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Introduction 1

Introduction

1 History of Quantitative Finance1

Louis Bachelier is considered to be the founding father of mathematical finance.
His PhD thesis on Brownian motion, modelling stocks (assuming a normal dis-
tribution), and pricing options, Bachelier (1990), are the main building blocks
for modern option pricing theory. However, the world was not ready for his
work, which ended up in the shadows.

More than half a century later, Bachelier’s work on option pricing was re-
discovered and finally brought to light. The major drawback of the Bachelier
model was the normality assumption because it allowed for negative stock val-
ues. Samuelson (1965) tackled the issue and assumed that underlying returns
follow a geometric Brownian motion (log-normal distribution).

The breakthrough then came in Black and Scholes (1973) and Merton (1973).
The hedging arguments and the Black-Scholes equation, a partial differential
equation (PDE) that described the evolution of option prices over time, was
revolutionary. It was founded on the concept that option risk can be fully elim-
inated by continuously maintaining a hedge consisting of the underlying asset
and cash. The Black-Scholes-Merton model laid out a strong foundation for
modern option pricing theory. Coupled with the establishment of the Chicago
Board Options Exchange (CBOE) in 1973, the first marketplace for trading listed
options, the option market expanded globally and everyone traded using the
Black-Scholes equation.

The Black-Scholes-Merton model is based on simplistic assumptions such
as geometric Brownian motion, constant volatility, deterministic interest rates,
and no credit risk. October 19, 1987, is often referred to as Black Monday, the
day on which compelling evidence was seen that the log-normal distribution
with the constant volatility assumption was too crude because it neglected ex-
treme events that cannot be hedged out. For instance, this phenomenon was
illustrated using implied volatility. Prior to Black Monday, the implied volatility
of an option on major indices demonstrated an almost flat surface. However, af-
ter Black Monday, to compensate for the Black-Scholes limitations, the implied
surface became highly skewed, which pushed for more sophisticated models.
Important landmarks are jump extension in Merton (1976), stochastic volatility
in Hull and White (1987) and Heston (1993), and local volatility in Dupire (1994).

Most all of the work to date focused on equity derivatives; however, with its
well-developed theory, modelling interest rate derivatives took off. Major mile-
stones were the one-factor Gaussian mean-reverting models in Vasicek (1977)

1This section provides a brief overview of important landmarks in the history of option pricing. A
more rigorous overview of the option pricing history can for instance be found in Jarrow (2010).
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and Cox, Ingersoll and Ross (1985). The concept is to model the short rate (one
point on the interest rate yield curve) to price derivatives containing interest
rate risk. The drawback of not being able to subsequently match the market
yield curve led to the development of the multifactor Heath, Jarrow and Mor-
ton (1992) (HJM) framework. Instead of only modelling one point on the yield
curve, as is done in a short rate model, HJM enables modelling of the entire yield
curve.2

HJM defines its dynamics in terms of an infinite set of instantaneous for-
ward rates, which is inconsistent with the actual traded instruments, such as
the discrete set of compounded London interbank offered rates (LIBORs). Fur-
thermore, the inconsistency with the market practice of pricing fixed-income
derivatives using the Black (1976) formula for vanilla securities was a major
drawback.3 However, the introduction of the LIBOR market model (LMM) in
Jamshidian (1997), Miltersen, Sandmann and Sondermann (1997), and Brace,
Gatarek and Musiela (1997) solved these issues. The LMM is formulated directly
in terms of market observable LIBORs and their correlations and volatilities.
The LMM’s ability to price vanilla securities (e.g. caps) using Black (1976) as
well as securities that rely strongly on correlations between forward rates (e.g.
Bermudan swaptions4) are reasons for its popularity.

With all of these models in place, a maturity was reached and commodity,
equity, foreign exchange (FX), and interest rate risks could finally be managed.5

Now, the focus could finally be on one last piece: managing default risk. Al-
though credit risk modelling was introduced in Merton (1974), it was too sim-
plistic (it assumed that counterparties only issued one bond). Some remarkable
results are in Jarrow and Turnbull (1992, 1995) and Lando (1998), who solved
this problem by drawing analogues to the well-developed interest rate mod-
elling.

Standardised options had then become so liquid (often even dominating
the underlying asset) that they contained crucial information that could be
used (for model calibration) to price complicated over-the-counter (OTC) exotic
derivatives. As the models and tools developed, so did the derivatives. Exotic
derivatives gained in popularity as investors explored complex payoff oppor-
tunities, such as barriers, Bermudans, cliquets, lookbacks, and variance swaps.
Even trading in simple OTC derivatives, such as credit default obligations (CDS),
collateralise debt obligations (CDOs), and interest rate swaps, exploded. How-
ever, the growth of OTC derivatives had a significant impact on the global fi-

2Spot rate models are a special case of HJM. Hull and White (1990) is an extension that allows a
perfect fit to the initial yield curve by imposing a time-dependent drift.

3The log-normal formulation for interest rates violated the so-called arbitrage-free argument.
4The Bermudan swaption is one of the most traded exotic derivatives and gives the holder the right

(but not the obligation) to enter into an underlying swap on a set of pre-specified dates.
5Commodities and FX derivatives pricing is based on similar concepts as for equity and interest rate

derivatives.
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nancial crisis (2007–2009) and its aftermath. Before the crisis, banks engaged in
careless behaviour by taking on too much risk (e.g. in credit derivatives). There
was also a general view that large companies were “too-big-to-fail” and, thus,
an overall tendency to underestimate counterparty risk occurred. However, the
bankruptcy of AIG and Lehman Brothers in 2008 demonstrated that, instead of
being “too-big-to-fail”, they were “too-big-to-be-allowed-to-fail” (Gregory, 2010,
17).

Subsequently, the market’s concern over counterparty risk regarding OTC
derivatives increased. The Basel committee on banking supervision formulated
regulatory standards for setting up capital requirements to cover for losses in
the case of a counterparty default. For instance, the credit valuation adjust-
ment (CVA) requirement – an adjustment to the derivative price to compen-
sate for a possible counterparty default – was introduced. Next to the CVA are
a number of related valuation adjustments (XVAs), such as debt valuation ad-
justments (DVA), funding valuation adjustments (FVA), and capital valuation
adjustments (KVA). The importance of these XVAs has grown significantly in the
aftermath of the financial crisis and has given rise to new areas within banks,
such as the XVA (trading) desk.6 The XVA desk has the overall responsibility for
pricing and hedging XVAs; for example, in the case of a counterparty default,
the bank should not take a major loss.

2 The Thesis

Today, a bank’s derivatives portfolio is large and complex and requires efficient
calibration and pricing methods. From a trading desk perspective, a simple
workflow given market data from vanilla products consists of calibrating a num-
ber of models, such as the LMM, Hull-White, Heston, or a hybrid model, among
others, such that consistent risk aggregation exists between the different asset
classes. Next, the bank turns to pricing and hedging derivative portfolios, and
having products of different complexity put significant pressure on the imple-
mentations. A trader hedging his portfolio cannot wait hours or even minutes
for his current portfolio risk numbers to be updated. Instead, this update has to
been done in real time or as quickly as possible, such that the market does not
move against him when hedging using old data. The XVA trader faces an even
worse situation because he is overlooking the bank’s entire portfolio of deriva-
tives, which can consist of millions of trades compared with a few thousand or
tens of thousands for the desk level trader.

6Today, major banks have separated the XVA trading desk from the normal trading desks. The XVA
desk is often centralised to overlook a bank’s entire risk and all portfolios in terms of XVAs. The
normal trading desk is divided into subgroups, such as by asset classes, vanilla or exotic products,
regions, and others.



This thesis consists of four essays devoted to the most recent topics within
quantitative finance and focuses on the calibration and pricing of derivatives.

Paper 1 - Calibrating a Market Model with Stochastic Volatility to

Commodity and Interest Rate Risk

In the first essay, we develop a hybrid commodity interest rate market model
with stochastic volatility, together with an efficient calibration routine, to be
able to aggregate risk between asset classes in a consistent manner. This chap-
ter is of particular interest to a desk level trader, such as a commodity derivatives
trader with a portfolio consisting of commodity derivatives that are highly de-
pendent on interest rates (e.g. a Bermudan oil option) and who seeks a model
that incorporates both interest rates and commodity risk, to be able to hedge
out variations in the underlying assets.

Paper 2 - Fast and Accurate Exercise Policies for Bermudan

Swaptions in the LIBOR Market Model

In the second essay, we construct an efficient Monte Carlo scheme to price
Bermudan swaptions in the LMM. This chapter is of particular interest to a desk
level trader, such as an exotic interest rate derivatives trader who needs an effi-
cient and accurate method for pricing and hedging Bermudan swaptions.

Paper 3 - Counterparty Credit Exposures for Interest Rate

Derivatives using the Stochastic Grid Bundling Method

In the third essay, we construct an efficient Monte Carlo scheme to calculate
credit exposures on interest rate derivatives, such as on a portfolio consisting of
Bermudan swaptions. In particular, we study CVA. This chapter is of particular
interest to an XVA trader who needs a fast but also accurate method to be able
to hedge variations in XVA charges.

Paper 4 - Finite Element Based Monte Carlo Simulation of Op-

tion Prices on Lévy Driven Assets

In the fourth and final essay, we demonstrate a new technique for simulating
option prices on a class of popular jump models by combining both Monte
Carlo and numerical PDE methods. This chapter could be of particular inter-
est to an FX trader who needs a method to price FX derivatives (that typically
have a big smile).
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Calibrating a Market Model with

Stochastic Volatility to Commodity

and Interest Rate Risk
with Kay Pilz and Erik Schlögl

Abstract

Using the multi-currency LIBOR Market Model (LMM), this paper constructs a
hybrid commodity interest rate market model with a stochastic local volatility
function that allows the model to simultaneously fit the implied volatility sur-
faces of commodity and interest rate options. Because liquid market prices are
only available for options on commodity futures and not on forwards, a con-
vexity correction formula for the model is derived to account for the difference
between forward and futures prices. A procedure for efficiently calibrating the
model to interest rate and commodity volatility smiles is constructed. Finally,
the model is fitted to an exogenously given correlation structure between for-
ward interest rates and commodity prices (cross-correlation). When calibrat-
ing to options on forwards (rather than futures), the fitting of cross-correlation
preserves the (separate) calibration in the two markets (interest rate and com-
modity options), whereas in the case of futures, a (rapidly converging) iterative
fitting procedure is presented. The cross-correlation fitting is reduced to find-
ing an optimal rotation of volatility vectors, which is shown to be an appropri-
ately modified version of the “orthonormal Procrustes” problem in linear alge-
bra. The calibration approach is demonstrated in an application of market data
for oil futures.

Accepted for publication in Quantitative Finance.
The work of this paper was carried out while Patrik held a visiting scholar position at the Quantita-
tive Finance Research Centre (QFRC) at University of Technology Sydney, Australia. Patrik wishes
thank Hans Byström for connecting him with the QFRC. Patrik would also like to thank Dr. Alan
Brace for interesting discussions on the LIBOR market model and its extensions at the National
Australia Bank (NAB), Sydney, Australia.



8 PAPER 1

1 Introduction

Modelling market risks to price derivative financial instruments has come a long
way since the seminal paper of Black and Scholes (1973). In particular, it is
widely recognised that such models need to be calibrated to all available liquid
market prices, including options of various strikes and maturities, for all rele-
vant sources of risk. For commodity derivatives, the approach presented in this
paper represents a step closer to this ideal.

In addition to commodity prices and their stochastic dynamics, the valua-
tion and risk management of positions in commodity derivatives also depend
on market interest rates and the stochastic dynamics thereof. The market in-
struments to which a model should be calibrated include the swaption “cube”
(swaptions of (1) various maturities, (2) various strikes, on (3) swaps of various
lengths) and commodity options of various maturities and strikes. For com-
modities, futures are more liquid than forwards. Consequently (as well as to
make the model more realistic), the correlation between commodity prices and
interest rates becomes a relevant model input already at the calibration level.

The model presented in this paper, with its associated calibration method, is
fitted to market prices for swaptions in a swaption cube, options on commodity
futures for various maturities and strikes, and – of course – the underlying fu-
tures and interest rate term structures. Furthermore, it is fitted to exogenously
estimated correlations between interest rates and commodity prices. The con-
struction is based on a LMM1 for the interest rate and commodity markets. The
two markets linked in a manner analogous to the construction of the multic-
urrency LMM,2 where the convenience yield takes the role of the interest rate
in the commodity market (thus, convenience yields are assumed to be stochas-
tic). To allow a fit to market-implied volatility smiles (and skews) of commodity
and interest rate options, the model is equipped with a stochastic local volatility
function (SLV), following Joshi and Rebonato (2003), Andersen and Brotherton-
Ratcliffe (2005), and Piterbarg (2005a,b).3

Efficient calibration is achieved in two steps. The first step is to separately
calibrate the model to the interest rate market, building on a synthesis of the
calibration approaches for the LMM in Pedersen (1998) and the SLV-LMM in
Piterbarg (2005a,b). Then, to be able to calibrate efficiently to commodity fu-
tures, we consider two approximations for calculating the difference between
futures and forwards in the proposed model. The separate calibration in the in-
terest rate market in the first step is then followed by an iterative, two-stage cal-
ibration to the commodity market. An orthonormal transformation of the com-
modity volatility vectors is applied in the second stage, rotating the commodity

1See the seminal papers by Miltersen, Sandmann and Sondermann (1997), Brace, Gatarek and
Musiela (1997) and Jamshidian (1997).

2See Schlögl (2002b).
3Grzelak and Oosterlee (2011a) presented an extensions of Schlögl (2002b) with stochastic volatility.
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volatilities relative to the interest rate volatilities in such a manner that achieves
the desired correlations between the two markets. The calibration of this or-
thonormal transformation to the desired cross-correlations is cast in terms of
a modified orthonormal Procrustes problem, permitting an effective solution
algorithm to be applied. We illustrate the use of the model on real market data.

For the example, we chose U.S. Dollars (USD) as the “domestic” currency
and Brent Crude Oil as the commodity (the “foreign currency”). The “exchange
rate” is given by the Brent Crude Oil futures prices denoted in USD. These prices,
when converted to forward prices using an appropriate convexity correction,
can be interpreted as forward exchange rates between the USD economy and
an economy in which value is measured in terms of units of Brent Crude Oil
(where convenience yields are interpreted as the foreign interest rates). In the
example, the model is calibrated to the USD swaptions volatility cube and the
volatility smile of European-style options on Brent Crude Oil futures.

Hybrid modelling combining commodity and interest rate risk was initi-
ated by Schwartz (1982), who modelled interest rate risk via the stochastic dy-
namics of the continuously compounded short rate without reference to a full
model calibrated to an initial term structure. Subsequently, a number of au-
thors proposed models for stochastic convenience yields, some of whom also
incorporated the stochastic dynamics of the term structure of interest rates.4 In
these models, continuously compounded convenience yields (and possibly in-
terest rates) typically are normally distributed because they are assumed to be
driven by a Heath, Jarrow and Morton (1992) term structure model with gener-
alised (possibly multi-factor) Ornstein/Uhlenbeck dynamics. In such a model,
effective calibration to available commodity and interest rate options is difficult
when only at-the-money options are considered and is not possible for the full
range of available strikes. At-the-money calibration is a strength of log-normal
LIBOR Market Models, and Pilz and Schlögl (2013) construct a hybrid model
that exploits this and uses an orthonormal rotation of volatility vectors to fit the
cross-correlations between the commodity and interest rate markets. By lifting
the log-normality assumption, this paper goes beyond their work to allow cali-
bration to the full swaption cube and commodity volatility surface. This paper
also refines the correlation fitting procedure through rotation by casting it as a
modification of the orthonormal Procrustes problem,5 which can be solved by
a fast numerical algorithm.6

From a practical perspective, whether it is worthwhile to move beyond sim-
ple models (e.g. in the present context, pricing commodity derivatives using
an adaption of the Black and Scholes (1973) model in which the underlying

4See, for example, Gibson and Schwartz (1990), Cortazar and Schwartz (1994), Schwartz (1997),
Miltersen and Schwartz (1998), and Miltersen (2003).

5See Golub and Van Loan (1996).
6This algorithm is given as Algorithm 8.1 in Gower and Dijksterhuis (2004).
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commodity follows a geometric Brownian motion and interest rates are deter-
ministic) depends on whether the more sophisticated model produces substan-
tially different derivative prices (and hedges) when compared with a simpler
benchmark. Relative to a model along the lines of Black and Scholes (1973) or
Black (1976), a hybrid model of stochastic commodity prices and interest rates
based on a stochastic local volatility LMM represents extensions in two dimen-
sions: fitting the implied volatility surface observed in the market and integrat-
ing commodity and interest rate risk. Regarding the necessity of the former,
little debate exists among practitioners. The primary purpose of the calibrated
models is to price illiquid derivative products in a manner consistent with ob-
served prices for (typically simpler) products that liquidly trade in the market.
Thus, soon after implied volatility smiles (contradicting the Black/Scholes as-
sumption of geometric Brownian motion) appeared in the market, practitioners
recognised the need for models consistent with this observation.7 For the latter,
the impact of adding stochastic interest rates to a (stochastic volatility) com-
modity model has been studied recently in a series of papers8 by Cheng, Niki-
topoulos, and Schlögl (2016a,b,c,d). Cheng, Nikitopoulos and Schlögl (2016a)
find a noticeable impact of interest rate volatility and correlation between the
interest rate process and the (commodity) futures price process on the prices
of long-dated futures options, with this impact becoming less pronounced for
shorter maturities. Looking at the problem from a more traditional academic
perspective, Cheng, Nikitopoulos and Schlögl (2016b) find that allowing for
stochastic interest rates improves the out-of-sample empirical performance of
their model. The impact on the hedging effectiveness (as opposed to pricing
performance) of incorporating interest rate risk into a commodity derivatives
model is studied in Cheng, Nikitopoulos and Schlögl (2016c) and (2016d). The
first paper considers this question in a simulated model, and the second pa-
per conducts a back-test of hedging performance on empirical data. The latter
study finds that, in times of market turbulence such as, in particular, during
the Global Financial Crisis of 2007–2009, augmenting a commodity delta hedge
with an interest rate hedge consistently improves hedge performance – more
consistently than augmenting the delta hedge by vega or gamma. Thus, a hybrid
model provides benefits for the pricing and risk management of vanilla prod-
ucts, and this effect is more pronounced for more exotic products that explicitly
condition jointly on interest rate and commodity risk.

As previously noted, the model considered in the present paper is assem-
bled from individual components based on the stochastic local volatility for-
mulation of the LMM by Piterbarg (2005a,b). This represents one major strand
of the literature that extends the LMM beyond at-the-money calibration. The

7This is reported, for example, by Derman (2003).
8The stochastic interest rate dynamics used in these papers are simpler than the SLV-LMM dynam-

ics considered here, but nevertheless demonstrate the relevance of incorporating interest rate risk
into a commodity derivatives model.
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other major strand is based on the SABR model of Hagan et al. (2002), which
is laid out in detail in Rebonato, McKay and White (2009). In the present con-
text, the choice of the SLV–LMM over the SABR–LMM as the basis of the hybrid
interest rate/commodity model is driven by three considerations.

1. Specification of the stochastic volatility dynamics along the lines of Piter-
barg (2005a,b) avoids the mathematical problems associated with SABR,9

i.e. the log-normality of the volatility process and the undesirable be-
haviour of the stochastic differential equation (SDE) of the underlying for
certain values of the “constant elasticity of variance” (CEV) parameter β.
The former implies the divergence to infinity of volatility almost surely in
finite time. The latter involves non-uniqueness of the solution to the SDE
(for 0 <β< 1

2 ) and/or the process of the underlying financial variable be-
ing absorbed at zero (for 0 <β< 1).

2. The SLV–LMM is directly amenable to calibration by an appropriately
modified Pedersen (1998) algorithm, in which we directly and exoge-
nously control the correlation structure of the underlying financial vari-
ables (as opposed to the correlation structure of the driving Brownian
motions). In particular, in the absence of liquid market instruments con-
taining useable information on “implied” correlations,10 correlation is
subject to considerable “parameter uncertainty.” Having directly inter-
pretable correlation inputs assists in controlling for this source of “model
risk.”

3. In the present paper, the SLV–LMM for each market (interest rates and
the commodity) is driven by a vector of independent Brownian motions.
Thus, correlations are introduced by the manner in which volatility is
distributed over these Brownian motions (“factors”) by the vector-valued
volatility functions. This permits a two-stage procedure of fitting cross-
correlations between markets after fitting the models for the individual
markets (although some coupling occurs when calibrating to futures) us-
ing orthonormal transformations.

The paper is organised as follows. The basic notation, the results of the
single– and multi-currency LMM and their interpretation in the context of com-
modities are presented in Section 2. In Section 3 the calibration of the com-
modity part of the Commodity LMM to plain vanilla options is discussed. In
Section 4 the relationship between futures and forwards in the model is pre-
sented, which permits calibration of the model to futures as well as forwards.

9See Section 3.10 of Rebonato, McKay and White (2009).
10Although swaption prices depend in theory on correlations between forward rates, in practice this

dependence is too weak for these correlations to be extracted in a meaningful way; see e.g. Choy,
Dun and Schlögl (2004).
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The calibration of the interest rate part of the hybrid Commodity LMM will not
be discussed in detail in this paper, because this problem has already been ad-
dressed by many authors, e.g., Piterbarg (2005a,b), and most methods should
be compatible with our model. However, in Section 5 we discuss how both sep-
arately calibrated parts of the model – the interest rate and the commodity part
– can be merged in order to have one underlying d-dimensional Brownian mo-
tion for the joint model and still match the market prices used for calibration
of the particular parts. Section 6 illustrates the application of the model to real
market data.

2 The Commodity LIBOR Market Model

2.1 The LIBOR Market Model

For the construction of the LMM for the domestic interest rate market we
assume a given probability space (Ω,F ,P), where the underlying filtration
{Ft , t ∈ [0,TN ]} coincides with the P-augmentation of the natural filtration of
a d-dimensional standard Brownian motion W , and EPt [ · ] := EP[ · |Ft ] denote
the conditional expectation on the information at time t . Let TN be a fixed
time horizon, P (t ,T ), T ∈ [t ,TN ] the bond price, i.e. the amount that has to
be invested at time t to receive one unit of the domestic currency at time T ,
hence P (T,T ) = 1 for every T ∈ [0,TN ]. Assuming the discrete-tenor structure,
0 = T0 < T1 < . . . < TN , with intervals τn = Tn+1 −Tn , the forward LIBOR rate
L(t ,Tn) with fixing period Tn as seen at time t is given by

L (t ,Tn) = τ−1
n

(
P (t ,Tn)

P (t ,Tn+1)
−1

)
, q(t ) ≤ n ≤ N −1,

where q (t ) is the index function of the LIBOR rate with the shortest maturity not
fixed at time t , defined as Tq(t )−1 ≤ t < Tq(t ). The price of the discounted bond
maturing at time Tn > t is then given by

P (t ,Tn) = P
(
t ,Tq(t )

) n−1∏
i=q(t )

1

1+τi L (t ,Ti )
.

The dynamics of the forward LIBOR rate L(t ,Tn) as seen at time t ∈ [0,T ],



Calibrating a Market Model 13

under the PTn+1 -forward measure11 is given by

dL(t ,Tn) = σL(t ,Tn)⊤dW Tn+1 (t ), (1)

where σL(t ,Tn) is a d-dimensional process, discussed later in this section. From
Girsanov’s theorem, the dynamics of L(t ,Tn) are

dL(t ,Tn) =σL(t ,Tn)⊤
(
γL (t ,Tn)d t +dW Tn (t )

)
,

where W Tn is a d-dimensional vector–valued Brownian motion12 under the
PTn -forward measure and γL is determined by the volatility of the forward bond
price process, i.e.

d

(
P (t ,Tn)

P (t ,Tn+1)

)
= P (t ,Tn)

P (t ,Tn+1)
γL(t ,Tn)dW Tn+1 (t ) with

γL (t ,Tn) = τnσL(t ,Tn)

1+τnL(t ,Tn)
, (2)

relates dW Tn+1 to dW Tn by,

dW Tn (t ) = dW Tn+1 (t )−γL (t ,Tn)d t . (3)

Further results and the connection of this model to the framework of Heath,
Jarrow and Morton (1992) can be found in the original LMM literature, com-
mencing with Miltersen, Sandmann and Sondermann (1997), Brace, Gatarek
and Musiela (1997), Jamshidian (1997) and Musiela and Rutkowski (1997a).

2.1.1 The Stochastic Local Volatility LMM

For most markets, implied volatilities calculated from traded option prices are
strike dependent, i.e. exhibit a volatility smile and skew (slope of the at-the-
money volatility). To capture the skew, we assume that the time-dependent
volatility functions are of the separable form

σL (t ,Tn) =φL (L (t ,Tn))λL (t ,Tn) , (4)

11This forward measure is the equivalent martingale measure associated with taking the zero
coupon bond P (t ,Tn+1) as the numeraire, and under this measure (the existence of which is as-
sured under the model assumptions below) forward LIBOR L(t ,Tn ) is necessarily a martingale,
i.e. driftless — see e.g. Musiela and Rutkowski (1997b).

12Thus W Tn is a d-dimensional vector, each component W Tn
i , 1 ≤ i ≤ d , is a Brownian motion

under the PTn -forward measure, and the quadratic covariation between the components is zero:

dW Tn
i dW Tn

j = 0 ∀i ̸= j .
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where λL (t ,Tn) is a bounded deterministic d-dimensional function and φL :
R+ → R+ is a time homogenous local volatility function. This is a fairly general
setup, and one model allowing for skewed implied volatility is the displaced–
diffusion model along the lines of Joshi and Rebonato (2003), where, following
the notation of Andersen and Piterbarg (2010) (see their Remark 7.2.13), φL is
given by

φL (L (t ,Tn)) = bL (t ,Tn)L (t ,Tn)+ (1−bL (t ,Tn))L (0,Tn) .

