientific Publishing
Co Pte Ltd, 1998.

2. P. B. Green, “Mechanism for plant cellular morphogenesis,” Science,
vol. 138, no. 3548, pp. 1404–1405, 1962.

3. J. A. Lockhart, “An analysis of irreversible plant cell elongation,” Jour-
nal of Theoretical Biology, vol. 8, no. 2, pp. 264 – 275, 1965.

4. R. Dyson, L. Band, and O. Jensen, “A model of crosslink kinetics in the
expanding plant cell wall: Yield stress and enzyme action,” Journal of
Theoretical Biology, vol. 307, no. 0, pp. 125 – 136, 2012.

5. P. Sahlin and H. Jönsson, “A modeling study on how cell division af-
fects properties of epithelial tissues under isotropic growth,” PLoS ONE,
vol. 5, p. e11750, Jan 2010.



References 135

6. G. W. Bassel, P. Stamm, G. Mosca, P. Barbier de Reuille, D. J. Gibbs,
R. Winter, A. Janka, M. J. Holdsworth, and R. S. Smith, “Mechanical
constraints imposed by 3D cellular geometry and arrangement modu-
late growth patterns in the Arabidopsis embryo,” Proceedings of the Na-
tional Academy of Sciences of the United States of America, vol. 111, no. 23,
pp. 8685–8690, 2014.

7. F. Boudon, J. Chopard, O. Ali, B. Gilles, O. Hamant, A. Boudaoud,
J. Traas, and C. Godin, “A computational framework for 3d mechan-
ical modeling of plant morphogenesis with cellular resolution,” PLoS
Comput Biol, vol. 11, pp. 1–16, 01 2015.

8. D. J. Cosgrove, “Growth of the plant cell wall.,” Nature reviews. Molecu-
lar cell biology, vol. 6, pp. 850–61, nov 2005.

9. T. I. Baskin, “Anisotropic expansion of the plant cell wall,” Annu Rev
Cell Dev Biol, vol. 21, pp. 203–22, Jan 2005.

10. D. J. Cosgrove, “Plant cell wall extensibility: connecting plant cell
growth with cell wall structure, mechanics, and the action of wall-
modifying enzymes.,” Journal of experimental botany, vol. 67, pp. 463–476,
Jan. 2016.

11. S. A. Braybrook and H. Jönsson, “Shifting foundations: the mechanical
cell wall and development,” Current Opinion in Plant Biology, vol. 29,
pp. 115 – 120, 2016. Growth and development.

12. T. Arioli, L. Peng, A. S. Betzner, J. Burn, W. Wittke, W. Herth, C. Camil-
leri, H. Höfte, J. Plazinski, R. Birch, A. Cork, J. Glover, J. Redmond,
and R. E. Williamson, “Molecular Analysis of Cellulose Biosynthesis in
Arabidopsis,” Science, vol. 279, pp. 717–720, Jan. 1998.

13. H. E. McFarlane, A. Döring, and S. Persson, “The Cell Biology of Cellu-
lose Synthesis,” Annual Review of Plant Biology, vol. 65, pp. 69–94, Apr.
2014.

14. M. Uyttewaal, A. Burian, K. Alim, B. Landrein, D. Borowska-
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Plant cells have two main modes of growth generating anisotropic structures. Dif-
fuse growth where whole cell walls extend in specific directions, guided by anisotrop-
ically positioned cellulose fibers, and tip growth, with inhomogeneous addition of
new cell wall material at the tip of the structure. Cells are known to regulate these
processes via molecular signals and the cytoskeleton. Mechanical stress has been
proposed to provide an input to the positioning of the cellulose fibers via cortical
microtubules in diffuse growth. In particular, a stress feedback model predicts a
circumferential pattern of fibers surrounding apical tissues and growing primordia,
guided by the anisotropic curvature in such tissues. In contrast, during the initia-
tion of tip growing root hairs, a star-like radial pattern has recently been observed.
Here, we use detailed finite element models to analyze how a change in mechanical
properties at the root hair initiation site can lead to star like stress patterns in order
to understand whether a stress-based feedback model can also explain the micro-
tubule patterns seen during root hair initiation. We show that two independent
mechanisms, individually or combined, can be sufficient to generate radial patterns.
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In the first, new material is added locally at the position of the root hair. In the
second, increased tension in the patch area provides a mechanism. Finally, we de-
scribe how a molecular model of Rho-of-plant (ROP) GTPases activation driven by
auxin can position a patch of activated ROP protein basally along a 2D root epi-
dermal cell plasma membrane, paving the way for models where mechanical and
molecular mechanisms cooperate in the initial placement and outgrowth of root
hairs.

