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Chapter 1

Introduction

Computer vision is a broad research area with several di�erent �elds
within it. Each �eld has its own focus and applications, but all have in
common that they are working with images. This thesis study mainly
how 3D models can be created using special cameras known as depth
sensors, but we also study how a matrix of low rank can be estimated.
The latter problem occurs in several applications of computer vision, for
example in Structure from Motion and denoising.

The former topic is less abstract and there are several applications
for 3D models. The models themselves has a value and can for example
be used in refurbishment. Another application is robotic where one want
to use the 3D model so that the robot can navigate by its own in a room
to complete its task.

1.1 Content

The �rst part of this thesis deals with 3D reconstruction from RGB-
D cameras. In particular, we study how the camera trajectory can be
robustly estimated. This is crucial in many applications, for example in
robotics where the robot uses the camera pose for navigation. In the
second part, we study low rank approximations of matrices, commonly
used in several applications, not only in computer vision but other �elds
as well.

1.2 Organisation of the Thesis

Chapter 2 In this chapter we give a brief introduction to rigid 3D re-
construction. This chapter also contains basic information about 3D

1



CHAPTER 1. INTRODUCTION

reconstruction and computer vision, intended for the reader who is not
so familiar with the topic. For example, the pinhole camera model is
explained and we also describe how depth sensors works and di�erent
methods for creating 3D models.

Chapter 3 In this chapter the focus is on online camera pose estimation.
We study how one can use the 3D model itself to estimate the pose of
the camera by extracting the information in a Truncated Signed Distance
Function. We also study how more information from the estimated 3D
model can be used together with information in the images. The purpose
is to make the trajectory estimation more robust and accurate.

Chapter 4 In this part we show how one can extract certain patterns in
a measurement matrix to obtain a convex envelope of the rank function
plus a data term. We show that this gives superior results compared
to the nuclear norm, which is the standard way of relaxing the rank
function.

1.3 Contributions

In Chapter 3, we show how the information in a Truncated Signed Dis-
tance Function, (TSDF), can be used to estimate the pose of the camera.
Experimental results show that this leads to superior results compared
to KinectFusion [23]. This part was made in collaboration with Jürgen
Sturm (TUM), Christian Kerl (TUM), Fredrik Kahl (LTH) and Daniel
Cremers (TUM). I did all the code and most of the writing of the paper.
Further, in chapter 3 it is shown that the texture information in the 3D
model can be used together with the distance information in order to
compute the camera pose. This makes camera pose estimation signif-
icantly more robust compared to just using geometry. This method is
then extended further by using the color and depth images separately
to make the algorithm robust to situations with hardly any structure or
texture. A thorough quantitative evaluation is also carried out. This
was done together with Carl Olsson and Fredrik Kahl. I wrote all the
code and wrote most of the paper. In the �nal part Chapter 4 the contri-
bution is the derived convex envelope of a function consisting of a rank

2



1.3. CONTRIBUTIONS

term and a least squares data term. This was done together with Viktor
Larsson, Carl Olsson and Fredrik Kahl. Viktor and Carl did most of the
theory and writing of the paper. I contributed with writing some code
and recording some datasets for the experiments.
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Chapter 2

Rigid 3D Reconstruction

2.1 Introduction

The capability to reconstruct a scene from a set of images has been one
of the major challenges in computer vision. It is still an active research
area and many challenges remain. In computer vision this research �eld
is known as Structure fromMotion (SfM) and in robotics as Simultaneous
Localization and Mapping (SLAM).

In SfM, the pipeline is typically to �rst �nd a set of key-points in
di�erent images and to match these. Then one computes the optimal
camera poses and 3D scene geometry using bundle-adjustment to get
global consistency. This results in a sparse 3D model, where only the
detected key-points can be reconstructed.

To create dense 3D models using monocular cameras, an approach is
to use stereo and try to estimate depth maps from image pairs. To create
each depth map one needs to optimize an energy function for each image
pair. Often these energy functions require some form of regularization
to decrease noise and to get more smooth surfaces.

However, the camera technology has evolved as well. Today there are
di�erent so called depth cameras such as the Microsoft Kinect and the
Asus Pro Live Sensor available on the market. Thanks to these depth
cameras, it is possible to create dense 3D models using the depth images
generated from these cameras. The advantage compared to techniques
like SfM is that one gets the depth for each pixel, resulting in a dense
point cloud with correct scale. Disadvantages with these depth cameras
is that they do not work outdoors when structured light is used and the
range is limited to a couple of meters.

Nevertheless, these new cameras open up for new applications for

5



CHAPTER 2. RIGID 3D RECONSTRUCTION

indoor environments. The focus of the �rst part of the thesis is on how
we can robustly estimate 3D models using these sensors.

The motivation behind this is that to do accurate 3D-reconstruction
from a set of images, it is necessary to have an accurate estimation of the
camera pose. For several applications, for instance in robotics, the robot
can use the current position and 3D model to localize itself in the room.
If the camera position is poorly estimated, then the robot will make an
incorrect estimation of its position and might not be able to perform its
task.

In other applications such as refurbishment, we might want to mea-
sure the dimensions of our room. This could then be used to see how
a new sofa would �t into a living room. This requires an accurate 3D
model to get consistent measurements. The main contribution with this
part of the thesis is that we develop a robust and accurate method for
tracking the pose of the depth sensor in real-time. By real-time we mean
that the pose is estimated and the model is created as we acquire new
depth- and color images.

2.2 Basics

In this section concepts from computer vision is presented. We will de-
scribe some camera models and illustrate the idea behind some di�erent
well-known methods for computing the camera pose and representing
the 3D model.

2.2.1 Pinhole Camera Model

The pinhole camera model is probably the most common model of a
camera. Let x be a point in the world, seen by the camera. Then under
the pinhole camera model the point is projected onto the image plane
by following the ray between the point x and the camera center O. This
is illustrated in Figure 2.1. The projected coordinates for a 3D point
(x1, x2, x3) are (x1x3 ,

x2
x3
, 1), assuming the image plane is a unit distance

from the camera center along the z-axis. We assume that the image
plane is parallel with the xy-plane, and we are only interested in the
coordinates (x1x3 ,

x2
x3

) on the image plane, as illustrated in Figure 2.2. In

6



2.2. BASICS

Figure 2.1: The points x and y on the �ower are projected onto the
image plane along the ray between the point and the camera center O.

Figure 2.2: When the center of the image plane is a unit distance from
the optical center, then the projection onto the image plane is just the
coordinates (x1x3 ,

x1
x3
, 1). The coordinates on the image plane are (x1x3 ,

x2
x3

).

7



CHAPTER 2. RIGID 3D RECONSTRUCTION

Figure 2.3: If a 3D point has the x-coordinate x′ on a unit distance from
the origin, then the corresponding coordinates on the image plane will
be fx′.

practice, the distance between the image plane and the camera center
will of course be signi�cantly less than, say 1 meter, if that is 1 unit.
The distance between the camera center and the image plane is known
as the focal length f , and by similar triangles it can be seen how to go
from (x1x3 ,

x2
x3

) to image coordinates. By looking at Figure 2.3 we see that

x′′

x′
=
f

1
⇔ x′′ = fx′. (2.1)

Since x′ = x1
x3
, the coordinate for the 3D point on the image plane

will be x′′ = fx1
x3

. Similarly, the projection of the y-coordinate can be
computed the same way. To go from ordinary coordinates to pixels we
simply translate the projected point (fx1x3 ,

fx2
x3

) by (cx, cy), where cx is
half the width of the image plane in pixels, and cy half the height in
pixels. To get the pixel coordinates of the 3D point x we compute

(px, py) = (
fx1
x3

+ cx,
fx2
x3

+ cy). (2.2)

In practice, the pinhole camera model will not be the best model. Instead
we use the CCD camera model with di�erent focal lengths in the x-
and y-direction. More information about di�erent models can be found
in [14]. We now de�ne a function that takes a 3D coordinate to a pixel
coordinates:

De�nition 2.2.1. Let π : R3 7→ R2 be the function that takes a 3D point
to pixel coordinates:

π(x) = (
fxx1
x3

+ cx,
fyx2
x3

+ cy). (2.3)

8



2.2. BASICS

The process of 3D reconstruction can be thought of as inverting the
projection on the image. Assume we know the projection coordinates,
the calibration of the camera, how do we get back the original 3D point?
If the the pixel coordinates (px, py) are known, we simply do the reverse
calculations and get

x1 =
px − cx
fx

t (2.4)

x2 =
py − cy
fy

t (2.5)

x3 = t, (2.6)

where t ∈ R is an arbitrary scalar corresponding to depth. However, we
have an ambiguity here because we can take any depth t ∈ R and we
will get a 3D that projects onto the same pixel coordinates (px, py).

When using depth sensors, we get around this ambiguity since we get
the actual distance to the object in the world.

2.2.2 Depth Cameras

Depth cameras di�er from regular cameras in the sense that it generates
two di�erent images, one ordinary color image and one depth image.
Each pixel in the depth image contains distance information between
the object and the camera. In Figures 2.4a and 2.4b a depth image with
its corresponding color image are shown.

Let us denote the depth image by Id, then we can for each pixel
(px, py) read the depth value

z = Id(px, py). (2.7)

Using this we resolve the ambiguity of the depth in equation (2.6).
We can de�ne the following function that takes a pixel (px, py) to its 3D
coordinates:

De�nition 2.2.2. Let ρ : R2 ×R 7→ R3 be the function that transforms a
pixel (px, py) to its 3D coordinates by

ρ(px, py, z) = (
px − cx
fx

z,
py − cy
fy

z, z), (2.8)

9



CHAPTER 2. RIGID 3D RECONSTRUCTION

(a) An example of a depth image (b) Corresponding color image.

Figure 2.4

Figure 2.5: In the image to the left the depth sensor takes a depth image
of the vas, to the right we can see how the point cloud could look like by
reconstructing the 3D points.

where z = Id(px, py) and fx, fy, cx and cy are intrinsic camera parame-
ters.

An illustration of how this works is given in Figure 2.5, where the
points to the right are reconstructed 3D-points of the vase.

2.2.3 Representation of 3D Models

Using the depth image alone, we get a point cloud. However, we would
like to estimate a surface, not just a set of points. There exist several
methods to do this. For example, one can use occupancy grids through
octrees. Another popular method is to use a so called Truncated Signed
Distance Functions, (TSDF), which represents the model surface implic-

10



2.2. BASICS

Figure 2.6: In an octree, each node has eight children, this can be used
to subdivide space with more nodes in some parts than in others.

itly through the zero level-set.

Octrees

One method to represent a surface is to use a probabilistic occupancy grid
as in [36], where the grid is represented via an octree. In short, an octree
is a tree data structure where each parent has exactly eight children.
The idea is that one can subdivide the space with high resolution close
to the surface and with lower resolution where there is only empty space,
as illustrated in Figure 2.6.

A cell can be either occupied or free. An occupied cell means surface
intersects the cell and non-occupied means free space. This approach has
several advantageous, one is that it is very memory e�cient, which makes
large scale representation possible. The other is that it models both free
space and occupied space which is important for robotic applications.
However, even though the octree representation is memory e�cient and
we can make the resolution high, the surface will be built up by non-
smooth cubes. For applications where we might want good looking and
smooth models, this might not be the best choice.

11



CHAPTER 2. RIGID 3D RECONSTRUCTION

Signed Distance Functions

An alternative representation, which is commonly used in conjunction
with RGB-D cameras, [34], [16], [23], [29], is to use a TSDF.

The basic idea of an implicit representation is illustrated in Fig-
ure 2.7. Looking at the �gure, there is a red area and a blue area and a
white circle between the two areas. This is an implicit representation of
a circle where points outside the circle have a negative distance, (blue),
and points inside the circle, (red), have a positive distance to the surface.

The theory for level set methods and surface representations through
signed distance functions are thoroughly treated in [24]. Here we present
some basic de�nitions from [24] to get a brief overview of signed distance
functions.