When (1−bL (t ,Tn))/bL (t ,Tn) < (L (0,Tn)τn)−1, the existence of path wise
unique solutions follow (Andersen and Piterbarg, 2010, Lemma 14.2.5).

To capture the volatility smile, we follow Andersen and Brotherton-Ratcliffe
(2005) and scale the Brownian motions with a mean-reverting stochastic volatil-
ity process given by,

d zL (t ) = θ
(
zL,0 − zL (t )

)
d t +η

√
zL (t )d ZL (t ) , (5)

where θ and η are positive constants, zL (0) = zL,0 = 1 and ZL is a Brownian mo-
tion under the spot measure QB .13 The quadratic covariation of ZL and each
component of W is assumed to be zero. Assuming the LIBOR dynamics in
(1) with the separable volatility function in (4) and stochastic volatility (5), the
stochastic local volatility LIBOR market model (SLV–LMM) specifies the dynam-
ics of the forward LIBOR rates for n = 1, . . . , N by

dL (t ,Tn) =
√

zL (t )φL (L (t ,Tn))λ⊤
L (t ,Tn)dW Tn+1 (t ) . (6)

When calibrated to interest rate option market data, the model matches at-
the-money volatilities through λL , the skews (slope of the Black/Scholes im-
plied volatilities) through bL and curvatures of the volatility smiles through the
volatility of variance η. The speed of mean reversion κ determines how fast the
spot volatility converges to the forward volatility, or more specifically, how fast
zL (t ) is pulled back to its long–term mean level zL,0.

The relationship between spot measure QB and forward measures is given
by standard results for the LMM dating back to Jamshidian (1997) and Brace,
Gatarek and Musiela (1997):

dW Tn+1 (t ) =
√

zL (t )µn (t )d t +dW B (t ) , (7)

µn (t ) =
n∑

j=q(t )

τ jφL
(
L

(
t ,T j

))
1+τ j L

(
t ,T j

) λL
(
t ,T j

)
. (8)

Moreover, we assume that the Brownian motion ZL (t ) of the variance pro-

13See for instance Section 4.2.3 of Andersen and Piterbarg (2010).
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cess zL (t ) is independent of the d-dimensional Brownian motion W and that
all forward LIBORs and factors are driven by the same scaling

p
zL (t ).

2.2 The Commodity Market

The approach incorporating a commodity market corresponds largely to the ap-
proach as described for the log-normal case in Section 2.2 of Pilz and Schlögl
(2013), which in turn is based on the multi-currency extension of LIBOR market
models introduced in Schlögl (2002b). Therefore, we focus on the aspects re-
lated to the stochastic local volatility extensions of the model. The setup for the
commodity parallels the one for interest rates in the previous section, and the
corresponding volatility functions are denoted by σF and γF . As explained in
Pilz and Schlögl (2013), the commodity market can be seen as a “foreign interest
market” with the commodity (e.g. crude oil) as currency. “Foreign bond prices”
C (t ,T ) can be interpreted as “convenience yield discount factors” for the com-
modity, defined as the amount of the commodity today which is equivalent to
the discounted (using domestic interest rates) value of receiving one unit of the
commodity (e.g. one barrel of crude oil) at time T , taking into account any stor-
age costs and convenience yields.14 The same logic as for the domestic interest
rate market can be used to derive “forward rates” for the commodity market, but
since such “convenience yield instruments” are not traded for commodities, we
construct the model by specifying domestic interest rate dynamics on the one
hand, and the dynamics of forward commodity prices on the other hand. Then,
as noted in Schlögl (2002b), this implicitly determines the “foreign interest rate
dynamics,” i.e. the convenience yield dynamics in the present interpretation.

As in Schlögl (2002b), the existence of a spot price process S(t ) for the com-
modity is assumed, denoted in the local currency (e.g. USD per barrel crude
oil). Then, its forward value is given by

F (t ,Tn) = C (t ,Tn)S(t )

P (t ,Tn)
, (9)

for all n = 0, . . . , N . We assume the same tenor structure τn = Tn+1 −Tn for in-
terest and commodity markets. If this assumption needs to be lifted in order
to reflect market reality, an interpolation on either of the forwards can be ap-
plied. Since LIBORs have typically 3-month or 6-month tenors, and exchange
traded futures15 often have expiries with 1-month or 3-month time difference,
the interpolation has to be made for forward interest rates in most cases. See for
instance Schlögl (2002a) on forward interest rate interpolation.

The forwards in (9) are necessarily martingales under thePTn -forward mea-

14Thus, the C (t ,T ) represent the effect of the convenience yield net of storage cost.
15The futures versus forward relation will be discussed in Section 4.
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sure, i.e.
dF (t ,Tn) =σ⊤

F (t ,Tn) dW Tn (t ) , (10)

for all n = 0, . . . , N . To account for a stochastic local volatility dynamics for the
commodity prices, the dynamics for the commodity forward prices are set to

dF (t ,Tn) =
√

zF (t )φF (F (t ,Tn))λF (t ,Tn)dW Tn (t ) , (11)

where

d zF (t ) = θF
(
zF0 − zF (t )

)
d t +ηF

√
zF (t )d ZF (t ) , (12)

φF (F (t ,Tn)) = bF (t ,Tn)F (t ,Tn)+ (1−bF (t ,Tn))F (0,Tn) , (13)

and θF , ηF positive constants, zF (0) = zF0 = 1 and bF (t ,T ) a deterministic func-
tion mapping fromR+ →R+. The Brownian motions W Tn+1 , for n = 0, . . . , N−1,
are the same as in (1), ZF (t ) is a Brownian motions under the spot measureQB ,
and there is no correlation between the underlying drivers and volatility drivers
in the sense that for all n = 0, . . . , N −1

dW Tn+1
i d ZL(t ) = dW Tn+1

i d ZF (t ) = d ZF (t )d ZL(t ) = 0 ∀1 ≤ i ≤ d .

Note that the structure of the dynamics for the commodity forwards F (t ,Tn) is
the same as for the interest forward rates L(t ,Tn), except that they are martin-
gales under different forward measures.

As demonstrated in Schlögl (2002b), this fully specifies the hybrid model:
Denote by γF (t ,Tn) the volatility of the quotient C (t ,Tn)/C (t ,Tn+1) of conve-
nience yield discount factors, then γF (t ,Tn) is determined by the no-arbitrage
relation of the multi-currency LMM,16

σF (t ,Tn) = γF (t ,Tn)−γL(t ,Tn)+σF (t ,Tn+1). (14)

where γL(t ,Tn) is defined by (2) and σF (t ,Tn) (and analogously σF (t ,Tn+1)) by
(10) above.

In addition to the no-arbitrage condition (14), cross-correlations specify
linkages between the interest rates and commodity forwards markets. Their
form and calibration will be discussed in detail in Section 5.

3 Calibration with Time Dependent Parameters

This section discusses aspects of the calibration of the hybrid model, which
consists in our approach of two parts. The first part calibrates the (LIBOR) in-

16See Equation (11) in Schlögl (2002b).
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terest rate forward market and the commodity market separately to their mar-
ket instruments. The second part merges the two separate calibrations with
due regard to cross-correlations and the no-arbitrage condition. Readers who
have their own preferred individual calibration routines for the stochastic lo-
cal volatility LMM of Section 2.1.1, as well as for the stochastic local volatility
commodity model of Section 2.2, may skip this and the following section and
continue directly with Section 5. As mentioned in the introduction, we focus on
the calibration of the commodity leg, since a calibration of the LIBOR market
model in the context of stochastic local volatility has already been addressed
by many other authors, for instance Joshi and Rebonato (2003) and Piterbarg
(2005a).

Since the Commodity LMM is based on commodity forwards, we have to
calibrate to forward implied volatilities or plain vanilla option prices written on
forwards. However, commodities futures rather than forwards are most liquidly
traded (consider, for example, the Brent Crude Oil futures in the market data
example in Section 6) and thus forward prices have to be deduced from futures
prices. As we are working in a hybrid model that is integrating commodity and
interest rate risk, it is not adequate to equate forward prices with futures prices,
as is still common among practitioners. Section 4 describes how to take into
account the distinction between futures and forwards when applying the cali-
bration methods proposed in the present section.

The calibration of the model to commodity forward instruments follows the
ideas of Piterbarg (2005a,b) and is split into two parts. First, a pre-calibration
is performed to determine a globally constant speed of mean reversion θF and
volatility of variance ηF such that the volatility smile given from market option
quotes is matched as closely as possible. Second, the volatility term structure
λF and the volatility skew structure bF are fitted to option prices.

3.1 Step 1 – Calibrating the level of mean reversion and volatil-

ity of variance

To obtain an efficient calibration algorithm we follow Piterbarg (2005a) and
project the full dynamics of the commodity forwards F ( · ,Tn) in Equation (11)
with time-dependent parameters onto a model with constant parameters using
the parameter averaging technique. Formally, the SDE with time-dependent
parameters is replaced by an SDE with constant parameters for each maturity,
where both have the same marginal distribution. These parameters are called
effective parameters, and let λF,n denote the effective volatility and bF,n denote
the effective skew, for all maturity times Tn . The dynamics of F (t ,Tn) is then
given by

dF (t ,Tn) =
√

zF (t )
(
bF,nF (t ,Tn)+ (1−bF,n)F (0,Tn))

)
λF,n dW Tn (t ). (15)
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We assume to have forward processes F ( · ,T1), . . . ,F ( · ,TN ) with expiries
T1, . . . ,TN and we further think of T0 as “now.” Times-to-maturity for an arbi-
trary calendar time t ≥ 0 are given by xn = Tn − t for n = 0,1, . . . , N . For the
commodity calibration, market prices for call options17 on F ( · ,Tn), with pay-
off (F (Tn ,Tn)−Ki )+, and for several strikes Ki , i = 1, . . . ,kn , are assumed to be
available and are denoted by C mkt

n,i .

Vanilla options on (15) can be calculated efficiently by the Fourier method.18

We denote the resulting model call prices by C mod
n,i .

The calibration problem of the first step is then to find parameters θF , ηF

and b̄F,n , λ̄F,n for n = 1, . . . , N , such that∑
n = 1, . . . , N ,

i = 1, . . . ,kn

(
C mod

n,i −C mkt
n,i

)2 −→ min.

For the global parameters θF for mean reversion level of the variance process,
and ηF for volatility of variance, this optimisation yields their final values in the
calibration. The term structure and skew parameters, b̄F,n and λ̄F,n respectively,
will be adapted in the next step to fit the market as closely as possible.

3.2 Step 2 – Calibrating the Volatility Term- and Skew-Structure

The calibration of the volatility term structure follows the approach given in Pilz
and Schlögl (2013), but we include the calibration of the skew structure into this
procedure.

The term structure of volatility levels is assumed to be piecewise constant
for a specified grid of calendar times ti = (0, t1, . . . , tnc ) and times to matu-
rity x j = (x0, x1, . . . , xn f ), which defines a (nc × n f ) matrix of volatilities V =
(vi , j )1≤i≤nc ,1≤ j≤n f . The relation of the d-dimensional model volatility vectors
λ(t ,Tn) (for all n) and matrix V is given by

∥λ(t ,Tn) ∥ = ∑
0 ≤ i ≤ nc −1

0 ≤ j ≤ n f −1

1{ti≤t<ti+1, x j ≤Tn−t<x j+1} vi , j . (16)

The number of forward times n f in the volatility matrix do not need to co-
incide with the number of traded forwards N , and especially in regions of large

17For notational simplicity, we assume that the option expires at the same time the futures does.
In most cases the option expires a few days before the futures expiry. In some cases, like for EUA
carbon emission futures, the option can even expire several months before the underlying futures.

18For details, see e.g. Andersen and Piterbarg (2010) (Chapter 9).
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forward times a rougher spacing can be chosen for x j , since volatilities tend to
flatten out with increasing forward time. To be able to price options on all of the
forwards, the maturity of the longest available forward has to be smaller or equal
to the latest calendar time and the longest time to maturity, TN ≤ min{tnc , xn f }.

We refer to Pilz and Schlögl (2013) for a more detailed discussion on the
setup with piecewise constant volatilities, and how to compute total variances
efficiently for given calendar and forward times.

In the next section we will use the correlations to obtain a map from the
volatility levels ∥λF (t ,Tn)∥ to the components of the volatility vectors λF (t ,Tn)
that are multiplied by the d-dimensional Brownian motion in (11).

In a manner analogous to the volatility levels, we define a
(
nc ×n f

)
-

dimensional matrix B = (bi , j )1≤i≤nc ,1≤ j≤n f for the matrix of piecewise constant
skews. To keep notation simple, we use the same grid as for the volatility term
structure. The entry bi , j represents the skew corresponding to forward F (t ,Tn)
with ti−1 ≤ t < ti and x j−1 ≤ Tn − t < x j .

The optimisation of Step 2 is defined with respect to a set of calibration cri-
teria. The first calibration criterion measures the quality of fit and is as in Step 1
defined by the sum of squared differences between market and model prices,

q = ∑
n = 1, . . . , N ,

i = 1, . . . ,kn

(
C mod

n,i −C mkt
n,i

)2. (17)

Since the number of parameters is potentially quite large (and larger than
the number of market prices in (17)), we follow Pedersen (1998) and specify for
the volatility two smoothness criteria sλ given by,

sλ = ηλ,1

n f∑
j=1

nc−1∑
i=1

(vi+1, j − vi , j )2 +ηλ,2

nc∑
i=1

n f −1∑
j=1

(vi , j+1 − vi , j )2. (18)

The first term measures departures from time–homogeneity; it demands that
volatilities with different calendar times but the same time to maturity do not
deviate from each other too much. The second term, the forward time smooth-
ness, forces the volatility term structure to be smooth in time to maturity for
each fixed calendar time. The larger the weight ηλ,1, the more volatility and
skew become (calendar) time homogeneous. The larger the weights ηλ,2, the
flatter the volatility and skew becomes in forward time direction.

We specify an analogous smoothness function for the skew term structure
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sb with corresponding weights ηb,1 and ηb,2

sb = ηb,1

n f∑
j=1

nc−1∑
i=1

(bi+1, j −bi , j )2 +ηb,2

nc∑
i=1

n f −1∑
j=1

(bi , j+1 −bi , j )2. (19)

The smile contribution to the implied volatility coming from the parameters
fixed in the first calibration step of Section 3.1 is unaffected by the smoothness
criteria here.

Remark 1 Although the number of parameters is potentially quite large, the op-

timisation, for instance using a Levenberg–Marquardt approach for minimis-

ing the objective value q + sλ + sb , usually gives stable calibration results, since

the smoothness criteria force the parameters to a non-parametric but structured

form.

Remark 2 The reason why we have not used the effective parameters b̄F,n and

λ̄F,n from the global calibration of 3.1 as target values in our second calibration

3.2, as for example proposed in Piterbarg (2005a), is that we here assumed the

more complex case of calibrating to options on futures. This requires to compute

the convexity correction in each optimisation step, which changes the relation be-

tween options prices and the effective volatility and skew parameters. Therefore,

the advantage of using pre-computed effective parameters for calibration is not

applicable in our general case.

Remark 3 As pointed out by Andersen and Piterbarg (2010), the degree of free-

dom is potentially quite large here, and obtaining the volatility and skew term-

structure simultaneously is computationally inefficient. One could assume the

skew bF and volatility λF to be two almost orthogonal problems (changing the

volatility has an minor impact on the skew and vice versa) and solve for them

separately. Step 2 can therefore be divided into two parts. First, solve for the skew

term structure by fixing the volatility parameters, e.g., to the ones obtained in the

first step, λ̄F,n , together with η and θ. And since the time-dependent skew can

be solved for explicitly as in Piterbarg (2005a), one can target the implied skews

from Step 1 instead of option prices and reduce the computational time signif-

icantly by avoiding Fourier pricing within each iteration. Then, given the skew

term-structure and the parameters η and θ, the volatility term structure is cali-

brated. However, as mentioned in Remark 2, due to the futures-forward convexity

correction we cannot target the implied volatilities directly here.
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3.3 Volatility Factor Decomposition

The method for constructing a map from V = ∥λF (t ,Tn)∥ in Equation (16)
to λF (t ,Tn) via volatility factor decomposition or PCA described in Pilz and
Schlögl (2013) remains applicable in the present setting, and we provide a brief
summary for the reader’s convenience. Due to the dependence of the convexity
correction for futures contracts on interest rate dynamics (see Sections 4 and
5, below), the volatility factor decomposition has to be included in the calibra-
tion process when calibrating to futures and options on futures. As in Pedersen
(1998), there is a separate factor decomposition for every calendar time step to
be covered by the calibrated volatility function, thus in the following we fix this
to an arbitrary ti . Let vi denote the i th row (corresponding to calendar time ti )
of V , written as column vector. The matrix C of commodity forward correlations
is exogenously given and assumed to be constant over calendar time. For each
ti , the covariance matrix then is calculated by

Σ= (vi v⊤
i )⊙C , (20)

where ⊙ means component–wise multiplication (Hadamard product). Decom-
posing

Σ= RD1/2(RD1/2)⊤

results in orthonormal eigenvectors ofΣ in the columns of R = (r j ,k )1≤ j ,k≤n f
and

the corresponding eigenvalues on the diagonal of the matrix D = (ξ j ,k )1≤ j ,k≤n f
.

Choosing the largest d eigenvalues, R and D can be reduced to matrices R ∈
Rn f ×d and D ∈ Rd×d by retaining only the corresponding d columns in R and
d ×d sub-matrix in D . For the factor–reduced volatilities we then have

v2
i , j =

d∑
k=1

r 2
j ,kξk ( j = 1, . . . ,n f ). (21)

and the stepwise constant volatility function for the forwards is λi j k = r j ,k
√
ξk .

Remark 4 Under the convexity adjustments suggested in Section 4, the forward

returns correlation matrix C in (20) is also the correlation matrix of futures re-

turns.

4 Futures/Forward Relation and Convexity Correc-

tion

The calibration method in Section 3 is applicable only when forwards and op-
tions on forwards are available. This section presents a model–consistent ap-
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proximate conversion of futures prices to forward prices for all relevant data for
calibration, in order to apply the methods of the previous section.

We introduce the notation G(t ,T ) for a futures price at time t with maturity
T , and, as before, F (t ,T ) will be the corresponding forward price. From no-
arbitrage theory we know F (T,T ) = G(T,T ) and that prices of plain vanilla op-
tions on forwards and futures must coincide, whenever the maturities of option,
forward and futures are the same. This allows us to use the call prices of options
on futures for calibration of forwards, and we only have to assure that the (vir-
tual) forwards have the same maturities as the futures. Due to equation (10) the
forward F ( · ,Tn) is an exponential martingale under the Tn-forward measure.

Denoting by EB the expectation under the spot risk–neutral measure QB ,
futures follow the general relation

G (t ,T ) = EB
t [S (T )] , (22)

see Cox, Ingersoll and Ross (1981), where S(t ) is the spot price, which satisfies
by no-arbitrage constraints S(t ) = F (t , t ) = G(t , t ) for all t . Integrating (11) and
using (7)-(8) gives,

F (Tn ,Tn) = F (t ,Tn)+
∫ Tn

t

√
zF (s)φF (F (s,Tn))λ⊤

F (s,Tn)dW Tn (s)

= F (t ,Tn)+
∫ Tn

t

√
zF (s)

√
zL(s)φF (F (s,Tn))λ⊤

F (s,Tn)µn−1(s)d s

+
∫ Tn

t

√
zF (s)φF (F (s,Tn))λ⊤

F (s,Tn)dW B(s).

Putting these relations together and taking the QB -expectation for the futures,
as in (22), results in

G(t ,Tn) = EB
t [F (Tn ,Tn)]

= F (t ,Tn)+EB
t

[∫ Tn

t

√
zF (s)

√
zL(s)φF (F (s,Tn))λ⊤

F (s,Tn)µn−1(s)d s
]

+EB
t

[∫ Tn

t

√
zF (s)φF (F (s,Tn))λ⊤

F (s,Tn)dW B(s)
]

= F (t ,Tn)+EB
t

[∫ Tn

t

√
zF (s)

√
zL(s)φF (F (s,Tn))λ⊤

F (s,Tn)µn−1(s)d s
]

(23)

= F (t ,Tn)+D (t ,Tn) , (24)

the third equality follows since the last expectation is that of an Itô integral, fur-
ther letting D(t ,Tn) denote the convexity correction.
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From here we consider two alternative ways to proceed.

4.1 Approximation 1 - Freeze all risk factors

The first crude approximation would be to freeze all random variables by set-
ting Li = L(0,Ti ), F j = F (0,T j ) and z̄L = zL(t ) = 1, z̄F = zF (t ) = 1 such that the
convexity correction D(t ,Tn) can be approximated by,

D(t ,Tn) ≈
∫ Tn

t
φF (F n)

n−1∑
j=q(s)

τ jφL(L j )

1+τ j L j
λ⊤

F (s,Tn)λL(s,T j )d s. (25)

Pilz and Schlögl (2013) demonstrate how the integrals in Equation (25) can be
computed when the volatility functions are piecewise constant. Since F n is
unknown, it is necessary to solve equation (24) for F (t ,Tn) using the approxi-
mation (25) above. This is straightforward for displaced diffusions with φF (F n)
piecewise constant subject to the integration variable s.

4.2 Approximation 2 - Freeze LIBORs and Commodity forwards

For the second approximation we choose to freeze the LIBORs and commodity
forwards but keep the volatility stochastic. Set Li = L(0,Ti ) and F j = F (0,T j )
and use conditioning for the stochastic volatility processes. If the expectation
and the integration can be interchanged it follows from the independence of
the stochastic volatility processes that the convexity correction D(t ,Tn) can be
approximated by,

D(t ,Tn) ≈
∫ Tn

t
φF (F n)

n−1∑
j=q(s)

τ jφL(L j )

1+τ j L j
λ⊤

F (s,Tn)λL(s,T j )EB
t

[√
zF (s)

]
EB

t

[√
zL(s)

]
d s. (26)

Grzelak and Oosterlee (2011b) show that the first moments of the squared
volatility process can be represented as

EB
t

[√
z (T )

]
=

√
2e−θ(T−t )

n (t ,T )
e−

n(t ,T )
2

∞∑
j=0

(n (t ,T )/2) j

j !

Γ
(
d/2+ j +1/2

)
Γ

(
d/2+ j

) , (27)

where Γ(x) is the Gamma function, and the parameters n and d are given by

n(t ,T ) = 4θe−θ(T−t )

η2(1−e−θ(T−t ))
, d = 4θz0

η2 . (28)

We illustrate the accuracy of the two approximations in Figure 1. Clearly
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Figure 1: Left: Futures prices from Monte Carlo simulation, Approximation
1 and Approximation 2. Right: Relative error in basis points (bps). With
λL = 0.20, λF = 0.30, bL = 0.9, bF = 0.8, θL = θF = 1, ηL = 0.5, ηF = 0.4,
Corr

(
dL

(
t ,T j

)
,dL (t ,Tk )

)= Corr
(
dF

(
t ,T j

)
,dF (t ,Tk )

)= 0.9.

the stochastic volatility factors have too much impact on the futures–forward
convexity to be neglected. As demonstrated, Approximation 2 performs excep-
tionally well and produces an error less than 2 basis points, which is more than
acceptable within a calibration routine.

5 Merging Interest Rate and Commodity Calibra-

tions

The calibrations for the interest rate market and the commodity market have
so far been considered separately, with exception of the convexity correction
in Section 4. This section focuses on linking the calibrations of the two asset
classes in order to get a joint commodity and LMM calibration. The relation
between these two asset classes is determined by their cross-correlation matrix,
which is assumed to be constant over time. Before addressing the problem of
merging the calibrations in Section 5.2, we briefly discuss how to generate the
cross-correlation matrix from historical data in Section 5.1.

5.1 The Exogenous Cross-Correlations

The cross–correlations between commodity forwards and interest rate for-
wards are much less pronounced than the correlations between the futures
and forwards, respectively, within the asset classes. This makes the estimation
for cross-correlations from historical data less stable than for the correlations
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within the asset classes. For example, the structure of the cross-correlation ma-
trix between Brent Crude Oil futures and USD interest rate forwards in Figure 8
of Section 6 can hardly be explained by obvious rationales. Therefore, one might
decide to specify exogenously a very simple cross-correlation structure in prac-
tice. The simplest case would be to assign a single value to all cross-correlation
in the matrix Rexogen

LF . If this seems too crude, a linear relationship can be fitted
by regressing the empirical cross-correlations for the forward interest rates and
commodity futures on a 2-dimensional plane.

5.2 The Cross-Calibration

The quadratic (cross-)covariation process for commodity forwards with matu-
rity Tm and forward interest rates with settlement Tn is given by the dynamics

dL(t ,Tn)dF (t ,Tm) =
(√

zL(t )φL(L(t ,Tn))λL(t ,Tn)
)⊤(√

zF (t )φF (F (t ,Tm))λF (t ,Tm)
)
d t ,

where we have used the fact that

dW Tn+1 (t ) = dW Tm (t )+
√

zL(t )
(
µn(t )−µm−1(t )

)
d t ,

and d t dW Tm = 0. Similar to the pure interest forward rate correlations, the
cross-correlations of the increments are given by

Corr
(
dL(t ,Tn),dF (t ,Tm)

)= λL(t ,Tn)λ⊤
F (t ,Tm)

∥λL(t ,Tn) ∥∥λF (t ,Tm) ∥ , (29)

since only the factorised λF and λL are (column-)vectors, and all other values in
the equation above are scalars. Abbreviate

ΛL = (λ⊤
L (t ,Tn))1≤n≤N = (λL;n,k (t ))1≤n≤N ,1≤k≤d , (30)

ΛF = (λ⊤
F (t ,Tm))1≤m≤M = (λF ;m,k (t ))1≤m≤M ,1≤k≤d , (31)

ULF = (∥λL(t ,Tn) ∥∥λF (t ,Tm) ∥)1≤n≤N ,1≤m≤M , (32)

where m and n are indices for different expiries and forward (settlement) times,
respectively, and k is the index relating to the stochastic factor. We skip the
calendar time dependence, since it could be considered as fixed throughout the
rest of this subsection. Then, the model cross-correlation in (29) can be written
as

Rmodel
LF = (ΛLΛ

⊤
F )⊘ULF , (33)
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where ⊘ denotes the element-wise division. Merging the individual interest rate
and commodity calibrations in order to get a joint calibration means to modify
the calibrated matrices ΛL and ΛF such that equation (33) is matched (maybe
only as closely as possible) for an exogenously given correlation matrix Rexogen

LF ,

Rexogen
LF ≈ (ΛLΛ

⊤
F )⊘ULF = Rmodel

LF .