v.1 introduction

Most higher plants do not display cell migration and need to generate opti-
mal shapes by adjusting growth both in terms of magnitude and directions.
Two main modes of growth are prevailing across the plant kingdom [1, 2].
The first is diffuse growth where whole cells or tissues are expanding quite
homogeneously, although often anisotropically. The other mode of growth
is tip growth, where expansion appears in a focused region of a cell. The
growth is dependent on environmental signals and guided by cells genetic
and hormonal interactions [3]. Still, to effectuate the growth, manipulation
of the stiff cell walls surrounding all cells is necessary [4].

The plant cell wall can be seen as a complex composite material com-
posed mainly of cellulose microfibrils, pectins and xyloglucans [1, 4]. In-
tricate connections between these wall components and their effect on the
mechanical properties of the cell wall are not yet completely understood.
Similarly, the way in which the plant dynamically controls composition
and properties of its cell walls to form different organs to their appropri-
ate shape is a matter of extensive research [5]. Cortical microtubules serve
as the guiding tracks for deposition of cellulose microfibrils and in conse-
quence cells can control anisotropy of its wall stiffness [6, 7]. This in turn
relates to directionality of anisotropic growth of a tissue and influences
stresses at subcellular to tissue scales [1, 8, 9]. For tip-growing root hairs,
the cellulose fibers have been shown to be randomly oriented at the very
tip, while organized longitudinally away from the tip where there is also
a formation of a secondary wall [10–12]. In tip growth, high rates of wall
material deposition are promoting the localized growth [13].

Several signals regulating the dynamic orientations of the cortical mi-
crotubules have been suggested, including environmental, molecular and
mechanical regulation [3, 14–18], and for diverse input signals micotubule
severing is important part of the orientation process as shown by katanin
mutants [15, 17, 19–21]. The Arabidopsis hypocotyl displays a strong growth
response to light. Hypocotyl microtubules were recently shown to quickly
reorient from transverse to longitudinal after being exposed to blue light
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and this reorganization was dependent on katanin [15]. Treatment with the
phytohormone auxin has been shown to induce changes in microtubule ori-
entations [16], which more recently has also been reported for Arabidopsis
roots and hypocotyls [17]. Again the reorientation is quick [17], but it is yet
to be understood whether growth is affected in such treatments.

For several of the suggested input cues orienting microtubules it is un-
clear how the input provides a directional signal. Mechanical stresses and
strains could serve that purpose. Mechanical stresses in the walls have been
suggested to provide a directional signal where cortical microtubules ori-
ent along the maximal principal stress direction, both at the tissue and at
the subcellular levels in shoots, leaves and flowers in Arabidopsis [18, 19, 22].
Such feedback loop between stress and direction of material anisotropy has
been implemented in models which have verified its ability to produce ro-
bust regulation of anisotropic growth [23]. In particular, such a model cor-
rectly predicts the circumferential arrangement of microtubules (and tissue
scale stresses) around the sites of primordia outgrowth in the shoot apical
meristem and towards the stem tissue.

In tip growing cells, the growth is much more localized to a specific
site of the cell wall. As mentioned above, the microtubules are randomly
organized at the tip, and growth is rather promoted by vigorous local de-
position of the new material to the site of outgrowth. At the tip there is a
region of the cytosol less abundant in large organelles and with targeted
secretion of wall material seen by enriched presence of secretory vesicles
[2, 24, 25]. Pectin deposited to the tip is further de-esterified and rigidified
by calcium cross-linking, promoted by high levels of calcium at the tip [26].
In particular, the addition of wall material, and hence the cell wall thickness
at the tip is oscillating and is out of phase with growth rates, altering thick
walls with high growth rates [27]. Also actin has been shown to play promi-
nent role in wall elongation process [13]. When measuring the rigidity of
pollen tubes using cellular force microscopy, the apparent reduced stiffness
at the tip was attributed to the respective geometrical change [28]. Com-
putational models of tip growth connect deformation to the addition of
material, the use of anisotropic wall material, and strain-based growth [29].
In addition, the inclusion of pectin chemistry provides means to have pa-
rameter space regions determining steady and oscillatory growth in model
[30]. Moreover models including details of osmotic pressure alterations dis-
cuss possible role of pressure as a driving force for oscillatory tip growth
[31], as suggested by experimental data [32, 33].

