
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Efficient Software Implementation of Stream Programs

Cedersjö, Gustav

2017

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Cedersjö, G. (2017). Efficient Software Implementation of Stream Programs. Department of Computer Science,
Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/e0b715e7-a602-4644-b077-109b26498330

Efficient Software Implementation
of Stream Programs

Gustav Cedersjö

AKADEMISK AVHANDLING som, med godkännande av tekniska fakulteten vid Lunds universitet,
kommer att offentligen försvaras onsdagen den juni , klockan . i sal E: i E-huset, Ole
Römers väg , Lund, för avläggande av teknologie doktorsexamen.

Fakultetsopponent: tekn.dr Ingo Sander

ACADEMIC DISSERTATION which, by due permission of the Faculty of Engineering at Lund
University, will be publicly defended on Wednesday, June , at . p.m. in room E: of
E-huset, Ole Römers väg , Lund, for the degree of Doctor of Philosophy in Engineering.

Faculty opponent: Dr. Ingo Sander

D
O
K
U
M
EN

TD
A
TA

B
LA

D
en

lS
IS

61
41

21
Organization

LUND UNIVERSITY
Department of Computer Science
Box , Lund

Author(s)

Gustav Cedersjö

Document name

DOCTORAL DISSERTATION
Date of disputation

--
Sponsoring organization

Partially funded by ELLIIT (Excellence Center
Linköping – Lund in Information Technology,
funded by the Swedish Government)

Title and subtitle

Efficient Software Implementation of Stream Programs
Abstract

The way we use computers and mobile phones today requires large amounts of processing of data
streams. Examples include digital signal processing for wireless transmission, audio and video cod-
ing for recording and watching videos, and noise reduction for the phone calls. These tasks can be
performed by stream programs—computer programs that process streams of data.

Stream programs can be composed of other stream programs. Components of a composition are
connected in a network, i.e. the output streams of one component are sent as input streams to other
components. The components, that perform the actual computation, are called kernels. They can be
described in different styles and programming languages. There are also formal models for describing
the kernels and the networks. One such model is the actor machine.

This dissertation evaluates the actor machine, how it facilitates creating efficient software imple-
mentation of stream programs. The evaluation is divided into four aspects: () analyzability of its
structure, () generality in what languages and styles it can express, () efficient implementation of
kernels, and () efficient implementation of networks. This dissertation demonstrates all four aspects
through implementation and evaluation of a stream program compiler based on actor machines.

Key words

stream programs, dataflow with firing, Kahn processes, compilers, actor machine

Classification system and/or index terms (if any)

Supplementary bibliographical information Language

English
ISSN and key title

ISSN -
Efficient Software Implementation of Stream Programs

ISBN

---- (print)
---- (pdf)

Recipient’s notes Number of pages

Price

Security classification

I, the undersigned, being the copyright owner of the abstract of the above-mentioned dissertation,
hereby grant to all reference sources the permission to publish and disseminate the abstract of the
above-mentioned dissertation.

Signature Date --

Efficient Software Implementation of Stream Programs

Efficient Software Implementation
of Stream Programs

Gustav Cedersjö

© Gustav Cedersjö, unless otherwise noted.

ISBN ---- (print)
ISBN ---- (pdf)

ISSN -
Dissertation ,
LU-CS-DISS -

Abstract

The way we use computers and mobile phones today requires large amounts of
processing of data streams. Examples include digital signal processing for wire-
less transmission, audio and video coding for recording and watching videos,
and noise reduction for the phone calls. These tasks can be performed by stream
programs—computer programs that process streams of data.

Stream programs can be composed of other stream programs. Components
of a composition are connected in a network, i.e. the output streams of one
component are sent as input streams to other components. The components,
that perform the actual computation, are called kernels. They can be described
in different styles and programming languages. There are also formal models for
describing the kernels and the networks. One such model is the actor machine.

This dissertation evaluates the actor machine, how it facilitates creating ef-
ficient software implementation of stream programs. The evaluation is divided
into four aspects: () analyzability of its structure, () generality in what lan-
guages and styles it can express, () efficient implementation of kernels, and ()
efficient implementation of networks. This dissertation demonstrates all four
aspects through implementation and evaluation of a stream program compiler
based on actor machines.

Effektiva datorprogram för
strömmande data
Popular science summary in Swedish.

VAD ÄR ETT DATORPROGRAM?
Ett datorprogram kan vara ett tidsfördriv på bussen, eller ett designverktyg för
en grafisk formgivare, eller ett livsviktigt styrsystem till pacemakern. Men rent
tekniskt är det en lista med instruktioner som datorn ska utföra. Instruktionerna
är väldigt primitiva. En instruktion kan till exempel vara att addera två tal som
finns i olika register och spara summan i ett tredje register. När datorn har utfört
en instruktion fortsätter den med nästa i listan. En instruktion kan också vara
att hoppa i listan, om det står en nolla i register tre, hoppa elva steg framåt. Det
är ungefär som enkätundersökningar:

. Tycker du om kaffe?
□ Ja
□ Nej

Om du svarade nej, hoppa till fråga .

SPRÅK FÖR DATORN OCH MÄNNISKAN
Ett problem när man ska skriva program är att instruktionerna är så primitiva
att det blir svårt att beskriva en komplex uppgift. För att underlätta att byg-
ga program finns speciella språk, s.k. programmeringsspråk. Dessa språk finns
i gränslandet mellan vad människan och maskinen kan förstå; samtidigt som
språket är anpassat för att kunna förstås av människor, måste det kunna över-
sättas maskinellt till instruktionslistor för datorn.

Det finns tusentals mer eller mindre kända programmeringsspråk och till
varje språk finns program som översätter programtext till instruktionslistor för
datorn. Översättningen kan antingen göras i förväg, eller under tiden som pro-
grammet körs. En och samma programtext kan dessutom översättas till olika
instruktionslistor så länge resultatet, när datorn kör programmet, stämmer över-
ens med vad programtexten beskriver. Det forskas mycket på hur översättarna
kan skapa effektiva instruktionslistor som går snabbt att utföra.

Vissa språk är inspirerade av matematik, där texten mestadels är matematis-
ka funktioner och uttryck. Programmering med sådana språk kallas ibland för
funktionsprogrammering. Andra språk är inspirerade av datorns instruktions-
lista, men där orden och strukturen är anpassad för att kunna enklare förstås
av en människa. Det kallas ofta imperativ programmering, efter verbformen
imperativ, eftersom programmet säger åt datorn vad den ska göra.