Note that the skew parameter, being part of φL(·) and φC (·), as well as the smile
parameter, being part of the specification of the square root processes zF (t ) and
zL(t ), need not to be modified, as they do not determine the cross-correlations,
as equation (29) demonstrates.

Clearly, there are many possible approaches to improve the relation
Rexogen

LF ≈ Rmodel
LF . The approach we propose in this section will be guided by

the following. Firstly, the quality of the individual calibrations to market instru-
ments relating to one asset class only – interest rates or commodities – is more
important that the cross-correlation fit. This is because these market instru-
ments are much more liquidly traded, and therefore provide reliable informa-
tion. Secondly, the adjustment step needs to be carried out in an efficient way,
having a common fit criterion for the approximation.

An approach that combines these considerations is to find a rotation matrix
Q, that is applied to one of the calibrated matrices, say ΛF , with the objective
(following Rebonato and Jäckel (2000) in our choice of metric) to minimise the
Frobenius distance between the model and the exogenous covariance matrices.
Formally, a matrix Q is sought, such that

∥ Rexogen
LF ⊙ULF −ΛL(ΛF Q)⊤ ∥F−→ min, subject to QQ⊤ = Id , (34)

with Id the (d × d) identity matrix and ∥ . ∥F the Frobenius norm. From the
theory of normal distributions it follows that an orthonormal rotation changes
the cross-covariances, but not the covariance matrices ΣL = ΛLΛ

⊤
L and ΣF =

ΛFΛ
⊤
F , hence, the individual calibrations remain unaffected.

For the problem of (34) it is quite reasonable to assume d ≤ N , i.e., the num-
ber of stochastic factors has to be equal or less than the number of forward in-
terest rates.19

The problem of finding the Q satisfying (34) is similar to the so-called “or-
thonormal Procrustes” problem: For given matrices A,B ∈ Rm×p , find an or-
thonormal matrix Q ∈Rp×p that minimises the distance between A and B ,

∥ A−BQ ∥F −→ min, such that QQ⊤ = Id , (35)

19Note that the roles of ΛL and ΛF can be interchanged, and the sufficient assumption actually is
d ≤ max{M , N }. Furnishing the model with more stochastic factors than max{M , N } contributes
only spurious complexity to the model. From a practical point of view, the aim is to keep the
number of stochastic factors small.
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In Golub and Van Loan (1996, Section 12.4.1) it is shown that the solution is
given by Q =UV ⊤, where U and V result from the singular value decomposition
(SVD) of B⊤A, i.e. B⊤A =U DV ⊤.

Unfortunately, (34) is more complicated than the Procrustes problem in
(35), because in our case Q comes under a transposition. As stated in Gower
and Dijksterhuis (2004), Section 8.3.3, “there seems to be no algebraic solution
to the problem” (34), to which they refer as a “scaled orthonormal Procrustes”
problem. However, the authors discuss a numerical solution, based on an al-
gorithm of Koschat and Swayne (1991), that works well in our case, as we will
demonstrate in Section 6 below.

Algorithm 1 Orthogonal scaled procrustes

1: procedure OSPROCRUSTES(Q0, X1,S, X2,TOL,MAXITER)
2: r ←∥ X1 ∥F

3: iter ← 0
4: δ← 2 ·TOL
5: Q ←Q0

6: while δ> TOL and iter < MAXITER do
7: Z ← S(X ⊤

2 X1 +S⊤Q⊤(r I −X ⊤
1 X1))

8: Compute singular value decomposition Z =U DV ⊤
9: Qnew ←V U⊤

10: δ←| ∥ X1QS −X2 ∥F − ∥ X1QnewS −X2 ∥F |
11: iter ← iter+1
12: Q ←Qnew

13: end while
14: return Q
15: end procedure

Proposition 1 The problem (34) is equivalent to the problem of finding a T sat-

isfying

∥ DLT D⊤
F −U⊤

L ΣLF UF ∥F −→ min, such that T T ⊤ = Id , (36)

where the matrices used are from the singular value decompositions20

ΛL =ULDLV ⊤
L UL ∈RN×N ,DL ∈RN×d ,VL ∈Rd×d

ΛF =UF DF V ⊤
F UF ∈RM×M ,DF ∈RM×d ,VF ∈Rd×d ,

and

ΣLF := Rexogen
LF ⊙ULF .

20Note that rank(ΛL ) = d ≤ N and rank(ΛF ) = d ≤ M
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The orthonormal solution Q of (34) is given by

Q = (VLT V ⊤
F )⊤ (37)

Proof. Substituting the SVD yields

∥ΛL(ΛF Q)⊤−ΣLF ∥F =∥ULDLV ⊤
L Q⊤VF D⊤

F U⊤
F −ΣLF ∥F

=∥ULDLT D⊤
F U⊤

F −ΣLF ∥F T :=V ⊤
L Q⊤VF

=∥ DLT D⊤
F U⊤

F −U⊤
L ΣLF ∥F UL is orthonormal

=∥ DLT D⊤
F −U⊤

L ΣLF UF ∥F UF is orthonormal

The solution for T in (36) can be numerically approximated by Algorithm 8.1
in Gower and Dijksterhuis (2004). See also Kercheval (2006) for a nice descrip-
tion of the algorithm with an application in the context of portfolio risk man-
agement. For completeness we reproduce the algorithm here (see Algorithm
1).

The objective is to find a Q that minimises

∥ X1QS −X2 ∥F , subject to QQ⊤ = I ,

where S has entries on its diagonal only.
The stopping of the numerical procedure is controlled by the maximal num-

ber of iterations (MAXITER) and the tolerance in change of the Frobenius norm
(TOL) in the objective above.

As initial guess the trivial transformation Q0 = I can be used.

5.3 Cross-Calibration Computational Complexity

We conclude the section with a note on the computational effort required by
the proposed algorithm. From a theoretical point of view, one would expect the
Procrustes method to be faster than the Levenberg–Marquardt optimisation as
used in Pilz and Schlögl (2013), because the number of parameters to be opti-
mised is given by nopt = d(d −1)/2, which means the dimension of the optimi-
sation problem grows quadratically in the number of stochastic factors d .

The Levenberg-Marquardt optimisation requires at least O(n3) or O(mn2)
operations in each iteration step (see Nocedal and Wright (2006), Section 10.3),
where n is the number of optimisation parameters, and m is the number of
residuals in the objective function. In our case we get O(n3

opt) = O(d 6) opera-
tions per iteration for the unconstrained optimisation problem. The constraint
QQ⊤ = I is non-linear, hence cannot be represented by simple bounds for the
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parameters, though it is possible to re-parametrise the problem expressing the
orthonormal transformation Q by nopt successive rotations, where the angles
are the new parameters in an unconstrained Levenberg–Marquardt optimisa-
tion, see Anderson, et al. (2005) for a detailed description.

In contrast, the Procrustes problem requires only O(d 3) operations per iter-
ation for the matrix multiplications and the singular value decomposition.

We applied the Procrustes method to several randomly chosen 100 × 100
cross-correlation matrices, and it converged in all cases within a tolerance of
less than 10−5 after 200 seconds and about 120,000 iterations. Our results are
in line with the numerical experiments in Kercheval (2006), in which the Pro-
crustes problem turned out to be much faster than the least-squares optimi-
sation using Levenberg–Marquardt. That paper reports that the latter method
failed to optimise a 65×65 transformation even “after several hours,” whereas
the Procrustes method found an approximate solution in “about 5 minutes.”

The transformation problems we encounter in the model calibration might
be of much smaller size than dimension 100, typically somewhere between 4−
20. However, in the case of calibrating the model to commodity futures, the
computation of the optimal transformation matrix has to be iterated, which led
us to prefer the much more efficient Procrustes algorithm over the “brute force”
Levenberg–Marquardt optimisation used in Pilz and Schlögl (2013).

6 Applying the calibration to market data

6.1 Summary of the Calibration Procedure

The following scheme summarises the steps of the calibration procedure, bring-
ing together the steps discussed in the previous sections and assuming the cal-
ibration of the (domestic) interest rate LMM has already been carried out.21

I. Preliminary calculations applied to the LMM calibration.

1. For each calendar time ti (1 ≤ i ≤ nL):

(a) Compute the covariance matrix ΣL
i as in (20).

(b) Decompose ΣL
i into λL

i using PCA as described in Section
3.

II. Hybrid Calibration.

21Note that we must iterate over repeated calibration to the commodity market and to the
cross–correlations, as the conversion of commodity futures into forwards depends on cross–
correlations.



30 PAPER 1

1. Calibrate on all commodity data to obtain the global θF , and
ηF .

2. Calibrate on all data to obtain the skew term-structure BF , see
Remark 3.

3. For each calendar time ti (1 ≤ i ≤ nF ):

(a) Compute the covariance matrix ΣF
i as in (20).

(b) Decompose ΣF
i into U F

i using PCA as described in Section
3.

(c) Compute the rotation matrix Q using Algorithm 1

4. Compute forward prices from futures prices using (26).

5. Compute model options prices on forwards.

6. Continue with Step 3 until a sufficiently close fit to com-
modity market instruments and assumed cross–correlations
is reached.

The dynamics of the thus calibrated hybrid Commodity LMM with SLV can
then be written as follows. Let W be a d-dimensional Brownian motion and de-
note by λL

i , j and λF
i , j the d-dimensional vectors in ΛL and ΛF of volatilities for

calendar times t ∈ [ti−1, ti ) and times to maturity x ∈ [x j−1, x j ). Then, the dy-
namics of the forward interest rates L(t ,T ) and the dynamics of the commodity
forwards F (t ,T ) are

dL(t ,Tk ) =
√

zL (t )φL (L (t ,T ))λL
i , j dW Tk+1 (t ),

dF (t ,Tk ) =
√

zF (t )φF (F (t ,T ))λF
i , j dW Tk (t ),

for all maturity times satisfying Tk = ti + x j (for some 1 ≤ i ≤ nc and 1 ≤ j ≤ m f

or 1 ≤ j ≤ n f , respectively) and all calendar times ti−1 ≤ t < ti .

6.2 Calibration Setup

The Brent Crude Oil is selected as commodity, and the USD forward rate as in-
terest rate.

The calibration date is January 13th, 2015. Figure 2 illustrates the historical
Brent crude oil futures and implied volatilities for a selected number of con-
tracts. As one can observe, the futures price (implied volatility) are close to
their lowest (highest) levels on the selected calibration date; thus we are using
a somewhat “stressed” market scenario to best illustrate the effectiveness of the
calibration.

We assume that both the instantaneous volatility functions and skew func-
tions are piecewise constant. The LIBOR forward rates and Brent crude oil fu-
tures correlation matrix as used for calibration is historically estimated from the
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Figure 2: Left: Historical Brent Crude Oil 1M, 1Y, 2Y and 4Y Futures contracts
between January 2014 and March 2015. Historical Brent Crude Oil 1M, 1Y, 2Y
and 4Y at-the-money implied volatilities between January 2014 and March 2015

time series of LIBOR forward rates and Brent futures prices covering 3 months
before the calibration date.

For the correlations and cross-correlations we use a parametric form given
for the correlation of the underlying (LIBOR, oil futures) with fixings/maturities
Tk and T j , which is given by22

Corr
(
dL

(
t ,T j

)
,dL (t ,Tk )

)= q
(
T j − t ,Tk − t

)
,

where

q
(
x, y

) = ρ∞+ (
1−ρ∞

)
exp

(−a
(
min

(
x, y

))∣∣x − y
∣∣) , (38)

a (z) = a∞+ (a0 −a∞)e−κz , (39)

and subject to 0 ≤ ρ∞ ≤ 1, a0, a∞,κ≥ 0. The two calibrated correlation matrices
for the LIBOR forward rates and the Brent crude oil futures are illustrated in
Figure 3.

6.3 The Interest Rate Calibration

The calibration of the SLV–LMM for the USD interest rate market was conducted
based on Piterbarg (2005a) by first performing a pre–calibration to fit the SLV–
LMM, with constant parameters for each tenor and expiry, to the swaption cube.

22The origins of this parametric form can be traced back to Rebonato (1999); see Chapter 22 of
Rebonato (2004) for a detailed discussion of the rationale behind a parametric form of this type.
Our notation follows Andersen and Piterbarg (2010).
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Figure 3: Left: The historically estimated LIBOR forward rate correlation matrix.
Right: The historically estimated Brent crude oil futures correlation matrix.
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Figure 4: Left: The calibrated implied volatility term structure for the swaption
cube. Right: The calibrated implied skew term structure for the swaption cube.

Figure 5 illustrates the obtained effective at–the–money volatility λ̄mkt
n,m and ef-

fective skew b̄mkt
n,m for each tenor Tn and expiry Tm .

These obtained model parameters then serve as target values in the main
calibration when calibrating the volatility and skew term–structure as described
in Piterbarg (2005a). Figure 4 shows the resulting volatility and skew term-
structure obtained by the main calibration. Figure 5 shows the quality of fit of
the effective at–the–money volatility λ̄mkt

n,m and effective skew b̄mkt
n,m . The overall

model fit to the implied volatility is very good as demonstrated by Figure 6 for
selected expiries and tenors. Moreover, we chose dL = 4 factors, which typically
explain about 99.99% of the overall variance.
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Figure 5: Left: The calibrated effective volatility λ̄mkt
n,m for the swaption cube.

Right: The calibrated effective skew b̄mkt
n,m for the swaption cube

6.4 The Cross-Calibration

The calibration of the Brent Crude Oil futures was achieved by the method de-
scribed in Section 3. The market instruments are futures and options on futures.
Figure 7 shows the calibrated volatility and skew surface. Calendar and forward
times go out to 3 years, and although on the exchange futures with expiries in
every month are traded, we chose the calendar and forward time vectors to be
unequally spaced (while still calibrating to all traded instruments), [0, 1M, 3M,
6M, 9M, 1Y, 2Y, 3Y]. This setup speeds up the calibration without losing much
structure in the volatility surface, since the market views futures with long ma-
turity to have almost flat volatility. For weighting in the calibration objective
function we have chosen ηλ,1 = ηb,1 = 0.1 (time homogeneity, i.e. smoothness
in calendar time direction), ηλ,2 = ηb,2 = 0.01 (smoothness in forward time di-
rection).

The exogenously given target cross-correlation matrix (calculated from
the historical time series covering 3 months before the calibration time) and
the estimated cross-correlation from historical futures returns and the cross-
correlation matrix for the calendar time that fitted worst are illustrated in Figure
8.

Finally, we link both separately calibrated volatility matrices to one set of
stochastic factors. Table 1 shows how much of the overall variance, i.e. of the
sum of variances over all factors, can be explained by the leading factors, when
the factors are sorted according to decreasing contribution to total variance of
the commodity forwards. The first two factors already account for more than
99% of the overall variance.

Note that if it is necessary to interpolate the forward interest rate volatility
matrix in order to match the calendar times of the commodity volatility matrix,
the forward rate covariance matrix will change and, hence, eigenvalue decom-
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Number of Factors 1 2 3 4 5 . . . 19

Percentage of
98.14 99.84 99.96 99.98 99.99 . . . 100

Overall Variance

Table 1: The percentage of overall variance that can be generated by the first i
factors, obtained from PCA of the commodity forward covariance matrix for the
first calendar time t1.

positions of the calendar time adjusted covariance matrices yield different re-
sults than an eigenvalue decompositions of the original covariance matrices as
used for calibration. However, these differences should not be substantial as
long as the calibrated volatility matrix is sufficiently smooth in calendar time.

The model fit to the commodity implied volatility is illustrated in Figure 9.

6.5 Pricing Performance and Accuracy

The calibration routine was written in MATLAB and timing the execution was
performed on a Intel Core i7-2600K 3.40GHz.

The interest rate volatility and skew term-structure calibration takes roughly
15 seconds, and the cross-correlation calibration (including fitting the com-
modity volatility) takes just roughly 10 seconds, where the cross-calibration
takes about roughly 2 seconds. This would be fast enough for production pur-
poses in most instances, though the fact that this prototype implementation
runs in a serial, interpreted language environment leaves scope for substantial
speed-ups through through parallelisation and the use of a compiled program-
ming language (such as C++).

We conclude this section by studying the accuracy of the pricing derived in
this paper and used within the calibration routine. We focus only on the overall
hybrid calibration since Piterbarg (2005b) already performed extensive numer-
ical tests on the accuracy of the parameter averaging approximation for the in-
terest rate calibration itself, which is input to our routine. To summarize Piter-
barg (2005b), in terms of (interest rate) Black volatility, the author reported a
difference between the Monte Carlo simulation and the semi-analytic approxi-
mations for interest rate swaptions, which was within 15 basis points for at-the-
money swaptions, and about 20 basis points for in-the-money and out-of-the-
money swaptions, for various tenors, expiries and strikes.

For the overall hybrid calibration, we let Market refer to the market im-
plied commodity volatilities, MC to the implied commodity volatilities from the
Monte Carlo simulation of the calibrated model and Approx to the implied com-
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modity volatilities obtained from the semi-analytic approximations used within
the calibration.

Table 2 and Figure 10 provide full a comparison of (correlated hybrid) com-
modity implied Black volatilities, for the market volatilities, Monte Carlo simu-
lated commodity implied Black volatilities and those obtained from the semi-
analytic approximations (used within the calibration), for different expiries and
strike offsets. For each expiry 0.16, 0.24, 0.32, 0.58, 0.82, 1.79, 2.28 and 3.79
years,23 we price the options written on commodity futures with strikes offsets
-15%, -7.5%, 0%, +7.5% and +15% (the +15% implied volatility was not available
for the 0.16Y option). The model parameters are the ones obtained from the cal-
ibration in this section. For the Monte Carlo simulation we use 1,000,000 paths
with monthly time steps.

The semi-analytical approximation demonstrates similar accuracy as in
Piterbarg (2005b), this can be seen by the reported MC-Market error. All re-
ported errors are below 25 bps of Black volatilities. For options with expiry
longer than 1Y, the approximation error is about or below 10 bps. As in Piterbarg
(2005b) the approximation quality seems to improve for options with longer
maturity. This an effect due to the Monte Carlo discretisation error rather than
an approximation error, due to the low number of time steps used within the
simulation. We noticed that by increasing the number of steps per year, this
error decreased.

MC-Market, illustrates the differences in Black volatility between the given
market implied volatilities and the ones obtained by the Monte Carlo simula-
tion. This numerical test is performed to demonstrate that given the full cali-
brated model, which was calibrated using the semi-analytical approximation,
we are able to regenerate the market implied volatilities without loss of essen-
tial information. The biggest differences are for the short dated options where
we observed a difference of 40 bps for the 0.16Y ATM option. As the expiry in-
creases, this error, for all strikes, decreases, where we obtain an error of 20-30
bps for the 0.24Y and 0.32Y expiries, an error of 10-20 bps for the 0.58Y and 0.82Y
expires. For the longer expiries this error decreases to about or below 10 bps.

7 Conclusion

As the market data example in the previous section demonstrates, the LMM
approach to term structure modelling remains is one of the most flexible for
good calibration of the model to market data, even when it is extended to al-
low for market quotes across multiple strikes (volatility “skews” and “smiles”)
and the integration of (and correlation between) multiple sources of risk —

23These are a selection of current expiries, i.e., the time between the calibration date 13 January
2015 and the various expiry dates, for the standardised commodity options.
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Expiry Offset Market Approx MC Approx-Market MC-Approx MC-Market

0.16y

-15% 50.37 50.11 50.36 -0.26 0.25 -0.01
-7.5% 47.01 47.05 47.30 0.04 0.25 0.29

0% 44.12 44.27 44.52 0.15 0.25 0.40
7.5% 41.98 41.72 41.97 -0.26 0.25 -0.01

0.24y

-15% 46.59 46.10 46.35 -0.49 0.25 -0.24
-7.5% 43.83 43.93 44.18 0.10 0.25 0.35

0% 41.82 41.97 42.21 0.15 0.24 0.39
7.5% 40.13 40.20 40.42 0.07 0.22 0.29
15% 39.13 38.57 38.77 -0.56 0.20 -0.35

0.32y

-15% 44.25 44.22 44.42 -0.04 0.20 0.16
-7.5% 42.24 42.11 42.32 -0.12 0.21 0.09

0% 40.35 40.42 40.64 0.07 0.22 0.29
7.5% 39.21 39.10 39.32 -0.11 0.22 0.12
15% 38.05 38.09 38.32 0.04 0.23 0.27

0.58y

-15% 39.63 39.60 39.78 -0.03 0.18 0.15
-7.5% 37.86 37.88 38.04 0.02 0.16 0.19

0% 36.48 36.45 36.61 -0.04 0.16 0.13
7.5% 35.23 35.27 35.43 0.04 0.16 0.20
15% 34.32 34.30 34.46 -0.02 0.16 0.14

0.82y

-15% 37.03 37.02 37.18 0.00 0.16 0.15
-7.5% 35.54 35.55 35.71 0.01 0.16 0.17

0% 34.32 34.31 34.47 -0.02 0.16 0.15
7.5% 33.24 33.26 33.42 0.02 0.16 0.18
15% 32.41 32.38 32.53 -0.03 0.15 0.11

1.79y

-15% 30.05 30.05 30.17 0.00 0.12 0.12
-7.5% 28.88 28.88 28.99 0.00 0.11 0.11

0% 27.93 27.93 28.03 -0.01 0.10 0.09
7.5% 27.15 27.15 27.26 0.01 0.10 0.11
15% 26.56 26.54 26.64 -0.02 0.10 0.08

2.28y

-15% 29.12 29.15 29.23 0.03 0.08 0.11
-7.5% 27.93 27.91 27.99 -0.01 0.08 0.06

0% 26.97 26.97 27.04 0.00 0.07 0.07
7.5% 26.25 26.27 26.34 0.02 0.07 0.09
15% 25.82 25.79 25.86 -0.03 0.07 0.04

3.79y

-15% 25.08 25.07 25.10 -0.02 0.04 0.02
-7.5% 24.44 24.45 24.48 0.01 0.03 0.04

0% 23.96 24.00 24.03 0.03 0.03 0.06
7.5% 23.75 23.68 23.71 -0.07 0.03 -0.04
15% 23.42 23.49 23.51 0.07 0.03 0.09

Table 2: Pricing results for implied Black commodity volatilities, for commodity
options with expiries 0.16, 0.24, 0.32, 0.58, 0.82, 1.79, 2.28 and 3.79 years, and
strikes offsets -15%, -7.5%, 0%, +7.5% and +15% . The values are reported in
percent (%).



commodity and interest rate risk in our present example. This is due to actual
market observables (in particular forward LIBORs) being modelled directly and
model prices for calibration instruments (e.g. caps/floors, swaptions, commod-
ity futures and options) being available either in exact or accurate approximate
closed form.

The dynamics of all market variables can be expressed in terms of the same,
vector–valued Brownian motion and correlation between market variables is
obtained via the sum products of the respective vector–valued volatilities. As
a consequence, the calibration across multiple sources of risk can be broken
down into stages, simplifying the high–dimensional optimisation problems to
be solved at each stage. The interest rate market can be calibrated separately
using well established procedures. We chose to base our interest rate volatility
calibration on the robust and widely used method of Pedersen (1998), but this
could easily be replaced by a different method without impacting the remainder
of our calibration approach. The model is fitted to an exogenously given corre-
lation structure (typically estimated statistically from historical data) between
forward interest rates and commodity prices (cross–correlation) — without im-
pacting the interest rate volatility calibration already obtained — via a modified
version of the “orthonormal Procrustes” problem in linear algebra, for which an
efficient numerical solution exists.

Finally, it is worth noting that a model which is calibrated to the term struc-
tures of commodity futures and options will implicitly reflect any seasonality
and/or mean reversion of commodity prices. If seasonality is present and priced
by the market, this information will be contained in the initial term structure of
commodity futures prices, and integrated into the model by the fact that it fits
the initial observed term structure by construction. If mean reversion is present
and priced by the market, this information will be contained in the term struc-
ture of commodity volatilities, or, more completely, the commodity option im-
plied volatility surface, to which the model is calibrated.24

24Specifically, mean reversion would manifest itself in the market as a downward sloping term
structure of commodity option implied volatilities.
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Figure 6: The calibrated interest smile with maturity 0.25, 0.5, 1, 2, 3, 5 years and
tenors 1, 2, 3 years.
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Figure 7: Left: The calibrated commodity volatility surface. Right: The cali-
brated commodity skew surface.
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Figure 9: The calibrated commodity smile.
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Figure 10: Reported errors between the volatilities implied from the Market, the
Monte Carlo (MC) simulation and the semi-analytic approximations (Approx)
used in within the calibration. The values are reported in basis points (bps).
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Fast and Accurate Exercise Policies

for Bermudan Swaptions in the

LIBOR Market Model
with Shashi Jain and Cornelis W. Oosterlee

Abstract

This paper describes an efficient American Monte Carlo approach for pricing
callable LIBOR Exotics (e.g. Bermudan swaptions) in the LIBOR market model
using the Stochastic Grid Bundling Method (SGBM). SGBM is a regression-
based Monte Carlo method in which the continuation value is projected onto
a space in which the distribution is known. We demonstrate an algorithm to
obtain accurate and tight lower–upper bound values without the need for the
nested Monte Carlo simulations that are generally required for regression-based
methods. The computational results for Bermudan swaptions demonstrate the
simplicity and efficiency of the SGBM.
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1 Introduction

A Bermudan receiver (payer) swaption (i.e. a Bermudan option on an interest
rate swap) is currently one of the most liquid and important exotic derivatives.
This swaption gives the owner the right (but not the obligation) to enter into a
receiver (payer) interest rate swap at a discrete set of dates (exercise dates). This
contrasts with the European swaption, which only can be exercised on a single
exercise date, and American options, which can be exercised at any time before
maturity.