We are particularly interested in the process of root hair initiation. A tran-
scriptional network for root hair cell differentiation in Arabidopsis has been
identified [34], defining alternating cell files of root hair cells (trichoblasts)
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and non root hair cells (atrichoblasts). The differentiation of root hair cells
has been modeled, suggesting different mechanisms [35–37]. While root
hair initiation often fails in genetic perturbations of components of these
networks, these proteins are not known to provide information of the polar
position of root hair initiation site on the lateral membrane of epidermal
cells. Similarly, auxin has been suggested to identify files of root hair cells.
Its supply is facilitated, at least in part, by auxin influx mediators through-
out non root hair cells files [38].

More interesting for the subcellular localization of the root hair, an intra-
cellular auxin gradient has been proposed to be informative in the position-
ing of root hairs on the lateral membrane of hair cells, close to their basal
(rootward) end [39]. One of the earliest markers of the basal initiation site
is the activated Rho-of-plants (ROP) GTPases [39–42]. The ROP localiza-
tion has been also found to correlate with positioning of lobes and necks in
pavement cells where ROP is activated by auxin [43]. The ROP proteins are
likey to be important for the correct placement and outgrowth of root hairs
as suggested by dominant-interference and overexpression studies [40, 41].
The activation dynamics of ROP proteins in root hair cells have been mod-
eled using a reaction-diffusion type of model where auxin at the subcellular
level is assumed to promote activation of ROP [44]. Together with a pos-
itive self-feedback of ROP-activation this was sufficient to generate peaks
of activated ROPs at the root-tip oriented (basal) ends of cells lateral mem-
brane in a 1D model, predicting the positioning of root hair initiation in
wild type as well in selected mutants.

Also the actin and microtubular cytoskeleton networks are important for
correct root hair formation [45–47]. When microtubules were imaged to-
gether with PIP5K3, an early root hair initiation marker [48], microtubules
were reported to orient into a radial pattern surrounding the root hair ini-
tiation site [49]. Similar to other microtubule organizing events, this was
disrupted in mutants defective in the SABRE and CLASP genes required
for microtubule organization. Also, the basal positioning of root hairs as
well as the polar localization of the ROP patches were perturbed in differ-
ent combinations of loss-of-function mutants, indicating a regulatory role
of microtubular patterning for polar ROP placement. Consistent with this
view, the procuste1/cesA6 mutant defective in a cellulose synthase sub-
unit displays alterations in polar ROP and root hair placement [50], resem-
bling the defects in sabre mutants suggesting a requirement for both correct
microtubule organization and cellulose microfibril synthesis during polar
root haor initiation. In addition, ROPs have been reported to be activated
by auxin and regulate microtubular patterning in pavement cells [43, 51].
Hence, an intricate feedback mechanism between ROPs and microtubules
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connecting also auxin and wall mechanics seems to be at the core of root
hair initiation and growth (Fig. V.1A).