STRÖMMANDE DATA
Denna avhandling handlar om språk som är anpassade för att behandla ström-
mande data. Som programmerare kan man tänka sig programmet som en mo-
jäng som successivt tar emot data genom ingångar på ena sidan och producerar
ny data som skickas genom utgångar på andra sidan. Inne i mojängen finns en
beskrivning av vad som ska göras med den data som kommer in och vilken data
som ska skickas ut.

Mojängerna, som är datorprogram, kan sättas ihop i stora nätverk, där ut-
datan från en mojäng matas som indata till en annan mojäng. Avhandlingen
handlar om en modell för att beskriva hur mojängerna fungerar inuti och hur
man utifrån den modellen kan översätta ett nätverk av mojänger till en effektiv
lista med instruktioner som en dator kan utföra.

Mojäng

Figur 1: Ett program som kan ta emot tre dataströmmar och producera två dataströmmar.

vi

Contents

Abstract iii

Effektiva datorprogram för strömmande data v

Contents vii

Acknowledgments xi

I Background 1

1 Introduction 3

Thesis . 5

2 Stream Programs 7

Dataflow with Firing . 7

Process languages . 11

Actor Machine . 12

3 Related Work 15

Stream-Based Functions . 15

Functional Dataflow Interchange Format . 17

SysteMoC and Actor FSM . 18

4 Contributions 21

Included Papers . 22

Related Papers . 24

5 Conclusions 25

Conclusions . 25

Future Work . 26

II Publications 29

A Toward Efficient Execution of Dataflow Actors 31

A.1 Introduction . 31

A.2 Related Work . 33

A.3 Background . 33

A.4 Our Work . 34

A.5 Evaluation . 39

A.6 Result . 40

A.7 Future Work . 41

A.8 Acknowledgment . 42

B Actor Classification using Actor Machines 43

B.1 Introduction . 43

B.2 Dataflow programs . 44

B.3 Actor Machine . 44

B.4 Actor Classes and Classifier . 46

B.5 Implementation . 51

B.6 Related Work . 51

B.7 Conclusion . 51

C Software Code Generation for Dynamic Dataflow Programs 53

C.1 Introduction . 54

C.2 Related work . 56

C.3 Actors and Actor Machines . 57

C.4 Reduction and Code Generation . 60

C.5 Composition . 64

C.6 Actor Machine Compiler . 66

C.7 Actor Machine Composer . 69

C.8 Conclusion . 73

viii

D Finding Fast Action Selectors for Dataflow Actors 75

D.1 Introduction . 76

D.2 Related work . 77

D.3 Actor machine . 78

D.4 Reduction Heuristics . 81

D.5 Experimental setup . 82

D.6 Results . 83

D.7 Conclusions . 86

E Processes and Actors: Translating Kahn Processes to Dataflow with Firing 87

E.1 Introduction . 88

E.2 Process Model . 91

E.3 Cal . 92

E.4 Process Language . 93

E.5 Translation to dataflow with firing . 98

E.6 Discussion . 105

E.7 Related Work . 110

E.8 Conclusions and Future Work . 112

F Tÿcho: A Framework for Compiling Stream Programs 113

F.1 Introduction . 114

F.2 Actor Machine . 117

F.3 The Tÿcho Compilation Framework . 120

F.4 Transition Selection . 124

F.5 Kernel Fusion . 130

F.6 Actor Machine Scope Optimizations . 137

F.7 Related Work . 140

F.8 Conclusions . 142

Bibliography 147

ix

Acknowledgments

First of all, I would like to express my gratitude to my doctoral advisor Jörn
Janneck for his guidance and honesty, and for always being available for dis-
cussions and advice. He has introduced me to stream computing, which has
opened my mind for new ways of expressing computer programs. I would also
like to thank my assistant doctoral advisor Krzysztof Kuchcinski for his excel-
lent leadership of the research group and for sharing his experience of doing
research in Sweden.

I am also grateful to the rest of the research group—Flavius, Jonas, Mehmet,
Patrik, Per, Shub, Usman and Vivek—for all your feedback and for sharing your
expertise, your humor and your music. Furthermore, I would like to thank
my co-workers and co-authors from outside the research group, for widening
my perspectives on the research. I would also like to thank Lena, Camilla,
Anne-Marie, Peter and the rest of the administrative and technical staff for their
support and service.

One of the things that has made my workplace great is the “fika” and the
lunch in the department’s lunchroom. Without the (sometimes too long) “fika”
and lunch discussions, this work wouldn’t have been the same. We have dis-
cussed politics, teaching, housing, family, programming, text editors, keyboard
switches and a lot of other things.

My thankfulness also goes to my parents for always encouraging me to learn
and to educate myself. Most of all, I would like to express my deepest gratitude
to my family—to my wife Mia for her love, care and support, especially during
this project, and to my children Doris and Hilda for being such wonderful kids.
You have brought enormous amounts of joy and love to my life.

Gustav Cedersjö
Lund, April

Part I

Background

Chapter 1

Introduction

A stream program is a computer program that accepts input and produces out-
put as streams of data items, called tokens. Figure . shows a visualization of
a stream program in a state where three tokens are available for consumption
and one token has been produced. The triangles in the figure represent ports,
through which the tokens are consumed and produced. An output port of
a stream program can be connected to an input port of another stream pro-
gram, forming one parallel stream program from two concurrently executing
programs. In fact, arbitrary networks of stream programs can be connected to

Stream
Program

Figure 1.1: Stream program with three incoming tokens, and one that has been produced.

Syntax
Parser

Texture
Decoder

Motion
Compensator

Figure 1.2: Top level network description of a video decoder, where each node, in turn,

represents a network of stream programs. The compressed video stream arrives on the open

edge to the left, and the uncompressed video stream is sent out to the open edge to the

right. (For clarity, multiple edges between the nodes have been collapsed.)

form a parallel stream program. Since networks of stream programs are also
stream programs, they can be composed hierarchically. Figure . shows the
top level of a hierarchically defined video decoder.

The atomic stream programs, which are not composed of other stream pro-
grams, are called computational kernels, or just kernels. When implementing
stream programs in software, one of the biggest challenges is to efficiently sched-
ule the kernels on the available processors. Efficient scheduling is also one of
the biggest strengths of stream programs compared to thread based programs,
due to the explicit data dependencies defined by the connections.

A kernel can be described by a sequential program with read and write state-
ments for consuming and producing tokens. Such kernels are called processes.
Conceptually, they execute as continuous programs that pause when they need
more input tokens.