The LIBOR market model (LMM) is popular for modelling and pricing in-
terest rate derivatives; see, for instance, Miltersen, Sandmann and Sondermann
(1997), Brace, Gatarek and Musiela (1997), and Jamshidian (1997). The LMM dy-
namics are specified as non-overlapping sets of discretely compounded Libor
rates. The LMM’s consistency with the market practice of pricing fixed-income
derivatives allows for pricing to be reduced to standard market formulae such
as, for example, the Black and Scholes (1973) formula. Its ability to price secu-
rities that rely strongly on correlations between forward rates is a reason for its
popularity. Pricing Bermudan swaptions in the LMM is a more complex prob-
lem than pricing corresponding European options. First, the holder of a Bermu-
dan swaption is in a position in which, at each exercise date, he needs to deter-
mine whether it is optimal to exercise or hold onto the option. Second, given
the high dimensionality of LMM,1 only Monte Carlo methods are feasible for
the valuation of exotic fixed-income securities, such as Bermudan swaptions.

Pricing American-style derivatives using Monte Carlo simulation has been
actively studied. The industrial standard Longstaff and Schwartz (2001) method
(LSM) uses a regression to approximate the continuation value for a set of sim-
ulated paths. The fact that LSM is easy to implement and robust, and generates
accurate lower bound Bermudan swaptions values for a careful choice of regres-
sion variables, are reasons for its popularity. Moreover, lower bounds have been
studied in Andersen (2000), in which pre-simulation is performed to estimate a
parameterised exercise policy which is then used in a larger simulation for valu-
ing Bermudan swaptions. Generally, American Monte Carlo techniques such as
LSM (for lower bound values) are divided into two passes: a first and a second
pass. In the first pass, in which the exercise strategy is estimated, conditional
discounted option values are projected onto basis functions of the state vari-
ables. The projected value is then used as the approximate continuation value,
which is compared with the intrinsic value for determining the optimal exercise
strategy. This is then followed by a second pass, in which low-biased option val-
ues are obtained by simulating a new set of simulation paths and are exercised
according to the sub-optimal exercise strategy obtained in the first pass.

1E.g. pricing a Bermudan swaption on a swap with 10 year maturity and frequency 3 months re-
quires 40 Libor rates.



Bermudan Swaptions in the LMM 47

To validate the pricing models and the lower bound values generated from
the second pass, we need a third pass. These are referred to as the upper
bound values, and the closer they are to the lower bounds, the better. This phe-
nomenon was previously studied in Rogers (2002), Haugh and Kogan (2004),
and Andersen and Broadie (2004), in which the upper bound is approximated
using a duality approach. Generally, upper-bounds algorithms such as in, for
example, Andersen and Broadie (2004), require nested Monte Carlo simula-
tions, making them computationally expensive. The quality of the upper bound
produced by the algorithm depends on the quality of the estimated exercise pol-
icy in the first pass, and a better policy provides tighter upper–lower bounds.

The Stochastic Grid Bundling Method (SGBM) was introduced in Jain and
Oosterlee (2015) to price equity Bermudan options on geometric Brownian mo-
tions. They show that SGBM increases the efficiency of Monte Carlo simulation
by reducing the variance of the simulation estimates on the basis of conditional
expectations and the use of regressions, as in Milstein and Tretyakov (2009). The
method is based on the Stochastic Grid Method (SGM) by Jain and Oosterlee
(2012), LSM, and the bundling approach by Tilley (1993). The concept behind
SGBM is that neighbouring simulated paths will have similar continuation val-
ues for a large set of paths. Therefore, regression can be used to perform local
averaging to compute a continuation value for grid points within a bundle. The
main difference between LSM and SGBM is that, in SGBM, the option values
are projected onto a set of basic functions of the state variables, where the dis-
tribution is analytically (or approximately) known. In LSM, the distribution is
not taken into account.

This paper is more than a re-interpretation of Jain and Oosterlee (2015).
First, because interest rates are stochastic, compared with the fixed interest
rates in Jain and Oosterlee (2015), the trivial expectations for the continuation
values need to be carefully calculated. One of the interesting aspects of SGBM
employed in the present paper is that, because of a formulation in terms of an
inner and outer expectation, to calculate the continuation value, we can benefit
from the flexibility of using different pricing measures within the same prob-
lem. For Bermudan swaptions, we can use the spot measure, which is useful
for simulating paths, and the forward measure, which allows the discounting
term to be taken out of the expectation, giving rise to an analytic expression for
the outer expectation. Second, we also present an efficient way to obtain upper
bound values for Bermudan swaptions in LMM by avoiding nested Monte Carlo
simulations and, therefore, reducing the required computational time. Third,
we demonstrate that SGBM provides more accurate results and is computation-
ally more attractive than LSM.

The paper is organized as follows. Section 2 introduces notations, the gen-
eral framework and formulates the Bermudan swaption pricing problem in the
LMM. Section 3 describes LSM and the SGBM algorithm for pricing Bermudan
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swaptions (both a lower and an upper bound method). In Section 4 we present
various numerical examples to illustrate the method and finally we conclude in
Section 5.

2 Notation and General Framework

In this section, we introduce notation, give a short introduction to the LMM and
define the Bermudan swaption pricing. We follow the notation in Andersen and
Piterbarg (2010).

The LIBOR Market Model

For the LMM we start with a fixed discrete-tenor structure 0 = T0 < T1 < ·· · < TN .
The intervals over the time horizon are given by τn = Tn+1−Tn and are typically
three or six calendar months. Let P (t ,Tn) denote the time-t price of a zero-
coupon bond delivering one unit of currency at some maturity time Tn ≥ t . The
discrete LIBOR forward rate Ln (t ) with fixing date Tn as seen at time t is

Ln (t ) = τ−1
n

(
P (t ,Tn)

P (t ,Tn+1)
−1

)
, N −1 ≥ n ≥ q (t ) ,

where q (t ) is the index function of the bond with the shortest maturity, defined
as Tq(t )−1 ≤ t < Tq(t ). The price of the discounted bond maturing at time Tk > t
is then given by

P (t ,Tn) = P
(
t ,Tq(t )

) n−1∏
n=q(t )

1

1+τnLn (t )
.

For the set of Libor rates L (t ) = (
Lq(t ),Lq(t )+1, . . . ,LN−1 (t )

)
we choose to work

under the spot Libor measure, denoted byQB , in which the discrete money mar-
ket account B (t ) is the numeraire, given by

B (t ) = P
(
t ,Tq(t )

)q(t )−1∏
n=0

(1+τnLn (t )) .

The no-arbitrage dynamics of the forward Libor rates Ln (t ) under the spot Libor
measure QB for n ≥ q (t ) are given by

dLn (t ) = Ln (t )λn (t )⊤
(
µn (t )d t +dW B (t )

)
, (1)

µn (t ) =
n∑

i=q(t )

τiλi (t )

1+τi Li (t )
, (2)
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where W B (t ) is an m-dimensional Brownian motion under measure QB and λn

for n ≥ q (t ), is a bounded m-dimensional deterministic function. Let Et [·] =
E [ ·|Ft ] be denoting the conditional expectation at time t under the spot Libor
measure and where Ft is the filtration at time t generated by W B . Then by
standard arbitrage-free arguments the time-t price of a security paying V (T ) at
time T is

V (t ) = Et

[
V (T )

B (t )

B (T )

]
.

Further details on the LMM, such as derivations of the bond equations, con-
nection to HJM etc., is out of the scope of this paper and can be found in Ander-
sen and Piterbarg (2010).

Bermudan Swaptions

Given a lockout, i.e., a no-call period up to time T1, the Bermudan swaption
gives the holder the right, but not the obligation, on a set of fixing dates Tn in
T = {T1,T2, . . . ,Tm−1}, for m ≤ N −1, to enter into a fixed for floating swap with
fixing date Tn and last payment date Tm . The holder of a payer Bermudan will
pay the fixed swap leg and receive the floating swap leg. If exercise at Tn the
payout is given by

U (Tn) =ϕN
m−1∑
i=n

τi P (Tn ,Ti+1) (Li (Tn)−k) ,

where k is the fixed coupon, N the notional, and ϕ ∈ {−1,+1} is the payer or re-
ceiver factor (+1 for payer swaption and −1 for a receiver swaption). The payoff
is also equivalent to

U (Tn) =ϕN An,m (Tn)
(
Sn,m (Tn)−k

)
,

where Sn,m (t ) is the value of the fixed-for-floating swap with payments at times
Tn+1, . . . ,Tm , see for instance (Andersen and Piterbarg, 2010, Chapter 19). The
value of the forward swap rate S (t ) and swap annuity A (t ) at time t are given by.

S (t ) := Sn,m (t ) = P (t ,Tn)−P (t ,Tm)

An,m (t )
, A (t ) := An,m (t ) =

m−1∑
i=n

P (t ,Ti+1)τi . (3)

The present value V (T0) of a Bermudan swaption at time T0 is the supre-
mum taken over all discrete stopping times of all conditional expected dis-
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counted payoffs, that is

V (T0) = B (T0) sup
τ∈T

E0

[
U (τ)

B (τ)

]
(4)

= B (T0)E0

[
U (τ∗)

B (τ∗)

]
, (5)

where τ∗ ∈ T is the optimal stopping time taking values in the finite set of al-
lowed discrete exercise dates T . For the American swaption, the holder is al-
lowed to exercise on any date within [T1,Tm−1]. And for European swaption
case, we have only one exercise date, i.e., T1 = Tm−1.

3 Monte Carlo Simulation of Bermudan Swaptions

In this section, we define the Bermudan option pricing problem, summarize
SGBM, present a bundling algorithm suitable for the pricing of Bermudan swap-
tions in the LMM and discuss our implementation of the LSM and the upper and
lower bounds via SGBM.

The present value V (0) of a Bermudan swaption in (4) is usually solved via
backward induction starting from the last exercise date Tm−1. The holder of
the option receives U (Tn) if the contract is exercised at time Tn . The option
value at V (Tn) at time Tn is the maximum of the intrinsic value U (Tn) and the
conditional continuation value H (Tn), that is

V (Tn) = max(U (Tn) , H (Tn)) , (6)

where H (Tm−1) = 0. The conditional continuation value H (Tn) is the condi-
tional expected time Tn+1 option value given by,

H (Tn) = B (Tn)ETn

[
V (Tn+1)

B (Tn+1)

]
. (7)

The problem is solved by recursively repeating Equations (6) and (7) for each
Tn until we reach time T0, where we find the value V (T0) of the contract.

As mentioned in the introduction, lower bound American Monte Carlo
methods as LSM and SGBM are divided into two phases, a first and a second
pass. In the first pass the conditional discounted option values are projected
onto basis functions of the state variables. The projected value is then used
as the approximate continuation value, which is compared with the intrinsic
value for determining the optimal exercise strategy. This is followed by a second
pass where the low-biased option values are obtained by simulating a new set of
simulation paths, and exercising according to the sub-optimal exercise strategy
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obtained in the first pass.

3.1 The Least Squares Method (LSM)

In the LSM the problem is solved by recursive value iteration, by the dynamic
programming approach, starting from the last exercise date and working back-
wards as given by Equations (6) and (7). As pointed out by Clement, Lamber-
ton, and Protter (2002), the main problem with dynamic programming is the
evaluation of the conditional expectation. The LSM method is based on ap-
proximation of the conditional expectation of H (Tn) at time Tn by an ordinary
least squares estimate,

H (Tn) =
q∑

i=0
βi ,nζi (Tn) , (8)

for a set of q basis-functions ζi : Rd → R, i = 1,2, . . . , q , e.g., function of the
underlying swap rates, and where βi ,n are constants. The regression is usually
performed using the simulated in-the-money paths and the basis functions are
usually polynomials of the state variables. The optimal stopping time derived
using this approximation, denoted by τ, can be written as

τn = tn 1 {H (Tn) ≤U (Tn)}+ tn+11 {H (Tn) >U (Tn)} , n < m −1, (9)

having τm−1 = Tm−1. The option price is then computed using Equation (5).

A rigorous mathematical justification and proof of the almost sure conver-
gence of the method can be found in Clement, Lamberton, and Protter (2002).

3.2 The Stochastic Grid Bundling Method (SGBM)

SGBM is a simulation-based dynamic programming method, which first gener-
ates Monte Carlo paths, forward in time, followed by finding the optimal early-
exercise policy moving backwards in time. The main difference between LSM
and SGBM is that in SGBM one projects the option values onto a set of basis
functions of the state variables where the distribution is analytically (or approx-
imately) known, whereas in LSM this is not taken into account.

The discounted continuation value, H (Tn) in Equation (7), is computed us-
ing the law of iterated expectations, i.e.,

E [X |H ] = E [E [ X |G ]|H ] , (10)

where H is a sub-σ algebra of G . Using Equation (10), the continuation value
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at time Tn can be written as

H (Tn) = B (Tn)E

[
V (Tn+1)

B (Tn+1)

∣∣∣∣S (Tn)

]
= B (Tn)E

[
E

[
V (Tn+1)

B (Tn+1)

∣∣∣∣ζ (Tn+1) ,S (Tn)

]∣∣∣∣S (Tn)

]
, (11)

where ζ (Tn) = (
ζ1 (Tn+1) , . . . ,ζq (Tn+1)

)⊤ is a q-dimensional vector of regression
variables, for example the q first monomials

ζi (Tn+1) = S (Tn+1)i , i = 1, . . . , q, (12)

and where S is the swap rates defined in (3).
Writing the continuation value as in Equation (11) decomposes the problem

into two steps. The first step involves computing the inner conditional expecta-
tion,

Z (Tn) = E

[
V (Tn+1)

B (Tn+1)

∣∣∣∣ζ (Tn+1) ,S (Tn)

]
. (13)

It is followed by the computation of the outer expectation,

H (Tn) = B (Tn)E [ Z (Tn)|S (Tn)] . (14)

With a smart choice of basis functions ζ and simulation measure, Equation (14)
can generally be computed in “closed-form”. However, numerical approxima-
tions are involved in the computation of Z (Tn) in Equation (13).

Consider the conditional expectation without the extra conditioning on
S (Tn) as in Equation (13),

E

[
V (Tn+1)

B (Tn+1)

∣∣∣∣ζ (Tn+1)

]
. (15)

Equation (15) can be approximated by regressing V (Tn+1)/B (Tn+1) onto the
first q < ∞ basis functions, ζ1, . . . ,ζq . For example, by using the polynomials
of the conditioning function as the basis, e.g., polynomials up to order 2-4 con-
structed by the monomials of the explanatory variable.

But in order to compute Z (Tn) in Equation (13), we also need to condition
V (Tn+1) on S (Tn), which can be done in two ways. In the first approach, with
nested Monte Carlo simulation, the paths are simulated until the next time Tn+1

with S (Tn) as the source, the option values for these paths are used to approx-
imate Equation (13). The fitted value of this regression will converge in mean
square and probability, when the number of paths in this sub-simulation goes to
infinity. However, this approach will be computationally intractable as the num-
ber of paths grows exponentially with each time step. The second approach, is
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to condition V (Tn+1) on S (Tn) and then use bundling.

Bundling as introduced by Tilley (1993) is a method to partition the state
space into non-overlapping regions, so that each point in the space can be iden-
tified to lie in exactly one of the bundled regions. The idea behind bundling is
that for a large set of paths, the neighbouring paths will have similar continu-
ation values and one can therefore perform local-averaging. The key step is to
construct bundles, by first generating K paths, ω1, . . . ,ωK , of the underlying as-
set, S (Tn ,ωk ), and bundle them at each time, Tn , into an (K ) non-overlapping
sets, Bs (Tn) = (

B1 (Tn) , . . . ,Ba (Tn)
)
. This is done by defining at each time, Tn ,

representative states µs
n for s = 1, . . . , an (K ). The s-th-bundle at time Tn is thus

defined as

Bs (Tn) =
{

S (Tn ,ωk ) :
∥∥S (Tn ,ωk )−µs

n

∥∥
2 ≤

∥∥∥S (Tn ,ωk )−µℓ
n

∥∥∥
2

, ∀ 1 ≤ ℓ≤ an (K )
}

,

(16)
for k = 1, . . . ,K and where µs

n is the mean of the points in Bs (Tn).

The continuation value (7) for a general path ωk at time Tn is then approxi-
mated by,

Ĥ (Tn ,ωk ) = B (Tn ,ωk )E

[
V̂ (Tn+1,ωk )

B (Tn+1,ωk )

∣∣∣∣B (Tn ,ωk )

]
, (17)

where bundle B (Tn ,ωk ) is the set of path-indices of paths that lie in the bundle
containing S (Tn ,ωk ) .

SGBM employs a recursive bifurcation algorithm to bundle the grid points at
each time step, the number of partitions, or bundles, after p iterations, equals
2p . The algorithm is explained in detail in Appendix A and Figure 1 illustrates the
idea behind the bundling from simulated swap rates and continuation values,
using 2 respectively 4 bundles.

As explained, SGBM computes the continuation value in two steps. First,
we compute the expected option value, conditioned on a finer information set,
given by Equation (13), which is followed by the computation of the outer ex-
pectation, given by Equation (14). Let B (Tn ,ωk ) denote the set of path-indices
of paths that share the bundle containing the k-th grid point S (Tn ,ωk ) at time
Tn . Second, we approximate Z in Equation (13) by regressing the option values
at Tn for those paths that originate from the bundle containing S (Tn ,ωk ), that
is

Ẑ (Tn ,ωk ) =
q∑

i=1
βi ,nζi (Tn ,ωk ) , (18)

where k ∈B (Tn ,ωk ) so that the following residual is minimized

min
β

∑
l∈B(Tn ,ωk )

(
Ẑ (Tn ,ωl )−V (Tn ,ωl )

)2
.
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Figure 1: Simulated continuation values as a function of the swap value for a
Bermudan swaption at one of the exercise dates. Continuation values approx-
imated by a second order polynomial, with the swaps as basis functions. Left:
Regression with 2 bundles. Right: Regression with 4 bundles.

The continuation value for grid point S (Tn ,ωk ) in bundle B (Tn ,ωk ) is then
given by,

Ĥ (Tn ,ωk ) = B (Tn ,ωk )
q∑

i=0
βi ,nETn

[
ζi (Tn+1,ωk )

B (Tn+1,ωk )

∣∣∣∣B (Tn ,ωk )

]
. (19)

Remark 5 SGBM requires significantly fewer paths and basis functions than

LSM. The reason for this is that LSM uses the regressed continuation values to

make early exercise decision directly. The quality of the early exercise policy is in-

accurate when a small number of paths and basis functions are used, one there-

fore need a large number of paths and basis functions to reduce the regression

noise. In SGBM, the regressed function is just an inner expectation. The outer ex-

pectation, which can be calculated analytically, gives the continuation value and

is used for decision making. Since the regression error is normally distributed

with a zero mean, the noise of outer expectation of is zero. Therefore, the contin-

uation value surface generated by SGBM is much smoother, compared to the one

generated by LSM

Further details of SGBM, such as convergence and different bundling algo-
rithms can be found in Jain and Oosterlee (2015).

Some of the difficulties in the pricing of the Bermudan swaptions lie in the
choice of regression variables. Choosing a suitable set of explanatory variables
and parametric functions is crucial. In our framework this can be considered as
a combination of both art and science. An estimation of the exercise boundary
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close to the true boundary gives an estimated price closer to the true value. One
significant problem with regression is ease of overfitting. One should not there-
fore use too many regression variables and high-order polynomials since they
are easily affected by outliers in the simulation. One needs to focus on finding
significant explanatory variables. Glasserman and Yu (2004) showed that for the
simplest case of Bermudan swaptions a second-order polynomial with the un-
derlying swap values as basis appears sufficient to obtain accurate Bermudan
swaption values. More generally, the choice of basis functions is usually prod-
uct dependent and needs to be carefully investigated for complicated Bermu-
dan swaptions, for example for products with exotic coupons.

We conclude this section by emphasizing the choices of measures used in
order to allow for efficient simulation. The T -forward measure, with corre-
sponding expectation ET and the T -maturity zero coupon bond P (t ,T ) as the
numeraire have the advantage that it allows for decoupling the payoff V (T )
from the numeraire and to take out the discount factor from the expectation,
i.e,

V (t ) = B (t )Et

[
V (T )

B (T )

]
= P (t ,T )ET

t [V (T )] .

One benefit however of the spot measure compared to the T -forward measure
is that the numeraire asset B (t ) is alive throughout the tenor and therefore al-
lows for simulating paths irrespective of tenor. We employ hybrid measures to
obtain efficient Monte Carlo simulation. The inner expectation is simply ap-
proximated by regression calculated in the spot measure. To express the outer
expectation in closed form, we compute the expectation under the T -forward
measure. Since the spot measure QB coincides with the Tn+1-forward measure
QTn+1 over the interval [tn , tn+1] this allows us to write the continuation value
for grid point S (Tn ,ωk ) in bundle B (Tn ,ωk ) as,

Ĥ(Tn ,ωk ) = B (Tn ,ωk )E

[ ∑q
i=0βi ,nζi (Tn+1,ωk )

B (Tn+1,ωk )

∣∣∣∣∣B (Tn ,ωk )

]

= P (Tn ,Tn+1,ωk )ETn+1

[
q∑

i=0
βi ,nζi (Tn+1,ωk )

∣∣∣∣∣B (Tn ,ωk )

]

= P (Tn ,Tn+1,ωk )
q∑

i=0
βi ,nE

Tn+1 [ζi (Tn+1,ωk )|B (Tn ,ωk )] .

By this we can efficiently simulate the exposure. We refer to (Andersen and
Piterbarg, 2010, Chapter 4) for additional information on available fixed income
probability measures.
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Remark 6 Valuation of Bermudan swaptions with American Monte Carlo tech-

niques such as LSM and SGBM requires an estimation of the exercise boundary.

The option can then be seen as a barrier option (knock-in) with the estimated

exercise boundary as the barrier.

3.2.1 Algorithm for Lower Bound

For clarity we summarise the steps of the complete SGBM pricing process for
the Bermudan swaptions. We first simulate a first pass with K1 paths and then
estimate an exercise policy. Second, we simulate a second pass with K2 paths
using the exercise policy estimated in the first pass. Usually K2 ≈ 10,000 to
100,000 and K1 ≈ K2/4.

I. FIRST PASS: Exercise Policy.

1. Generate K1 paths ω1, . . . ,ωK1 , using (1). Each ωk represents
one simulated path of all core LIBOR rates.

2. For each path ωk and time Tn , for k = 1, . . . ,K1 and n =
1, . . . , N − 1, calculate the numeraire B (Tn ,ωk ), swap rates
S (Tn ,ωk ) and exercise values U (Tn ,ωk ).

3. Compute the option value for the grid points at the terminal
time Tm−1,

V (Tm−1) = max(U (Tm−1) ,0) . (20)

4. For each n = m −2. . . ,1

(a) Bundle the grid points at Tn−1, into a distinct bundles (ex-
cept at T0, where there is only one point and hence only
one bundle corresponding to S (T0)) using the bundling
algorithm in Appendix A.

(b) Compute the regression functions, Z s
n , s = 1, . . . , a, as

given by Equation (18), using the option values at Tn for
the paths originating from the s-th bundle, Bs (Tn−1), at
Tn−1.

(c) Compute the continuation value for the grid points in the
s-th bundle at Tn−1, using Equation (19), for those paths
for which S (Tn ,ωk ) belongs to the bundle Bs (Tn−1) , for
s = 1, . . . , a.

(d) Compute the option values at Tn−1, as

V̂ (Tn) = max(U (Tn) , H (Tn)) . (21)
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5. The option value, V̂ (T0), at T0, is defined to be the direct esti-
mator value.

II. SECOND PASS: Lower Bound.

1. In order to compute lower bounds and an unbiased price, gen-
erate a fresh set of K2 paths, ω

′
1, . . . ,ω

′
K2

, and bundle at each
time step, using the same algorithm as in the first pass.

2. The continuation values for the grid points in bundle s, at
time step Tn−1, are computed using the Z s

n function, ob-
tained for the direct estimator. The option is exercised
when the continuation value is less than the immediate pay-
off. The lower bound can then be computed by deter-

mining the earliest time to exercise at each path, τ̂
(
ω

′
k

)
=

min
{

Tn : H
(
Tn ,ω

′
k

)
<U

(
Tn ,ω

′
k

)}
. The lower bound of the op-

tion value is given by,

V (T0) = 1

K2

K2∑
k=1

B
(
T0,ω

′
k

)
B

(
τ̂,ω

′
k

) U
(
τ̂,ω

′
k

)
.

Remark 7 In the case of performance calculation issues, the direct estimate gen-

erated from the first pass will often be close to the lower bound values generated

from the second pass. In this case one can neglect the second pass but should keep

in mind that the estimated values are biased in an unknown direction.

Remark 8 One should also keep in mind that both LSM and SGBM are lower

bound methods, basically because the conditional expectation is approximated

by a regression technique that projects the high-dimensional continuation value

onto a limited set of regression variables. The approximation can often be im-

proved, for example, by having a richer and better set of regression variables, but

with the risk of overfitting.