Altogether, the ROP and microtubular data indicate a complex feedback
between molecular and cytoskeletal dynamics during root hair initiation,
and computational modeling is essential to understand the behavior. In
particular, current data raise the question if a correlation between micro-
tubule organization and principal stress direction is sustained in the case
of the root hair initiation, as has been observed before in diffuse growth
(Fig. V.1A). In diffuse growth of organ formation, auxin is accumulated at
the site of outgrowth, leading to the loosening of cell wall material. In effect
we observe around the outgrowth region circumferential stress orientation
and corresponding microtubule pattern. Here, we extend the previously
published 1D ROP model to 2D to confirm it can provide a mechanism for
correct placing of an activated ROP patch correctly along root hair cell. We
then investigate whether the previously suggested mechanical stress feed-
back on microtubule directions can predict the patterns seen at root hair
initiation sites by analyzing mechanical scenarios of tip growth that can
produce radial stresses patterns.

v.2 results

The results reported in this communication present two connected mecha-
nisms concerning root hair outgrowth. Firstly we consider the process by
which the site of the root hair outgrowth can be specified within a cell, by
the localization of activated ROP into a small patch. Secondly we examine
if the initiation of root hair growth can be explained by mechanical per-
turbations in such a patch and in agreement with experimental data. We
consider several scenarios and analyze the emerging pattern of stresses in
comparison with experimentally observed microtubule organization.

v.2.1 An auxin-driven ROP-activation model can guide the activated membrane-
localized ROP into a basally localized patch in the 2D epidermal cell wall
membrane

We developed a 2D single cell model where the cycling of ROP from an
inactive to an active form is influenced by an auxin gradient (Methods, Red
box in Fig. V.1A). The model is an extension of a previously published 1D
model of ROP cycling [44]. We discretize the cell into several compartments
between which the ROPs are allowed to diffuse, assuming a faster move-
ment of inactive ROPs, which reside in the cytosol, compared to the active
ROPs which are connected to the membrane. We assume that ROPs are
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created in their inactive form and subsequently activated by auxin to be-
come the active membrane-bound form. Further, the active form of ROP is
subject to constant degradation. Also included in the model is a non-linear
self-activation of activate ROP. All reactions follow simple mass action and
diffusion descriptions (Eqs. 1-3).

First we tested whether such a molecular model is able to create a peak
of active ROP, marking the site of root hair outgrowth, at the correct loca-
tion in the epidermal cell membrane. We expect the peak to locate close
to the basal end of the lateral membrane, even when considering a full 2D
description of this membrane. Indeed, a patch of active ROP localize at
the basal end of the lateral membrane (Fig. V.2A), slightly away from the
cell wall, consistent with previous experimental findings [39–41]. The patch
first appears near the cell boundary where the level of auxin is predicted
to be highest, after which it moves a small distance away from the cell
boundary where it becomes stable. To confirm the importance of the auxin
gradient for the localization of the peak, we simulated the model with con-
stant auxin in the lateral direction (Fig V.2B – D ). The basal bias for the
ROP patch is lost, and depending on the auxin level, a single central peak,
several peaks spread across the cell, or a low activation of ROP through-
out the cell was found. Interestingly, phenotypes as multiple hairs, more
apical root hair positions and loss of root hairs has been found in mutants
suggested to alter intracellular auxin levels and or gradients [39, 52–54].
The model parameters of the simulation with a gradient was set such that
it generates a gradient of about 20%, showing that the gradient does not
need to be steep to generate enough bias to the ROP dynamics. While the
intracellular gradient has yet to be measured in experiments, the gradient is
well within ranges suggested in tissue models of auxin in the root [38, 55].

Our model confirms, in a 2D setting, that a sub-cellular auxin-dependent
activation of ROPs promoted by an intracellular auxin gradient together
with intracellular transport is sufficient to create convergence of active
ROPs, placing the site of root hair formation to the center close to the basal
end of the outer epidermal cell plasma membrane. The active ROP is an
early marker of root hair initiation and we will use this to investigate how
such a patch may influence mechanical properties of the cell wall such that
a root hair can be initiated, and whether this can lead to a star-like pattern
of stresses.
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Figure V.1: Root initiation is dependent on ROP activation and microtubular dy-
namics. A) Model diagram including feedback between cycling of ROPs
and mechanical properties via microtubular dynamics of the root hair
initiation process. Solid lines represent mechanisms explicitly modeled,
dashed lines are implicitly in the models or suggested in the literature.
The red box represents the ROP model tested in 2D and the arrow from
the ROP to mechanics are evaluated by testing different hypotheses. B)
Pattern of cortical microtubules in plant epidermal cell visualized by
RFP-TUB6. In the top part a mainly transverse pattern of microtubules
can be seen, while a star-like radial pattern around the root hair initi-
ation site can be seen at the lower end. C) magnification of the radial
pattern in the lower part of the cell from (B).
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Figure V.2: Auxin gradient and pattern of active ROP in model of auxin-driven
ROP-activation. A) When an auxin gradient is present, active ROPs
can localize centrally at the basal side on the cell, similar that is seen in
experiments. B) A low activation of ROPs is seen for a constant auxin
level of 1.1, with no clear peaks of active ROP forming. C) For a constant
auxin level at 1.2, the active ROP peak localizes to a position close to the
center of the cell. D) For a constant auxin level of 1.3, several ROP peaks
appear throughout the cell.
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v.2.2 Altering mechanical stiffness locally at the root hair initiation site can guide
stresses from circumferential to radial