De�nition 2.2.3. Let ∂Ω be a surface in Rn and let φ : Rn → R be an
implicit representation of the surface. Then we de�ne Ω+ = {x ∈ Rn :
φ(x) > 0} and Ω− = {x ∈ Rn : φ(x) < 0} and Ω = Ω+ ∪ ∂Ω ∪ Ω−

De�nition 2.2.4. A distance function d(x) is de�ned as

d(x) = min(‖x− xI‖) ∀xI ∈ ∂Ω,x ∈ Ω.

We can now de�ne a general signed distance function:

De�nition 2.2.5. A signed distance function φ is an implicit function φ
with |φ(x)| = d(x) ∀x ∈ Ω. Thus, φ(x) = d(x) = 0 for all x ∈ ∂Ω,
φ(x) = −d(x) for all x ∈ Ω− and φ(x) = d(x) for all x ∈ Ω+. Since d is
a Euclidean distance, we have ‖∇d(x)‖ = ‖∇φ(x)‖ = 1 for all x ∈ Ω.

The last property is typical for signed distance functions and it is not
true for a general implicit function.

With this we have an idea of what a signed distance function is and
how we can represent the geometry through it. The obvious drawback is
that one needs to estimate the distance to the surface for each point in
( a discretized) space. For a general 3D model, no closed form solution
exists.

To achieve an approximation of the signed distance function, we use
a uniform voxel grid and estimate the distance between each voxel and
the surface. With this representation we can �nd the distance to the

12



2.2. BASICS

Figure 2.7: A circle (white) is represented implicitly through a signed
distance function. The points with red color are inside the circle, having
a positive distance, and the blue points are points outside the circle and
they have a negative distance

surface for any point in the grid through interpolation. Typically one
uses a uniform grid. That means we have 3-dimensional grid where the
voxels are laid out equidistantly.

An advantage with this is that one can obtain smooth surfaces by
averaging several measurements for each voxel. A drawback is that the
uniform grid requires a lot of memory, which mostly represents empty
space.

The challenge to estimate the distance between the voxels and the
surface remains. In section 3.1 we present a method of how to estimate
the signed distance function.

2.2.4 Camera Tracking

The problem of estimating the pose of the camera has been studied for
a long time. Here two methods are described in order to give a basic
understanding of how they work.

ICP

In the beginning of the nineties, [3] was published. It is a paper about
how to register two point clouds. The technique is known as Iterated
Closest Point, (ICP). The method has become a standard approach for
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CHAPTER 2. RIGID 3D RECONSTRUCTION

Figure 2.8: In ICP we have two point clouds and the goal is to �nd a
transformation that takes the red point cloud to the green point cloud
in an optimal way. One alternates between �nding correspondences and
minimizing the distance between these correspondences.

3D registration and there are almost in�nitely many versions of it, a
review can be found in [27]. In short, ICP aims to �nd a rotation and
translation which transforms one point-cloud into another using minimal
distance in some norm, often L2, as illustrated in Figure 2.8.

From Figure 2.8 we can extract some key components of ICP. Given
a point cloud and the correspondences between the points, we aim to
minimize

E(R, t) =
n∑
i=1

‖Rxi + t− yi‖pp (2.9)

which means we are seeking the rotation and translations which minimize
the sum of residuals, often p = 1 or p = 2.

With no noise and perfect correspondences this is easily solved. How-
ever, given two point clouds, �nding good correspondences is a problem
in its own. Typically we cannot expect to �nd a correspondence for all
points, but just a subset of points and not all of these might be correct.
To handle this we start with a set of correspondences, then solve (2.9).
Then we can apply the transformation on the point cloud and recom-
pute the correspondences and solve (2.9) again, until convergence. This
is local optimization with no guarantee of �nding the global optimum,
but when the point clouds are close to each other, one often gets good
solutions.

14



2.2. BASICS

Figure 2.9: A pixel x is recomputed to 3D byRρ(x)+t and then projected
on to the image In and gets pixel coordinates π(Rρ(x) + t). One then
compares the intensity values at pixel x and π(Rρ(x) + t).

There are several variations of this procedure, a common method is
to estimate a normal to each point and minimizing the projection to the
normal instead of the di�erence between the point pairs Rxi+t−yi, [10].
We would then minimize

n∑
i=1

‖(Rxi + t− yi)
Tni‖pp. (2.10)

This metric is known as the point-to-plane metric, and corresponds to
minimizing the distance between the point xi and the tangent plane at
yi.

A general drawback of ICP is that most methods rely on the presence
of varied geometry, meaning that if all points lies on a plane, there is no
unique minimizer of (2.9) or (2.10).

Intensity Based Methods

Some other approaches which work well and have some nice properties
have also been developed. The basic idea is that photo consistency be-
tween images shall be maximized. That is, if a 3D point for a pixel in one
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CHAPTER 2. RIGID 3D RECONSTRUCTION

image is projected onto another image, then the intensity in these two
pixels shall be similar. We call the di�erence in intensity between these
pixels for the intensity error. In particular [28] introduced a frame-to-
frame tracking approach which uses both the depth image and the RGB
image. This was later extended in [29] to handle more general situations.

Intensity based methods such as this are suitable for RGB-D cameras.
The idea is to create a point cloud from one image. Then we project
the points into the second image. The rotation R and translation t is
assumed to be correct if the intensity error is 0. In practice perfect
color matching cannot be achieved. Therefore the intensity di�erence is
typically minimized instead.

This di�ers from ICP in that we are not working with aligning two
point clouds, but instead we are trying to maximize photo consistency.
As illustrated in Figure 2.9, we have a 3D point ρ(x) obtained from the
left image. Then we use the estimated relative transformation between
image In and In+1 and transforms ρ(x) to the second camera frame. The
point is then projected onto pixel y in In and the di�erence in intensity
between pixel x in In+1 and y in In is evaluated. This process can be
formulated as the following energy function:

E(R, t) =
m∑
i=1

n∑
j=1

‖Ik+1(i, j)− Ik(π(Rρ(i, j, zij) + t))‖2,

where zij is the depth at pixel (i, j) in the depth image Id(i, j). With
this technique we �nd the relative transformation between two frames.

The advantage with this approach is that we can use all color infor-
mation available and need not to �nd corresponding points as in ICP.
The disadvantage is that errors are quickly accumulated which can lead
to poor results if we do not �nd a way of reducing these errors.

2.3 Related Work

As mentioned earlier, 3D reconstruction is not a new topic and there are
many approaches to solve the problem of estimating the pose and the
geometry. Both in SfM and in SLAM a lot of research has been done.
Lately, since the advent of the Microsoft Kinect and the Asus Pro Live
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2.3. RELATED WORK

Figure 2.10: Given a new depth image, one takes the latest known camera
and perform ray tracing to �nd points on the actual surface. With this
global point cloud one can perform ICP to �nd the correct transformation
between the last known camera position and the new unknown camera.

sensor, a very active research area has been how to create 3D-models
using depth cameras.

The most famous work is probably KinectFusion [23], which was
likely the �rst system capable of creating 3D models in real-time using
these sensors. Their main contribution was that they demonstrated how
a TSDF can be used to robustly track the camera movement for medium-
sized reconstructions. To track the camera they use ICP and to create
the 3D models, they use the method from [11]. In ICP [3], [27], one wants
to align two point clouds. What makes ICP more robust in KinectFusion
is that they render the 3D model directly. This results in a global point
cloud which the new point cloud obtained from the new depth image is
aligned to. An illustration of this is shown in Figure 2.10.

In [28], a di�erent approach to estimate the camera pose is taken
compared to KinectFusion. Instead of minimizing the geometric error
between point clouds, one seeks to maximize photo-consistency between
two consecutive images as described in Section 2.2.4. Here the pose
estimation is independent of the model. Actually no model is estimated
in [28]. This idea was improved in [17] and [18]. A drawback is that these
methods easily drifts away. Drifting means that due to accumulated
errors, the estimated camera pose deviates more and more from the true
path. These intensity based methods do not require a 3D model to work,
which makes it possible to use other methods to decrease drift such as
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Figure 2.11: When the camera approaches the border of the volume, a
new volume is created and appended to the active part. The other half
is saved to the hard drive.

loop-closure and bundle-adjustment.

Another way to estimate the camera pose is the one by [12], where
they �nd key points between pairs of images and use RANSAC to com-
pute a relative transformation between the pair. These transformations
are then added to a graph which optimizes the camera pose globally to
reduce drift. This method has the advantage compared to ICP that it
requires only keypoints to be found, so it can handle scenes with little
texture as long as it can �nd keypoints. A drawback is that the 3D
model cannot be created until the entire scene is recorded. To represent
the 3D model, they use a probabilistic Octree, [36], which is created after
all images has been recorded and the graph is globally optimized. The
advantage with such a representation is that it is very memory e�cient.
However, the reconstructions are harder to make smooth since a voxel is
either entirely surface or not surface. An advantage for robotic applica-
tions is that both occupied and non-occupied space is represented.

The approaches described above have been successfully used in other
well-known methods such as Kintinuous [32], [33] and lately [35]. A
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combination of the KinectFusion based ICP [23] and the intensity based
methods by [28] is used to estimate the camera trajectory. The aim with
these works is to create large-scale online reconstructions, that is, the
model is created as the images are recorded. For large-scale methods
one meets other challenges. Firstly, one must reduce drift and secondly
the memory consumption must be reduced so that the entire model can
be represented on a computer. To handle this [34] uses a rolling volume.
This means one has a uniform grid as in KinectFusion and represents the
surface with a TSDF. However, when reaching the border of this grid the
other half is saved to the hard drive and a new empty grid is appended
to the volume where the camera is, as depicted in Figure 2.11.

In [35] a new interesting approach is taken. There Surfels [25] are
used to represent the model. Surfels are basically small surface elements
that contain information about position, size, orientation and eventually
texture. This makes it easier to recompute the 3D model online if drift
is detected and adjusted for which is done in [35] with impressive results.
To track the camera the KinectFusion based ICP is used together with
an error term that takes photo consistency into account. This makes it
robust to scenes where there is either only texture or structure.
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Chapter 3

Estimating the Camera Pose and

Creating a 3D Model

The main contribution with this part of the thesis is that we investi-
gate how the model represented as a TSDF can be used to estimate the
camera pose. Evaluation on benchmarks demonstrates that when us-
ing the global model in a di�erent way than KinectFusion [23, 16] does,
the estimated pose is even more robust. These conclusions are drawn
by evaluating an open-source implementation of KinectFusion, known as
KinFu [1], together with our method on publicly available datasets [30].

As described in previous sections, there are some di�erent ways of
creating 3D models and estimating the camera pose. To get an accurate
and reliable 3D model, it is important to have a method that can estimate
the pose accurately and robustly. In the �rst part of this chapter we
show how the TSDF can be estimated with known camera position.
Thereafter, we explore how the TSDF representation can be used to
estimate the pose. Later we see that we can invoke more information to
make the pose estimation more robust. In particular we investigate how
to recover the pose when there is not so much geometry in the scene.

3.1 Updating a TSDF for a New Depth Image

As described in the introduction we can use a TSDF to represent the 3D
model. Here we go into detail of how the grid is updated as we get new
measurements for each new frame.

The goal is that each voxel shall contain the best estimation of the
distance between the surface and the voxel. This is generally a hard
problem and to get an exact signed distance function the constraint
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‖∇φ‖ = 1 must be satis�ed. Here we aim to do real-time 3D recon-
struction similar to KinectFusion. Since the Kinect delivers images at
a rate of 30 frames per second, one has approximately 33 ms to �nd
the position of the camera and update the grid with new information.
Therefore, more advanced methods to estimate the distance function are
not suitable. Instead we follow the heuristic by [11], which is trivial to
parallelize, allowing for a considerable speed up using a modern GPU.

To start with we have a voxel grid, which is a 3 dimensional discretiza-
tion of a volume in space. Each voxel has a unique index (i, j, k) ∈ N3

and we refer to one voxel at index (i, j, k) as Vijk. Each voxel stores data
used to represent the distance function. The data in this work is:

� D - estimated distance to surface

� W - estimated weight of the measured distance

� R - estimated intensity in the red channel

� G - estimated intensity in the green channel

� B - estimated intensity in the blue channel.

� Wc - estimated weight for the color.