Another way of describing a kernel is by a set of transitions that the kernel
can make, together with conditions for when the transitions can be made. The
conditions make sure that a transition is not initiated unless there is enough
input to complete the transition and there is space available for its output. In a
transition, the kernel may consume and produce tokens and update its internal
state variables. In addition to how many tokens will be consumed and pro-
duced, the conditions of a transition may also include any Boolean expression
on the internal state of the kernel or the values of the tokens it will read. Kernels
on this form are executed in steps, as a sequence of transitions. For each step,
the conditions are checked to determine which transitions can be made, and
then one of the eligible transitions is selected and performed. This family of
stream programs is called dataflow with firing, and its kernels are called actors.
The act of making a transition is called a firing.

These two kinds of stream program kernels—processes and actors—are very
different in how they are described and executed. Nevertheless, they share a
common interface—the token streams—that make them interoperable. To get
to an efficient implementation, however, the inner workings of the kernels need
to be exposed to orchestrate the whole stream program efficiently. This limits
the interoperability in practice, because most tools only support a particular
style or language.

An example of an efficient implementation technique is static scheduling
for synchronous dataflow []—a restricted class of dataflow with firing. A syn-
chronous dataflow actor has the same token rates on each firing. Each input
and output port is associated with a number—the token rate—and all transi-
tions read and write that many tokens on the ports. By looking at the token

rates, a schedule for the actors can be computed a priori, when the program is
compiled. This eliminates the need for scheduling decisions at runtime.

This technique is not applicable to dataflow with firing in general, because
for different transitions, a kernel may read different numbers of tokens, and the
transition selection might depend on the values of the tokens. Nevertheless, it
is often possible to create schedules with some decisions being made at compile
time and others at runtime [,].

The actor machine [] is a formal model for dataflow actors with firing, that
is explicit about how the transition selection is done—how the conditions of
the transitions are checked. The actor machine is also compositional; a network
of actor machines can be fused to a single actor machine, creating a sequential
implementation of a network. Some scheduling decisions can be made in the
fusion, while others can (or must) be postponed to runtime.

THESIS
The research that is presented in this dissertation is about how to efficiently
implement stream programs in software.

Thesis: The use of actor machines as kernel representation facilitates the cre-
ation of efficient software implementation of stream programs.

The investigation of this thesis has been divided into four aspects.

Analyzability Many efficient implementation techniques for stream programs
are only applicable to programs with certain properties, such as syn-
chronous dataflow. The first aspect is the analyzability of actor machines—
how actor machines can be analyzed to detect such properties.

Generality Stream program kernels can be written in different styles, with the
declarative nature of dataflow with firing on the one hand, and the se-
quential description of processes on the other. The second aspect is the
generality of actor machines; what kind of kernels can take advantage of
the techniques developed for the actor machine’s analysis and efficient
implementation.

Kernel implementation To create efficient implementations of stream programs,
the kernels need to be efficiently implemented. In this regard, the actor
machine is concerned with the decision process in kernels that can do

different things depending on the situation, i.e. kernels that have more
than one transition. The third aspect is how the actor machine can be
used to efficiently implement the transition selection process.

Network implementation The efficiency of a stream program implementation
also depends on how a network of kernels is implemented. Actor ma-
chine composition is a technique for fusing actor machines. The fourth
aspect is how actor machine composition can be done to create efficient
sequential implementations of networks of kernels.

Chapter 2

Stream Programs

In the introduction chapter, stream programs are described as network-struc-
tured parallel programs. The nodes of the network are called kernels, but the
naming varies between different kinds of stream programs. In dataflow pro-
grams with firing, for example, the kernels are usually called actors. The net-
works are sometimes also described differently. They can be referred to as graphs
of nodes that communicate over the edges.

This chapter starts with a brief history of stream programs, focused on data-
flow with firing. It continues with some background on process models. Fi-
nally, the actor machine—the subject of this dissertation—is described in more
detail. In the chapter following after this, alternatives to the actor machine are
discussed. The four aspects, for which the actor machine is evaluated, are used
when discussing the alternative models.

DATAFLOW WITH FIRING
Dataflow with firing is a stream program model that has shown up in different
contexts, for example, parallel computing, signal processing and media coding.

Computation Graphs

One of the earliest models of parallel computing is a graph-structured model
of stream programs, described by Richard M. Karp and Raymond E. Miller
in []. The problem they were facing was that computers started to get
parallel processing capabilities, and they wanted to use that to speed up compu-
tation. They showed that the programs of their model are determinate, meaning
the result of the computation is not affected by variations in speed of the dif-
ferent parts of the program. This property is very useful when the goal is to
make some computation faster, since correctness can be verified without taking

timing into account. They also showed how to compute whether a program
will terminate, which implies that the model is not Turing-complete. Finally,
they studied conditions for when the lengths of the communication queues can
be bounded.

A program in this model is described by a directed graph, where each node
is associated with an operation and the edges have queues of data items that
the nodes read and write. The operation is a function with a fixed number
of parameters and a fixed number of result values. On each invocation of a
node, data items are first consumed from the incoming edges and then placed
as arguments to the function, and when the result has been computed, the
values are added to the queues of the outgoing edges. Every edge in the graph
is associated with four non-negative integers: A, the number of initial values
in the queue; U , how many values are produced by an invocation of the node
that the edge starts in; W , how many values are consumed by an invocation of
the node that the edge ends in; and T , a threshold of how many items must be
in the queue for the node that the edge ends in can be invoked. The threshold
must be at lest the number of consumed items, T ≥W .

The numbers A, U , W and T are used when analyzing the program, for
example, to determine if the program will run forever or stop at some point.

Dennis’ Dataflow

In the late s and early s, Jack B. Dennis set the foundation for what
today is called dataflow with firing. Envisioning a highly parallel computing
system, he created a graph-structured program representation to make use of
its parallelism []. Similar to Karp and Miller’s computation graphs, the nodes
of these programs are also executed in steps, here called firings. One difference
from computation graphs, though, is the ability to act on the values of Boolean
control tokens. For example, a T-gate—an actor with two incoming edges,
one for data tokens and one for control tokens, and one outgoing edge—acts
whenever there is data on both incoming edges, but forwards the data token
to the output only if the control token is true. The programs in this model are
determinate, i.e. the output of a given program is determined by the input.

This dataflow model was designed to be an intermediate program represen-
tation between a procedural programming language and the target computer.
By translating a procedure to a dataflow program, the parallelism inside the
procedure is exposed. Dennis discusses how some, but not all, concepts of Di-
jkstra’s structured programming translate to this dataflow model.

Synchronous Dataflow

Digital signal processing became an important application area for the dataflow
model. In the s, Edward A. Lee found that dataflow programs with some
restrictions could be scheduled at compile time []. Nodes that always con-
sume the same amount of tokens on their incident edges and produce the same
amount of tokens on its emanating edges are called synchronous. A program
with only synchronous nodes is a synchronous dataflow program. This model is
very similar to the computation graphs of Karp and Miller, but synchronous
dataflow restricts the token threshold to be exactly the number of consumed
tokens T =W .