The mechanical aspects of root hair growth are analyzed by means of a
finite element model of the epidermal wall of a rectangular cell and from
changing material properties in a small region representing an activated
ROP patch.

A simulation of rectangular epidermal wall under turgor pressure re-
sults in the stress pattern in which the first principal stress component is
mostly oriented perpendicularly to the long axis of the cell Fig. V.3A). That
correlates well with the orientation of microtubules observed in close to
rectangular epidermal walls of the Arabidopsis root (Fig. V.1B, [49]). Note
that this result pertains to the cell scale stresses and is independent of the
root tissue curvature where a pressurized cylindrical root shape would also
produce highest stresses in the circumferential direction, e.g. [23]. Hence,
the simulation suggest that cellular stresses can complement tissue scale
stresses to provide a directional cue for microtubules in roots and other
elongated tissues with elongated cells. Note that there are deviations in the
general stress patterns in proximity of basal and apical ends of the outer
wall of the root hair cell (Fig. V.3A). While such a pattern could provide
a mechanical bias for root hair initiation, the effect can be affected by the
specific material model choice.

More intriguingly, in experiments deviation from this pattern in micro-
tubule orientation appears at the site of subsequent root hair outgrowth,
where a star-like pattern around the initiation point can be observed (Fig.
V.1C, [49]). We extended the model to analyze whether mechanical pertur-
bations in a localized patch can reconcile the experimental observations of
microtubule organization with stress patterns surrounding the patch. We
localize the site of the root hair outgrowth to a circular region which can
have different mechanical properties. We assume that the outer edges of
the cell wall are fixed in space and the loading forces arise from turgor
pressure. We have previously shown that assumption of local loosening
the pressurized cell wall(s) lead to circumferential pattern of tissue scale
stresses surrounding the loosened region [18]. A similar principle applies
for the simulation of local loosening of a root epidermal cell wall (Fig. V.3B),
which shows circumferential maximal principal stress around the loosened
region. Such loosening is suggested to be a prerequisite, for example, for
the diffuse growth in plant meristems and it is supposed to be a result of
breaking the bonds that link the cellulose fibers or of processes that affect
the pectin matrix[4, 5].
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Figure V.3: Principal stress directions predicted by finite element models in root
hair cells. White bars show the direction of the maximal principal stress,
the black bars indicate minimal principal stress directions and the color
represents the maximal stress magnitude. A) Pattern of maximal prin-
cipal stress in epidermal wall of pressurized rectangular cell bears re-
semblance of micrutubular pattern of ruffly rectangular root cell except
of the region of subsequent root hair outgrowth. B) In case of softened
material in the center of patch we observe circumferential alignment of
maximal principal stress around this region. C) Increasing the Young
modulus of the material in the same region leads to radial organization
of maximal principal stress around center.

In tip growing cells rapid deposition of new wall material and complex
pectin chemistry may alter mechanical properties at the tip [2, 56, 57]. We
hypothesize, that such rapid deposition of new material and reorganization
of cell wall components, at least temporarily can lead to local stiffening
of the cell wall. Indeed, under the assumption of local stiffening of the
material we obtain a radial pattern of maximal stress in the surrounding
region (Fig. V.3C), which is matching the microtubule pattern seen in vivo
(Fig. V.1C, [49]). This simulation suggests a phase of local stiffening, by ad-
dition of more wall material or by changes to the wall properties preceding
the localized growth phase of the root hair. Interestingly, such suggestion
is in parallel with observations of changes in thickness off the cell wall in
pollen tube tips which show oscillatory behavior and thickening prior to
the growth phase [27].