A data value for a voxel at (i, j, k) will be referred to with subscript ijk,
for example the distance at voxel Vijk will be denoted Dijk. We set the
origin of the global coordinate system to be in the center of the voxel
grid. Since the distance between the voxels is known and the voxels are
�xed in space and the origin of the global coordinate system is known,
the global coordinates for a voxel Vijk can easily be computed.

With the above de�nitions we can now describe how we can estimate
the signed distance to the surface for each voxel. Assuming that we have
the global position of the camera Cn, i.e. we know the global rotation
R and translation t of the camera, we can express the coordinates of the
voxel Vijk in the cameras frame of view by computing

xL = RTxG −RT t, (3.1)
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Figure 3.1: Instead of measuring the distance between xL and xS , we
measure the distance long the principal axis.

where xG is the known 3D coordinates for the voxel Vijk in the global
frame. Then, provided that zL > 0 which means that the voxel is in
front of the camera, we can �nd which pixel the voxel is projected onto
by computing

px =
fxxL
zL

+ cx

py =
fyyL
zL

+ cy. (3.2)

The surface point given at this pixel lies on the ray between the camera
center and Vijk. We can read the depth for the surface point at pixel
(px, py) by

z = Id(px, py). (3.3)

With known depth z, the 3D point for the surface point xS can be
computed by

xS =


(px−cx)z

fx
(py−cy)z

fy

z

 . (3.4)

23



CHAPTER 3. ESTIMATING THE CAMERA POSE AND
CREATING A 3D MODEL

It is now easy to compute the distance between the voxel and the surface
point along the ray between the camera and the voxel via

d = ‖xS − xL‖. (3.5)

The sign of the distance is obtained by comparing zL and zS . In practice,
it is easier to approximate the distance by just taking the di�erence
between the z-coordinates, i.e.

d = zL − zS .

With this approximation, a voxel will have negative distance if the voxel
is in front of the surface (zL < zS) and a positive distance if it is behind.
Note that this distance is an approximation of the projective distance,
but in practice it does not matter. The advantage is that one saves some
computations in the implementation which makes it a bit faster. The
idea is illustrated in Figure 3.1.

Since we are estimating the distance with the projected distance, it
can happen that a surface point close to the voxel is missed if it is not
on the ray between the voxel and the camera. Instead one might get
a measurement for a surface point far away from the voxel. To reduce
the impact of such erroneous measurements, the estimated distance is
truncated at a threshold δ. We get the approximated distance

dt =


−δ, d < −δ
d, |d| ≤ δ
δ, d > δ.

(3.6)

This makes the potential error in the measurement limited to the band-
width [−δ, δ]. There is also an uncertainty for the measurements when
the voxel is behind the observed surface. A voxel might be close to an-
other surface which is not observed in that frame. Therefore we also
introduce a weight function for the uncertainties in the measurements.
Since we cannot see behind surfaces, a lower weight is assigned to mea-
surements behind a surface, and the further behind the surface is, the
lower the weight is. The weight function is de�ned as follows

w(d) =


1, d ≤ ε
e−σ(d−ε)

2

, d > ε
0, d > δ.

(3.7)
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The distance measurements are made for all voxels in the grid. For
every frame with corresponding known global pose of the camera we get
a new measurement for each voxel. For a voxel Vijk we get a measure-
ment Dijk for each image. The question is, how do we obtain a TSDF
which takes all measurements into account? As proposed by [11], we can
formulate the optimization problem

E(Dijk) =

n∑
l=1

wl(Dijk −Dl
ijk)

2, (3.8)

where wl is the weight of the measurement Dl
ijk and n is the number of

images. Taking the derivative of this function and setting it to zero one
gets

n∑
l=1

wl(Dijk −Dl
ijk) = 0 (3.9)

⇔∑n
l=1

wlD
l
ijk∑n

l=1
wl

= Dijk.

The optimal measurement for a voxel Vijk is therefore the weighted
average of all measurements. Since each voxel is independent of the oth-
ers, one can easily obtain an optimal TSDF by computing the weighted
average for each voxel. For each voxel, we do the following update

Di+1 =
W iDi + w(di+1)d

t
i+1

W i + w(di+1)
(3.10)

W i+1 = W i + w(di+1).

As we can see, for every new image we can simply update the entire grid
by these computations in order to get the current best approximation of
the 3D model. Furthermore, each computation only needs reading and
writing from one voxel, so this procedure is straightforward to implement
in parallel.

Similarly, the color for voxel Vijk can be estimated by extracting the
RGB-vector (r, g, b) from the color image Ii+1

c . For each new image we
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obtain a measurement which we can integrate into the voxel by comput-
ing

Ri+1 =
W i
cR

i + wcri+1

W i
c + wc

(3.11)

Gi+1 =
W i
cG

i + wcgi+1

W i
c + wc

(3.12)

Bi+1 =
W i
CB

i + wcbi+1

W i
c + wc

, (3.13)

where wc is the weight of the new measurement de�ned as

wc = cos(θ) · w(di+1), (3.14)

where θ is the angle between the optical axis and the light ray. (r+1,
gi+1, bi+1) are the measured intensities in the new color image Ii+1

c .
These measurements assigns a RGB-vector to every voxel. This color
vector can be used to colorize the model.

3.2 Estimating the Camera Pose Using Geometry Infor-

mation From the 3D Model

We now have a simple method of integrating a new depth frame into
the 3D model, given that we already know the pose of the camera with
respect to the global coordinate system. Simple as it may sound, it is
not so easy to obtain the rotation and translation of the camera. The
main contribution of this part of the thesis is how we tackle the problem
of �nding the camera pose using the model directly, rather than doing an
ICP-like procedure or maximizing photo-consistency in a frame-to-frame
manner. The key idea is to use the distance information embedded in
the signed distance function itself.

Assume that we after N images have found a (correct) representation
of the 3D model through the signed distance function. We illustrate this
in Figure 3.2.

Given a new image, IN+1, we get new measurements of the surface.
Without knowing the rotation and translation of the camera, a guess will
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Figure 3.2: Assuming we know the rotation and translation of the �rst
N camera positions a surface can be created, represented in a voxel grid.
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Figure 3.3: Without correct rotation and translation, the newly observed
surface cannot be correctly aligned to the estimated surface from the �rst
N surfaces.

most likely not align the new surface onto the estimated (assumed true)
surface, as depicted in Figure 3.3.

The key idea to �nd the correct con�guration of the camera is to use
the distance information obtained for each 3D point from the new depth
image. In reality, what we get from each new depth image is a point
cloud, and by a guess of the global pose of the position of the camera,
one can reconstruct the point cloud into the voxel grid. For each 3D
point, we can �nd out where in the voxel grid it is located. Using the
distance information in the voxels a distance between the 3D point and
the actual surface can be computed, as shown in Figure 3.4. Assuming
a small camera motion, most of the structure seen in the new frame
will be the same as observed in the previous frames. Therefore, to �nd
the correct pose of the camera, it is reasonable to �nd the rotation and
translation which minimizes the distances between the point cloud and
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Figure 3.4: The point cloud can be reconstructed into the voxel grid,
and for each point we can estimate the distance between the surface and
the 3D point.
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Figure 3.5: With the correct rotation and translation of the camera,
as many points as possible should be reconstructed onto the surface as
possible.

the surface, as illustrated in Figure 3.5. We now de�ne the function for
obtaining the distance to the surface.

De�nition 3.2.1. Let φ : R3 7→ R be the function which takes a 3D point
x and returns the value in the voxel grid at that position in the grid.

The challenge now is to �nd this pose. By observing that in a distance
function, the distance between a 3D point and the surface is zero on the
surface, and increasing the further away from the surface we move, the
following error function can be de�ned

E(R, t) =
M∑
i=1

N∑
j=1

φ(Rxij + t)2. (3.15)

Here R and t denotes the global rotation and translation and xij is the
local 3D point and φ is the TSDF.M and N are the number of rows and
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colons in the image. If this error function is 0 for some R and t, all points
are reconstructed on the surface. Due to noise and earlier unobserved
structure, the error function will in practice never become zero, so we
need to �nd the minimal error. The task is now to solve

min
R,t

M∑
i=1

N∑
j=1

φ(Rxij + t)2. (3.16)

However, we have no analytic expression of the signed distance function
which makes it hard to minimize directly. To parametrize R and t we
use the Lie Algebra representation [22]. With this representation, it is
possible to represent the entire rigid transformation via a 6-dimensional
vector

(ω, t) = (rx, ry, rz, tx, ty, tz). (3.17)

Here rx, ry and rz represents the rotation around the three axes and tx,
ty and tz is the translation. To go from this vector representation to a
rigid transformation C ∈ SO(3), one computes the exponential matrix

R = eω̂, (3.18)

where

ω̂ =

 0 −rz ry
rz 0 −rx
−ry rx 0

 . (3.19)

With this representation, we can rewrite the error function as

E(ω, t) =

M∑
i=1

N∑
j=1

φ(g(ω, t,xij))
2, (3.20)

where

g(ω, t,x) = eω̂x + t. (3.21)

In order to optimize the above energy, we use the Gauss-Newton method.
The Gauss-Newton method is suitable since the distance between two
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Data: Depth image: IN+1

d , SDF: φ, Previous camera position:
(ωN , tN )

Result: Camera position (ωN+1, tN+1)
ωNew = ωN ;
tNew = tN ;
ωOld = ωN ;
tOld = tN ;
while converged == false do

ωOld = ωNew ;
tOld = tNew ;
A =

∑
i,j ∇φ(g(ωNew, tNew,xij)∇Tφ(g(ωNew, tNew,xij);

b =
∑

i,j φ(g(ωNew, tNew,xij)∇φ(g(ωNew, tNew,xij);(
ωNew
tNew

)
= −A−1b +

(
ωNew
tNew

)
;

if ‖(ωNew, tNew)− (ωOld, tOld)‖∞ < ε then
converged = true;

end

end
ωN+1 = ωNew;
tN+1 = tNew

Algorithm 1: The algorithm for computing the new camera pose
(ωN+1, tN+1).
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consecutive camera positions will be small under normal circumstances
due to the high frame-rate. Hence by using the last known position, we
will be quite close to the optimal point already. Linearizing the error
function around the current guess of the camera position (ω0, t0), we
get the following error function

E(ω, t) ≈
∑
i,j

(φ(g(ω0, t0,xij)) +∇(ω,t)φ(g(ω0, t0,xij))
T

(
ω − ω0

t− t0

)
)2.

(3.22)

Now we can optimize the approximated error function by taking the
gradient of it with respect to (ω, t) and setting it equal to 0. We get∑

i,j

φ(g(ω0, t0,xij))∇φ(ω,t))(g(ω0, t0,xij)+

∇φ(g(ω0, t0,xij))∇Tφ(g(ω0, t0,xij))

(
ω − ω0

t− t0

)
= 0 (3.23)

which is easily solved if the resulting matrix

A =
∑
i,j

∇φ(g(ω0, t0,xij))∇Tφ(g(ω0, t0,xij)) (3.24)

is invertible. This will be the case as long as there is enough di�erent
structure in the scene. Then there will be a unique point (ω∗, t∗) such
that error is minimized. In case of planar scenes, this will fail since we
do not have enough constraints to determine the rotation and transla-
tion uniquely. This is a general shortcoming of purely geometric based
tracking approaches, such as ICP.

So to �nd the camera position, we use the method described above.
Initializing with camera position from the last frame, we start by solving
the linearized error function and take the newly found camera pose and
re-linearize again until convergence. To compute the gradient of φ, we
use the chain rule. The method is summarized in Algorithm 1.

Note that we are computing the gradient for each 3D point obtained
from pixel (i, j), and the computations are independent of each other.
Hence, these computations can mostly be done in parallel, it takes some
more re�ned techniques to implement it compared to integrating the 3D
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models though. That is because at the end all matrices Aij and bij
computed for each pixel (i, j) need to be summed up to one matrix A
and one vector b. To do that on the GPU, we have to use tree-reduction
and use shared memory, otherwise, it is quite straightforward.

The main di�erence between our approach and KinectFusion [23] is
that we make use of all 3D points and we make no data association,
which is done in KinectFusion and their ICP-framework.