The scheduler decides on which processor and in which order the nodes are
executed. By creating a schedule at compile time, the system does not need
to make any scheduling decisions at runtime. Efficient scheduling on both
parallel and sequential platforms is an interesting portability aspect of dataflow
in general and synchronous dataflow provides an efficient solution.

Cyclo-Static Dataflow

Static scheduling has been extended to a slightly less restricted form of dataflow
by Bilsen et al., called cyclo-static dataflow []. In this model, the number of
tokens consumed and produced by a node is allowed to vary over time, but
only in fixed cyclic patterns. A node can, for example, split a stream into two
streams, forwarding every second token in one direction and the other tokens in
another direction. Since cyclo-static dataflow programs can be transformed to
synchronous dataflow [] and synchronous dataflow programs are cyclo-static
dataflow programs with cycle length one, they are equivalent in computational
power. Cyclo-static dataflow programs, however, allow for a more compact
program representation in some cases.

Boolean-Controlled Dataflow

Boolean-controlled dataflow is an extension of synchronous dataflow, introduced
by Joseph T. Buck []. The extension enables nodes to do two different oper-
ations depending on a Boolean-valued token. The two operations may differ
in how many tokens they produce and consume on the edges, but every acti-
vation of the respective operations must have the same token rates. This is also
an extension of Dennis’ dataflow, allowing user defined nodes that depend on
the Boolean token value.

In his dissertation [], Buck studies a few subclasses to the class of programs
that can be expressed in this model. One of these subclasses is the programs

with a schedule whose length in time can be bounded. This class includes the
synchronous dataflow programs with known execution time of the nodes, but
also Boolean-controlled dataflow programs with if-then-else-like structures. He
also shows that the class of Boolean-controlled dataflow programs, as a whole,
is Turing-complete. Many decision problems about the behavior of Boolean-
controlled dataflow programs are therefore undecidable.

StreamIt

Dataflow with firing is not just a theoretical model of how programs could
be described. There are programming languages based on this model as well.
StreamIt is a language that is largely based on synchronous dataflow, but with
some extensions []. The user defined kernels of a StreamIt program are called
filters. Filters have one input port and one output port. It has built-in kernels
for splitting and joining streams. These actors have more inputs or outputs,
and describe cyclo-static dataflow rather than synchronous dataflow. Another
extension to synchronous dataflow is the ability to look at a fixed number of
tokens without consuming them. For scheduling purposes, this extension rein-
troduces the token threshold from Karp and Miller’s computation graphs.

StreamIt also has support for out-of-band communication through teleports.
They are introduced to be able to update parameters of the filters in a controlled
way without loosing the benefits of synchronous dataflow.

Another departure from synchronous dataflow is the ability to have filters
with dynamic token rates. This feature has been added to be able to express
more complex programs such as an MPEG- decoder []. However, most
optimizations available to StreamIt programs are not available for these filters.

Cal and RVC-CAL

Cal is a language for dataflow actors with firing []. It was created by Johan
Eker and Jörn W. Janneck as a scripting language for the Ptolemy II project. A
subset of the language was later standardized by MPEG under the name RVC-
CAL, as part of the reconfigurable video coding standard ISO/IEC -.
Both Cal and RVC-CAL can describe a broad class of dataflow programs, in-
cluding non-deterministic programs, and programs with data-dependent tran-
sition selection.

Several compilers exists for Cal and RVC-CAL, for example OpenDF [],
the Open RVC-CAL Compiler (Orcc) [], CalC [], CALMany [], and
the Tÿcho compiler, which is presented in this dissertation. These compilers can
generate code for a broad variety of systems with various degrees of parallelism,

ranging from single-processor systems, multi-core and many-core systems, to
FPGAs.

The following program listing defines an actor Filter that takes a predicate
p as instantiation parameter.

actor Filter (p) In =⇒ Out :

action In:[x] =⇒ Out:[x] guard p(x) end

action In:[x] =⇒ guard not p(x) end

end

It has one input port, named In, and one output port, named Out, through
which it communicates with other actors. The actor contains two actions that
describe what this actor can do. Both actions read one token from In and binds
its value to a fresh variable x. The first action writes the value of x to the output
port, and the second action does not. The guard-expressions restrict the firing
of the actions to when p(x) is true and false, respectively.

This actor could, for example, be instantiated with lambda (n) : n ≥ 0 end.
It will, in that case, forward all values that arrive to In that are greater than or
equal to zero to the output port Out.

A Cal actor can have internal state variables. The variables are shared be-
tween the actions and can be read and updated by them. Cal actors may also
have action schedules, which define what sequences of action firings are allowed.
Finally, a Cal actor can also define priorities a > b, stating that action a should
be prioritized over b in cases where both actions could otherwise be executed.

PROCESS LANGUAGES
Dataflow with firing is not the only family of stream program model. Another
family is the family of process languages.

Kahn Process Networks

About the same time as Dennis created dataflow with firing, Gilles Kahn, a
French computer scientist, created what today is calledKahn process networks [].
The nodes of these networks are called processes, and the edges are communi-
cation channels, through which the processes communicate. Both Dennis and
Kahn make use of procedures in their models, but in very different ways. While
Dennis’ idea is to find fine-grained parallelism inside procedures, Kahn uses a
procedural language as a sequential description of the processes. Kahn’s process

language includes a blocking read statement and a non-blocking write state-
ment for communicating over the channels.

By translating processes to functions from sequences to sequences, Kahn
shows that both processes and networks of processes are monotonic on the pre-
fix order. Monotonicity of a process f means that if the input sequence x is
a prefix of y , i.e. y starts with the elements of x , then the output of the pro-
cess f (x) is a prefix of f (y). Monotonicity on the prefix order also implies
determinacy irrespective of the order in which the execution of the processes is
scheduled.

A language for Kahn processes, but with bounded buffers, is used to pro-
gram the Ambric Am—a many-core architecture with processors.

Communicating Sequential Processes

A process model that can express non-deterministic computation is communi-
cating sequential processes. It was introduced in by C.A.R. Hoare as a model
for concurrent computation that is explicit about its concurrency. About the
same time, Robin Milner introduced his calculus of communicating systems [].
Inspired by Milner’s calculus, S.D. Brookes, C.A.R. Hoare and A.W. Roscoe
evolved Hoare’s model into a process calculus as well []. Hoare’s process
model has also been the inspiration for several programming languages, most
notably occam [] and the Go programming language.