We explored the idea that the quick addition of material connected to
root hair initiation might, at least transiently, lead to stiffer walls at the
initiation site, and our model predicted radial stresses surrounding such
a region. In such scenario stresses correlate with the star-like microtubule
patterns seen in root hair cells before root hairs grow out.
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v.2.3 Heterogeneous forces can generate radial stress patterns surrounding a root
hair initiation site

Another mechanism that may contribute to tip growth is a differential pres-
sure model [32, 33], possibly driven by strong cytosolic streaming together
with heterogeneous cytoskeletal crowding. While a pressure difference
within a root epidermal cell might be hard to envision a heterogeneous
force distribution at the wall might still be possible, where for example
the cytoskeleton could exert forces on the site of outgrowth leading to in-
creased loading of this region. Application of increased outward forces in
a patch can lead to radial stresses around the outgrowth site in our sim-
ulation (Fig. V.4A). We increase loading forces by increasing pressure in
the small region in the simulations up to 200% of the pressure value in
remaining part of a cell.

Next we test in our model combination of previously analyzed mecha-
nisms of local material or loading force changes during root hair initiation.
Strikingly, the forces locally increased at the site of outgrowth can lead to
radial stress pattern even for the case of elastically softened material in the
outgrowth region (Fig. V.4B, cf. Fig. V.3B). This however depends on the
relation between difference in Young modulus and pressure in both regions
in such a way that there exist a threshold where transition between circum-
ferential and radial stress pattern occurs. This possibility of combing local
material softening with locally increased forces at a tip growth site allows
for a mechanism in which the structure of the cell wall changes, similarly
to the scenario suggested for diffuse wall growth, allowing greater wall ex-
tensibility and, at the same time, local forces exerted by the cytoskeleton
contribute to tip growth.

Finally, if locally increased forces and local material stiffening are com-
bined a slightly stronger (more anisotropic) radial stress pattern results
(Fig. V.4C). This scenario can be of interest since there is the possibility that
cytoskeleton reorganization during tip growth itself leads to local stiffening
of the cell wall material.

In summary, the finite element model predicts that radial stress patterns
are possible surrounding a small region where increased forces are applied.
This can be realized independently of any heterogeneous or anisotropic
material properties in such a region.
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Figure V.4: Principal stress directions predicted by finite element models in root
hair cells. White and black bars show maximal and minimal respectively
principal stress directions in finite element models when loading forces
are locally increased in the region of predicted root hair outgrowth. The
color represents the maximal stress magnitude. A) Principal stress direc-
tions predicted by finite element models in the case of locally increased
pressure in the center when material properties are kept constant. B) The
radial pattern can appear also when the material in the patch is made
elastically softer. C) The mechanisms yielding radial stress alignment
can be combined without destruction of the radial stress pattern. The
image presents combination of elastically stronger center together with
locally increased forces. The radial pattern of maximal principal stress
is still evident.

v.3 discussion

The importance of growth for morphogenesis in plants has lead to a large
interest in how cortical microtubules organize into patterns regulating cel-
lulose deposition and subsequent growth. The classic model is that the
microtubules organize like hoops around a barrel to generate anisotropic
growth [8].