In summary, we now have a way of estimating the camera pose given
a 3D model and a new image. Moreover, we also know how to integrate
this image into the model in order to update it. This can be used to
create an algorithm capable of creating a 3D model on the �y. The work
�ow for the method is presented in Algorithm 2.

Data: Depth Image: Ikd , SDF: φ
Initialize;
(ω0, t0) = (ωinit, tinit);
φ = updateSDF(φ,ω0, t0, I

0

d);
k = 1;
while stop == false do

Ikd = acquireDepthImage();

(ωk, tk) = getCameraPose(ωk−1, tk−1, I
k
d , φ);

φ = updateSDF(φ,ωk, tk, I
k
d );

k + +;
if stopping criteria ful�lled then

stop = true;
end

end

Algorithm 2: Work �ow for the system to create a complete 3D
model. To stop the procedure one can for instance pre- de�ne how
many images one should use. Other stop criteria are of course
possible.
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Figure 3.6: 3D reconstruction of a room, top view.

3.2.1 Results and Experiments

Qualitative Results

To evaluate this system we perform several experiments and we evaluate
it on the public benchmark [30].

The advantage of using a TSDF is that it requires no constraints on
the topology of the surface. This means that it should be possible to
create arbitrary 3D models, provided there is enough structure to get
the tracking to work. To demonstrate this, look at Figures 3.6 and 3.7.
This is a smaller room which have been reconstructed using the proposed
method. As one can see, it looks quite decent. For instance the black keys
on the keyboard are distinguishable, which indicates a correct estimation
of the trajectory. Also the �gures on the wall to the right in Figure 3.7
have distinct edges and are correctly reconstructed, if the tracking had
failed, they would have been smeared out. However, looking at the wall
in the left corner at the window, there seems to be some artifacts and
the motive on the pictures are not distinguishable. Though the picture
frames are sharp rectangles and correctly reconstructed, there are still
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Figure 3.7: Same model as in Figure 3.6, note that the black keys on the
keyboard are distinguishable from the white keys. That is an indication
of a consistent tracking.

some challenges to be met.

A disadvantage with the uniform grid representation of the TSDF is
that it requires a lot of memory, and to make detailed reconstructions, the
object cannot be too large. For instance, a grid of size 4 m3 would have
a spatial resolution of approximately 1.6 cm if 2563 voxels are used. To
get detailed reconstructions one has to use small objects which �ts into a
small voxel grid. That the reconstruction can be made more detailed is
clearly illustrated in Figure 3.8, here the emblem on the book is clearly
distinguishable for example. The high quality of the model itself is of
course proof of a good estimation of the camera trajectory. To verify this
we look at Figure 3.9 where we can see that there is very little drift in
the sequence due to the closed loop. Note that the reconstruction could
not have such high resolution if the scene were larger. Here the volume
is approximately 1 m3.

An application mentioned in the introduction of real-time 3D recon-
struction could for instance be autonomous �ights of a quadrocopter.
We investigate this further by performing several experiments using a
quadrocopter together with an Asus sensor and base station with GPU
capabilities. The �rst experiments were made to see if a quadrocopter
was capable of following a pre-de�ned orbit. The model was initialized
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Figure 3.8: A reconstruction of a smaller object. Due to the small size
of the grid, the reconstruction gets signi�cantly more detailed. Look on
the emblem on the book, it is clearly distinguishable.

Figure 3.9: Looking at the trajectory and the quality of the 3D model,
it is apparent that there is little drift in this sequence.
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Figure 3.10: In the �rst quadrocopter experiment the task of the quadro-
copter was to hover at the same point. As one can see in the image, it
is capable of staying at the same position reasonably good.

while the quadrocopter was staying on the ground, then a signal was
sent to start and lift to a certain altitude. Thereafter the mode was
switched to autonomous control and the quadrocopter should follow a
prede�ned orbit by computing its position using the depth sensor and
our algorithm. The �rst experiment was just to hover on the same po-
sition. In this experiment, the quadrocopter had an average standard
deviation of 2.1 cm while hovering, the experiment is demonstrated in
Figure 3.10. The error was measured between the set goal position and
the estimated position of our algorithm. A more advanced trajectory was
also tested. The task was to navigate in a rectangle and follow the path
for several rounds. As one can see in Figure 3.11, this was successfully
accomplished. The blue line is the pose the quadrocopter �ew and the
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Figure 3.11: The path the quadrocopter should follow is in red and the
estimated trajectory in blue. As one can see in the image, it manages to
follow the same trajectory for several rounds.

red line is the path it was supposed to take. In another experiment, the
quadrocopter was in assisted mode and a user should specify way points
and the quadrocopter should use its estimated pose to navigate to the
speci�ed way points. The resulting 3D model is decent as can be seen
in Figure 3.12 and Figure 3.13. This again shows that the trajectory is
correctly estimated.

The algorithm can also be used to create 3D models of persons. By
sitting on a swivel chair and rotate 360◦ one gets a complete scan of the
upper body. A result can be seen in Figure 3.14. Looking at the pose
in Figure 3.14 we see that the loop closes nicely, which it is supposed to
do.
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Figure 3.12: Side view of the resulting 3D reconstruction of a room using
the assisted mode on the quadrocopter.

Figure 3.13: Top view of the 3D model obtained from assisted mode
using the quadrocopter.
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Figure 3.14: A 3D scan of a man sitting on a swivel chair. The colored
lines is the estimated pose of the camera.

Quantitative Results

To make a more rigorous evaluation of the system, we evaluate the al-
gorithm on public available benchmarks [30]. To get a better under-
standing of the quality of our work, we also compare ourselves to the
PCL-implementation of KinectFusion [1], known as KinFu. In [7], we
do also compare ourselves to RGB-D SLAM [12] as well. After publi-
cation, we understood that they �rst estimate the camera positions for
all images, reducing for drift using loop-closures and other techniques.
When all camera positions have been optimized globally, [12] creates
the 3D model by fusing all images into a probabilistic octree represen-
tation [36]. This is a simpli�ed problem because it makes it possible
compute all poses optimal before creating a map. In contrast we and
KinectFusion [23] create the model online, which makes it substantially
more di�cult to maintain an accurate estimation of the camera since
we do not update it afterwards. Therefore, we do not consider it fair
to compare KinFu and our method to RGB-D SLAM. The frame rate
with a voxel grid of 5123 voxels was about 15− 16 Hz, using an NVidia
Geforce GTX 770, Intel i7 3.4 GHz processor and 16 GB RAM.

Looking at Table 3.1, we see that our method clearly outperforms
KinFu on almost all datasets. Either KinFu works poorly, or not at all.
This might be a bit surprising due to the impressive videos shown on
youtube1. There might be some di�erence between the KinFu implemen-

1https://www.youtube.com/watch?v=quGhaggn3cQ
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Table 3.1: The root-mean square absolute trajectory error for KinFu and
our method for di�erent resolutions, metrics and datasets.

Method Res. Teddy F1 Desk F1 Desk2 F3 House

KinFu 256 0.156 m 0.057 m 0.420 m 0.064 m
KinFu 512 0.337 m 0.068 m 0.635 m 0.061 m
Point-To-Point 256 0.075 m 0.037 m 0.064 m 0.037 m
Point-To-Point 512 0.072 m 0.035 m 0.055 m 0.035 m

Method Res. F1 360 F1 Plant F1 RPY F1 XYZ

KinFu 256 0.913 m 0.598 m 0.133 m 0.026 m
KinFu 512 0.591 m 0.281 m 0.081 m 0.025 m
Point-To-Point 256 0.553 m 0.048 m 0.042 m 0.022 m
Point-To-Point 512 0.131 m 0.044 m 0.045 m 0.022 m

tation and the original KinectFusion. Moreover, most scenes in demon-
strations of KinectFusion are for smaller grids, whereas the datasets are
larger, and the trajectory possible more challenging to recover. Due
to the ray casting technique for visualization, one only sees the model
from the current frame and not the entire reconstruction at once, where
drift and inconsistencies are more prominent. This is clearly visible for
datasets where loop-closure is present since one can see how the previous
visited areas gets destroyed due to drift in the camera pose. Inaccura-
cies in the estimation of the camera position leads to errors in the TSDF
which ultimately destroys the implicit surface, which is shown in Fig-
ure 3.15. However, this evaluation does not give the whole truth, even
though our tracking method is superior in the experiments, there are
certain advantages with the KinectFusion approach. One advantage for
example is that when using the ICP method, one can reduce the trunca-
tion in TSDF estimation. This gives a better estimation of the distances,
as long as the camera position is correctly estimated.

The main reason to why our method is superior to KinectFusion,
is probably that we make use of more information when we compute
the rotation and translation of the camera. In KinectFusion, a point
cloud is created by performing ray casting on the current 3D model.
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INFORMATION FROM THE 3D MODEL

(a) Reconstruction of Fr1 Teddy using KinFu

(b) Reconstruction of Fr1 Teddy using our method.

Figure 3.15: Comparison of the reconstruction of Fr1 Teddy using our
method and KinFu. Note that the Teddy Bear in the top �gure is com-
pletely gone.
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Then the 3D points in this point cloud is associated to the points in
the new point cloud obtained from the new depth image, through the
fast Data Association algorithm [4]. In this process, potential matches
are rejected, so at the end, KinectFusion uses less 3D points to compute
the camera transformation. In contrast, our approach uses all 3D points
which are reconstructed in the grid where we have measurements of the
distance to the surface. This way we make use of more data, which
makes tracking more robust and accurate. It might also be that we get a
better estimation of the error between the surface and the reconstructed
3D point compared to KinectFusion. In the data association there might
be false matches which will have a negative e�ect on the tracking.

There are also some drawbacks of our approach. When we compute
the gradients we must be within the threshold in the distance function,
otherwise the distance is thresholded to δ and the gradient would be zero
and of no use. Empirically we found that the threshold must be rather
big, δ = 0.3 m, to make our method perform well on all benchmarks.
This has the e�ect that voxels further away from the surface can get a
rather poor estimation of the distance to the surface. We also use more
voxels behind the surface. In contrast, KinectFusion has a rather tight
threshold, which undoubtedly gives a visually more appealing surface
when the tracking works. That is a trade of we have to do. With a
tight threshold, many points will be reconstructed in the thresholded
area which makes our method work poorly. In contrast KinectFusion
just performs raycasting and then does ICP, so their tracking is not at
all that sensitive.

3.3 Robust Estimation of the Camera Pose

The 3D models shown are colorized and this is done by integrating all
color information in each voxel as described in Section 3.1. So far this
has only been used for visualization purposes. As mentioned earlier,
the tracking approach proposed in Algorithm 2, does only work when
there is enough structure in the scene. This is a shortcoming. In many
practical applications we might at least partially be in scenes where
there is little structure. In this part we address this issue with two
di�erent approaches. The key idea behind both approaches is to invoke
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color information in the tracking algorithm. Color information has the
advantage that only texture is required, so even if the scene is planar,
texture should be enough to recover the camera pose. On the other hand,
invoking only texture has the disadvantage of being sensitive to scenes
with no texture, so the tactic here is to extend our tracking method so
that we make use of both color information and geometric information.

3.3.1 Invoking Color in the Camera Pose Estimation

We saw in Section 3.1 how the color of the 3D model can be estimated
by computing a weighted average of color measurements for each voxel.
Now when we have a textured 3D model represented in a voxel grid, we
want to use this information to improve the camera tracking. The idea
is based on photo consistency between the current estimation of the 3D
model and the newly obtained color image Ic. By using a guess of the
transformation [R t], we can reconstruct a 3D point into the voxel grid
by

xG = RxL + t, (3.25)

where

xL =


(px−cx)z

fx
(py−cy)z

fy

z

 . (3.26)

From xG, we can easily �nd out where in the voxel grid the point is
located, and we can then compute the color (Rs, Gs, Bs) of the surface
there. By obtaining the RGB-vector of the model (Rs, Gs, Bs), we can
compare this with the color intensities in the pixel coordinates (px, py)
in the RGB image Ic. Ideally, these should match for each pixel, as
illustrated in Figure 3.16.