3.3 Upper Bound Using Dual Formulation

One problem with the lower bound algorithm presented in the previous section
is to determine how close the generated option prices are to the true value. One
way to determine its goodness it to simulate both lower and upper bounds of
the option values, the closer they are to each other the better. Haugh and Ko-
gan (2004) and Rogers (2002) independently proposed the dual formulation for
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Bermudan options, later extended to the primal-dual simulation algorithm in
Andersen and Broadie (2004). The primal problem is given by Equation (4), for
an arbitrary adapted super-martingale process M (t ) we have that,

V (T0) = sup
τ∈T

ET0

[
U (τ)

B (τ)

]
= sup

τ∈T
ET0

[
U (τ)

B (τ)
+M (τ)−M (τ)

]
= M (0)+ sup

τ∈T
ET0

[
U (τ)

B (τ)
−M (τ)

]
≤ M (0)+ET0

[
sup
τ∈T

(
U (τ)

B (τ)
−M (τ)

)]
. (22)

The inequality follows from the fact M (t ) is a super-martingale. The dual for-
mulation of the option pricing problem is then to minimize the upper bound
with respect to all adapted super-martingale processes K , that is,

V 0 = inf
M∈K

{
M (0)+ET0

[
sup
τ∈T

(
U (τ)

B (τ)
−M (τ)

)]}
. (23)

Haugh and Kogan (2004) showed that when the super-martingale process M (t )
in Equation (22) coincides with the discounted option value process V (t )/B (t ) ,
the upper bound V 0 equals the true value. This suggests that a tight upper
bound can be obtained by approximation V̂ (t ) , when defining M (t ) such that
when the approximate option price V̂ (t ) coincides with the exact price V (t ) ,
M (t ) equals the discounted process V (t )/B (t ). An obvious choice for M (t ) is
then given by

M (Tn+1)−M (Tn) = V̂ (Tn+1)

B (Tn+1)
− V̂ (Tn)

B (Tn)
−ETn

[
V̂ (Tn+1)

B (Tn+1)
− V̂ (Tn)

B (Tn)

]
, (24)

for M (T0) = V̂ (T0). Equation (24) can also be written as

M (Tn+1)−M (Tn) = V̂ (Tn+1)

B (Tn+1)
−ETn

[
V̂ (Tn+1)

B (Tn+1)

]
. (25)

Then the upper bound, V 0, corresponding to Equation (24) is given by

V (0) = V̂ (0)+∆≥V (0) , (26)
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where the duality gap ∆ is defined as

∆= max
n

(
U (Tn)

B (Tn)
−M (Tn)

)
, n = 1, . . . ,m −1. (27)

Generally, upper-bounds algorithm as e.g., in Andersen and Broadie (2004)
require nested Monte Carlo simulation and the quality of the upper bound
produced by the algorithm depends on the quality of the estimated exercise
policy in the first pass, better policy gives tighter upper-lower bounds. This
makes it computational expensive and requires in worst cases a workload of
K ×Knest ×m2 operations, where K is the number of outer simulations, Knest

the number of nested simulations and m the number of exercise dates. The
workload is often less than this because the nested simulation can be stopped
whenever the contract is exercised. This in comparison with the workload in
the second pass where an exercise policy already is given and where the lower
bound simulation has a workload of K ×m. This has further been improved by
Broadie and Cao (2008) who showed that nested simulations are not needed on
dates where it is suboptimal to exercise the option, which can lead to reduced
workload, especially for out-of-the-money options. When the policy obtained
from LSM is used, a sub-simulation with Knest sub-paths is required. Knest ≈ 100
is often sufficient to find upper bounds with sufficient quality. Moreover, the
upper bound bias introduced from the Monte Carlo simulation is positive and
a decreasing function in the number of nested simulations.

We conclude this section by emphasising one important remark allowing
one to avoid nested Monte Carlo simulations for upper bound values when es-
timating the exercise policy using SGBM.

Remark 9 For pure regression based algorithms like LSM, Equation (25) cannot

be estimated directly by regression since it will introduce an unknown bias and

therefore destroys the martingale property of M and the inequality in Equation

(22). Therefore one has to rely on nested Monte Carlo simulations to obtain an up-

per bound when LSM is used. But, as mentioned in Remark 5, the regressed func-

tion in SGBM is just the inner expectation, and it is not used for decision making.

The outer expectation can be computed in closed form and we can therefore cal-

culate the upper bounds without nested simulations. This reduces the workload

of the upper bounds significantly, to the workload of the second pass and there-

fore we can obtain a speed-up factor of Knest. The computational time for SGBM

is comparable to Longstaff and Schwartz (2001)
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3.3.1 Algorithm for Upper Bound

We summarise the simulation procedure for obtaining duality based upper
bounds via SGBM below (once the optimal exercise policy has been obtained).
Let Ĥ (Tn) be the holding value estimated from the exercise strategy η, given by
the simulation in the first pass. The upper bound can then be obtained by the
following algorithm,

III. THIRD PASS: Upper Bound.

1. Simulate Ku paths ω1, . . . ,ωKU

2. For each exercise time Tn and each path ωk , compute
Ĥ (Tn ,ωk ) and B (Tn ,ωk ), and update M (Tn ,ωk ) in Equation
(27).

(a) Approximate Ĥ (Tn ,ωk )/B (Tn ,ωk ) using Equation (17). 2

3. For each path ωK , compute the pathwise duality gaps, as fol-
lows,

D̂ (ωk ) = max
n

(
U (Tn ,ωk )

B (Tn ,ωk )
−M (Tn ,ωk )

)
, n = 1, . . . ,m.

4. Estimate the upper bound given by Equation (27) as

∆̂= 1

KU

KU∑
k=1

D̂ (ωk ) . (28)

4 Numerical Results

In this section we study the performance of SGBM for lower and upper bound
values by means of numerical experiments. For a consistency check we use the
same setup and reproduce the results in Andersen (2000) and Andersen and
Piterbarg (2010).

2In order to have an accurate approximation of H
(
Tn ,ωk

)
, when the policy obtained from LSM

is used, a sub-simulation with Knest sub-paths is required. Ĥ
(
Tn ,ωk

)
represents the discounted

average cashflows from these paths when they are exercised following the policy obtained in the
first pass.
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4.1 Bermudan Swaption Prices

For the continuation value in LSM and SGBM we use a second-order polyno-
mial with the swap rate as the basis. The swap rate moments in Equation (19)
can, for example, with high accuracy be calculated by the convexity adjustment
approach in Belomestny, Kolodko and Schoenmakers (2009).

We use the bundling scheme described in Section A, with 8 bundles and the
same number of bundles at each time step, except at time T0, where there is
only one point, S (T0).

We consider Bermudan swaptions on 3 months LIBORS (τ= 0.25) with 10%
spot rate level and with two different volatility settings. First, a one-factor LMM
with fixed volatility, λn (t ) = 0.2 for all n and t . Second, more realistically, a two-
factor LMM, with a time-to-maturity dependent volatility of the form3

λn (t ) =
[

0.15,0.15−
√

0.009(Tn − t )
]⊤

.

We report values obtained from the second pass. First, we simulate a first
pass with 10,000 seeds using an antithetic Monte Carlo random number genera-
tor and then estimate the exercise policy for both LSM and SGBM. Subsequently,
we simulate 20,000 second pass paths with a quasi Monte Carlo random num-
ber generator (e.g., Sobol sequence) with the previously obtained exercise pol-
icy to estimate the unbiased Bermudan swaption value. These two steps are
repeated iteratively K ′ = 100 times with different seeds in the first simulation, to
remove the overall influence of the first simulation. The prices are reported in
basis points, with the notional N = 10,000 and the numbers in parentheses are
sample standard deviations.

Duality-based upper bounds, together with the lower bound computed us-
ing the path estimator give valid confidence intervals within which the true op-
tion price lies. The 100

(
1−γ

)
% confidence interval is constructed as[

V 0 (T0)−qγ/2
ŝLp
K ′ , V 0 (T0)+qγ/2

ŝHp
K ′

]
,

where ŝL , is the sample standard deviation for the path estimator and ŝH , is
the sample standard deviation for the duality-based upper bound estimator and
qγ/2 the normal distributed quantile function.

Tables 1 and 2 report the lower bound value estimates for the Bermudan
swaption via LSM and SGBM, the duality gap and 95%-confidence interval with
one-factor, respectively two-factor LMM. Our reported values for SGBM differ at
most 3 bps compared to the reported values in Andersen and Piterbarg (2010).

3Usually, a one-factor LMM already accounts for more than 98 percent and the two factor for more
than 99.5 percent of the overall variance.
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Type Strike LSM Lower SGBM Lower ∆̂SGBM ∆̂AP 95% CI

15M/3M 8% 184.61 (0.01) 184.62 (0.00) 0.0022 0.02 184.62 - 184.63

15M/3M 10% 49.11 (0.01) 49.11 (0.00) 0.0008 0.02 49.111 - 49.114

15M/3M 12% 8.73 (0.02) 8.73 (0.00) 0.0001 0.004 8.7322 - 8.7346

3Y/1Y 8% 355.08 (0.08) 355.06 (0.02) 0.0133 0.07 355.05 - 355.07

3Y/1Y 10% 157.13 (0.11) 157.45 (0.03) 0.0030 0.2 157.45 - 157.46

3Y/1Y 12% 60.96 (0.07) 60.97 (0.02) 0.0011 0.04 60.97 - 60.98

6Y/1Y 8% 806.61 (0.41) 808.11 (0.08) 0.0186 0.23 808.09 - 808.14

6Y/1Y 10% 415.35 (0.82) 418.58 (0.13) 0.0088 0.63 418.55 - 418.61

6Y/1Y 12% 212.13 (0.48) 214.16 (0.12) 0.0041 0.33 214.13 - 214.19

11Y/1Y 8% 1377.00 (1.07) 1383.10 (0.26) 0.0307 1.3 1383.00 - 1383.10

11Y/1Y 10% 805.93 (1.00) 811.13 (0.23) 0.0188 1.3 811.08 - 811.20

11Y/1Y 12% 495.16 (0.69) 499.20 (0.27) 0.0120 0.7 499.15 - 499.27

6Y/3Y 8% 493.91 (0.15) 494.12 (0.04) 0.0235 0.08 494.11 - 494.15

6Y/3Y 10% 291.84 (0.22) 293.03 (0.05) 0.0092 0.65 293.02 - 293.05

6Y/3Y 12% 169.22 (0.19) 169.79 (0.04) 0.0040 0.53 169.79 - 169.80

Table 1: Lower bound estimate of Bermudan payer swaptions in a one-factor
LMM. Prices are in basis points and standard deviations within parentheses.

The computational time for SGBM is roughly the same as for the LSM. The first
conclusion, the standard deviation for SGBM lower bounds is much smaller
than the ones obtained from LSM. On average, the ratio of variance of LSM and
SGBM is around 16, meaning that on average, one would need 16 times fewer
Monte Carlo seeds in order to obtain the same pricing accuracy. The second
conclusion, the duality gap ∆̂SGBM obtained by SGBM is significantly smaller
than the duality gap ∆̂AP as reported in Andersen and Piterbarg (2010). As one
can observe we obtain significantly smaller duality gaps, the largest duality gap
for the one-factor LMM is 0.0307 basis points, compared to 1.3 basis points in
Andersen and Broadie (2004). The conclusion here is that the duality gap ob-
tained by SGBM gives rise to really tight lower-upper bounds.

Figure 2 and 3 illustrate the exercise boundary and the exercise frequency
for the one- and two-factor LMM, respectively. The pictures demonstrate the
sensitivity of the product regarding the exercise policy. We can clearly see that
the Bermudan swaption is mostly canceled directly at the first or last exercise
date. The figures also demonstrate that the stopping times are not very differ-
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Type Strike LSM Lower SGBM Lower ∆̂SGBM ∆̂AP 95% CI

15M/3M 8% 183.83 (0.01) 183.83 (0.00) 0.0003 0.05 183.83 - 183.83

15M/3M 10% 42.17 (0.02) 42.24 (0.02) 0.0009 0.06 42.238 - 42.247

15M/3M 12% 5.21 (0.01) 5.22 (0.01) 0.0001 0.01 5.2183 - 5.2204

3Y/1Y 8% 339.15 (0.05) 339.35 (0.02) 0.0102 0.4 339.34 - 339.36

3Y/1Y 10% 125.12 (0.06) 125.58 (0.02) 0.0024 0.7 125.57 - 125.58

3Y/1Y 12% 35.76 (0.05) 35.87 (0.02) 0.0004 0.2 35.866 - 35.875

6Y/1Y 8% 747.23 (0.19) 751.88 (0.06) 0.0128 3.7 751.86 - 751.9

6Y/1Y 10% 315.73 (0.40) 319.18 (0.10) 0.0054 5.0 319.16 - 319.21

6Y/1Y 12% 126.41 (0.31) 129.14 (0.08) 0.0020 2.6 129.12 - 129.16

11Y/1Y 8% 1237.80 (0.63) 1253.40 (0.20) 0.0191 18.1 1253.4 - 1253.5

11Y/1Y 10% 610.34 (0.65) 628.93 (0.26) 0.0142 20.8 628.88 - 628.99

11Y/1Y 12% 322.55 (0.67) 335.18 (0.17) 0.0071 14.8 335.15 - 335.22

6Y/3Y 8% 444.83 (0.16) 446.15 (0.03) 0.0194 0.8 446.14 - 446.17

6Y/3Y 10% 225.67 (0.14) 227.24 (0.04) 0.0054 1.2 227.23 - 227.25

6Y/3Y 12% 106.16 (0.11) 107.27 (0.03) 0.0019 0.8 107.26 - 107.27

Table 2: Lower bound estimate of Bermudan payer swaptions in a two-factor
LMM. Prices are in basis points and standard deviations within parentheses.

ent from each other, although the few scenarios in which SGBM in comparison
with LSM exercises earlier have a significant effect on the price. This is the rea-
son why the SGBM prices are superior to the LSM prices in these tests and why
SGBM demonstrates tight lower-upper bounds.

4.2 The Effect of Number of Bundles

In this section we study how the number of bundles affect the lower, upper
bound values and the duality gap. In particular, we study Bermudan swaptions
with the same setup as in the previous section for a 10% coupon with 2p bundles
for p = 1,2,3,4. The duality gap is illustrated in Figure 4. We observe an almost
log-linear relationship between the duality gap and the number of bundles. In-
creasing the number of bundles will make the duality gap much smaller.
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Figure 2: Exercise boundary for LSM and SGBM with bundles, 2q , for q = 0,1,2,3
for a 3Y/1Y Bermudan Payer Swaptions in a one-factor LIBOR market model.
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Figure 3: Exercise boundary for LSM and SGBM with bundles, 2q , for q = 0,1,2,3
for a 6Y/3Y Bermudan Payer Swaptions in a two-factor LIBOR market model.

5 Conclusion

This paper presented the application of the Stochastic Grid Bundling Method
(SGBM) for approximating the values of Bermudan style options on the LMM by
simulation. SGBM is a regression-based Monte Carlo method where the contin-
uation value is projected onto a space where the distribution is known. In the
method, a practical bundling algorithm is employed which completes the algo-
rithm and performs very well for the test cases considered. We also demonstrate
how to obtain upper bounds without the need for nested Monte Carlo simu-
lations as generally required for regression based methods. The upper-lower
bounds obtained by SGBM are much tighter compared to the bounds obtained
by traditional methods. We illustrate SGBM’s performance using a number of
realistic examples. The computational time for the method is comparable to
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Figure 4: The duality gap from SGBM with varying numbers of bundles, 2q , for
q = 1,2,3,4 for Bermudan payer swaptions in a one-factor LIBOR market model.

Longstaff and Schwartz (2001), but a higher accuracy is achieved as demon-
strated by the reduced Monte Carlo variance. The SGBM method is easy to im-
plement and accurate. Variance reduction, based on iterated conditioning, in
combination with the bundling technique form the necessary ingredients for
accurate Bermudan swaptions valuation with a relative small number of paths
and basis functions. One should however keep in mind that we need to know
the conditional expected value of the basis functions.



A Bundling

Suppose we need to bundle Ks grid points at epoch Tn , given by S (Tn ,ωk ),
where k = 1, . . . ,Ks . The following steps are performed recursively.

1. Compute the mean of the given set of grid points,

µs
n = 1

Ks

Ks∑
k=1

S (Tn ,ωk ) .

2. Bundling the grid points is performed by dividing the grid points into two
groups, depending on whether the asset price for the grid point is greater
or less than the mean of the asset prices for the given set of grid points:

B1 (Tn ,ωk ) = 1
(
S (Tn ,ωk ) >µs

n

)
,

B2 (Tn ,ωk ) = 1
(
S (Tn ,ωk ) ≤µs

n

)
,

for k = 1, . . . ,Ks . B1 (Tn ,ωk ) returns ‘true’, when the asset price S (Tn ,ωk )
is greater than the mean, µs

n and belongs to bundle 1. B2 (Tn ,ωk ) re-
turns ‘true’, if it less than the mean and belongs to bundle 2. Formally,
Bs (Tn ,ωk ) returns ‘true’, if the grid point S (Tn ,ωk ) belongs to bundle s.

3. Bundles B1 (Tn) and B2 (Tn , ) can be split again, returning to step 1.
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Abstract

The regulatory credit valuation adjustment (CVA) for an outstanding over-the-
counter (OTC) derivative portfolio is computed using the portfolio’s exposure
over its lifetime. Usually, future portfolio exposure is approximated using a
Monte Carlo simulation because the portfolio value can be driven by several
market risk factors. For derivatives that lack an analytical approximation for
their mark-to-market (MtM) value, such as Bermudan swaptions, the standard
market practice is to use the regression functions from the least squares Monte
Carlo method to approximate their MtM along simulated scenarios. However,
such approximations have significant bias and noise, resulting in an inaccu-
rate CVA charge. In this paper, we extend the Stochastic Grid Bundling Method
(SGBM) for the one-factor Gaussian short rate model to efficiently and ac-
curately compute expected exposure, potential future exposure, and CVA for
Bermudan swaptions. A novel contribution of the paper is that it demonstrates
how different measures, such as spot and terminal measures, can simultane-
ously be employed in the SGBM framework to significantly reduce the variance
and bias of the solution.
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1 Introduction

The notional of outstanding over-the-counter (OTC) derivatives has grown ex-
ponentially over the last two decades, a rapid growth mainly resulting from the
increase in interest rate derivatives. Figure 1 illustrates the Bank for Interna-
tional Settlements’ semi-annual market survey of outstanding OTC derivatives
from June 1998 through December 2013. As of December 2013, the total out-
standing notional value for OTC derivatives was 710.2 trillion USD, with 584.4
trillion USD in interest rate derivatives. Any trading desk that enters an OTC
deal will face the risk that the counterparty at a future date may default and
cannot fulfil its payment obligations. Therefore, the bank needs to estimate the
total risk it faces with respect to a particular counterparty and to maintain a cap-
ital buffer, i.e. the capital requirement, to cover for potential losses attributable
to a default.

Before the financial crisis of 2007, the general market view was that large
companies were “too-big-to-fail” and, thus, an overall tendency existed to un-
derestimate counterparty risk. “A too-big-to-fail firm is one whose size, complex-
ity, interconnections, and critical functions are such that, should the firm unex-
pectedly go into liquidation, the financial system and the economy would face
severe adverse consequences”, to quote Federal Reserve Chair Ben Bernanke in
2010. However, the bankruptcy of AIG and Lehman Brothers in 2008 demon-
strated that, instead of being “too-big-to-fail”, they were instead “too-big-to-be-
allowed-to-fail” (Gregory, 2010, 17). These events increased the markets’ con-
cern regarding counterparty risk and the need for better risk management when
trading OTC derivatives. The Basel Committee on Banking Supervision has for-
mulated in the Basel II and III accords regulatory standards for setting up capital
requirements to cover for losses in the case of a counterparty default.

In the Basel II accord, the requirements consist of computing what is gen-
erally referred to as counterparty credit exposure, or the amount of money that
can be lost if default occurs. Examples of such quantities are expected exposures
(EE) and potential future exposures (PFE). In the Basel III accord, the require-
ments are more stringent and require the estimation of Credit Valuation Adjust-
ment (CVA) charges.1 CVA is an adjustment to derivatives’ prices to compensate
for a possible counterparty default. The value of an OTC deal that considers
counterparty risk is the value without counterparty risk, the risk-free price, and
a positive adjustment – the CVA charge.

Estimating CVA charges requires an underlying model and, therefore, makes
it a model-dependent quantity. Products that initially were model independent,
such as plain interest rate vanilla swaps, become model dependent because one
needs an interest rate model to price the future portfolio exposure at simulated
(also model dependent) default times of the counterparty.

1http://www.bis.org/publ/bcbs189_dec2010.pdf
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Figure 1: Global OTC derivative markets. The notional amounts (in trillions of
US dollars) outstanding of OTC derivatives by risk category from the Bank for
International Settlements’ semi-annual market survey, June 1998 through De-
cember 2013. For, foreign exchange (FX), interest rate (IR), equity-linked (EQ),
commodity (COM) derivatives, and credit default swaps (CDS).

Moving to exotic derivatives, the situation becomes even more complex be-
cause some of them are priced using Monte Carlo simulations, and in the con-
text of measuring counterparty risk, EE and PFE are computed using Monte
Carlo simulations. Nested Monte Carlo simulations are not an option in this
context for performance reasons. Rather than calculating CVA as an overnight
job, a trading desk wants real-time CVA estimations for each counterparty. Ad-
ditionally, to be able to hedge CVA and restructure portfolios to reduce CVA, the
challenge exists of estimating risks and first-order derivatives for all input pa-
rameters.

American Monte Carlo methods, such as the well-known least squares
method (LSM) as introduced by Longstaff and Schwartz (2001), for which the
continuation value is approximated by a regression to determine an optimal ex-
ercise policy, are today standard among practitioners in the context of CVA for
two primary reasons. First, these methods can increase computational perfor-
mance by avoiding nested Monte Carlo methods, i.e. Monte Carlo simulation
within a Monte Carlo simulation, by using the same set of paths for pricing and
for market simulation, as in De Prisco and Rosen (2005). Second, derivatives
such as American and Bermudan swaptions, i.e. products that can be exercised
at various dates prior to maturity, need to be priced using Monte Carlo meth-
ods. The benefit of having an American Monte Carlo CVA calculation is that
all instruments will be handled the same manner within the CVA computation,
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which makes it easy to aggregate trades and include netting, collateralisation,
and others.

A general problem with regression functions as they are used in the least
squares Monte Carlo method is that they do not necessarily provide accurate
approximations of the MtM value of the derivative over all simulated paths, and
can have significant bias and noise, resulting in an inaccurate CVA charge for
such products. Additionally, schemes used to improve the approximation of
the MtM value of such derivatives on the valuation date, such as using only in-
the-money (ITM) paths for approximations by regression functions, cannot be
used for CVA purposes because they are based on exposures along all paths and
scenarios.

In this paper, we extend the SGBM as introduced by Jain and Oosterlee
(2015) to compute the future exposure for Bermudan swaptions, where the one-
factor Gaussian short rate model is used to simulate interest rates dynamics. We
show through careful numerical experiments that the EE, PFE, and CVA com-
puted using this approach have much smaller errors and noise when compared
with using the standard LSM regression-based approach. One of the novel con-
tributions of this paper is that, under the SGBM problem formulation, in terms
of an inner and outer expectation, we can benefit from the flexibility to use dif-
ferent pricing measures within the same computation. Specifically in the case of
Bermudan swaptions, doing so allows us to avoid simulation of the numeraire
process, which helps to achieve significant variance reductions relative to the
LSM approach.

A comprehensive overview of CVA methodologies can be found in Can-
abarro and Duffie (2003), Picoult (2005), Redon (2006), Pykhtin and Zhu (2007),
Pykhtin and Rosen (2010), Gregory (2010) and Brigo, Morini and Pallavicini
(2013). There is extensive literature on pricing Bermudan swaptions using
Monte Carlo schemes, see for instance, Andersen (2000), Bender and Schoen-
makers (2006), Kolodko and Schoenmakers (2006) and Piterbarg (2004).

The paper is organized as follows. Section 2 introduces notations, the gen-
eral framework and formulates the Bermudan swaption pricing. Section 3 de-
scribes the SGBM algorithm for estimating EE, PFE and CVA charges. In Sec-
tion 4 we present numerical examples to illustrate the method and its efficiency
compared to the traditional LSM. And we conclude in Section 5.

2 Notation and General Framework

In this section, we introduce notation, the one-factor Gaussian short rate model
(GSR) and define the pricing of Bermudan swaptions. Next, we introduce the
methods for estimating counterparty risk using EE, PFE and CVA.
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2.1 The One-Factor Gaussian Short Rate (GSR) Model

In the general one-factor GSR model the short rate r (t ) follows a mean-reverting
process of the form,

dr (t ) = κ (t ) (θ (t )− r (t ))d t +σ (t )dW (t ) , (1)

where parameter κ (t ) is the rate of mean-reversion, σ (t ) the volatility, and W (t )
a standard Brownian motion. The parameters κ (t ) and σ (t ) are usually ob-
tained by calibrating the model to plain-vanilla option prices. The determin-
istic drift function θ (t ) can be directly calculated from the yield curve and fits
the curve for

θ (t ) = 1

κ (t )

∂ f (0, t )

∂t
+ f (0, t )+ 1

κ (t )

∫ t

0
e−2

∫ t
u κ(s)d sσ2 (u)du.

A non-smooth initial forward curve can affect the calculation of ∂ f (0, t )/∂t ,
but by defining a new variable x (t ) = r (t )− f (0, t ), computations are feasible.
The dynamics are given by

d x (t ) = (
y (t )−κ (t ) x (t )

)
d t +σ (t )dW (t ) , (2)

where x (0) = 0 and

y (t ) =
∫ t

0
e−2

∫ t
u κ(s)d sσ2 (u)du.