ACTOR MACHINE
The actor machine is an abstract machine model for dataflow actors with fir-
ing. It was introduced in by Jörn W. Janneck []. An actor machine
implements one actor and has a finite set T of transitions that it can fire. Each
transition may () read input tokens () update the internal state of the actor
and () write output tokens. Transitions may only be fired when all tokens it
will read are present. They can also have other requirements. These require-
ments are described by a finite set C of firing conditions or just conditions, for
short.

Controller

The central component of an actor machine is its controller. It is a finite au-
tomaton that controls the testing of conditions and firing of transitions. The
transitions of the controller are called instructions, to not be confused with the
transitions of the actor. There are instructions of three kinds: test, exec and

wait. The test instruction tests a condition and it has two target states, one
for each outcome of the test. The exec instruction fires a transition of the ac-
tor. The wait instruction indicates that the actor cannot currently make any
progress—it might, for example, need one more token before it can continue.

The states encode knowledge about the results of tested conditions. A com-
mon way of representing the knowledge is by a value from the set {1,0,X},
where 1 and 0 indicate that the condition is known to be true and false, respec-
tively, andX indicates that the condition is not known. The controller state can,
for example, be represented by tuples (k1, k2, . . . , k|C |), where ki ∈ {1,0,X} is
the knowledge about condition ci ∈ C . For example, in state (1,1,0,X), condi-
tions c1 and c2 are known to be true, c3 is known to be false, and c4 is unknown.
For brevity, we use juxtaposition to denote tuples, e.g. we let 110X denote the
tuple (1,1,0,X).

For example, the Filter actor on page can be implemented as an actor
machine using three conditions and two transitions. Let condition c1 be the
availability of a token on the In port, c2 be the availability of space for a token

on Out, and c3 be the expression p(x), where x is the first token on port In. The
negated guard expression, not p(x), is represented by ¬c3.

In the initial controller state, nothing is known about the three conditions.
The initial state is therefore k1k2k3 = XXX. In this state, either the token
condition c1 or the space condition c2 can be tested. The guard condition c3,
however, cannot be tested unless there is a token available, i.e. c1 is true. The
controller states can have several instructions, e.g. state XXX can have one
test instruction for condition c1 and another test instruction for condition c2.
When executing the controller, one instruction is selected and executed.

Controllers can be visualized as bipartite graphs with each node being ei-
ther a state or an instruction. Figure . shows a visualization of one possible
controller. Ellipses represent states and are annotated with the knowledge of
the state. Rectangles and diamonds represent exec and test transitions, re-
spectively, and are annotated with their transition or condition. The wait in-
structions are represented by rings. The test instructions have two emanating
edges, one with a solid line that is followed when the condition is true, and one
with a dashed line that is followed when the condition is false. Note that this
example only has one instruction from each state.

In many stream program formalisms, buffers are unbounded, making conditions on space
for output tokens always true. Many implementations, however, use fixed-size buffers as an
optimization, making the output conditions useful again.

0XX 101

XXX c1 1XX c3 1X1 c2

1X0 t2 111 t1

Figure 2.1: An actor machine controller for the Filter actor.

Operations on Actor Machines

Actor machine controllers that have states with more than one instruction can
be pruned in an operation called reduction. In a reduction, any instruction
except the last instruction in each state can be removed. States that become
unreachable are implicitly removed. When the actor machine only has at most
one instruction per state, it is called fully reduced. How the reduction is done
can affect the performance of the resulting implementation, as discussed in
Paper D.

Another important operation on actor machines is composition. When a
network of actors are implemented as a sequential program, the actors need to
be scheduled. If the actors are represented as actor machines, the schedule and
the actors can be implemented as one actor machine by composition. When
composing actor machines, the controllers are fused to a single controller that
implements all the actors. By incorporating knowledge in the fused controller
about how the component actor machines communicate, token and space con-
ditions for the channels that are internal to the composite does not need to be
tested.

Chapter 3

Related Work

This chapter discusses other stream program representations and how they relate
to the four areas of interest described in the problem statement.

STREAM-BASED FUNCTIONS
The first model that is discussed is stream-based functions []. This model is
designed to express Kahn processes as dataflow with firing. The core compo-
nents of stream based functions are objects and channels. Objects describe stream
program kernels, and channels are connections through which the kernels com-
municate.

An object consists of three parts: a set P of step functions, a controller and
state. Each step function describes a step of execution, the controller determines
which function should be invoked next, and the state evolves throughout the
execution by the step functions and the controller. The state is divided into two
separate parts: the data state D and the controller state C .

A step function f ∈ P accept input tokens x1, . . . , xm and the current data
state d ∈ D as parameters and returns output tokens y1, . . . , yn and an updated
data state d ′ ∈ D . The mapping between input ports and input parameters,
as well as between return values and output ports is fixed for each step func-
tion, but may differ among the functions. When making a step using function
f ∈ P , the tokens it require are consumed from the input ports and put as
parameters to the function together with the current data state. The result to-
kens of the function are sent to the output ports of the object, and the returned
state is the new state of the object that will be used as input for the next step
function.

The controller determines, based on the current controller state c ∈ C and
the data state d ∈ D , which step function f ∈ P should be invoked next. It

consists of two functions, a transition function and a binding function. The
binding function π : C → P returns a step function given a controller state.
The transition function ω : C ×D → C is applied after each step function is
applied. It returns a new controller state based on the current controller state
and the returned data state of the step function that was just applied.

An example execution starts in the initial controller state c1 ∈ C and data
state d1 ∈ C . The binding function is applied to determine which step function
to apply π(c1) = fa . Then the tokens that fa requires are consumed from the
input and put as arguments to the function together with the current data state,
fa(x1, . . . , xm , d1) = (y1, . . . , yn , d2). The output tokens y1, . . . , yn are sent to
their respective output ports. The transition function is applied ω(c1, d2) =
c2 to determine the new controller state. Now the procedure starts again by
applying π(c2).

Stream-based functions are used in Compaan—a compiler that transforms
programs described as nested loops in Matlab to Kahn process networks, ex-
pressed as stream-based functions [].

Analyzability Stream-based functions are designed to be simpler to analyze and
transform than Kahn processes. An object with only one step function,
for example, is a synchronous dataflow actor. It is, however, not as sim-
ple to detect if an object is a cyclo-static dataflow actor. The transition
function needs to be analyzed to determine whether the state selection is
data dependent. The analyzability regarding cyclo-static dataflow there-
fore depends on how the transition function is expressed.

Generality As mentioned earlier, stream-based functions can represent Kahn
processes and can therefore express any deterministic computation. They
cannot, however, describe non-deterministic stream program kernels.