So by computing the di�erence between the intensities in the image
and the color on the surface for each pixel, we get the error

Ecolor(R, t) =
∑
ij

‖C(RxL + t)− Ic(i, j)‖2, (3.27)

45



CHAPTER 3. ESTIMATING THE CAMERA POSE AND
CREATING A 3D MODEL

Figure 3.16: By reconstructing the 3D points with a guess of R and
t, it is possible to compare the color of the model where the point is
reconstructed and the color in the color image Ic. Ideally, it should
match.
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where C(RxL + t) is the RGB-vector in the voxel grid at RxL + t and
Ic(i, j) is the RGB-vector in the color image at pixel (i, j). Thus, we
have an error metric which takes color information into account. This
allows us to integrate color information into our original method where
we only use geometric information. Let us �rst de�ne the color error as

ψ(RxL + t) = ‖C(RxL + t)− Ic(i, j)‖2. (3.28)

By adding this to the geometric error we get

Etot(R, t) = φ(RxL + t)2 + αψ(RxL + t)2, (3.29)

where α is the weight of the color error. This term takes into account
both the geometric error and error in each color channel. The error is zero
when the rotation and translation is such that the point is reconstructed
onto the zero level set, and the color on the surface matches the color
in the pixel. Note that due to the threshold, the geometric error di�ers
between [−δ, δ] and the color error goes between [0, 1]. One could scale
the color error to lie in the interval [0, δ]. However, the weight α can be
tuned to give the desired impact on the tracking instead.

With this, the new error function we want to minimize is

E(R, t) =
∑
i,j

φ(Rxij + t)2 + αψ(Rxij + t)2, (3.30)

where we sum over all pixels (i, j). Again, we change representation of
the rigid body motion by using the Lie-algebra representation

(ω, t) = (ωx, ωy, ωz, tx, ty, tz). (3.31)

With this and a local 3D coordinate xij for pixel (i, j) we write the
residual vector as

rij(ω, t,xij) = (φ(g(ω, t,xij),
√
αψ(g(ω, t,xij)))

T , (3.32)

and the error function becomes

E(ω, t) =
∑
i,j

rij(ω, t,xij)
T rij(ω, t,xij), (3.33)

which we solve by using the Gauss-Newton method. Thus we now have a
method for estimating the camera position by using both geometry and
texture information.
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Figure 3.17: Close to the surface we allocate a dense voxel grid, but
further away from the surface there are no voxels allocated.

3.3.2 E�cient Use of Memory

Another problem we address is the waste of memory by using a uniform
grid. Remember that the memory consumption of a uniform grid grows
cubically with the voxel resolution. To get more detailed reconstruc-
tions requires small objects, otherwise the memory consumption would
explode. To address this we simply notice that we are only interested in
the distance function in the vicinity of the surface and therefore, there
is no need to allocate a lot of voxels in empty space. The simplest ap-
proach would be to implement an octree representation where each node
has eight sub-leaves. However, then the resolution quickly decreases as
we get far away from the surface. To compute the derivatives, we want
to have a high resolution around the surface as well. Therefore, we im-
plement a representation where we have a very coarse voxel grid, with
no voxels allocated, then if we detect a surface in any of these voxels, we
allocate densely with voxels there. This is illustrated in 3.17. This allows
us to get a higher spatial resolution for larger reconstructions without
running out of memory.
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Figure 3.18: The reconstructed scene when the sensor is only facing the
�oor.

3.3.3 Experiments and Results

The purpose of invoking color information in the tracking procedure was
to address that our original method would not work when there is only
planar surfaces. To test our hypothesis, we made a simple experiment by
recording data with the depth camera facing the �oor only. As one can
see in Figure 3.18, everything looks smeared out and the estimated pose
is approximately a non-moving one, whereas invoking color information
yields a completely di�erent result, as seen in Figure 3.19.

When we use the color information to estimate the camera pose the
�oor with its texture is clearly visible. Moreover, the edges on the blue
squares are clearly distinguishable. The sharp edges indicate that the
pose of the camera is correctly estimated. In another experiment, we
tested how the method works for larger reconstructions, since we now
have a more e�cient way of representing the distance function. We tried
to reconstruct a part of a corridor, which is quite a challenging task,
since there are many scenes with little structure. The result is shown in
Figure 3.20. The movement in these scenes is quite simple. Nonetheless,
it shows that our tracking is also rather robust over larger scenes. The
corridor is approximately 40 m long and even if there is visible drift, it is
not that bad. It is inherently prone to drift since an error in the model
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Figure 3.19: The reconstructed scene when the sensor is only facing the
�oor and color information is invoked in the tracking.

Figure 3.20: The reconstructed corridor, using both color and geometric
information in the camera pose estimation.
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gives an error in the tracking and then it is impossible to recover without
any external technique. Nonetheless, this experiments suggests that the
drift is small.

3.3.4 Quantitative Results

To evaluate our method we test it on the benchmarks [30] again. In [8],
we compared ourselves to [29], and drew the conclusion that they were
superior to us. This was not quite fair, since they separate the problem
into two parts. They �rst compute all camera positions globally to reduce
drift, then they integrate all images into the 3D model. In contrast we
try to solve the problem of creating the 3D model online, that is, when
we get a new image, we compute the pose and then update the model.
This is signi�cantly harder, since we cannot recompute positions we have
already found easily. Therefore, we do not compare ourselves to them
here. Instead, we only compare this new approach with our old approach
where we only use geometric information.

It is clear that invoking color information increases the performance
on most datasets. In particular, Fr3 No_Structure_Texture_Far shows
the strength of invoking color information. With no color the RMSE is
1.36 m, but invoking color information decreases the error to 0.03 m.
However, Fr1 Desk2 shows the opposite behvaiour, the more color that
is used, the more inaccurate is the tracking. Fr1 Desk2 is considered to
be a quite challenging dataset with a fast movement of the camera. It
is also clear from the results that di�erent datasets give best result for
di�erent values of the weight α. At the moment the weight has to be set
manually. It would be interesting to look further into how the weight
can be set automatically. The frame rate with a voxel grid of 5123 voxels
was about 11 − 12 Hz, using an NVidia Geforce GTX 770, Intel i7 3.4
GHz processor and 16 GB RAM.

3.4 Combining Sparse and Dense Tracking

Invoking color information from the global model clearly improves the
tracking as seen in Section 3.3.4. Yet, there are still situations where even
texture information is not enough. Imagine we have a planar surface with
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Table 3.2: The root-mean square absolute trajectory error (m) for dif-
ferent values of the weight α. Note that α = 0 corresponds to the pure
geometric tracking approach in Section 3.2

.

Dataset Weight α

α 0 0.1 0.2 0.3 0.4

fr1 teddy 0.072 0.067 0.064 0.061 0.059
fr3 str_no_tx_f 0.034 0.034 0.035 0.036 0.036
fr3 no_str_tx_f 1.36 0.042 0.041 0.031 0.031
fr1 desk 0.035 0.036 0.036 0.037 0.037
fr1 desk2 0.055 0.064 0.079 0.105 0.117
fr1 360 0.131 0.131 0.129 0.147 0.138
fr3 o�ce_house 0.035 0.032 0.027 0.025 0.024
fr1 plant 0.044 0.042 0.044 0.047 0.048
fr1 rpy 0.045 0.041 0.039 0.038 0.037

α 0.5 0.6 0.7 0.8 0.9 1.0

fr1 teddy 0.058 0.066 0.072 0.080 0.248 0.223
fr3 str_no_tx_f 0.037 0.037 0.038 0.038 0.039 0.040
fr3 no_str_tx_f 0.030 0.030 0.030 0.030 0.029 0.029
fr1 desk 0.038 0.038 0.038 0.038 0.039 0.039
fr1 desk2 0.130 0.132 0.135 0.138 0.140 0.140
fr1 360 0.200 0.196 0.199 0.205 0.737 0.759
fr3 o�ce_house 0.024 0.024 0.024 0.025 0.025 0.026
fr1 plant 0.050 0.051 0.051 0.051 0.051 0.052
fr1 rpy 0.037 0.037 0.037 0.037 0.037 0.037
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texture, but the texture is not so distinct. The estimated model is then
likely to be smeared out and it will be di�cult to estimate the pose.

An idea to attack this problem is to use sparse feature points and
invoke these into our error function. The approach is to �nd correspond-
ing points between the new image and a sequence of images already
obtained. With corresponding pixel pairs [(xn+1, yn+1), (xn, yn)], where
(xn+1, yn+1) corresponds to a pixel in image In+1, and (xn, yn) to a pixel
in image In, we can compute the global position yG of the point corre-
sponding to (xn, yn) since the camera position for that frame is known.
With these global 3D-coordinates of yG, we want to �nd R and t such
that

Rx + t = yG. (3.34)

where x is the corresponding local point in the new camera's frame of
reference. By matching keypoints between a sequence of the K latest
image pairs

(In+1, In), (In+1, In−1), ..., (In+1, In−K) (3.35)

we get a set

(Y1, Y2, ..., YK) (3.36)

of global 3D points and a corresponding set of local 3D points

(X1, X2, ..., XK). (3.37)

Each Yi and corresponding Xi consists of Mi number of corresponding
3D points

Xi = {x1,x2, . . . ,xMi} (3.38)

Yi = {y1,y2, . . . ,yMi}. (3.39)

We can use this to de�ne the error function

E(R, t) =
∑
i=1

‖Rxi + t− yi‖2 (3.40)

where the sum is over all found corresponding 3D-points.
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This error function is not dependent on what the model looks like so
the idea is that this term shall help �nding the correct pose even if the
model does not provide enough information. By adding (3.40) to (3.30)
we get

E(R, t) =
∑
i,j

φ(Rxij + t)2 + αψ(Rxij + t)2 + µ
∑
l=1

‖Rxl + t− yl‖2,

(3.41)

where we sum over all pixels (i, j) and all found corresponding key points
and α and µ are the weights.

Linearizing each sum separately and then adding the resulting ma-
trices for the optimization, we can use the Gauss-Newton as earlier to
minimize the error function.

3.4.1 Qualitative Results

This new approach was tested qualitatively on several challenging record-
ings. In the �rst sequence, images from a �oor with hardly any texture
was recorded. This is very challenging due to the fact that it is com-
pletely planar, and has little texture, so there is very little information
to work with. Therefore, a purely geometric based tracker would never
work, and even photo consistency is hard since there is little texture
and that is likely to be smeared out in the model. By also invoking
sparse feature points into our tracker, the hypothesis is that this shall
give more information. Looking on Figures 3.21a and 3.21b, it is clear
that the extra information we get from the feature points are very help-
ful in these extreme situations. In the scene the recording starts in the
lower left corner and ends after the chess board pattern in Figure 3.21a.
When only using the model in the TSDF for tracking, the result is as in
Figure 3.21b. The trajectory cannot be correctly estimated between the
starting point and the blue pattern, whereas invoking the sparse feature
points in the tracking gives satisfying results.

One can ask oneself, do we really need the texture information in
the model now? The feature points gives constraints when we have
planar structures. By recording a poster on a wall with plenty of texture,
we used our proposed method with both geometry, texture and SURF

54



3.5. DISCUSSION

points [2] and compared it to the obtained reconstruction where we only
used sparse key points. In Figure 3.21d, only SURF points were used and
the reconstruction looks rather smeared out due to drift in the tracking.
In contrast, the reconstruction using the information from the model
in the TSDF as well, clearly gives a better reconstruction, as can be
seen in Figure 3.21c. This can be seen by looking at the poster, the
distinct details indicate that the trajectory is better estimated. Clearly,
the information in the model in the TSDF reduces drift which shows that
we cannot exclude texture information from the model in the tracking.
Instead one should take all information into account to obtain a tracking
algorithm which can work under as many circumstances as possible.

3.4.2 Quantitative Evaluation

To see measure the e�ect of this new approach with sparse feature points,
we benchmarked it on [30]. The results are shown in Table 3.3. The
parameter α in (3.41) was set to α = 0.4. Then we let µ go between 0
and 1. As can be seen in the evaluation, adding the feature points to the
camera pose estimation does not improve the accuracy for most datasets.
The only noticeable di�erence was in datasets Desk2 and 360. Both these
datasets are quite challenging and the camera movement faster than in
other sequences. However, for most sequences it gives little improvement
on the benchmark. The advantage of invoking the feature points in the
camera tracking lies in the improved robustness as seen in Section 3.4.1.
The frame rate with a voxel grid of 5123 voxels was about 4-5 Hz, using
an NVidia Geforce GTX 770, Intel i7 3.4 GHz processor and 16 GB
RAM.