A benefit with the GSR model is that the risk-neutral expectation E
Q
t [·] of the

discounted bond price P (t ,T ) at time t with maturity T , that is,

P (t ,T ) = E
Q
t

[
e−

∫ T
t r (u)du

]
,

is known in closed-form and given by

P (t ,T ) = P (0,T )

P (0, t )
exp

(
−x (t )G (t ,T )− 1

2
y (t )G2 (t ,T )

)
,

G (t ,T ) =
∫ t

0
e−

∫ u
t κ(s)d s du.

We use interchangeably the following notations Et [·] = E [ ·|Ft ], where Ft is the
filtration at time t , generated by W (t ).

The analytic tractability of the GSR model makes it attractive for effective
numerical implementations such as for calibration procedures and Monte Carlo
simulation, e.g. for pricing and CVA calculations. Criticisms are that the model
allows for negative short rates and that it has very limited flexibility for mod-
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elling yield curve moments, since all points on the yield curve are perfectly cor-
related. However, many trading desks today value Bermudan swaptions by us-
ing a GSR model, e.g. by the one-factor Hull-White model (HW1F) by Hull and
White (1990) due to its simplicity and tractability.

For practical reasons to be explained, we choose to work under the spot
measure QB . The numeraire induced by the spot measure is the discrete version
of the continuous compounded money market account with rolling certificate
of deposit B (t ), that is

B (t ) = P (t ,Ti+1)
i∏

n=0
P−1 (Tn ,Tn+1) , t ∈ (Ti ,Ti+1] ,

with corresponding fixed discrete tenor structure, 0 = T0 < T1 < . . . < TN . Let
EB

t = Et denote the conditional expectation with respect to the measure induced
by B (t ). One benefit with the spot measure is that the numeraire asset B (t ) is
“alive” throughout the tenor and therefore, allows for simulating paths irrespec-
tive of the tenor. This is practical for e.g. Bermudan swaptions and American
Monte Carlo methods, since the contract can mature randomly at any of the
dates in the discrete tenor structure.

Further details on the one-factor Gaussian short rate model, such as deriva-
tions of the bond equations, connection to HJM, is out of the scope of this paper,
but may be found in Brigo and Mecurio (2001).

2.2 Bermudan swaptions

A vanilla interest rate swap is a contract that allows one to change payments
between two different cashflows, often a floating leg against a fixed leg. The
values of the forward swap rate Sn,m (t ) and swap annuity An,m (t ) at time t with
payments Tn+1, . . . ,Tm are given by.

Sn,m (t ) = P (t ,Tn)−P (t ,Tm)

An,m (t )
, An,m (t ) =

m−1∑
i=n

P (t ,Ti+1)τi ,

where τi = Ti+1 −Ti .
Given a lockout, i.e., a no-call (no-exercise) period up to time T1, the Bermu-

dan swaption gives the holder the right - but not the obligation - at a set of fixing
dates Tn , for n ∈ I = {1,2, . . . ,m −1}, i.e., for Tn ∈ T = {T1,T2, . . . ,Tm−1} to en-
ter into a fixed-for-floating swap Sn,m with fixing date Tn and last payment date
Tm . The Bermudan swaption with the fixed coupon k, exercised at time Tn cor-
responds to the payout given by

Un =ϕN An,m (Tn)
(
Sn,m (Tn)−k

)
,



Counterparty Credit Exposures for Interest Rate Derivatives using the SGBM 75

where N denotes the notional, and ϕ ∈ {−1,+1} the payer or receiver factor
(+1 for a payer and −1 for a receiver swaption). The holder of a payer Bermu-
dan swaption will pay the fixed swap leg and receive the floating swap leg. The
present value V0 of a Bermudan swaption is the supremum taken over all dis-
crete stopping times of all conditional expected discounted payoffs, that is,

V0 = B (T0) sup
n∗∈I

ET0

[
Un∗

B (Tn∗ )

]
. (3)

The option value at an arbitrary time Tn is the maximum of the intrinsic
value Un and the conditional continuation value Hn , i.e.,

Vn = max(Un , Hn) , (4)

where Hm = 0 at maturity Tm . The continuation value Hn is the conditional
expected option value at time Tn+1 and given by,

Hn = B (Tn)ETn

[
Vn+1

B (Tn+1)

]
. (5)

The problem is solved via backward induction, starting from the terminal
time Tm , and solved by recursively repeating (4) and (5) until we reach time T0,
where we get the value V0 of the Bermudan swaption contract.

2.3 Counterparty Credit Risk

The exposure E(t ) towards a counterparty C at time t is given by the positive
side of a contract (or portfolio) value V (t ), that is,

E(t ) = max{V (t ) ,0} . (6)

This can be seen as the maximum loss if the counterparty defaults at time t . Let
τC denote the counterparty’s default time, and the Q-probability that the coun-
terparty C defaults before time t be given by PD(t ) = Q (τC < t ). A commonly
used default probability approximation is

PD(t ) = 1−exp

(
−

∫ t

0
γ (t )d t

)
, (7)

where the probability factor γ (t ) is called the hazard rate or the instantaneous
credit spread, see Gregory (2010). The probability that the counterparty defaults
in d t years given that it has not defaulted so far is γ (t )d t . The default probabil-
ity for a given counterparty is usually bootstrapped from quoted credit default
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swaps (CDS)2.

2.3.1 Credit Value Adjustment (CVA)

CVA is the market value of counterparty credit risk, i.e., the difference between
the risk-free portfolio value and the value taking into account the counterparty’s
default probability. The charge is computed as the integral over all points in
time of the discounted expected exposure given that the counterparty defaults
at that time, multiplied with the default probability and the loss given default,
i.e., one minus the recovery rate R. Following Gregory (2010) the CVA on an
instrument (or portfolio) with maturity T is given by

CVA = (1−R)B (0)
∫ T

0
E

[
E(t )

B (t )
δ (t −τC )

]
d t ,

where δ is the Dirac delta function, which is one at the counterparty C’s default
at time τC , zero otherwise, and T is the maturity of the instrument. Assuming
that there is no wrong-way risk (WWR),3. i.e., the default is independent of both
the portfolio value and the numeraire, and application of Bayes’ theorem, the
CVA can be expressed as

CVA = (1−R)B (0)
∫ T

0
E

[
E(t )

B (t )

∣∣∣∣ t = τC

]
E [δ (t −τC )]d t .

The conditional expectation E [ ·| t = τC ] is the current expected exposure at time
t given that counterparty C defaulted at time t , i.e., t = τC . The second expec-
tation within the integrand is the counterparty C’s default probability function,
i.e., PD (t ) in (7). The CVA can therefore be written as,

CVA = (1−R)B (0)
∫ T

0
E

[
E(t )

B (t )

∣∣∣∣ t = τC

]
dPD (t ) . (8)

2Basel III states that "Whenever such a CDS spread is not available, the bank must use a proxy
spread that is appropriately based on the rating, industry and region of the counterparty". Cali-
bration methods ranked from best to worst, first, from CDS spreads (if traded and quoted in the
marked), second, from bond spreads (if traded and quoted in the marked), and third, from a rating
transition matrix and last, from proxies such as stock prices or reported fundamental data.

3The International Swaps and Derivatives Association (ISDA) defines the wrong-way risk as "the risk
that occurs when exposure to a counterparty is adversely correlated with the credit quality of that
counterparty". If these two effects tend to happen together, then that co-dependence will increase
the CVA on the contract and it will make the CVA larger than when the effects were independent.
For details on WWR see for instance Hull and White (2012), Rosen and Saunders (2012), Redon
(2006)
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Let the expected exposure (EE) and the discounted expected exposure EE∗ (t ) at
time t be given by

EE(t ) = E [ E(t )| t = τC ] ,

EE∗ (t ) = B (0)E

[
E(t )

B (t )

∣∣∣∣ t = τC

]
.

Then, for a discrete time grid 0 = T0 < T1 < ·· · < Tm = T of observation dates
Equation (8) can be approximated by

CVA ≈ (1−R)
m−1∑
n=1

EE∗
n (PDn+1 −PDn) , (9)

where EE∗
n = EE∗ (Tn), to highlight that we work on a discrete time grid.

CVA can be seen as the weighted average of the discounted expected expo-
sure with the weights given by the default probabilities. The complexity of CVA
estimation lies within the evaluation of the exposure E(t ). Market practice is
by American Monte Carlo methods where a large number of market scenarios
of factors such as yield and inflation curves, FX rates, equity and commodity
prices, credit spreads and others are simulated.

Next to EE and EE∗, trading desks are interested in additional exposure pro-
files such as the PFE. For a given date t , the α-percentile PFEα is the maximum
exposure of a portfolio with a high degree of statistical confidence α defined as,

PFEα (t ) = inf{x : P (EE(t ) ≤ x) ≥α} , 0 ≤ t ≤ T.

where P is the historical probability measure.

3 Monte Carlo Simulation of Counterparty Credit

Risk

In this section we summarize the Least Squares Method (LSM) by Longstaff and
Schwartz (2001) and present a version of the Stochastic Grid Bundling Method
(SGBM) algorithm suitable for CVA calculation of Bermudan swaptions.

There are two choices for estimating the exposures on future scenarios,
where the first approach includes all the payments including the one at the ob-
servation date, while the second approach only includes the future payments
with respect to the observation date. We stay with the latter approach, which
in case of cash settled early exercise options implies that the exposure of the
option, if not exercised, is equal to its corresponding continuation value along
the scenario at time Tn , i.e., Hn = En . If exercised at the observation date, we
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assume no exposure for the option.
We let market state variable rn represent the simulated market information

at time Tn , and in our case, they are the short rates simulated using the one-
factor GSR model in Equation (1).

3.1 The Least Squares Method (LSM)

The LSM, introduced by Carriere (1996) and popularized by Longstaff and
Schwartz (2001), is a simulation-based method where one approximates the
holding value Hn at each exercise time Tn of a Bermudan option using paramet-
ric functions. The parametric functions are approximated using least squares
regression, giving the continuation value to have the form,

Hn =
q∑

i=0
αi ,nζi ,n , (10)

for a set of q basis functions ζi ,n : Rd → R, i = 0,1, . . . , q , and regression coef-
ficients αi ,n . The basis functions ζi ,n are usually polynomials of the simulated
state variables, in our case the short rates, e.g. ζi ,n = r i

n The regression coeffi-
cients are determined, when moving backwards in time, by minimizing

∑
ω∈ΩI T M (Tn )

(
q∑

i=0
αi ,nζi ,n(ω)−U∗

τn (ω)(ω)

)
,

where ΩI T M (Tn) is the subset of paths on which the swaption is in-the-money
(ITM) at time Tn , and

τn(ω) = min
(
T j : U j (ω) ≥ H j (ω), j = n +1, . . . ,m

)
.

U∗
n (ω) represents the corresponding future cashflows discounted along the path

ω, given the observation date Tn . For the purpose of CVA, we do not make a
restriction on the paths used for regression (based on whether or not they are
ITM). Additionally, to avoid oversight bias, a second set of paths is generated,
and regression functions from the initial simulation are used to approximate
the continuation value and hence the exposures along the scenarios.

3.2 The Stochastic Grid Bundling Method (SGBM)

SGBM is a simulation-based dynamic programming method, which first gen-
erates Monte Carlo paths, forward in time (when the diffusion process appears
in closed-form or in approximated closed-form the sample paths can be gener-
ated directly). This is then followed by finding the optimal early-exercise policy
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by moving backwards in time. Although SGBM, like LSM, uses least squares
regression to approximate parametric functions, the two approaches are signif-
icantly different. In loose terms, there are two key differences. First, in the case
of LSM, regression is performed on the discounted future cashflows, while in the
case of SGBM regression is directly performed on the value function. Second, in
LSM, the regressed function is an approximation of the continuation value, and
it is used for making the early exercise decisions. In the case of SGBM, the re-
gressed function is an approximation of the option value function in a reduced
space. The continuation value for a particular exposure date is determined as
the conditional expectation of this regressed functional approximation on the
next exposure date. A more detailed description of SGBM can be found in Jain
and Oosterlee (2015).

In SGBM the exposure (continuation value), En at time Tn , is calculated us-
ing the law of iterated expectations, that is,

En = B (Tn)E

[
Vn+1

B (Tn+1)

∣∣∣∣rn

]
= B (Tn)E

[
E

[
Vn+1

B (Tn+1)

∣∣∣∣ζn+1,rn

]∣∣∣∣rn

]
, (11)

where ζn = (
ζ0,n , . . . ,ζq,n

)⊤ is a q-dimensional set of basis functions. For Bermu-
dan swaptions in the one-factor Gaussian short rate model, we take a polyno-
mial of the short rates as the basis functions. Writing the expected exposure as
in Equation (11), decomposes the problem into two steps. The first step involves
computing the inner conditional expectation,

Zn+1 = E

[
Vn+1

B (Tn+1)

∣∣∣∣ζn+1,rn

]
, (12)

which is followed by the computation of the outer expectation,

En = B (Tn)E [ Zn+1|rn] . (13)

By carefully selecting the basis functions, Equation (13) can be computed
in “closed-form”. However, numerical approximations are required to calculate
Zn+1 in Equation (12).

In order to compute Zn+1 in Equation (12), Vn+1 needs to be conditioned
on rn . If computational costs were not a concern, this would imply simulating a
new set of scenarios originating from each rn(ω) and projecting the correspond-
ing Vn+1 for these sub-scenarios onto the basis functions ζn+1. This would re-
sult in a regressed function for each outer scenario rn(ω) at Tn . However, nested
Monte Carlo simulation is computationally inefficient as the number of paths
grows exponentially with each time step.
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Figure 2: Illustrates SGBM. Left: Simulated paths at time Tn are clustered into
two distinct bundles (green and blue). Right: The continuation values are ap-
proximated by a polynomial for the paths originating from the blue bundle. The
procedure is repeated for each bundle.

A practical approach to condition Vn+1 on rn is to use bundling techniques.
Bundling was introduced by Tilley (1993) and extended to higher dimensions in
the State Space Partitioning Method (SSPM) in Jin, Tana and Sun (2007), and is
a method to partition the state space into non-overlapping regions, so that each
point in the space can be identified to lie in exactly one of the bundled regions.
The intuitive idea behind bundling is that for rn(ω), if the neighbouring paths
are grouped together, the resulting distribution of paths at the next time step, in
the limiting case of infinite scenarios and bundles, would be similar to the one
obtained if new scenarios were generated starting from rn(ω).

At each time Tn , the paths rn (ωk ), for k = 1, . . . ,K , are clustered into sets of
non-overlapping bundles B (Tn). We bundle the grid points at each time step
using the recursive bifurcation algorithm, explained in Appendix B. The number
of bundles, after p iterations, equals 2p . Figure 2 illustrates the bundling and
regression procedure using two bundles. The computational complexity for the
bundling is linear in the total number of grid points K , the dimensions d , and
the number of iteration steps p. This makes the method of bundling practical
and fast.

The inner expectation, Zn+1 given by Equation (12) is then approximated
onto a polynomial subspace where the values are linear combinations of the ba-
sis functions. This is done by regressing locally, within each bundle, the option
values, divided by the corresponding bank account process, at Tn+1 for those
paths that originate from the s-th bundle which contains rn (ωk ), that is

Ẑ s
n+1 =

q∑
i=0

αs
i ,n+1r i

n+1, rn(ωk ) ∈Bs
n , (14)



Counterparty Credit Exposures for Interest Rate Derivatives using the SGBM 81

such that the following residual is minimized

min
αs

∑
rn (ω)∈Bs

n

(
Ẑ s

n+1 (ω)− Vn+1 (ω)

B (Tn+1,ω)

)2

. (15)

The exposure at a grid point rn (ωk ) that belongs to bundle Bs
n is then ap-

proximated by,

Ên (ωk ) = B (Tn ,ωk )E
[

Ẑ s
n+1

∣∣rn (ωk )
]

≈ B (Tn ,ωk )
q∑

i=0
αs

i ,n+1E
[
ζi ,n+1

∣∣rn (ωk )
]

. (16)

Equation (16) converges to the true expected exposure, when the number of
asset paths K and ithe number of bundles tend to infinity, see Jain and Oosterlee
(2015) for details.

Once we have calculated exposures at each time step Tn using Equation (16)
we can approximate the expected exposure as

ÊEn ≈ 1

K

K∑
k=1

Ên (ωk ) ,

and the discounted expected exposure as

ÊE
∗
n ≈ 1

K

K∑
k=1

B (T0)
Ên (ωk )

B (Tn ,ωk )
,

for k = 1, . . . ,K . Then, by using Equation (9), the CVA charges follow.
Regression-based American Monte Carlo methods depend on the choice of

the regression variables. To avoid over-fitting one should not use too many re-
gression variables since they are easily affected by outliers in the simulation.
For Bermudan swaptions it is common to use a second-order polynomial (of
the underlying swap value or the short rate) for the regression, see for instance,
Glasserman and Yu (2004).

Remark 10 As the regression approximation depends on a rather arbitrary

choice of the basis functions, one should ideally have an estimate of both the up-

per and lower bound values for the true price. A lower bound for the option price

can be computed using the so-called path-estimator approach, where the option

value is computed as an expectation of the discounted payoffs from a sub-optimal

exercise policy, see for example, Broadie and Glasserman (2004). The policy is

sub-optimal, because of the numerical errors in its computation. One should
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use a fresh set of paths for the path-estimator, and not the same ones used to ob-

tain the early-exercise policy, to avoid a foresight bias. An upper bound is found

using the duality approach, based upon the work of Rogers (2002) and Haugh

and Kogan (2004). This approach has moreover been extensively studied and de-

scribed in Andersen and Broadie (2004) and Kolodko and Schoenmakers (2004).

Belomestny, Bender and Schoenmakers (2009) present an efficient method for

obtaining the upper bound using the duality approach, which can be used for

Bermudan swaptions. The quality of the upper bound produced by the duality

approach depends on the quality of the estimated exercise policy in the first pass,

a more accurate policy gives tighter upper and lower bounds. In this paper, how-

ever, we focus only on the lower bounds and show that the ones obtained using

SGBM, with significantly fewer paths, converge to the same lower bound value as

those obtained using LSM. One can, in a relatively straightforward way, use the

exercise policy obtained from SGBM in the duality approach to obtain a corre-

sponding upper bound.

3.2.1 Hybrid Measure Monte Carlo

CVA calculations are done at netting set level, where the netting set can have
several different types of deals and underlying driving risk-factors. Addition-
ally, a CVA quote for a new deal, added or removed from an existing netting set,
should be ideally priced in real-time. As the computational time for Monte Carlo
simulations scales with number of scenarios, it is important that the standard
error and bias of the results from the simulation are as small as possible. Vari-
ance reduction then is a highly desired feature for calculations related to CVA
pricing.

An advantage of using SGBM is that it allows adapting the problem, to break
the expectation, which would otherwise be solely computed using the Monte
Carlo approach, to sub-problems where part of expectation is known in closed
form. This feature helps in significantly bringing down the variance of the solu-
tion. In particular for the Bermudan swaptions, we employ hybrid measures to
achieve variance reduction.

The T -forward measure, with corresponding expectation ET and the T -
maturity zero coupon bond P (t ,T ) as the numeraire has the advantage that
it allows for decoupling the payoff V (T ) from the numeraire and take out the
discount factor from the expectation, i.e,

V (t ) = B (t )Et

[
V (T )

B (T )

]
= P (t ,T )ET

t [V (T )] .
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One benefit however of the spot measure compared to the T -forward measure
is that the numeraire asset B (t ) is alive throughout the tenor and therefore al-
lows for simulating paths irrespective of tenor. In SGBM, we will employ hybrid
measures to obtain an efficient Monte Carlo simulation. In order to apply the
hybrid measure we modify the inner-expectation, as given in Equation (12), to
the following,

Zn+1 = E [Vn+1|ζn+1,rn] , (17)

which is followed by the computation of the following outer expectation (as op-
posed to Equation (13)),

En = B (Tn)E

[
Zn+1

B (Tn+1)

∣∣∣∣rn

]
. (18)

The inner expectation is approximated by regression on short-rates simu-
lated under the spot measure. Note that the minimization problem for regres-
sion problem changes from Equation (15) to:

min
αs

∑
rn (ω)∈Bs

n

(
Ẑ s

n+1 (ω)−Vn+1 (ω)
)2

. (19)

The outer-expectation in Equation (18) can be computed under the T -
forward measure, rather than the spot measure. This would allow computing
the expectation, without explicitly simulating the bank account process B . The
exposure at grid point rn (ω) that belongs to bundle Bs

n is therefore computed
as,

Ên (ω) = B (Tn ,ω)E

[
Ẑ s

n+1

B(Tn+1)

∣∣∣∣∣rn (ω)

]
= P (Tn ,Tn+1,ω)ETn+1

[
Ẑ s

n+1

∣∣rn (ω)
]

≈ P (Tn ,Tn+1,ω)
q∑

i=0
αs

i ,n+1E
Tn+1

[
ζi ,n+1

∣∣rn (ω)
]

. (20)

As ζi ,n+1 is a polynomial function of the short-rates (simulated in the Gaus-
sian factor model), its conditional moments are known in closed form under the
T forward measure. An outcome of formulating the problem as above is that we
only need to simulate the future option price, and not additionally the corre-
sponding future bank account process, to obtain the option price on a given
exposure date. As a result we achieve significant variance reduction in the ex-
posure calculation when compared to plain LSM.
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3.2.2 The SGBM-CVA Algorithm

As explained, SGBM computes the continuation value in two steps: we first
compute the expected option value, conditioned on a finer information set,
given by Equation (12), which is followed by the computation of the outer ex-
pectation, given by Equation (18).

The SGBM-CVA algorithm is therefore divided into two parts, a first and sec-
ond pass. In the first pass, we perform a forward phase where K1 Monte Carlo
paths are simulated, future cash flows are calculated and a regression basis is
constructed. This is subsequently followed by a backward phase, where we es-
timate the payoffs and the polynomials by regression. In order to get unbiased
values and lower bound values, we perform a second pass with a new forward
phase where we simulate K2 Monte Carlo paths, evaluating the payoffs using the
regression functions estimated in the first pass but with the new set of paths.

For clarity, we summarize the steps for the SGBM-CVA algorithm.

I. FIRST PASS: Estimate Regression Functions.

1. Generate K1 paths ω1, . . . ,ωK1 , using Equation (2).

2. For each path ωk and time Tn , for k = 1, . . . ,K1 and n =
1, . . . , N − 1, compute the state variable rn (ωk ) and values
Vn (ωk ) , where VN , is known and for n = 1, . . . , N−1, it is solved
recursively as below.

3. For each n = N −1. . . ,1,

(a) Bundle the grid points at Tn−1, into a distinct bundles (ex-
cept at T0, where there is only one point) using the algo-
rithm described in Appendix B.

(b) Compute the regression functions, Z s
n , s = 1, . . . , a, given

by Equation (14), using the option values Vn at Tn for the
paths originating from the s-th bundle, Bs

n−1, at Tn−1.

(c) Compute the En for the grid points in the s-th bundle
at Tn−1, using Equation (20) for those paths for which
rn (ωk ) belongs to the bundle Bs

n−1 , for s = 1, . . . , a.

II. SECOND PASS: Estimate CVA.

1. In order to compute an unbiased CVA, generate a fresh set of

K2 paths ω
′
1, . . . ,ω

′
K2

, and compute new state variables r
(
ω

′
k

)
and values Vn

(
ω

′
k

)
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2. For each n = N −1. . . ,1,

(a) Bundle the grid points at Tn−1 using the same algorithm
as in the first pass and described in Appendix B.

(b) Compute the exposures for the grid points in bundle s,
at time step Tn−1, using the regression function Z s

n s =
1, . . . , a, obtained in the first pass.

(c) Compute the EEn , EE∗
n and PFEα (Tn) for the grid points in

the s-th bundle at Tn−1, for those paths for which rn

(
ω

′
k

)
belongs to the bundle Bs

n−1, for s = 1, . . . , a.

3. The CVA charge is then calculated as,

CVA ≈ (1−RC )
N−1∑
n=0

EE∗
n (PDn+1 −PDn) .

Remark 11 Valuation of Bermudan swaptions with American Monte Carlo

methods requires an estimate of the early exercise boundary. Exposure can then

be seen as a barrier option (knock-in) with the estimated exercise boundary as the

barrier. Once the option has been exercised (knocked) along a path at time Tn the

exposure Em at Tm for Tn < Tm for that path becomes zero.

Remark 12 The market standards for swaptions are cash-settled contracts, i.e.,

contracts that settle into a cash payment when exercised. The benefit is that one

avoids credit exposure (and the obligation of collateral posting due to the Credit

Support Annex, or CSA) and therefore have zero exposure after the exercise date.

For physically settled contracts, i.e., contracts entered into an interest rate swap

when the contract is exercised, one would have to calculate the exposure of the

swap from the exercise date throughout the swap tenor. The Bermudan swap-

tion formulas in Section 2.2 describe physical-settled contracts. The standard

pricing formulas for cash-settled agreements are not properly justified, since one

would have to calculate the annuity An,m by discounting at the fixed swap rate

Sn,m (T0). Since the SGBM-CVA algorithm presented here works irrespectively of

settlement type, we assume for simplicity that the annuity for cash- and physical-

settled Bermudan swaptions are the same.

4 Numerical Results

In this section we study the performance of SGBM-CVA by means of numerical
experiments. The numerical examples presented below demonstrate the effi-
ciency of calculating CVA using SGBM.
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4.1 Setup

We use a one-dimensional market state variable r (t ) to represent the market
information, and we let the short rates be simulated using the HW1F model by
Hull and White (1990), which is commonly used for pricing Bermudan swap-
tions. Under HW1F the short rate dynamics are given by Equation (1) with κ and
σ constant. We calibrate the HW1F model parameters to the initial zero coupon
bond prices observed in the market 2 January 2014. For the default probability
function in equation (7), we set the hazard rate γ (t ) = 0.05, and the recovery rate
RC = 0.40.