Our study was inspired by the strikingly different pattern of microtubules
seen at the initiation of root hairs, where a radial pattern is found around
the initiation site (Fig. V.1, [49]). Importantly, we acknowledge that the
root initiation process involves a complex combination of molecular and
mechanical patterning (Fig. V.1A). Hence, our first aim was to investigate
a mechanism for marking the site of the root hair outgrowth in a molecu-
lar 2D model based on a previous 1D effort [44]. An early marker for the
site where a root hair is initiated is a peak of active ROP protein [41]. Our
simulations demonstrate that an internal auxin gradient promoting ROP ac-
tivation together with self-activating feedback is sufficient to correctly place
the peak centrally at the basal side of the epidermal wall (Fig. V.2A).
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We then investigated how a localized change to mechanical properties af-
fects stresses surrounding this region, in particular, if a radial star-like pat-
tern of microtubules (Fig. V.1C,[49]) can be predicted by stress patterns.This
appeared plausible since it has previously been reported that microtubular
patterns correlate with maximal stress directions at subcellular and at tissue
scales [18, 19]. For example, the outgrowth of primordia at the shoot apical
meristem leads to a circumferential pattern of microtubules and the intra-
cellular patterns of stresses can be used to predict microtubular patterns in
the complex shapes of leaf epidermal pavement cells. We presented two
different scenarios that could lead to radial pattern of stresses during tip
growth reconciling the alignment of microtubules and stresses in this case
of root hair initiation. Firstly, the quick addition of material could lead
to a stiffening of the wall, and we could show that this can lead to radial
stress patterns (Fig. V.2C). This can be related to observations of alternating
phases of tip growth and wall thickening at the tip [27]. Although this may
occur at a different time scale during root hair initiation, only about 50% of
analyzed cells showed that behavior, which could indicate that it represents
a transient state [49]. A competing idea suggested for tip growth is that the
forces exerted on the wall at the tip are changing [32]. When applied to
a patch in the epidermal wall, this was also able to generate radial pat-
terns of stresses (Fig. V.3). Importantly, the radial pattern can be achieved
independently of changes in cell wall stiffness.

Since our results show that either local alteration of material properties
of the cell wall or the active interaction with cytoskeleton may lead to the
radial pattern of stresses around the place of root hair outgrowth, it would
be interesting to measure wall stiffness at this site for example by using
atomic force microscopy.

While we have stressed the importance of looking at several processes
when analyzing root hair initiation (Fig. V.1A), our computational simula-
tions have been divided into the processes of ROP patch formation (Fig.V.2)
and of ongoing mechanical changes (Figs. V.3-V.4). A main challenge will
be to integrate these into a single model where both ROP activation is nec-
essary for root hair initiation [41], and correct microtubular dynamics are
necessary for correct ROP positioning [49]. Induced chemical or genetic
perturbations followed by live imaging can provide additional dynamical
data to generate improved insight into the process, and computational mod-
eling of the interactions will be essential to understand the consequences
of direct or indirect mechanisms of several combined feedback regulations.



152 Paper V

v.4 methods

v.4.1 Plant growth and imaging

Plant growth medium and conditions were as described [39]. Seeds were
surface sterilized and stratified at 4 C for 3 days before plating on MS
plates (1 MS medium, 1% sucrose, 0.8% plant agar, 1 M morpholinoethane-
sulphonic acid, pH 5.7). Seedlings were grown vertically at 23 C day and
18 C night under 16 h light/8 h dark photoperiod and subjected to anal-
ysis after 5 days. Confocal imaging followed [49]. Cortical microtubules
were imaged in epidermal cells of seedlings expressing pUBQ1:RFP-TUB6

[58]. Z stacks of planes at 0.53 µm distance intersecting the periclinal face
of the cell were acquired and employed to generate maximum intensity
projections.

v.4.2 ROP activation model

We developed a ROP activation model based on a previously published
model [44]. The model describes the ROP dynamics in 2D close to the
epidermal cell membrane of a root trichoblast. The ROP activation is influ-
enced by an auxin (A) gradient produced by a source-sink model in which
auxin is allowed to diffuse and is subject to a constant degradation rate.
Based on the assumption of an basipetal auxin flow in the epidermis (due
to reported fluxes and gradients), auxin is produced in the basal part of the
cell, representing auxin influx, and degraded at the apical side of the cell,
representing auxin outflux. The auxin dynamics are described by

dA
dt

= Da∆A + t + sin − sout − qA , (1)

where sin is the auxin production at the source and sout is the auxin degra-
dation at the sink. Further, q is the auxin degradation rate, Da is the rate of
auxin diffusion and t is a general auxin production. For the simulation with
a non-constant auxin gradient, the parameter t is set to zero (Table V.1). In
the simulations with constant auxin levels, all parameters are zero except
for the general production rate t and the degradation rate q. The ROPs can
be in an ’inactive’ form (Ri) moving in the cytosol, or in an ’activated’ form
(Ra) where it sits in the membrane less prone to move. In addition to a
constant activation of the ROPs with rate k1 and an inactivation with rate
c there is also an auxin-dependent activation with the rate k2 that depends
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also on the active ROP concentration, creating a positive feedback. The full
ROP dynamics are described by