3.5 Discussion

In this part of the thesis we have seen how a 3D model represented as
a TSDF can be used for estimation of the camera pose. Evaluations on
benchmark shows that our method gives good results on many di�erent
datasets with a reasonable speed. The more information we use, the
slower tracking works, but the more robust the tracking becomes. Several
issues remains, for example for larger reconstructions, one must �nd a
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(a) Reconstructed �oor us-
ing both the model and
sparse feature points

(b) Reconstructed �oor
using the model only.

(c) Reconstructed poster with plenty of
texture using both SURF-points and the
model.

(d) Reconstructed poster using only
SURF points.

Figure 3.21
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Table 3.3: The root-mean square absolute trajectory error (m) for dif-
ferent values of the weight µ, α was set to 0.4.

Dataset Weight µ

µ 0 0.1 0.2 0.3 0.4

fr1 teddy 0.059 0.059 0.060 0.060 0.060
fr3 str_no_tx_f 0.036 0.036 0.036 0.036 0.036
fr3 no_str_tx_f 0.031 0.030 0.030 0.030 0.030
fr1 desk 0.037 0.037 0.037 0.037 0.037
fr1 desk2 0.117 0.107 0.087 0.077 0.075
fr1 360 0.138 0.130 0.128 0.129 0.128
fr3 o�ce_house 0.024 0.024 0.024 0.024 0.023
fr1 plant 0.048 0.048 0.047 0.047 0.047
fr1 rpy 0.037 0.037 0.036 0.035 0.035

µ 0.5 0.6 0.7 0.8 0.9 1.0

fr1 teddy 0.061 0.061 0.061 0.060 0.060 0.060
fr3 str_no_tx_f 0.036 0.037 0.037 0.037 0.037 0.037
fr3 no_str_tx_f 0.030 0.030 0.030 0.030 0.030 0.030
fr1 desk 0.037 0.037 0.037 0.037 0.037 0.037
fr1 desk2 0.071 0.069 0.066 0.065 0.066 0.065
fr1 360 0.121 0.118 0.117 0.115 0.112 0.110
fr3 o�ce_house 0.023 0.023 0.023 0.023 0.023 0.023
fr1 plant 0.046 0.046 0.046 0.045 0.045 0.044
fr1 rpy 0.035 0.034 0.034 0.034 0.033 0.033
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way of reducing errors in the model and the tracking. Now a badly
estimated camera pose gets integrated into the model and that way errors
are accumulated. For online reconstructions, this must be done in real-
time, so that the model is correctly updates as new images are obtained.
Another interesting problem is how to set the weights α and µ optimally.
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Chapter 4

Low-Rank Approximation of

Matrices

4.1 Introduction

Another problem studied in this thesis is how to obtain a low-rank ap-
proximation of a measurement matrix. For the reader who is not familiar
with this subject we start with giving some examples of problems that
eventually lead to a low-rank approximation problem.

4.1.1 Structure from Motion

One of the more familiar applications of low-rank approximation, or more
speci�cally in this case, matrix factorization, is the work by [31].

Assume we have a set of 3D points Q = {x1, ...,xn} where each

xi ∈ R3. With an a�ne camera model P =

(
A t
0 1

)
, A ∈ R3×3 and

t ∈ R3×1. A 3D-point x is projected onto the image plane with pixel
coordinates xy

1

 = P

(
x
1

)
(4.1)

where P ∈ R3×4. Because of the special shape of the a�ne camera
matrix the third coordinate of the projection will be one as long as the
point that we are projecting is not at in�nity. Therefore we can ignore
this coordinate if we assume that we are only dealing with regular points.

That means the ray between a 3D-point and the pixel coordinates is
parallel to the normal of the image plane, as shown in Figure 4.1. So the
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Figure 4.1: An a�ne camera model, all 3D-points are projected parallel
to the image plane. In other words, the camera center is at in�nity.

camera center is where all rays meet is a point at in�nity. Under many
circumstances this is not a realistic model, but when all 3D-points belong
to the same object and are far from the camera, the approximation can
be decent.

Assume now that we have taken a sequence of K images of the same
object and have tracked the image coordinates (pixk , p

i
yk

)T for each 3D-
point xi and each images Ik. We can stack all pixel-coordinates in the
matrix M , the rows 2(k − 1) + 1 and 2k in M contains the coordinates
for all pixels in frame Ik and is of size 2K ×N ,

M =


x1
1

. . . x1N
y1
1

. . . y1N
...

...
...

xK
1

. . . xKN
yK
1

. . . yKN

 . (4.2)

Now we want to �nd the positions of the cameras and the 3D-coordinates
of the tracked points. Starting with �nding the translation for each
camera, it can be shown that

ti =

(
x̄i
ȳi

)
−Aix̄, (4.3)
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where

(
x̄i
ȳi

)
is the mean of the observed pixels in frame i and x̄ is the

mean of the 3D points. By withdrawing the corresponding mean coor-
dinates for each pixel, we can assume that the translation is zero. Thus
each pixel (xij , y

i
j) in frame i can be written as(

xij
yij

)
= Aixj (4.4)

where Ai ∈ R2×3. We want to factorize M ∈ R2K×N into two matrices
A and X such that

M =


x1
1

. . . x1N
y1
1

. . . y1N
...

...
...

xK
1

. . . xKN
yK
1

. . . yKN

 =

A1

...
AK

(x1 . . . xN
)

= AX, (4.5)

where Ai ∈ R2×3 and xj ∈ R3×1. Hence given a set of measurements
in a matrix M the goal is to �nd a decomposition of M where one part
corresponds to the camera and the other corresponds to the 3D points.
We can immediately conclude that the rank of the measurement matrix
M is at most 3, since A ∈ R2K×3 and X ∈ R3×N .

Now this is an ideal case, dealing with reality you never have perfect
measurements, instead the will be noise as well. The best you can do
then is to �nd an approximation of the original data which is close to
the measures you have obtained in some norm, and also ful�lls certain
constraints. In this case we want to optimize

minimize
W

‖W −M‖2F

subject to rank(W ) = 3.
(4.6)

In other words we have a problem where the goal is to �nd a low-rank
approximation of a matrix. To solve this particular problem we use von
Neumanns trace theorem

|tr(AB)| ≤
n∑
i=1

σi(A)σi(B), (4.7)

61



CHAPTER 4. LOW-RANK APPROXIMATION OF MATRICES

with equality when A = UΣAV
T and B = UΣBV

T , where U and V are
unitary. That equality holds is seen by using the properties of the scalar
product

〈A,B〉 = 〈UΣAV
T , UΣBV

T 〉 =

〈ΣAV
T , UTUΣBV

T 〉 = 〈ΣAV
TV,ΣB〉 = 〈ΣA,ΣB〉. (4.8)

Here we have used the standard scalar product for matrices

〈A,B〉 = tr(ATB). (4.9)

Now back to (4.6),

‖W −M‖2F = ‖M‖2F − 2〈W,M〉+ ‖M‖2F =
n∑
i=1

σi(M)2 − 2〈W,M〉+
n∑
i=1

σi(W )2 ≥

n∑
i=1

σi(M)2 − 2σi(M)σi(W ) + σi(W ) =

n∑
i=1

(σi(W )− σi(M))2. (4.10)

To make ‖W − M‖2F as small as possible we see that we can choose
W = UMΣWV

T
M where UM and VM are unitary and obtained from SVD

of M . From (4.10) we conclude that we must choose the three largest
singular values of M and put them into ΣW and set the rest of the
diagonal to zero. This is because of the constraint that we want a solution
of rank 3. The decomposition P and X we are seeking can be obtained
by extracting the 3 largest singular values from ΣM and corresponding
right and left singular vectors from UM and VM and putting them into
U ′, Σ′ and V ′, where U ′ ∈ R2K×3, Σ′ ∈ R3×3 and V ′ ∈ R3×N . Then we
can de�ne

P = U ′(Σ′)1/2

X = (Σ′)1/2V ′ (4.11)

to be the camera matrices and 3D-points. This is a well-known result
from [31] and is an example of how low-rank approximations can be of use
in computer vision. This approach was extended in [6] to the non-rigid
setting, again using an a�ne camera.
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Figure 4.2: When tracking data points for example, the points will not be
seen in all images. The green pattern is observed data and the red area
is where the points have not been seen. In this illustration the points to
the left are seen in the beginning of the sequence and the points to the
right are seen in the end of the sequence.

4.1.2 Missing Data Problems

Now assume you have a set of images and through these images you
have tracked a number of feature points. Most likely, you will not see all
the points in all images throughout the whole sequence. If you put all
coordinates in two rows, and then stack them on top of each other for
each image, you will get a matrix looking like in Figure 4.2.

To reconstruct the scene, we want to estimate the position of the
points in the images where it is not seen. A way of solving this problem
would be to minimize an objective of the form

min
X

µ rank(X) + ‖W � (X −M)‖2F , (4.12)

where Wij = 0 if Mij is missing and 1 otherwise and � denotes element
wise multiplication. Typically, W �M has a high rank. The �rst term
in (4.12) favors solutions with low rank.

With no missing data in M , (4.12), this could be solved by singular
value decomposition of M and choosing the �rst k signi�cant singular
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values. However, missing data makes things much more complicated.
A way to tackle this was suggested by [13], where it is shown that the
nuclear norm is the convex envelope of the rank function on the set
{X ∈ Rm×n|σmax(X) ≤ 1}. Instead of minimizing (4.12), the rank term
can be replaced by the nuclear norm

min
X

‖X‖2∗ + ‖W � (X −M)‖2F . (4.13)

In [26, 9] it is shown that this will yield an optimal solution if the loca-
tion of the missing entries are random. In computer vision though, the
data is often highly correlated, and patterns as in 4.2 are common. For
example in SfM it appears because tracked points typically occur in a
consecutive sequence of images, and then the points go out of view of the
camera. Therefore, the nuclear norm might not be the best solution for
some problems in computer vision. Moreover, we do not want to restrict
ourselves to the set {X|σmax(X) ≤ 1}, but instead solving the problem
over all matrices. We propose a better convex relaxation of (4.12) with
no missing data. Since it is convex, it can be combined with other convex
constraints and solved using existing methods for convex optimization.

4.2 Developing the Convex Envelope

To �nd a solution of (4.12), we derive the convex envelope of

f(X) = µ rank(X) + ‖X −M‖2F . (4.14)

The tactic to �nd a solution of (4.12) is to divide the measurement matrix
M into sub-blocks with no missing data. On these sub-blocks we will be
able to use our convex envelope of (4.14).

In this part we show how we can �nd the envelope of (4.14). To
derive the envelope of (4.14), we start with computing the Fenchel con-
jugate. Thereafter we compute the conjugate again, which gives us the
bi-conjugate which is the convex envelope of f .

The Fenchel conjugate is de�ned as

f∗(Y ) = max
X

〈X,Y 〉 − f(X). (4.15)
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Writing this as

f∗(Y ) = max
X

〈X,Y 〉 − (µ rank(X) + ‖X −M‖2F ), (4.16)

we can complete squares to obtain

〈X,Y 〉 − ‖X‖2F + 2〈X,M〉 − ‖M‖2F =

〈X,Y + 2M〉 − ‖X‖2F − ‖M‖2F =

−(‖X‖2F − 〈X,Y + 2M〉)− ‖M‖2F =

−‖X − (
1

2
Y +M)‖2F + ‖1

2
Y +M‖2F − ‖M‖2F . (4.17)

The matrix X is of the same size as M, m×n, so the rank cannot be
higher than min(m,n), so by maximizing for each rank k, and over all
k, the Fenchel conjugate can be written as

max
k

max
X

rank(X)=k

− µk − ‖X − (
1

2
Y +M)‖2F + ‖1

2
Y +M‖2F − ‖M‖2F .

(4.18)

Here two terms are independent of X and in the inner maximization the
rank k is �xed. For �xed k we can maximize with respect to X by doing
SVD of 1

2
Y + M = UΣV T and setting X = UΣkV

T , where Σk only
contains the k largest singular values. Inserting this into (4.18) gives

f∗(Y ) = max
k

‖1
2
Y +M‖2F − ‖M‖2F −

n∑
i=k+1

σ2i (
1

2
Y +M)− µk

(4.19)

= max
k

‖1
2
Y +M‖2F − ‖M‖2F −

n∑
i=k+1

σ2i (
1

2
Y +M)−

k∑
i=1

µ.