For the LSM and SGBM regression, we use a third-order polynomial with the
short rate as the basis and ζi ,n = r i

n . The moments for the short rates under the
HW1F dynamics in Equation (1) are given in Appendix C.

We consider Bermudan swaptions exercisable once a year with Moneyness
(MN) i.e, the spot vs. strike ratio of 80%, 100% and 120%, and with realistic
HW1F parameters κ= 0.01,0.02 and σ= 0.01,0.02.4

We simulate the first pass with K1 = 4096 seeds using the Mersenne twister
pseudo random number generator to estimate the regression functions. Subse-
quently, we simulate the second pass with K2 = 8192 quasi-Monte Carlo Sobol
paths using the regression function estimated in the first pass to estimate the
unbiased Bermudan swaptions values, EE, PFE and CVA charges. Each test is
repeated 100 times with different seeds in the first pass, to remove the overall
influence of the Mersenne twister pseudo random number generator.

We use the bundling scheme described in Appendix B with 8 bundles and
with the same number of bundles at each time step, except at time T0, where
there is only one point, r0. We report the values obtained from the second pass.
The prices are reported in basis points, with the notional N = 10,000.

The variance reduction is defined as the ratio between the variance from
LSM and the variance from SGBM, where both estimates are obtained from 100
simulations.

4.2 EE and PFE values

Figure 3 illustrates the PFE5%, PFE95% and EE values generated by LSM and
SGBM for 5Y, 10Y, 15Y and 20Y Bermudan swaptions. We observe that both
methods generate the same values and the characteristic shapes, i.e., the ex-
posure tends to increase first, since there is an increased probability that the
Bermudan swaptions will be deeper in-the-money at a future exercise date.

The efficiency of SGBM compared to LSM for estimating PFE5%, PFE95% and
EE is illustrated in Figure 4. Clearly, LSM is affected by outliers for the high quan-

4For instance, at the beginning of 2015, the HW1F, with value of κ and σ calibrated to USD, co-
terminal swaptions were both around 0.01.
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tile PFE estimation. For the EE by SGBM, we obtain on average a variance re-
duction of a factor 100.

4.3 CVA

For the CVA computations, we consider Bermudan swaptions with maturities
of 5Y and 10Y. Tables 1 and 2 report the lower bound values for the Bermudan
swaptions and CVA charges via LSM and SGBM. The numbers in parentheses
are sample standard deviations and the values from LSM and SGBM differ at
most 5 bps. As a first observation, the standard deviation for the SGBM lower
bounds is much smaller than the ones obtained from LSM. The efficiency of
SGBM compared to LSM for pricing and CVA calculation is illustrated in Figure
5. For the lower volatility scenarios, i.e., σ= 0.01 we obtain for the 5Y Bermudan
swaption CVA a variance reduction of a factor 200 and for the 10Y a factor of 400.
For the high volatility case, i.e., with σ= 0.02 we observe a variance reduction of
a factor 100 for the 5Y and 200 for the 10Y test case. The interpretation here is
that for a 10Y Bermudan swaption under HW1F with σ= 0.01 we will on average
need 400 times more Monte Carlo seeds for LSM compared to SGBM in order to
obtain equally "accurate" CVA values.

4.4 Approximation Error

For the approximation error we study the convergence by increasing the num-
ber of paths in the first and the second pass. As the “true” value, we select the
mean of the LSM computations with K1 = 131,072 and K2 = 2K1, repeated 100
times. Then, for different values of K1, with K2 = 2K1, we repeat the simula-
tion 100 times, and estimate the relative error with respect to the “true” value,
for LSM and SGBM with 1, 2, 4, 8 and 16 bundles. In Figure 6, we illustrate the
mean and the standard deviation of the error for a 5Y Bermudan swaption with
κ = 0.01, σ = 0.01 and an MN value of 100%. One can observe that LSM re-
quires a large number of paths to converge to the true value. For SGBM-1 (i.e.
SGBM with 1 bundle) we see an upward-biased value, but we observe a signif-
icant improvement in convergence by SGBM-2 which converges at K1 = 4096
demonstrating essentially the same accuracy as LSM in the case of K1 = 131,072
paths. The error is further reduced by increasing the number of bundles and the
computations with 4, 8 and 16 bundles converge at K1 = 16384 paths. SGBM-16
is slightly upward-biased for small numbers of paths, most likely because some
bundles will then contain too few paths to allow a feasible regression without
too large error. It can be seen that the SGBM-16 is slightly upward-bias for low
number of paths compared to SGBM-4 and SGBM-8. We observe similar pat-
terns and convergence for different MN values, maturities and parameter setup,
when the number of paths per bundle is too small.
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MN κ σ SGBM LSM CVA SGBM CVA LSM

0.8 0.01 0.01 477.30 (0.17) 477.39 (3.90) 51.70 (0.014) 51.70 (0.21)

1.0 0.01 0.01 548.12 (0.18) 548.26 (4.13) 58.58 (0.014) 58.53 (0.22)

1.2 0.01 0.01 599.25 (0.18) 599.65 (4.32) 63.41 (0.014) 63.35 (0.21)

0.8 0.01 0.02 736.43 (0.46) 737.74 (7.09) 76.31 (0.035) 75.41 (0.36)

1.0 0.01 0.02 801.25 (0.46) 803.21 (7.14) 82.29 (0.033) 83.04 (0.38)

1.2 0.01 0.02 846.78 (0.50) 847.85 (7.32) 86.45 (0.034) 86.16 (0.35)

0.8 0.02 0.01 471.07 (0.18) 471.89 (4.18) 51.06 (0.02) 51.32 (0.22)

1.0 0.02 0.01 542.15 (0.18) 542.76 (4.09) 57.99 (0.01) 58.01 (0.22)

1.2 0.02 0.01 593.49 (0.18) 594.28 (4.52) 62.86 (0.01) 63.06 (0.21)

0.8 0.02 0.02 723.13 (0.45) 726.45 (6.90) 75.03 (0.03) 74.86 (0.37)

1.0 0.02 0.02 788.16 (0.46) 791.75 (6.85) 80.96 (0.03) 80.88 (0.35)

1.2 0.02 0.02 833.95 (0.46) 837.23 (6.92) 85.13 (0.03) 85.63 (0.39)

Table 1: Lower bound 5Y Bermudan swaption risk-free prices and CVA charges
under HW1F using LSM and SGBM. Prices are in basis points and standard de-
viations within parentheses.

MN κ σ SGBM LSM CVA SGBM CVA LSM

0.8 0.01 0.01 947.30 (0.23) 946.74 (7.87) 175.04 (0.03) 175.41 (0.66)

1.0 0.01 0.01 1187.0 (0.24) 1186.7 (8.77) 215.55 (0.03) 214.56 (0.75)

1.2 0.01 0.01 1367.7 (0.23) 1368.2 (9.04) 245.44 (0.03) 244.85 (0.70)

0.8 0.01 0.02 1584.1 (0.54) 1586.4 (13.25) 283.59 (0.07) 282.52 (1.15)

1.0 0.01 0.02 1805.5 (0.55) 1809.4 (13.59) 319.16 (0.08) 319.46 (1.14)

1.2 0.01 0.02 1966.0 (0.53) 1968.5 (14.52) 344.73 (0.07) 343.11 (1.15)

0.8 0.02 0.01 921.21 (0.23) 920.38 (8.21) 170.12 (0.03) 170.34 (0.72)

1.0 0.02 0.01 1162.7 (0.22) 1161.2 (8.59) 211.08 (0.03) 210.45 (0.72)

1.2 0.02 0.01 1345.0 (0.24) 1344.3 (8.83) 241.23 (0.03) 241.07 (0.71)

0.8 0.02 0.02 1529.5 (0.51) 1536.7 (12.96) 273.61 (0.07) 274.5 (1.13)

1.0 0.02 0.02 1752.3 (0.54) 1758.7 (14.18) 309.44 (0.07) 311.73 (1.16)

1.2 0.02 0.02 1914.2 (0.56) 1919.6 (13.73) 335.13 (0.07) 334.72 (1.20)

Table 2: Lower bound 10Y Bermudan swaption risk-free prices and CVA charges
under HW1F using LSM and SGBM. Prices are in basis points and standard de-
viations within parentheses.
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Figure 3: Bermudan swaption EE, PFE5% and PFE95% under HW1F with κ= 0.01
and σ = 0.01 with notional N = 10,000. Upper Left: 5Y Maturity. Upper Right:
10Y Maturity. Lower Left: 15Y Maturity. Lower Right: 20Y Maturity.

SGBM demonstrate a faster convergence and produces more stable values
with significant lower variances. The reason is that LSM uses the regressed con-
tinuation values directly to make the early-exercise decision. A large number
of paths and basis functions are required to reduce the noise in this regressed
function. Therefore, the quality of the LSM early-exercise policy may not be ac-
curate for a small number of paths and basis functions. In SGBM, however, the
regressed function is just the inner expectation, which is not used for decision-
making. The outer expectation, which can be analytically computed, gives the
continuation value and is used to make the early exercise decision. As the noise,
or the error due to regression, is normally distributed with a zero mean, the
outer expectation of the noise would be zero.

5 Conclusion

Usually banks have a large number of trades in a portfolio and it would be
computationally inefficient to require several runs for the trades in the port-
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Figure 4: EE, PFE5% and PFE95% variance reduction for a Bermudan swaption
under HW1F with κ = 0.01, σ = 0.01 and notional N = 10,000. Upper Left: 5Y
Maturity. Upper Right: 10Y Maturity. Lower Left: 15Y Maturity. Lower Right:
20Y Maturity.

folio to get a CVA which we can be confident about if there is high variance.
This paper presented the application of the Stochastic Grid Bundling Method
(SGBM) for calculating exposures, potential future exposure and approximat-
ing CVA charges for Bermudan swaptions in an American Monte Carlo simu-
lation framework. SGBM is a regression-based Monte Carlo method which is
accurate and easy to implement. Variance reduction, based on iterated con-
ditioning, in combination with the bundling technique form the necessary in-
gredients for accurate CVA valuation with a relative small number of paths and
basis functions. The computational time for the method is comparable to the
least squares method in Longstaff and Schwartz (2001), but a higher accuracy
is achieved. Our numerical examples demonstrate the efficiency of calculating
CVA using SGBM, making it a very suitable candidate with a potential to calcu-
late “real-time” CVA charges and easy extension to other charges within the XVA
family.
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Figure 5: CVA variance reduction for 5Y and 10Y Bermudan swaptions under
HW1F with notional N = 10,000. Upper Left: κ = 0.01, σ = 0.01. Upper Right:
κ= 0.01 σ= 0.0.2. Lower Left: κ= 0.02 σ= 0.01. Lower Right: κ= 0.02, σ= 0.02.
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Figure 6: CVA error. Mean (upper figure) and standard deviation (lower figure)
for 5Y Bermudan swaption.



B Bundling

Suppose we need to bundle Ks grid points at epoch Tn , given by S (Tn ,ωk ),
where k = 1, . . . ,Ks . The following steps are performed recursively.

1. Compute the mean of the given set of grid points,

µs
n = 1

Ks

Ks∑
k=1

S (Tn ,ωk ) .

2. Bundling the grid points is performed by dividing the grid points into two
groups, depending on whether the asset price for the grid point is greater
or less than the mean of the asset prices for the given set of grid points:

B1 (Tn ,ωk ) = 1
(
S (Tn ,ωk ) >µs

n

)
,

B2 (Tn ,ωk ) = 1
(
S (Tn ,ωk ) ≤µs

n

)
,

for k = 1, . . . ,Ks . B1 (Tn ,ωk ) returns ‘true’, when the asset price S (Tn ,ωk )
is greater than the mean, µs

n and belongs to bundle 1. B2 (Tn ,ωk ) re-
turns ‘true’, if it less than the mean and belongs to bundle 2. Formally,
Bs (Tn ,ωk ) returns ‘true’, if the grid point S (Tn ,ωk ) belongs to bundle s.

3. Bundles B1 (Tn) and B2 (Tn , ) can be split again, returning to step 1.

C HW1F Moments

Let Mk (s, t ) = E
[
r (t )k |s] be the k-th moment. The three first moments for the

HW1F are given by,

M1 (s, t ) = e−κ(t−s)r (s)+ θ (t )

κ

(
1−e−κ(t−s)) ,

M2 (s, t ) = M 2
1 (s, t )+ σ2

2κ

(
1−e−2κ(t−s)) ,

M3 (s, t ) = M 3
1 (s, t )+3M1 (s, t ) (M2 (s, t )−M 2

1 (s, t )).
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Abstract

This paper extends the simulation algorithm by Andreasen and Huge (2011) to
the simulation of option prices and deltas on Lévy driven assets. The simu-
lation is performed and relies on the inverse transition matrix of a discretised
partial differential equation (PDE). We demonstrate how one can obtain accu-
rate prices and deltas of European options on the variance gamma (VG) and
CGMY model through finite element-based Monte Carlo simulations.
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1 Introduction

The traditional method of pricing and hedging over-the-counter (OTC) deriva-
tives originates from a partial differential equation (PDE). The PDE describes
option prices over time given certain underlying dynamics of the prices process,
such as a geometric Brownian motion in Black and Scholes (1973), a stochastic
volatility model in Heston (1993), a local volatility model in Dupire (1994), a
jump model in Merton (1976), Carr, Chang, and Madan (1998) and Carr et al.
(2002), or a combination of these processes. The model is calibrated to a set
of market data such that it can regenerate significant market features, including
the volatility smile (and skew). The calibration needs to be fast and is performed
in the frequency domain most of the time, such as by using the methods by Carr
and Madan (1999) and Fang and Oosterlee (2008). After calibrating the model,
one turns to the main task of pricing and hedging exotic derivatives. This is ac-
complished by simulating a discretisation of the stochastic differential equation
(SDE) using Monte Carlo methods, or by a discretisation of the PDE to iteratively
solve for the evolution of option prices and sensitivities with respect to bound-
ary conditions.

A drawback with the traditional method is the inconsistency between cal-
ibration and the pricing step because they rely on two different types of dis-
cretisations and, therefore, generate two different types of discretisation er-
rors. Andreasen and Huge (2011) demonstrate a calibration and pricing method
through which discretisation errors from the two steps are fully consistent with
each other. They consider a PDE driven by an underlying local stochastic volatil-
ity model. They also describe a method to calibrate the model to plain vanilla
options and an algorithm for pricing exotic derivatives such that both steps rely
on the same discretisation and for which the Monte Carlo simulation of op-
tion prices is performed using the discrete formulation of an equivalent Black-
Scholes PDE. More specifically, each row of the inverse transition matrix de-
scribes the evolution of option prices and, therefore, can be seen as the under-
lying’s transition probability distribution and from where the samples are gen-
erated.

The Finite Difference Method (FDM) and the Finite Element Method (FEM)
are two widely used methods for numerically solving PDEs. FDM was first ap-
plied to options in Brennan and Schwartz (1978) and consists of approximating
the solution on a grid by replacing the derivatives in the PDE with difference
quotients. Wilmott, Howison and Dewynne (1993) introduced FEM to option
pricing. FEM is a two-step procedure in which one first performs a discretisa-
tion in the price domain. In other words, a variational formulation of the PDE
is found and then the solution is approximated using piecewise polynomials to
obtain a system of coupled ordinary differential equations (ODEs). Second, one
performs a time discretisation to solve the ODEs.

FDM is the most widely used method for solving PDEs and has gained in
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popularity because of its simplicity to implement. However, this advantage is
lost with exotic derivatives. FDM requires that the payoff, i.e. terminal and
boundary conditions, must be sufficiently smooth to guarantee the existence
and uniqueness of a solution. For simple products, such as vanilla European
and digital options, a problem already exists because of the discontinuous pay-
off at the strike (e.g. the slope of a European call option is discontinuous at the
strike). For crude discretisation, this discontinuity will give rise to the odd–even
effect, where the solution will jump up and down as the discretisation grid is in-
creased. These shortcomings can be handled by FEM, and represent one reason
why option pricing with FEM has increased within computational finance. As
mentioned, the advantages of FEM over FDM is the low smoothness assump-
tions on terminal conditions (e.g. the option payoff) and the faster obtained
convergence rate, as shown in, for example, Hilber, Kehtari, Schwab and Winter
(2010).

This paper focuses on the simulation of jump diffusion models, which is a
process characterised by a Lévy measure and for which the evolution of option
prices are characterised by a partial integro-differential equation (PIDE). Jumps
in option pricing were introduced by Merton (1976) and assume that the non-
normality in returns could be captured by a jump-diffusion process of the finite
activity type. The direction of the jumps has further been extended with infinite
activity jumps by the variance gamma (VG) model in Carr, Chang, and Madan
(1998) and its extension, the Carr-Geman-Madan-Yor (CGMY) model in Carr et
al. (2002). These models allow for jump components of finite and infinite ac-
tivity type and with finite or infinite variation. Jumps have been proven very
useful in capturing the extreme implied smile and skew typically observed for
short-dated options that cannot be explained by a normal or log-normal model;
see, for instance, Tompkins (2001). FEM and Lévy processes were previously
studied in Matache, Petersdorff and Schwab (2004), Hilber, Kehtari, Schwab and
Winter (2010), and Achdou and Pironneau (2005). A limited number of papers
describe the simulation of the Lévy process. Examples include Asmussen and
Rosinski (2001), who splits the Lévy process into two parts: one part consists of
small jumps that are simulated using a diffusion process and the second part
consists of large jumps that are simulated as a compound Poisson process (will
not capture infinite activity). Ribeiro and Webber (2004) demonstrates an ac-
curate and fast simulation algorithm for the VG using Gamma bridges and the
difference between two Gamma processes. Monte Carlo simulation schemes
for some general Lévy processes can also be found in Schoutens (2003).

This paper contributes to the simulation of Lévy processes by extending the
simulation algorithm in Andreasen and Huge (2011) to the simulation of option
values and sensitivities for which the underlying dynamics are specified by a
Lévy process. As reference models, we consider VG and CGMY. In this paper,
we discretise the VG and CGMY PIDE using FEM and analytically solve the inte-
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gral arising in the PIDE attributable to the jumps. With the discrete formulation
of the PIDE, we thereafter demonstrate an algorithm that allows for efficient
and accurate simulation of option values and sensitivities on Lévy-driven as-
sets. The main advantage is that the MC schemes are fully consistent with the
discretised PIDE. We follow Hilber, Kehtari, Schwab and Winter (2010) and dis-
cretise the PIDE using the Galerkin method.

This paper is organised as follows. Section 2 provides a quick introduction
of Lévy processes. Section 3 describes numerical methods for pricing options
on Lévy-driven assets. Section 4 describes how the random grids algorithm in
Andreasen and Huge (2011) can be applied to simulate option prices and Greeks
on Lévy-driven assets. In Section 5, we present various numerical examples to
illustrate the method and finally conclude in Section 6.

2 Lévy Processes

This section describes the fundamental theory of Lévy processes and provides a
brief overview of two important Lévy processes: the VG and the CGMY model.

In general, any Lévy process X = {X t : t ≥ 0} is completely identified by its
characteristic triplet

(
γ,σ2,ν

)
and can be written as

X t = γt +σWt +Zt , (1)

where γ is called the mean correcting martingale parameter, Wt is a Brownian
motion, σ is the volatility, and Zt is a jump process described using a Lévy mea-
sure, dν (x) = k (x)d x, for some Lévy density k (x). The characteristic exponent
ψ is defined by the Lévy-Khintchine representation E

[
e i uX t

]= exp
(
tψ (u)

)
, and

given by

ψ (u) = iγu − σ2u2

2
+

∫
R

(
e i uz −1− i uz1|z|≤1

)
dν (z) . (2)

For the price process, we assume underlying risk-neutral spot dynamics
with zero dividends, defined as an exponential Lévy process

St = S0 exp(r t +X t ) , (3)

where r is the risk free rate, and γ is chosen such that exp(X t ) is a martingale in
the risk-neutral measure, which holds for

γ=−σ2

2
−

∫
R

(
ez −1− z

)
dν (z) . (4)

The option value V = V (t , x) at time t ∈ (0,T ) with payoff g (·) is given by the
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conditional expectation

V (t , x) = E
[

e−r (T−t )g
(
er (T−t )+XT

)∣∣ X t = x
]

. (5)

Where E [ ·|X t ] = E [ ·|Ft ] is the conditional expectation with respect to the risk-
neutral distribution and Ft is the filtration generated by X t . By the Feynman-
Kaĉ representation theorem for Lévy processes X , V given by Equation (5) is a
solution to the boundary value problem as indicated in

∂V

∂t
−A V − r V = 0, in (0,T )×R, (6)

where the integro-differential operator is given by

A V (x) = 1

2
σ2 ∂2

∂x2 V (x)+γ
∂

∂x
V (x)

+
∫
R

(
V (x + z)−V (x)− z

∂

∂x
V (x)

)
dν (z) , (7)

for functions V ∈C 2 (R) with bounded derivatives, and where the boundary con-
dition satisfies the terminal condition V (T, x) = g (ex ). One obtains the Black-
Scholes equation for ν (z) = 0.

Next, we provide a brief overview of two important examples of Lévy pro-
cesses, the VG and CGMY models.

2.1 The VG Model

The VG model in Carr, Chang, and Madan (1998) is a continuous pure-jump
Lévy process X VG = {

X VG
t , t ≥ 0

}
of infinite activity type with independent and

stationary VG distributed increments.1 The VG is a popular model for option
pricing because of its analytical tractability and its allowance for flexible param-
eterisations of the skewness and kurtosis increments. The characteristic func-
tion of the VG process is given by

ψVG (u) =
(

GM

GM + (M −G) i u +u2

)C

, (8)

1A process is said to be of finite (infinite) activity type if the process have a finite (infinite) number of
jumps along any finite time interval. A process with finite (infinite) variation have a finite (infinite)
variance along any finite time interval
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for C > 0 and G , M ≥ 0; see, for instance, Carr et al. (2002) for further details. The
Lévy density is given by

kVG (z) =C
exp(G |z|)

|z| 1{z<0} +C
exp(M |z|)

|z| 1{z>0}. (9)

The mean correcting martingale parameter γVG for the VG process is given
by

γVG = −C
(
G

(
exp(−M)−1

)−M
(
exp(−G)−1

))
MG

. (10)

The parameters G and M control the skewness and exponential decay, or the
right and left tail behaviours. For G = M , we have a symmetric Lévy measure,
for G > M the right tail is heavier than the left one, and for G < M the left tail is
heavier than the right one.

2.2 The CGMY Model

Carr et al. (2002) introduces the CGMY model, which is a pure-jump process
that allows for both finite and infinite variations. The model extends the VG pro-
cess by introducing an additional parameter Y , which defines the fine structure
of the process and determines whether the process is of finite or infinite activity
type.

The CGMY process has finite activity with finite variation for Y < 0, infinite
activity with finite variation for 0 ≤ Y < 1, and infinite activity and variation for
1 ≤ Y < 2.

The characteristic function of the CGMY process is given by

ψCGMY (u) = exp
(
tCΓ (−Y )

[
(M − i u)Y −M Y + (G + i u)Y −GY ])

, (11)

where Γ is the upper incomplete gamma function and is given by

Γ (−Y ) =
∫ ∞

0
w−Y −1e−t d w. (12)

The Lévy density is given by

kCGMY (z) =C
exp(G |z|)
|z|1+Y

1{z<0} +C
exp(M |z|)
|z|1+Y

1{z>0}. (13)

The mean correcting martingale parameter γCGMY for the CGMY process is
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given by

γCGMY =−CΓ (−Y )
(
(M −1)Y −M Y + (G +1)Y −GY )

. (14)

The parameters are restricted to C > 0, G , M ≥ 0, and Y < 2; see, for instance,
Carr et al. (2002) for further details. It is possible to allow both C and Y to have
different values dependent on the sign of x. For Y = 0, we have the VG process
2.

Providing additional details on Lévy processes is out of the scope of this pa-
per. For more details and the application of the processes to option pricing, we
refer to Cont and Tankov (2005), Schoutens (2003), and references therein.

3 Finite Element Method (FEM) for Lévy Driven As-

sets

In this section, we provide a brief overview of FEM for option pricing on general
Lévy models. We localise the PIDE, i.e. define it on a bounded domain. We then
write it in variational form and, finally, define a discrete version.

3.1 Localization

To simplify the numeric, we define the PIDE as a forward parabolic problem by
changing to time-to-maturity t := T − t . To obtain more stability, we remove the
drift by defining

u (t , x) = er t V
(
T − t , x − (

γ+ r
)

t
)

. (15)

The boundary value problem is then given by

∂u

∂t
−A u = 0, in (0,T )×R, (16)

with an initial condition satisfying u (0, x) = g (ex ). The jump-diffusion Merton
(1976) model is an example of a model that contains both a Brownian motion
and a jump component, and has an integro-differential operator that is fully
described by Equation (7). However, as mentioned in Section 2, because we
only focus on pure jump models, as the VG and CGMY models, we remove the
diffusion operator in Equation (7) by setting σ = 0. The operator in Equation

2See the proof of Theorem 1 in Carr et al. (2002) for the relationship between ψVG and ψCGMY for
Y = 0.
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(16) then becomes

A u (x) =
∫
R

(
u (x + z)−u (x)− z

∂

∂x
u (x)

)
dν (z) . (17)

The PIDE is discretised on a bounded rectangular domain (t , x) ∈ [0,T ]×D ,
where D is the state space of admissible logarithmic stock prices x. The space
variable is truncated into a bounded domain D := [−R,R] with boundary con-
ditions on ∂D .

The bounded domain is chosen such that the risk-neutral probability for the
process in Equation (3) to jump outside the domain is one basis point.