Kernel implementation The selection of step function is effectively performed
by the transition function when computing the next controller state. The
actual selection is then just a simple mapping from controller state to
step function. This model neither imposes an inefficient kernel imple-
mentation or hinders the creation of an efficient one, regarding transition
selection.

Network implementation Stream-based function objects are not composable
in general. There are, however, situations when objects can be com-

posed []. In the context of Compaan, this model also offers decompo-
sition and other transformations of objects, described in [].

FUNCTIONAL DATAFLOW INTERCHANGE FORMAT
The formal foundation of the functional dataflow interchange format is based on
a model of dataflow with firing called enable-invoke dataflow []. An actor in
this model has a set of modes, and, at any point in time, a subset of these are
active. The actor is defined by two functions; an enabling function and an invok-
ing function. The enabling function takes as parameters the number of input
tokens that are available on the input ports and a mode and returns whether
the actor can be invoked in that mode with that many input tokens. A runtime
system for such actors can check the enabling function for all active modes to
see if the actor can be invoked. The invoking function takes as parameters the
values of the input tokens and one of the active modes for which the enabling
function returned true. It returns a new set of active modes, together with the
output tokens that are produced.

Enable-invoke dataflow is a model that can represent a broad class of data-
flow with firing. It can for example represent the Turing-complete boolean
controlled dataflow. The actors can also be non-deterministic. It cannot, how-
ever, represent all Cal programs. The enabling function considers the mode and
the number of tokens, but Cal actions can be conditioned on the values of the
tokens using guard expressions.

The functional dataflow interchange format (functional DIF) is based on a
restricted version of enable-invoke dataflow called core functional dataflow. It is
restricted to one active mode, that is describing only deterministic actors. Func-
tional DIF is implemented in the DIF package—a Java library for prototyping
an analyzing stream programs.

Here follows a short analysis of the functional dataflow interchange format.
It is analyzed using the four areas of interest described for the actor machine in
the problem statement of this dissertation.

Analyzability The dataflow interchange format has different constructs for each
subclass of dataflow actors that it supports—one for core functional data-
flow, one for cyclo-static dataflow etc. If an actor is expressed as core
functional dataflow, it is in general hard to determine if this actor is a
cyclo-static dataflow actor. It requires analysis of what mode the invoca-
tion function returns; in particular, that the returned mode only depends

on the mode parameter. This is not feasible in general, but the invocation
function could be expressed in a way that makes it easier to prove.

Other actor variants of the dataflow interchange format are, however,
simpler to analyze. A cyclo-static actor explicitly provides lists of the
token production and consumption patterns [].

Generality The functional dataflow interchange format can express boolean
controlled dataflow and can thus express any deterministic computation.
It cannot express non-determinism, even though enable-invoke dataflow
can.

Kernel implementation The model is carefully designed to not require any re-
computation between the enabling and invoking function. The enabling
function tests whether the actor is enabled in the given mode for the
number of available tokens. The invoking function is then not allowed
to check how many tokens are available.

Network implementation In [], new scheduling approach for core func-
tional dataflow is presented. It uses the modes of the actors to decon-
struct the dataflow graph to a set of dynamically interacting synchronous
dataflow graphs. The schedule is described as a generalized schedule
tree []. This approach provides great speedups in some cases compared
to a round-robin schedule.

SYSTEMOC AND ACTOR FSM
SysteMoC is a SystemC library for describing dataflow actors with firing [].
The model that SysteMoC implements is based on FunState (functions driven
by state machines) []. An actor in SysteMoC consists of input and output
ports, functionality, and a firing finite state machine. The functionality is a set of
actions (actor transitions) and guards (conditions on the state or the input token
values). The firing finite state machine controls when the actions can be fired.
Each transition is annotated with an action and with the conditions for firing
that action.

The performance of this library compared to normal SystemC threads has
been tested using a two-dimensional IDCT. The comparison was performed
on a single-core personal computer, resulting in a speed-up factor of 1.3 for
SysteMoC.

In [] and [], a similar actor representation is described, and its use is
extended to normal SystemC actors, i.e. not the ones described with the Syste-
MoC library. The control flow graphs of the SystemC methods are modified.
The basic blocks are split such that all read statements precede the write state-
ments. The actor finite state machine is then constructed from this modified
control flow graph. This transformation is essentially a transformation from
processes to dataflow with firing.

Analyzability The definition of the firing finite state machine in the SysteMoC
actor code is designed to be easily extracted. This state machine can then
be analyzed to detect synchronous dataflow, cyclo-static dataflow and
others. Compared to stream-based functions and core functional data-
flow, this model is more explicit about the action selection, and therefore
simpler to analyze.

Generality The SysteMoC library can represent very broad range of dataflow
with firing and the action selection can be, and have to be, tailored to fit
the actions. The translation from processes, described as SystemC actors,
to a similar model also shows the generality of this kind of model.

Kernel implementation The explicitness about the conditions is a good start-
ing point for efficient kernel implementations with optimized action se-
lection. The model is sufficiently explicit, for example, to generate an
actor machine from.

Network implementation Efficient network implementations are achieved by
classifying the actors, and then clustering the actors into statically schedu-
lable regions. A SystemC implementation of a Motion-JPEG decoder
has been evaluated for this model. It showed a speed-up factor of 2.2 for
the whole decoder and 4.5 for the two-dimensional IDCT part of the
program, compared to the dynamically scheduled SystemC program.

Chapter 4

Contributions

In my research, I have investigated the use of actor machines as kernel represen-
tation for creating efficient software implementation of stream programs. I have
identified four important aspects of this investigation: () the analyzability of
kernels, () the generality in what it can express, () implementation efficiency
for kernels and () implementation efficiency for networks. My contributions
regarding those aspects are the following:

Analyzability In Paper B, I have described and implemented an actor classifier
that detects synchronous dataflow, cyclo-static dataflow, prefix mono-
tonicity (Kahn processes) and determinacy. This paper shows the ana-
lyzability of the actor machine.

Generality In Paper E, I have described and implemented a translation from
Kahn processes to Cal, and in Paper A, a translation from Cal to actor
machines. These papers, together, demonstrate the generality of the actor
machine—that it can express both processes and very general dataflow
with firing.

Kernel implementation Transitions and conditions of stream program kernels
are described using normal procedural and functional languages. These
parts are very important to optimize to efficiently implement kernels.
Since these parts are similar to conventional programming languages,
optimizations for them are already widely available. Optimizations for
transition selection, however, is a less explored area or research. In Pa-
per D, I have described how to create efficient transition selectors with
actor machines, using profiling based heuristics. This paper shows that
the transition selection can be optimized using actor machines.