(4.20)

Looking at equation (4.20), we can deduce that the optimal k must be
chosen such that

σ2k(
1

2
Y +M) ≥ µ ≥ σ2k+1(

1

2
Y +M). (4.21)
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Using this we can write the conjugate function as

f∗(Y ) = ‖1
2
Y +M‖2F − ‖M‖2F −

N∑
i=1

min(µ, σ2i (
1

2
Y +M)). (4.22)

The next step to �nd the convex envelope of the original function (4.14)
is to compute the bi-conjugate. The bi-conjugate is de�ned as

f∗∗X = max
Y
〈X,Y 〉 − f∗(Y )

= max
Y
〈X,Y 〉 − (‖1

2
Y +M‖2F − ‖M‖2F −

N∑
i=1

min(µ, σ2i (
1

2
Y +M))).

(4.23)

With the change of variables

Z =
1

2
Y +M, (4.24)

this becomes

f∗∗(X) = max
Z

2〈X,Z −M〉 − ‖Z‖2F + ‖M‖2F +
N∑
i=1

min(µ, σ2i (Z)).

(4.25)

By completing squares, this can be written as

f∗∗ = max
Z
‖X −M‖2F − ‖Z −X‖2F +

N∑
i=1

min(µ, σ2i (Z)). (4.26)

The term ‖X −M‖2F is independent of Z, so we can write it outside the
maximization

f∗∗(X) = ‖X −M‖2F + max
Z

(

N∑
i=1

min(µ, σ2i (Z))− ‖Z −X‖2F ). (4.27)
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We also have that −‖Z−X‖2F = −‖Z‖2F + 2〈X,Z〉−‖X‖2F , and by von

Neumann's trace theorem 〈X,Z〉 ≤
∑N

i=1
σi(X)σi(Z) we get that

−‖Z −X‖2F = −‖Z‖2F + 2〈Z,X〉 − ‖X‖2F (4.28)

= −(

N∑
i=1

(σ2i (Z) + σ2i (X))) + 2〈Z,X〉 (4.29)

≤
N∑
i=1

−σ2i (Z)− σ2i (X) + 2σi(Z)σi(X). (4.30)

To maximize (4.30), Z should have the same unitary matrices U and
V as X have. The problem is now reduced to

max
Z

N∑
i=1

min(µ, σi(Z))− (σi(Z)− σi(X))2. (4.31)

To �nd the optimal singular values, we can maximize each term individ-
ually, since they are separable. Therefore,

max
σi(Z)

min(µ, σ2i (Z))− (σi(Z)− σi(X))2 (4.32)

should be solved. There are two cases:

(i) σ2i (Z) ≤ µ which gives

max
σi(Z)

2σi(X)σi(Z)− σi(X)2, (4.33)

and since σi(X) ≥ 0 we have σi(Z) =
√
µ.

(ii) µ ≤ σ2i (Z), which gives the optimization problem

µ− (σi(Z)− σi(X))2, (4.34)

which we can trivially solve by setting σi(Z) = σi(X).

Together we get the optimal solution

σi(Z) = max(
√
µ, σi(X))∀i. (4.35)
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We now want to use this to derive the bi-conjugate. By using that

min(µ, σ2i (Z)) = min(µ,max(µ, σ2i (X))) = µ (4.36)

and that

‖Z −X‖2F =
n∑
i=1

‖σi(Z)− σi(X)‖2F =

n∑
i=1

‖max(
√
µ, σi(X))− σi(X)‖2F =

n∑
i=1

[
√
µ− σi(X)]2+. (4.37)

Note that we also assume that the singular values are sorted in a decreas-
ing order. We can now �nally derive the convex envelope of the original
optimization problem (4.14). The convex envelope, or bi-conjugate is

f∗∗(X) = ‖X −M‖2F +
n∑
i=1

(µ− [
√
µ− σi(X)]2+), (4.38)

where

[x]+ = max(0, x). (4.39)

To simplify notation later, we de�ne

Rµ(X) =
n∑
i=1

(µ− [
√
µ− σi(X)]2+). (4.40)

4.2.1 Missing Data

Even though we have now found a convex relaxation of (4.14), it assumes
that the measurement matrix is full, i.e. we have no missing data. For
many computer vision problems this assumption is unrealistic and we
need to tackle this problem. The key idea behind our approach is to
divide the measurement matrixM into sub-blocks, where each sub-block
is full. See Figure 4.3 for an illustration. Then we solve the optimization
problem for each sub-block, and when all approximations are found, we
use these blocks to build the entire matrix X. Later we will see that the
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Figure 4.3: To handle missing data we divide the measurement matrix
into sub-blocks. To recover the blocks with no data we must have an
overlap between the blocks.

rank of the entire matrix is connected to the rank of the blocks we use
to create X from.

Let Ri and Ci, i = 1, . . . ,K be a subset of row and column indices
for each block i. We de�ne the linear operator Pi : Rm×n 7→ R|Ri|×|Ci|,
which extracts the elements at indices Ri ×Ci and creates a sub-matrix
of size |Ri| × |Ci| with no missing data.

Instead of trying to solve the original problem (4.12), we aim to solve

min
X

K∑
i=1

µi rank(Pi(X)) + ‖Pi(X)− Pi(M)‖2F , (4.41)

by replacing it with its convex relaxation

min
X

K∑
i=1

Rµi(Pi(X)) + ‖Pi(X)− Pi(M)‖2F . (4.42)

By solving the optimization problem we end up with a bunch of sub-
blocks. However, we have still not found the entire matrix X, but only
a part of it. To recover the whole matrix we use the following lemma
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Figure 4.4: Two sub-blocks of a matrix with overlap X22.

Lemma 1. Let X1 and X2 be two given matrices with overlap matrix
X22 as shown in Figure 4.4, and let r1 = rank(X1) and r2 = rank(X2).
Suppose that rank(X22) = min(r1, r2), then there exists a matrix X with
rank(X) = max(r1, r2). Additionally if rank(X22) = r1 = r2 then X is
unique.

Proof. We will assume (w.l.o.g) that r2 ≤ r1, and look at the block
X2. The overlap X22 is of rank r2 so there are r2 linearly independent
columns in [XT

22
XT

32
]T and rows in [X22X23]. Now the rank of X2 is r2

and we can �nd coe�cient matrices C1 and C2 such that[
X23

X33

]
=

[
X22

X32

]
C1 and

[
X32 X33

]
= C2

[
X22 X23

]
. (4.43)

We therefore set X13 := X12C1 and X31 := C2X21. To determine the
rank of the resulting X we �rst look at the number of linearly indepen-
dent columns. By construction, the columns [XT

13
XT

23
XT

33
]T are linear

combinations of the other columns, and similarly, the rows [X31X32X33]
are linear combinations of the other rows. Hence, the number of linearly
independent columns (or rows) has not increased. Therefore has the
same rank as X1.
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X11 X12 ?

X21 X22 X23

? X32 X33

X =

X2 = U2 V T
2

Q Q−1

X1 = U1 V T
1

Figure 4.5: Left: The matrix X contains two overlapping blocks X1 and
X2. The goal is to �ll in the missing entries X13 and X31 such that
rank(X) is kept to a minimum. Right: The low-rank factorizations of
the two blocks X1 and X2. The overlap is marked in both the blocks
and the factorizations.

If rank(X22) = rank(X1) = rank(X2) = r, then C is unique. To prove
this, assume that it is not unique, then

X13 = X12C1 and X̂13 = X12Ĉ1. (4.44)

Since both C1 and Ĉ1 solves[
X23

X33

]
=

[
X22

X32

]
C (4.45)

it follows that C1 − Ĉ1 lies in the nullspace of[
X22

X32.

]
(4.46)

By assumption rank([XT
12
XT

22
XT

32
]T ) = rank([XT

22
XT

32
]T ). This im-

plies that they share the same nullspace, so C1 − Ĉ1 must lie in the
nullspace of X12. This gives X13 = X12C1 = X12Ĉ1 = X̂13, a contradic-
tion.

The next step is now to extend the solution on the blocks to the
entire matrix. We start with �nding a rank rmax factorization of X1 and
X2 using SVD,

X1 = U1V
T
1 and X2 = U2V

T
2 where Uk ∈ Rmk×rmax , Vk ∈ Rnk×rmax .

(4.47)
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However, we have an ambiguity here, because for any non-singular matrix
Q, we have

U1V
T
1 = (U1Q)(Q−1V T

1 ). (4.48)

To resolve this, we consider the singular value decompositions of X1

and X2. Looking at Figure 4.5, we can see that we can create X22 from
the sub-matrices by

X22 = Û1V̂
T
1 (4.49)

X22 = Û2V̂
T
2 , (4.50)

where ÛiV̂
T
i is the restriction of of the UiV

T
i to X22.

Due to ambiguity, Û1 will in general not equal Û2 and V̂1 will be
di�erent from V̂2. Instead we try to �nd an invertible transformation Q
which transforms Û1 into Û2, i.e. we seek to solve

Û1 = Û2Q (4.51)

V̂1 = Q−1V̂2. (4.52)

In this case we solve the optimization problem

min
Q

‖Û1 + Û2Q‖2F + ‖QV̂1 − V̂2‖2F (4.53)

in a least square sense. With this Q, we can concatenate U1 and U2 to
U = [U1Q

−1, Ũ2]
T where Ũ2 contains the elements which are not common

to U1Q
−1. The same way we construct V , and obtain a complete matrix

X by

X = UV T . (4.54)

In this way we can iteratively combine the sub-blocks and create a
single matrix X, and thanks to Lemma 1, we know that our matrix X
does not have higher rank then the rank among the sub-matrices.
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4.3 Optimization

To actually �nd a low rank approximation of each sub-block, we must do
some optimization. If we would optimize each sub-block independently,
we would have no guarantee that they would agree on the overlap. Thus,
we must enforce consistency on the overlap as a constraint. This results
in the (convex) optimization problem

K∑
i=1

Rµi(Xi) + ‖Xi − Pi(M)‖2F (4.55)

subject to

Pi(X) = Xi ∀i = 1...K.

An ADMM [5] formulation results in the Lagrangian

K∑
i=1

Rµi(Xi) + ‖Xi − Pi(M)‖2F + ρ‖Xi − Pi(X) + Λi‖2F − ρ‖Λi‖2F .

(4.56)

At each iteration we solve and update the variables by

Xt+1

i = arg min
Xi

Rµi(Xi) + ‖Xi − Pi(M)‖2F + ρ‖Xi − Pi(Xt) + Λti‖2F ,

(4.57)

for i = 1...K and

Xt+1 = arg min
X

K∑
i=1

ρ‖Xt+1

i − Pi(X) + Λti‖2F (4.58)

Λt+1

i = Λti +Xt+1

i − Pi(Xt+1). (4.59)

4.3.1 Proximal Operator

To �nd Xt+1 is a simple least squares problem, whereas to �nd the
optimal sub-block Xt+1

i is more complicated. We need to solve

min
Xi

F (Xi) = min
Xi

Rµi(Xi) + ‖Xi − Pi(M)‖2F + ρ‖Xi − Pi(Xt) + Λti‖2F .