3.2 Variational Formulation

The variational formulation consists of multiplying the truncated PIDE by a
smooth test function v ∈ C∞

0 (D) that satisfies v (−R) = v (R) = 0 and then ap-
plies integration by parts. The goal is then to find a continuous function u de-
fined in [0,T ] with values in the Hilbert space H equipped with the norm ∥·∥
and inner product (u, v) = ∫

D u (x) v (x)d x, such that

∂

∂t
(u, v)+a (u, v) = 0, ∀v ∈ H (R) , (18)

where u (0) = g (ex ). The bi-linear form a (·, ·) : H (R)×H (R) →R, associated with
operator A in Equation (17), is given by

a (u, v) =
∫

D

∫
D

(
u (x + z)−u (x)− zu

′
(x)

)
v (x)dν (z)d x. (19)

The main problem is the singularity of the Lévy measure at z = 0; but for the VG
and CGMY model, it is possible to analytically solve the integro-differential op-
erator A . Integrate the jump generator by twice applying integration by parts,∫

D

(
u (x + z)−u (x)− zu′ (x)

)
k (z)d z (20)

= (
u (x + z)−u (x)− zu′ (x)

)
k(−1) (z)

∣∣
D −

∫
D

(
u′ (x + z)−u′ (x)

)
k(−1) (z)d z (21)

=− (
u′ (x + z)−u′ (x)

)
k(−2) (z)

∣∣
D +

∫
D

u′′ (x + z)k(−2) (z)d z (22)

=
∫

D
u′′ (x + z)k(−2) (z)d z, (23)
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where the first term in the second and third equality vanishes at the boundary
and where the i -th antiderivative of k = k(0) is defined as,

k(−i ) (z) =
{∫ z

−∞ k(−i+1) (x)d x, if z < 0,

−∫ ∞
z k(−i+1) (x)d x, if z > 0.

(24)

Applying integration by parts, we can then write the operator in Equation (19)
as

a (u, v) =
∫

D

∫
D

u′ (y
)

v ′ (x)k(−2) (y −x
)

d yd x. (25)

3.3 Discretization

We define the discrete logarithmic stock mesh as −R = x0 < x1 < ·· · < xN <
xN+1 = R, with equidistant points xn =−R +n ·h, for n = 0, . . . , N +1 and width
h = 2R/(N +1). For discretisation, the Galerkin method is applied and the basic
concept is that, for each t ∈ [0,T ], the solution u (t , x) is approximated by an el-
ement uN (t , x) ∈ VN = span{bi (x) : i = 1, . . . , N }. For the basis {bi }N

i=1 of VN , we
chose the linear hat-functions bi given by

bi (x) = max
{
0, 1−h−1 |x −xi |

}
, i = 1, . . . , N . (26)

One advantage to using linear hat-functions as a basis is that solving integrals
with inner products becomes much easier, as is later demonstrated in, for in-
stance, Appendix D. Further details can be found in Braess (2007). We approxi-
mate the solution uN by a linear combination of the basis function, that is,

uN (t , x) =
N∑

j=1
uN , j (t )b j (x) , (27)

Equation (18) can then be written as

∂

∂t

(
N∑

j=1
uN , j (t )b j (x) ,bi (x)

)
+a

(
N∑

j=1
uN , j (t )b j (x) ,bi (x)

)
= 0, ∀i = 1, . . . , N . (28)

Numerous ways exist to solve the ODEs that arise. However, to be able to
simulate forward in time, we apply the implicit Euler scheme and define the
time grid as tm = m ·k, for m = 0, . . . , NM , and with step size k = T /NM . With the
linear hat-functions, the matrix formulation is given by finding um

h ∈ RNm such
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that for m = 0, . . . , NM −1,

1

k
M

(
um+1

h −um
h

)+Aum+1
h = 0, (29)

where M is the mass matrix and A is the stiffness matrix. Ern and Guermond
(2004) show that Equation (29) converges to the true value as k → 0 and h → 0.

The entries A j ,i of the stiffness matrix is given by the following proposition,

Proposition 2 (Stiffness matrix entries) The entries of the stiffness matrix A j ,i

are, for i = j given by

Ai ,i = 1

h2

(−4hk(−3) (0)−6k(−4) (0)+8k(−4) (h)−2k(−4) (2h)
)

. (30)

For i = j +1, given by

Ai ,i+1 = 1

h2

(
2hk(−3) (0)+4k(−4) (0)−7k(−4) (h)+4k(−4) (2h)−k(−4) (3h)

)
. (31)

For i ≥ j +2, and d = i − j , given by

A j ,i = 1

h2

2∑
l=−2

α j k(−4) ((d + l )h) , (32)

where α= (−1,4,−6,4,−1).

Proof. See Appendix D.

One benefit of VG and CGMY is that the first four anti-derivatives can be
calculated analytically. In order to keep the discussion simple we will only con-
sider Lévy processes with symmetric density, that is, for G = M . The first four
anti-derivative for the VG and CGMY model given by the following two proposi-
tions.

Proposition 3 (Symmetric VG Anti-derivatives) For z > 0 and Y = 0 the anti-

derivatives k(−i )
VG , f or i = 1,2,3,4, are for the symmetric VG process, given by
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k(−1)
VG (z) = −C Ei

(
βz

)
, (33)

k(−2)
VG (z) = zk(−1)

VG (z)+ C

β
e−βz , (34)

k(−3)
VG (z) = zk(−2)

VG (z)− 1

2
z2k(−1)

VG (z)+ 1

2

C

β

(
1

β
− z

)
e−βz , (35)

k(−4)
VG (z) = zk(−3)

VG (z)− 1

2
z2k(−2)

VG (z)+ 1

6
z3k(−1)

VG (z) (36)

+C

6

(
1

β
z2 − 1

β
z + 1

β

)
e−βz ,

where β=G = M and Ei (x) = ∫ ∞
x e−t t−1d t, is the exponential integral.

Proof. See Appendix E.

Proposition 4 (Symmetric CGMY Anti-derivatives) For z > 0 and 0 < Y < 1 the

anti-derivatives k(−i )
CGMY, for i = 1,2,3,4, are for the symmetric CGMY process given

by

k(−1)
CGMY (z) = −C LY Γ (Lz,−Y ) , (37)

k(−2)
CGMY (z) = zk(−1)

CGMY (z)+C LY −1Γ (Lz,1−Y ) , (38)

k(−3)
CGMY (z) = zk(−2)

CGMY (z)− 1

2
z2

CGMYk(−1) (z)− 1

2
C LY −2Γ (Lz,2−Y ) , (39)

k(−4)
CGMY (z) = zk(−3)

CGMY (z)− 1

2
z2k(−2)

CGMY (z)+ 1

6
z3k(−1)

CGMY (z) (40)

+1

6
C LY −3Γ (Lz,3−Y ) ,

where Γ (x, a) = ∫ ∞
x t a−1e−t d t, is the upper incomplete gamma function.

Proof. See Appendix F.

Remark 13 For the piecewise linear finite elements, we obtain a convergence rate

of O
(
h2

)
in space. Increasing the space dimension, such as for multi-asset instru-

ments, would require the multidimensional hat functions and the introduction

of tensor products. This will have a significant impact on the convergence rate.

However, using the random grids algorithm by Andreasen and Huge (2011), we

can still obtain one-dimensional convergence (multiplied by the number of as-

sets) through simulation using copulas.
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4 Simulation

In this section, we provide a brief summary of the Random Grids simulation al-
gorithm in Andreasen and Huge (2011) for simulating underlying assets through
its discrete PDE matrix formulation. We also present a method for estimating
Greeks through Monte Carlo simulations.

From Equation (29), we have that

u (th+1) = (M+kA)−1 Mu (th) (41)

≡ A−1
x u (th) , (42)

which is the matrix formulation we use for the grid simulation. Each row of
A−1

x represents a transition probability distribution, and each element repre-
sents the conditional transition probability, that is,

P
(
x (th+1) = x j | x (th) = xi

)= (
A−1

x

)
i j . (43)

We can then define the cumulative distribution function as

Qi j = P
(
x (th+1) ≤ x j | x (th) = xi

)
(44)

= ∑
k≤ j

(
A−1

x

)
i k . (45)

For the simulation of the underlying asset, we rely on the discrete inverse trans-
form method together with a simple table lookup. We define the discrete inverse
transform method as

F−1
i (u) ≡ inf{x : Fi (x) ≥ u} , (46)

where F−1
i denotes the inverse of the distribution function and where Qi j =

Fi
(
x j

)
for i = 1, . . . ,n and where x (th) = xi .

Figure 1 illustrates the Laplace density A−1
x and the cumulative distribution

function for the CGMY process. Figure 2 illustrates a slice of the Laplace densi-
ties A−1

x and the cumulative distribution function for the CGMY process for an
arbitrarily grid point x j .

Remark 14 The discretisation of a pure diffusion problem, such as the Black-

Scholes equation, is a N ×N tri-diagonal sparse matrix with a matrix inversion

requiring O (N ) operations. The matrix formulation for PIDEs of option prices

on by Lévy-driven assets is dense because of its non-localness. Calculating the

inverse of a dense matrix requires O
(
N 2

)
operations, which are more computer

intense compared with the tri-diagonal case. One could overcome this problem by
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Figure 1: Left: The transition matrix A−1
x . Right: The cumulative distribution

function.

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x
i

P
D

F

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
i

C
D

F

Figure 2: Left: Slice of the transition matrix A−1
x . Right: Slice of the cumulative

distribution function.

considering a wavelet Galerkin scheme; see, for instance, Hilber, Kehtari, Schwab

and Winter (2010). However, because we only consider a one-dimensional PIDE

and only calculate one matrix inversion prior to the Monte Carlo simulation, this

is not an issue.

4.1 Sensitivities

There are two different classes of Greeks. The first class is the solution sensitivity
with respect to a bump of one of the input parameters, such as the Vega, which is
the solution sensitivity with respect to the volatility parameter, ∂σC . The second
class is a change in the price with respect to a bump in the input arguments,
such as the delta ∂SC . In FEM, the Greeks of the second class are easily obtained
by post processing the solution. However, for Monte Carlo Greeks, one needs to
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adjust the pricing simulation.
We focus on the second class of sensitivities: the deltas. To compute the

delta using Monte Carlo simulation, one could for instance use a finite differ-
ence approximation, such as the bumping method; however, the method pro-
duces quite biased values and might sometimes be very unstable. The pathwise
differentiation method, such as in Broadie and Glasserman (1996), is a better
method that produces a direct and unbiased estimate of the true derivative be-
cause,

∂

∂θ
E
[
g (θ)

]= E

[
∂

∂θ
g (θ)

]
. (47)

For a European call option with maturity T the option value at time t = 0 is given
by

V (0) = e−r T E
[
(ST −K )+

]
. (48)

The delta is obtained by applying the chain rule along each path, that is,

dV (T )

dS (T )
= e−r T E

[
S (T )

S (0)
1 {S (T ) > K }

]
. (49)

The delta from Equation (49) is easily computed from a simulated path of the
underlying by evaluating the indicator function 1 {S (T ) > K }. The indicator
function takes the value of one for in-the-money options and zero otherwise.

4.2 The FEM-MC Simulation Algorithm

For clarity we summarise the steps of the simulation:

I. Initialization

1. Define time grid t0 = 0 < t1 < ·· · < tm = T and set x0 = log(S0).

2. Generate the mass and stiffness matrix M and A

II. Simulation. For each path k = 1, . . . , Nk .

1. For each time point th (1 ≤ h ≤ m),

(a) Update the transition matrix A−1
x v (th) in Equation (41)

(b) For x (th) = x j , set j = i .

(c) Draw a uniform random number ũ ∼U (0,1).
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(d) Find the quantile:

i. If ũ ≤Qi i : While ũ ≤Qi , j−1 set j = j −1.

ii. If If ũ >Qi i : While ũ >Qi , j−1 set j = j +1.

(e) Set x (th+1) = x j

2. Calculate the option payoff g (x) and Greeks

5 Numerical Examples

In this section, we present the numerical results of European style call options
with payoff at maturity T given by V = (ST −K )+, where K is the strike. The
underlying S is given by Equation (3) and follows an exponential Lévy process
of VG in Section 2.1 and CGMY type in Section 2.2. The corresponding European
put options can be obtained by applying the put-call parity.

The VG and CGMY model parameters are arbitrarily chosen to C = 5, G =
M = 10 and Y = 0.5 and the interest rate is assumed to be zero, r = 0. We
choose to work with the moneyness MN := S/K = [0.8,1.0,1.2] and maturities
T = [0.25,0.50,1,10] years.

The simulation is performed using 20,000 scrambled (Sobol generated)
quasi Monte Carlo (QMC) seeds on a FEM Galerkin PIDE discretisation spanned
by the simple hat functions consisting of 100×100 (space×time) grid points, as
described in Section 3. As common praxis, the truncation [−R,R] is chosen such
that for a given spot level S0 at time t = 0, the likelihood of falling outside the
truncation for some maturity T should be less than one basis point.

To remove the initial choice of the Monte Carlo seed in the overall compar-
ison, we repeat the Monte Carlo simulation 100 times with different pseudo-
random number seeds in each iteration. The reported mean and standard devi-
ation values for the FEM-MC are the means and standard deviations of the 100
outer Monte Carlo simulations. For the simulation, the underlying initial spot
price was chosen to be the value on the discretisation grid closest to the current
MN value but also could be adjusted to any spot level using an interpolation
technique.

To benchmark our values from FEM and a FEM Monte Carlo (FEM-MC) sim-
ulation, we use the COS method by Fang and Oosterlee (2008), which is based
on the Fourier-cosine series expansion and can price options on the Lévy pro-
cess at high precision.

In our first example, we simulate the prices of European call options and the
corresponding implied Black-Scholes volatilities generated by the COS method,
FEM, and FEM Monte Carlo (FEM-MC) simulation. The values are reported in
Table 1 and Table 2, and for which the standard deviations are reported within
parentheses. For short-dated options, the FEM-MC performs very well, and is
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where jumps are needed to generate the extreme smile that one typically ob-
serves for such options, where Black-Scholes- and Heston-like models typically
fails.

We observe that for all test cases, the simulated values generate a tight con-
fidence interval that covers both FEM and COS prices. The 95% confidence in-
terval generated by a FEM-MC simulation covers the COS and FEM values for
all test cases, indicating that the simulating technique presented in this paper is
suitable for simulating processes with jumps.

The small differences in prices between FEM and FEM-MC are the result of
Monte Carlo noise and interpolation using table lock-up. Neglecting the inter-
polation error, these values will converge towards each other as the number of
simulations N increases. The convergence rate of a pure Monte Carlo is on the
order of O

(
N−1/2

)
. Numerical experiments with many types of integrands show

that the convergence rate of the QMC method frequently leads to O
(
N−1

)
; for

further details, see for instance Glasserman (2003). The small discrepancy be-
tween FEM and COS arise given different numerical techniques. Ignoring the
discretisation errors, increasing the number of integration steps in the Fourier-
cosine integration in the COS method (see Fang and Oosterlee (2008)), together
with decreasing the step size in space and time, i.e. k → 0 and h → 0 for FEM,
converges the two numerical techniques’ values towards each other.

In our second example, we simulate the deltas for the same setup as in ex-
ample one using the three different methods. The simulated deltas are reported
in Table 3. Regarding the prices and implied volatilities, we observe accurate
FEM-MC deltas with tight confidence intervals and where the 95% confidence
interval generated by the FEM-MC simulation covers the COS and FEM values
for all test cases.

In closing, we did not notice different results by using an alternative simula-
tion grid, i.e. increasing or decreasing the (space×time) grid.

6 Conclusion

In this paper, we extended the simulation method by Andreasen and Huge
(2011) and demonstrated how one could simulate options prices and sensitivi-
ties on Lévy processes, where each simulated path of the underlying is sampled
from the matrix formulation of the numerical discretised PIDE. Reported Monte
Carlo values demonstrate that the simulated option prices and deltas are con-
sistent with the values coming from both FEM and Fourier integration.
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VG CGMY

TTM MN COS FEM FEM-MC COS FEM FEM-MC

0.25 1.2 0,7758 0,7758 0,7767 (0,0194) 3,0046 3,0046 3,0097 (0,0401)

0.25 1.0 7,1709 7,1709 7,1726 (0,0337) 11,146 11,146 11,152 (0,0588)

0.25 0.8 21,125 21,125 21,124 (0,0325) 25,628 25,628 25,622 (0,0649)

0.5 1.2 1,8940 1,8940 1,9020 (0,0352) 6,1929 6,1929 6,2160 (0,0793)

0.5 1.0 8,9103 8,9103 8,9111 (0,0429) 17,344 17,344 17,345 (0,1045)

0.5 0.8 24,500 24,500 24,497 (0,0500) 30,092 30,092 30,077 (0,0952)

1.0 1.2 4,6064 4,6064 4,6146 (0,0643) 11,725 11,725 11,745 (0,1289)

1.0 1.0 13,810 13,810 13,811 (0,0723) 21,184 21,184 21,171 (0,1424)

1.0 0.8 28,165 28,165 28,162 (0,0778) 38,745 38,745 38,743 (0,1788)

10 1.2 27,086 27,086 27,168 (0,4327) 45,880 45,880 46,403 (1,5711)

10 1.0 38,407 38,407 38,412 (0,5709) 65,724 65,724 66,309 (2,3308)

10 0.8 55,837 55,837 55,868 (0,6393) 84,684 84,684 85,297 (2,4876)

Table 1: European call option prices on VG and CGMY with C = 5, G = M = 10
and Y = 0.5. The Monte Carlo standard errors are reported within the parenthe-
ses.
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VG CGMY

TTM MN COS FEM FEM-MC COS FEM FEM-MC

0.25 1.2 0,3451 0,3451 0,3452 (0,0024) 0,5312 0,5312 0,5316 (0,0030)

0.25 1.0 0,2875 0,2875 0,2876 (0,0017) 0,5193 0,5193 0,5196 (0,0030)

0.25 0.8 0,3190 0,3190 0,3188 (0,0029) 0,5217 0,5217 0,5214 (0,0040)

0.5 1.2 0,3237 0,3237 0,3242 (0,0022) 0,5292 0,5292 0,5303 (0,0037)

0.5 1.0 0,3021 0,3021 0,3021 (0,0015) 0,5247 0,5247 0,5247 (0,0037)

0.5 0.8 0,3101 0,3101 0,3099 (0,0024) 0,5245 0,5245 0,5239 (0,0036)

1.0 1.2 0,3164 0,3164 0,3166 (0,0022) 0,5294 0,5294 0,5300 (0,0039)

1.0 1.0 0,3095 0,3095 0,3095 (0,0018) 0,5279 0,5279 0,5276 (0,0037)

1.0 0.8 0,3102 0,3102 0,3101 (0,0022) 0,5271 0,5271 0,5271 (0,0046)

10 1.2 0,3172 0,3172 0,3180 (0,0044) 0,5307 0,5307 0,5375 (0,0200)

10 1.0 0,3168 0,3168 0,3169 (0,0051) 0,5305 0,5305 0,5373 (0,0257)

10 0.8 0,3165 0,3165 0,3168 (0,0053) 0,5304 0,5304 0,5370 (0,0253)

Table 2: Black Scholes implied volatility from European call options on VG and
CGMY with C = 5, G = M = 10 and Y = 0.5. The Monte Carlo standard errors are
reported within the parentheses.
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VG CGMY

TTM MN COS FEM FEM-MC COS FEM FEM-MC

0.25 1.2 0,0910 0,0913 0,0911 (0,0015) 0,2471 0,2465 0,2464 (0,0022)

0.25 1.0 0,6028 0,6022 0,6046 (0,0022) 0,5699 0,5705 0,5698 (0,0021)

0.25 0.8 0,9147 0,9137 0,9153 (0,0011) 0,8192 0,8193 0,8201 (0,0015)

0.5 1.2 0,1764 0,1762 0,1763 (0,0021) 0,3535 0,3529 0,3531 (0,0026)

0.5 1.0 0,5475 0,5481 0,5472 (0,0024) 0,6164 0,6171 0,6163 (0,0020)

0.5 0.8 0,8623 0,8618 0,8629 (0,0012) 0,7704 0,7710 0,7711 (0,0016)

1.0 1.2 0,3036 0,3031 0,3028 (0,0025) 0,4610 0,4603 0,4604 (0,0029)

1.0 1.0 0,5894 0,5901 0,5891 (0,0021) 0,6063 0,6066 0,6058 (0,0025)

1.0 0.8 0,8002 0,8005 0,8010 (0,0017) 0,7589 0,7597 0,7590 (0,0020)

10 1.2 0,6209 0,6171 0,6204 (0,0057) 0,7642 0,7501 0,7699 (0,0191)

10 1.0 0,6903 0,6871 0,6894 (0,0057) 0,8103 0,7968 0,8152 (0,0214)

10 0.8 0,7616 0,7591 0,7617 (0,0049) 0,8400 0,8270 0,8444 (0,0189)

Table 3: European call option deltas on VG and CGMY with C = 5, G = M = 10
and Y = 0.5. The Monte Carlo standard errors are reported within the parenthe-
ses.



116 PAPER 4

D Finite Element for Lévy Models

With basis function given by Equation (26) the stiffness matrix (25) is then com-
puted by

a
(
bi ,b j

) =
∫ xi+1

xi−1

∫ x j+1

x j−1

b
′
i (x)b

′
j

(
y
)

k(−2) (y −x
)

d xd y

= 1

h2

(∫ h

0

∫ ( j−i+1)h
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d xd y −
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0
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)
d xd y

−
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0
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(
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The entries for i = j is then given by,

Ai ,i = 1

h2
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Consider the case when d = 2
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The entries for d = i − j , i ≥ j +2 is then given by,

Ai ,i+1 = 1

h2

(−k(−4) (0)+4k(−4) (h)−6k(−4) (2h)+4k(−4) (3h)−k(−4) (4h)
)

,

the pattern appears and hold for all d = i − j , i ≥ j +2.

E VG Anti-derivatives

Let Ei(x) = ∫ ∞
x e−t t−1d t be the exponential integral, k(−i ) the i -th anti-

derivative, and the VG Lévy measure kVG by Equation (9).

For i = 1,
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(
1

β
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where the second equality is obtained by applying integration by parts twice.
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For i = 4,

k(−4)
VG (z) = −

∫ ∞

z
k(−3)
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2
z2k(−2)

VG (z)+ 1

6
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6
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where the second equality is obtained by applying integration by parts three
times and where ∫ ∞

z
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1

β
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β
z + 1

β

)
.

F CGMY Anti-derivatives

Let Γ (x, a) = ∫ ∞
x t a−1e−t d t be the upper incomplete gamma function, the i -th

anti-derivative k(−i ) be given by Equation (24) and the CGMY Lévy measure by
Equation (13).

For i = 1,
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Today, quants have opportunities to face greater challenges outside the clas-
sic area of pricing. Hedging is more complex and needs to be tackled from
different angles, as XVA needs to be incorporated. To allow for efficient XVA
hedging, a more liquid credit default swaps market is required. Moreover, with
fewer exotics and more standardised products, the flow desks will continue to
grow. Together with increasing derivatives, clearing will require liquidity opti-
misation.

Collateralisation has recently been priced in, and without standardisation it
is open for enhancement. Smart derivatives with block-chain and automated
systems for peer-to-peer collateral payments might be the game changer. Re-
lying on technology behind cryptocurrencies, such as Bitcoin, has the potential
to retire the XVAs for good.

Today, the demand for quants possessing high levels of IT skills is larger.
Quants have moved from analytics to more development roles, where skills to
develop production libraries are essential. As trading has become more auto-
mated, quants have already explored algorithmic trading, replacing old-school
traders and moving from the sell-side to the buy-side and Fintech companies.

We have gone from a less model-driven period to a more (big) data driven
one. Moreover, with big data, new challenges emerge and one needs to be able
to use and process these data quickly and take advantage of having access to
large data sets. We need to explore artificial intelligence (AI) from a broad busi-
ness scope to make sense of the data to improve trading and to develop new
business opportunities. Banks need to bring these advantages to their clients by
implementing Facebook-like services, such as being able to tailor-make invest-
ments on the basis of client behaviour. Moreover, with the Internet of Things
(IoT), we can take it further as the removal of humans and better real-time big
data techniques evolve. Allowing for fast data access and being able to anal-
yse large sets of data in real-time will further increase the pressure on the IT
infrastructure. The industry spent the last years exploring GPUs and FPGAs to
accelerate trading activities. The next big thing – quantum computing – still
in its infant stage, will take computing power to a new level; in the 2030s, it is
expected to be as common as CPU-GPU computing today.

However, as Moore’s law is diminishing, we also have to focus on writing
smarter algorithms rather than adding new CPU-GPUs each time performance
issues arise. Recently, Google’s AlphaGo became the first algorithm to beat a
professional human Go player.1 Instead of relying on brute force methods, it
relies on neural networks inspired by the human brain to develop intuition and
strategies rather than pattern recognition. However, as the area of AI increases,
one needs to be aware of its potential operational risk. It only takes one mis-
take to wipe out an entire business; therefore, sophisticated risk-management

1http://www.nature.com/news/google-ai-algorithm-masters-ancient-game-of-go-1.

19234
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systems are essential.
As the definition of the traditional quant is emerging, pricing will still be

involved. Over the last years, quants have explored and are still exploring inno-
vative modelling, such as methodologies to efficiently estimate XVA. Something
that previously worked well on a desk level does not certainly hold on an ag-
gregated level. Moreover, given all of the new regulations waiting around the
corner, the story is different. We need to have a generalised pricing approach
that can be applied uniformly across asset classes and that can adapt as regula-
tions and policies develop.

Although the Golden Age of Quants during which quants had exotic trad-
ing desk as their clients is over, quants have moved to a situation in which ev-
erybody needs them. More than ever, quants need to be aware of new regula-
tions and policies and how they affect daily business. The modern quant needs
to be predictive, understand the big picture, and seek business opportunities,
and will have more client-facing roles in the future. Instead of being notori-
ous rocket scientists, quants face greater demand to possess a broader range of
skills that cover mathematics, finance, computer science, and business admin-
istration. Therefore, quants will evolve into universal soldiers and become more
valuable as we enter the New Golden Age of Quants.
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