dRa

dt
=

D1∆Ra + a− rRa − pRa + Ri ·
(
k1 + k2R2

a A
)
− cRa if boundary

D1∆Ra + a− rRa + Ri ·
(
k1 + k2R2

a A
)
− cRa otherwise

(2)
dRi
dt

= D2∆Ri + b− eRi − Ri ·
(

k1 + k2R2
a A
)
+ cRa (3)

where D1 and D2 are the diffusion rates of active and inactive ROP re-
spectively. a is the production rate of active ROP, b the production rate
of inactive ROP while r is the degradation rate of active ROP and e is the
degradation rate of inactive ROP. Active ROPs are degraded at the cell
boundary (compartments that has the background as a neighbor) with a
rate p, corresponding to active ROPs diffusing out of the cell. We assume
that ROP is only produced in its inactive form and only degraded in its
active form (Table V.1). Transport between compartments is assumed to
be proportional to the difference in concentrations, with spatial factors be-
ing included in the diffusion constant. The auxin simulation was run first,
and the resulting auxin gradient was used in the ROP simulation. Both
simulations were run until the system was in equilibrium. We discretized
the 2D surface into 286 polygonal compartments, and spatial factors are
added to the transport rates given the different sizes of the compartments
and their neighbor cross sections. All simulations use a 4th order Runge-
Kutta solver and was implemented in an in-house developed open source
software (http://dev.thep.lu.se/organism), available upon request. Files
defining the models, the initial configuration, and the solver parameters
are provided as Supplementary Information.

v.4.3 Mechanical simulations and material model

We used finite element models for all mechanical simulations using quadri-
lateral shell elements in Abaqus (Dassault Systemes, 2012). The finite ele-
ment method is based on linearization of virtual work δW equation

δW =
∫

V
S : δĖdV −

∫
V
f0 · δvdV −

∫
∂V
t0 · δvdA = 0 , (4)

where S is a second Piola-Kirchhoff stress tensor and Ė is time derivative of
its work conjugate Green-Lagrange strain tensor. The two last terms of Eq. 4

contribute to the external virtual work component and f0 and t0 represent
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Table V.1: Model parameters for the ROP activation model.

Symbol Value Description

Da 5.0 length2/s diffusion rate of auxin

t 0.0 conc/s production of auxin throughout the cell

sin 0.25 conc/s auxin source production rate

sout 0.3 conc/s auxin sink degradation rate

q 2.0 · 10−5
1/s degradation rate of auxin

D1 0.01 length2/s diffusion rate of active ROP

a 0 conc/s production rate of active ROP

r 0.01 1/s degradation rate of active ROP

p 0.01 1/s rate of boundary degradation of active ROP

k1 0.01 1/s rate of constant ROP activation

k2 0.015 1/(conc3 s) rate of auxin-dependent ROP-autoactivation

c 0.1 1/s rate of constant ROP inactivation

D2 1.0 length2/s diffusion rate of inactive ROP

b 0.01 conc/s production rate of inactive ROP

e 0 1/s degradation rate of inactive ROP

body force per undeformed unit volume and traction per undeformed unit
area, respectively. For hyperelastic materials second Piola-Kirchhoff stress
tensor can be calculated from strain energy function U as a derivative with
respect to Green-Lagrange strain tensor

S =
∂U
∂E

. (5)

In Saint Venant-Kirchhoff model strain energy function takes form

U =
1
2

λ(trE)2 + µE : E , (6)

where λ and µ are Lamé coefficients related to Young modulus EY and
Poisson ratio ν by formulas

EY =
µ

λ + µ
(2µ + 3λ) (7)

ν =
λ

2(λ + µ)
. (8)
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We applied standard isotropic elastic material in Abaqus with Young
modulus of 100 MPa. In softened regions we used Young modulus of 70

MPa and in stiffened regions 130 MPa. We assumed turgor pressure of 0.2
MPa. In all cases we used Poisson ratio of 0.2.
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