(4.60)
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This objective can be rewritten as

N∑
j=1

(−[
√
µ− σj(Xi)]

2

+) + (1 + ρ)‖Xi‖2F − 2〈Pi(M) + ρ(Pi(Xt)− Λti), Xi〉

(4.61)

and simpli�ed to

F (Xi) = G(Xi)− 2〈Y,Xi〉. (4.62)

where

G(Xi) =
n∑
j=1

(−[
√
µ− σj(Xi)]

2

+) + (1 + ρ)‖Xi‖2F (4.63)

Y = Pi(M) + ρ(Pi(Xt)− Λti). (4.64)

Since F is convex, it is su�cient to �nd where 0 ∈ ∂F .
For this we need some theory about unitary invariant matrix func-

tions, but we start with de�ning the function

gi(σ) = −[
√
µ− |σ|]2+ + (1 + ρ)σ2. (4.65)

To see that gi(σ) is convex, one sees that gi is a special case of f∗∗(X),
where X ∈ R1×1. Since the bi-conjugate f∗∗(X) is convex, gi must be
convex. With our de�nition of gi, we can now de�ne

g(σ) =

n∑
i=1

gi(σi), (4.66)

which is absolutely symmetric and convex, since gi is convex for all i =
1...n. Now G(X) = g ◦ σ(X), where

σ(X) = (σ1(X), σ2(X), ..., σn(X))T . (4.67)

To derive the subgradients we make use of the following lemma in [20]:

Lemma 2. (Characterization of Subgradients) Let us suppose that the
function f : Rq → (−∞,∞] is absolutely symmetric, and that the m×n
matrixX has σ(X) in dom f . Then them×nmatrix Y lies in ∂(f◦σ)(X)
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if and only if σ(Y ) lies in ∂f ◦ σ(X) and there exists a simultaneous
singular value decomposition of the form

X = V (Diag(σ(X)))U, (4.68)

Y = V (Diag(σ(Y )))U (4.69)

where U and V are unitary matrices. In fact

∂(f ◦ σ)(X) = {V (Diag(µ))U |µ ∈ ∂f(σ(X)), X = V (Diag(σ(X)))U}.
(4.70)

So to compute the subdi�erential of G(X), we compute the subdif-
ferential of g(σ(X)) instead. Since g(σ(X)) is a sum of one-dimensional
functions we can compute the subgradient by treating each term indi-
vidually. For each gi we have

∂gi(σ) =

{
2sgn(σ)[

√
µ− |σ|]+ + 2(1 + ρ)σ σ 6= 0

[−2√µ, 2
√
σ] σ = 0.

(4.71)

Now, the aim is to solve 0 ∈ ∂F (X), which is equivalent of solving
2Y ∈ ∂G(X). Remember that F (X) = G(X)− 2〈X,Y 〉.

If Y = UDiag(σ(Y ))V T then we can verify thatX = UDiag(σ(X))V T

where

σi(X) =


σ(Y )
1+ρ if σi(Y ) ≥ (1 + ρ)

√
µ

σi(Y )−√µ
ρ if

√
µ ≤ σi(Y ) ≤ (1 + ρ)

√
µ

0 if σi(Y ) ≤ √µ
, (4.72)

is such that 2Y ∈ ∂G(X).

Since

∂G(X) = Udiag(∂g ◦ σ(X))V T (4.73)

we have to check that

2σi(Y ) ∈ ∂gi(σi(X)) (4.74)

for all i.
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For all σi(X) 6= 0 the subdi�erential for positive σi is

∂gi
∂σ

(σ) = 2[
√
µ− σ]+ + 2(1 + ρ)σ. (4.75)

In case σi(X) = 0 the subdi�erential is the interval

∂gi
∂σ

(0) = [−2√µ, 2√µ]. (4.76)

Now there are three cases to check:
1. σi(Y ) ≥ (1 + ρ)

√
µ: σi(X) = σi(Y )

1+ρ gives

∂gi
∂σ

(
σi(Y )

1 + ρ

)
= 2

[
√
µ− σi(Y )

1 + ρ

]
+

+ 2(1 + ρ)
σi(Y )

1 + ρ
= 2σi(Y ). (4.77)

2.
√
µ ≤ σi(Y ) ≤ (1 + ρ)µ: σi(X) =

(σi(Y )−√µ)
ρ gives

∂gi
∂σ

(
(σi(Y )−√µ)

ρ

)
= (4.78)

2

(
√
µ−

(σi(Y )−√µ)

ρ

)
+ 2(1 + ρ)

(σi(Y )−√µ)

ρ
= 2σi(Y ) (4.79)

If
(σi(Y )−√µ)

ρ = 0, then

∂gi
∂σ

(0) = 2
√
µ = 2σi(Y ), (4.80)

and it is in (4.76).
3: σi(Y ) ≤ √µ: Here σi(X) = 0 and therefore 2σi(Y ) ≤ 2

√
µ is

contained in the subdi�erential (4.76).

4.3.2 Experiments

To evaluate this method we start with using synthetic data and compare
the results with other methods, such as the nuclear norm and other local
optimization methods. First the convex relaxation is evaluated using
synthetic data. We de�ne

f(X) =

K∑
i=1

µi rank(Pi(X)) + ‖Pi(X)− Pi(M)‖2F (4.81)
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Figure 4.6: The pattern in the synthetic experiments and the overlap.

and our derived convex relaxation

fR(X) =

K∑
i=1

Rµi(Pi(X)) + ‖Pi(X)− Pi(M)‖2F . (4.82)

Then random rank 3 matrices was generated of dimension 100× 100
by sampling U, V ∈ R100×3 from a Gaussian distribution with zero mean
and unit variance. Then M was formed by M = UV T . The observation
matrix W was chosen to be a band-diagonal matrix with bandwidth 40
similar to Figure 4.6. The blocks were laid out such that the overlap was
6× 6 and contained no missing data. Then the solution

X∗R = arg min
X

fR(X), (4.83)

where µi was set to 1 ∀i was found. To M , we added di�erent levels of
Gaussian noise, and the test was repeated 1000 times for each noise level.
In Figure 4.7 we plot the average error for each noise level of f(X∗R) and
fR(X∗R), note that if f(X∗R) = fR(X∗R), then the global minimizer is
found.

To compare with other methods we substitute the rank function with
the nuclear norm. The nuclear norm is also convex, so it can also be used
in our block decomposition framework. Hence, the same experiment was
made with the objective

fN (X) =

K∑
i=1

µi‖Pi(X)‖∗ + ‖Pi(X)− Pi(M)‖2F . (4.84)
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The results are shown in the top graph of Figure 4.7. Note that the
constraint σmax(Pi(X)) ≤ 1 can be violated, so fN is not necessarily a
lower bound on f .

However, there also exists other methods for obtaining low-rank ap-
proximations. We compare to two non-convex methods, namely OptSpace
[19] and Truncated Nuclear Norm Regularization (TNNR), [15]. Both
OptSpace and TNNR are local methods, that is, they are not convex.
OptSpace is based on local optimization on Grassmanian manifolds and
in TNNR an energy which penalizes the last (n − r) singular values is
minimized. The experiments was made the same way as above with ran-
domly chosen matrices U, V ∈ R3×100. Both these approaches tries to
estimate a �xed rank approximation, that is the rank is set before hand.
In contrast our method is a trade-o� between the rank and the data-
term ‖X −M‖2F . We therefore iterate our method over µi to get the
same rank. The average values of ‖W � (X −M)‖2F are shown in 4.7.
Even though the plots suggests that our method is better, often both
OptSpace and TNNR gives similar or better results than our method.
However, local minima results in a higher average than our method, but
on the other hand, since OptSpace and TNNR minimizes the original
function directly, their solution will be at least as good as ours when it
does not get stuck in a local minima.

Real Data

As described earlier in this chapter, one application for low-rank ap-
proximation is rigid structure from motion. We test our method on the
well-known Oxford dinosaur sequence. The measurement matrix M will
contain the tracked 2D coordinates of the tracked 3D points, as described
in the beginning of this chapter. Since we cannot handle outliers, we
choose an outlier free subset of this dataset consisting of 321 3D points
where each point is seen in at least six images. The observation matrix
W is shown in the left of Figure 4.9 and clearly demonstrates the band
diagonal pattern for these structure from motion problems. For com-
parison we also solve the problem using the nuclear norm and bundle
adjustment. The nuclear norm formulation is

min
X

µ‖X‖∗ + ‖W � (X −M)‖2F (4.85)
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Figure 4.7: Evaluation of the proposed formulation on synthetic data
with varying noise levels. Top: Comparison of our convex relaxation
solution X∗R with the nuclear norm X∗N . Bottom: The error ‖W � (X −
M)‖F for varying noise levels.

which optimize with the shrinkage operator and ADMM. The results are
show in Figure 4.8. As seen in the �gure, the nuclear norm performs much
worse than our method. This clearly shows the e�ect of penalizing all
singular values rather than just the singular values smaller than

√
µ. The

perspective projection gives a more visually appealing result. The errors
||W�(X−M)||F for the three solutions were 73.2 (our), 1902.5 (nuclear)
and 116.2 (perspective), so even if the perspective projection looks better,
our solution is a better low-rank approximation of the original data.

Linear Shape Models

Another application is linear shape models, which are common in non-
rigid structure from motion. Let Xf be the 2D- or 3D- coordinates of
N tracked points in frame f . The model we have assumes that in each
frame the coordinates are a linear combination of some unknown shape
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(a) Original data (b) Our solution

(c) Nuclear norm (d) Perspective projection

Figure 4.8
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Figure 4.9: Structured data patterns of observations (matrix W ) and
sub-blocks for the dino, book, hand and banner sequences.

(a) Frame 1 (b) Frame 210

(c) Frame 340 (d) Frame 371

Figure 4.10: Frames 1, 210, 340 and 371 of the hand sequence. The
solution has rank 5.
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(a) Frame 1 (b) Frame 121

(c) 380 (d) 668

Figure 4.11: Frames 1, 121, 380 and 668 of the book sequence. The
solution has rank 3.
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(a) Frame 70 (b) Frame 155

(c) Frame357 (d) Frame 650

Figure 4.12: Frames 70, 155, 357 and 650 of the banner sequence. The
solution has rank 9.

Figure 4.13: The result from the banner experiment.
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(a) Frame 329 our solution. (b) Frame 329 nuclear norm.

(c) Frame 650 our solution. (d) Frame 650 nuclear norm.

Figure 4.14: From left to right: Our solution (frame 329), nuclear norm
solution (frame 329), our solution (frame 650), nuclear norm solution
(frame 650).
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basis vectors, i.e.

Xf =
K∑
k=1

CfkSk, f = 1..F, (4.86)

where Sk is the shape basis and C is the coe�cient matrix. The measure-
ment matrix M is obtained by stacking all tracked points for each frame
on top of each other. In other words, the �rst two rows in M are the
tracked points for frame 1 and so on. The elements of the observation
matrix W indicates if the point was successfully tracked in that frame
or not. We do not want more basis elements than necessary to describe
the movement. Consequently, we seek a low-rank approximation of the
measurement matrix M .

In the �rst two datasets, Book and Hand, we track points through a
video sequence using the standard KLT-tracker [21]. Due to tracking fail-
ure and occlusion, we get missing data which forms the patterns shown in
Figure 4.9 where the selected blocks are shown as well. Using (4.42), we
�nd a low rank approximation for each dataset. The results can be seen
in Figure 4.10 and Figure 4.11. The blue points are the reconstructed
points that were successfully tracked through the entire sequence. The
red dots are the reconstructed missing data, and the green crosses are the
original measured data. As can be seen in both sequences, the derived
solution gives reasonable results.

In the third experiment, we used a Kinect camera to record a video of
a moving piece of fabric. This gives a 3D-grid of points and missing data
comes from a limited �eld of view and missing depth values in the depth
image. To register all points in a common coordinate system, we track
the cameras using the patterns on the wall (Figure 4.13). The obtained
solution can be seen in Figure 4.13 and Figure 4.14. For comparison, the
results for the nuclear norm is also provided. It is clear that our solution
yields a more realistic reconstruction of the movement, in contrast to the
nuclear norm which has a bias toward small singular values.

4.3.3 Discussion

In this section we have derived a convex envelope for an energy function

µ rank(X) + ‖X −M‖2F , (4.87)
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which can be used in situation with missing data, when the missing
data has a regular pattern from which sub-blocks can be extracted. The
advantage with our method is that it is convex and that it �nds a low rank
approximation close the the measured matrix M . This is possible since
our algorithm only penalizes singular values smaller than µ, where the
nuclear norm penalizes all singular values. For larger problems, a major
obstacle can be to choose parameter µi for each block. Our method is
sensitive to outliers, which is also a drawback.
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