Network implementation There are several aspects of the implementation of
stream program networks that are important for its efficiency. If the
target for the implementation is software, one important aspect is the
scheduling of the kernels for the available processors. Actor machines can
implement schedules by composition, i.e. fusion of two or more actor
machines into one that performs the computation of all its component
actor machines. I have in Papers C and F contributed two algorithms for
actor machine composition.

INCLUDED PAPERS
The following is a description of all papers that are included in this dissertation;
what the papers contribute to the research area, and my contributions to the
papers.

“Toward Efficient Execution of Dataflow Actors” (Paper A)

Gustav Cedersjö and Jörn Janneck
This paper introduces a translation from Cal actors to actor machines. In [],
where the actor machine is introduced, Cal is used as an example language, but
no complete translation is described. Our translation supports both the action
schedules and the action priorities of Cal. It is compared to a traditional way of
implementing Cal actors by the number of test instructions that are performed
when executing a program. The comparison is done using a video decoder
consisting of actors. I am the main author of this paper and I have done the
technical work.

“Actor Classification using Actor Machines” (Paper B)

Gustav Cedersjö and Jörn Janneck
This paper is an investigation in the analyzability of actor machines. It provides
definitions for classifying actor implementations represented as actor machines.
The classification can, for example, be used to decide how the actor scheduling
should be done. Similar classifiers exist for other actor representations. I am
the main author of this paper and I have done the technical work.

“Software Code Generation for Dynamic Dataflow Programs” (Paper C)

Gustav Cedersjö and Jörn Janneck
Actor machine composition is a technique for scheduling networks of actors by
fusing them to a single kernel []. This paper presents the first implementation

and evaluation of actor machine composition. It also presents a software imple-
mentation strategy for the actor machine controller. I have done the compiler
implementation and the evaluation for this paper. Janneck is the main author
of section C. to C., and I am the main author of the rest of the paper.

“Finding Fast Action Selectors for Dataflow Actors” (Paper D)

Gustav Cedersjö, Jörn Janneck and Jonas Skeppstedt
Actor machine reduction is a refinement of the action selection process of actor
machines. A reduction takes as input an actor machine that can do one of po-
tentially several things in each state, and produces as output one that can only
do one thing in each state. The selection of what to do in each state affects
the performance of the resulting program. This paper introduces two reduc-
tion heuristics that use platform independent profiling information as the basis
for the reduction decisions. I am the main author of the paper and I did the
technical work.

“Processes and Actors: Translating Kahn Processes to Dataflow with Firing”

(Paper E)

Gustav Cedersjö and Jörn Janneck
This paper presents a Kahn process language that is designed to work well to-
gether with Cal. It also introduces a way of reasoning about action firings in
the semantics of Kahn processes. This is the basis of a translation from Kahn
processes to dataflow with firing, that is also presented in the paper. I have
designed the process language and its implementation by translation to Cal. I
have also found the way of reasoning about action firings in the semantics of
Kahn processes. I am also the main author of the paper.

“Tÿcho: A Framework for Compiling Stream Programs” (Paper F)

Gustav Cedersjö and Jörn Janneck
This paper presents the Tÿcho framework and stream program compiler. Tÿ-
cho is a framework for building stream program compilers based on the actor
machine. It contains an example compiler with frontends for Cal and the Kahn
process language described earlier. The paper also presents a novel actor ma-
chine composition algorithm. I have implemented most of the framework and
the compiler and created the composition algorithm. I am also the main author
of the paper.

RELATED PAPERS
I have contributed to other papers about stream programs and compilation
techniques.

“Realizing Efficient Execution of Dataflow Actors on Manycores” [32]

Essayas Gebrewahid, Mingkun Yang, Gustav Cedersjö, Zain Ul-Abdin, Veronica
Gaspes, Jörn W. Janneck and Bertil Svensson
This paper presents a compiler from actor machines, via action execution in-
termediate representation to three different targets. One backend generates se-
quential C code. Another backend generates code for the Epiphany platform
from Adapteva. A third backend generates code for the Ambric platform. I
contributed minor technical work to the compiler.

“JavaRAG: A Java Library for Reference Attribute Grammars” [33]

Niklas Fors, Gustav Cedersjö and Görel Hedin
This paper presents a library for reference attribute grammars in Java, called
JavaRAG. Attribute grammars were introduced by Knuth [] as a declarative
way of computing attributes on trees. Reference attribute grammars is an ex-
tension by Hedin [] that allow attributes to be references to nodes in the tree.
I have built the library that is presented in this paper, and have used it in the
Tÿcho compiler and the actor classifier.

“Dataflow Machines” [36]

Jörn W. Janneck, Gustav Cedersjö, Endri Bezati and Simone Casale Brunet
Actor machines are designed for software implementations of dataflow pro-
grams. The controller is a sequential program for selecting transitions. The
dataflow machine replaces the controller of the actor machine with a more par-
allel transition selection mechanism, called the selector. This model is designed
to be a better starting point for hardware implementations of stream programs.
I contributed to the discussions that lead to this model.

“Mapping and Scheduling of Dataflow Graphs—A Systematic Map” [37]

Usman Mazhar Mirza, Mehmet Ali Arslan, Gustav Cedersjö, Sardar Muhammad
Sulaman and Jörn W. Janneck
This paper is a systematic map of research on mapping and scheduling of data-
flow graphs. The paper concludes that most research is done on static schedul-
ing and the most used optimization goals are memory usage and throughput.
I contributed to the study by reading and mapping some papers.

Chapter 5

Conclusions

This dissertation investigates the thesis that the use of actor machines as kernel
representation facilitates the creation of efficient software implementation of
stream programs.

CONCLUSIONS
As shown in [], a lot of research has been conducted on static scheduling of
dataflow programs. Actor machines, however, cannot in general be statically
scheduled. Nevertheless, if a network (or subnetwork) of actor machines is
classified to be statically schedulable, a lot of research results becomes available
for the actor machine. This dissertation shows that the transition selection that
actor machines describe is sufficient for implementing such classifier.

Even though statically schedulable subclasses of dataflow is popular target
for a lot of research, not all programs can be expressed using those classes of
dataflow. Cal is an example of a language that can express a broad range of
stream programs. It can describe non-deterministic actors, and actors that act
on the absence of input tokens. It is also an important language, because of
its use in the reconfigurable video coding standard ISO/IEC -. This
dissertation shows that the actor machine is general enough to describe Cal
actors. Dataflow with firing is not the only way to describe stream programs.
Kahn processes is an appealing alternative with its simplicity of programming.
This dissertation shows that even Kahn processes, using a translation via Cal,
can be described using actor machines.

For simple actors, such as those that can be scheduled statically, it is easy
to determine what the actor should do next. For more complex actors, such
as Cal actors that have more than one candidate transition in a given state, the
transition selection requires some more work to determine which transition to

execute. This dissertation shows that the actor machine facilitates creation of
efficient transition selectors for the more complex actors.

When stream programs are implemented in software, the kernels need to
be scheduled on the available processors. One way of implementing a sched-
ule is by kernel fusions, i.e. fusing two or more kernels into one that performs
the computation of its component kernels. This dissertation shows that kernel
fusion through actor machine composition can implement efficient static and
semi-static schedules for stream programs. However, due to the nature of the
composition problem, there is a risk of state space explosion that needs to be
avoided. One direction of future research to make actor machine composition
more practical, is the development of heuristics for determining which actor
machines could efficiently be composed. Another direction is a trade-off be-
tween runtime tests and program size, by representing less knowledge about
the queue lengths between the component actor machines.

FUTURE WORK
The target of this research has, at least partly, been towards software imple-
mentations when there are fewer processors than the number of kernels. With
the emergence of low-power many-core platforms, with a thousand processors
or more, the problem descriptions for efficient software implementations radi-
cally change. What will be the challenges of these platforms? Will the platforms
become more homogeneous or heterogeneous—will this kind of chip replace
other specialized chips or will it become just one more specialized chip? Where
will the bottlenecks be and how could they be avoided?

One research direction is to make the use of actor machines broader. An
obvious topic in that direction would be to lift the restriction of a fixed network
topology. Could the actor machine composition be done as an optimization in a
just-in-time compiler? The research could also be taken to other programming
models. Can only stream programs benefit from the actor machine, or are
there other programming models that can efficiently be implemented using
actor machines?

A third direction for this research is to apply ideas of the actor machine
to other models. For example, what would be the equivalent of actor machine
composition look like for enable-invoke dataflow or a finite state machine based
model?

These three directions are somewhat orthogonal and could be combined.
For example, develop a virtual machine and just-in-time compiler for many-
core platforms with a kernel fusion optimization based on a different model
with support for a dynamically changing network.

Part II

Publications

Paper A

Toward Efficient Execution of
Dataflow Actors
Gustav Cedersjö and Jörn W. Janneck
Department of Computer Science, Lund University

ABSTRACT Dataflow descriptions are a natural match to application areas

such as signal processing, cryptography, networking, image processing, and

media coding. This paper addresses the problem of efficiently executing the

basic elements of a dataflow program, its actors, written in a language such as

MPEG’s RVC-CAL. Using actor machines as an execution model for dataflow

actors, we devise a metric for measuring the quality of a translation in terms of

program size and execution efficiency, and then build, evaluate and compare

a number of translators with each other and prior art, using MPEG reference

code as a benchmark.

A.1 INTRODUCTION
As part of the recent shift toward parallelism, interest in parallel programming
models such as dataflow has increased considerably, especially in application
areas such as signal processing, cryptography, networking, image processing,
and media coding. For instance, MPEG and ISO standardized a subset of the
Cal dataflow language [], called RVC-CAL in ISO/IEC -. These lan-
guages embody a computational model known as dataflow with firing []: the

Copyright © IEEE. Reprinted from Conference Record of The Forty-Sixth Asilomar
Conference on Signals, Systems & Computers, with permission from IEEE.

computational kernels (actors) that constitute the dataflow program execute by
making a sequence of steps or firings, consuming input, producing output, and
modifying their internal state if they have any.

More general and expressive dataflow languages, such as Cal/RVC-CAL,
allow programmers to write actors whose behavior may depend on the input
data and their internal state, and may even be non-deterministic. These actors
are described as a collection of actions, i.e. possible steps the actor can execute,
along with the conditions that need to be satisfied so that an action may be
executed. These conditions include the availability of input data, as well as
guards, boolean expressions on the value of input data and/or the actor state.
The program in Listing A. is an example of such an actor written in Cal.

actor Split () A =⇒ P, N:

A1: action A: [v] =⇒ P: [v]

guard v ≥ 0

end

A2: action A: [v] =⇒ N: [v]

guard v < 0

end

end

Listing A.1: A simple Cal actor with multiple actions and guards.

Executing an actor like this involves alternating between choosing the next
action to be executed, and then executing that action. The action selection
phase consists of testing sufficiently many conditions to be able to identify at
least one action that can be executed. Since in general several conditions may
be testable at any point during action selection, the choice of the condition
that is tested next may affect how many conditions will have to be tested before
the next action is fired. Consequently, the way that choice is made will have an
impact on the efficiency of the actor execution—fewer tests per action execution
mean less effort per unit of useful work.

In [] actor machines are presented as an execution model for actors, that
makes explicit the testing and action execution steps that need to be performed
during actor execution. However, while the model is clearly expressive enough
to represent Cal actors, no explicit translation from Cal to actor machines is
given. The purpose of this paper is to investigate this translation in more detail.

It turns out that the same Cal actor can be translated into several actor
machines that differ from one another in relevant ways, such as their size (which
affects the size of the code a compiler would produce when generating code for
the actor machine), and the number of tests they perform for a given sequence of
action executions (which is a measure for the efficiency of the generated code).

In this paper we devise a family of translations from Cal to actor machines,
and explore their properties with respect to the metrics above, using examples
from MPEG’s reference code as benchmarks. We also explore the design space
of a choice heuristic that is used when generating the different translations in
this family.

A.2 RELATED WORK
CalC is a C code generator for RVC-CAL described in []. The code for ac-
tion selection that CalC generates first tests which actions that have all condi-
tions satisfied. Then among these actions, one of the highest prioritized actions
is selected.

In [] this selection process is improved by, at compile time order the
actions by priority, and at runtime test the conditions for the actions in this
order, starting with the highest prioritized action. The first action to have all its
conditions satisfied is selected without testing the rest of the actions. The Cal
simulator in OpenDF uses the same approach. We implemented this selection
process for actor machines as a baseline in our comparisons.

Our approach to the testing of conditions is similar to what has been done
with compilation of pattern matchers. A pattern matcher has a sequence of pat-
terns and takes a value as input, the first pattern to match that value is selected.
These patterns can be constructed out of simpler parts, and some parts can be
common across the patterns. If the patterns are tested one by one, common
parts of the patterns will be tested repeatedly. In [], Augustsson describes the
compilation of pattern matching in LML that avoids this repeated testing by
matching the patterns part by part instead of pattern by pattern.

A.3 BACKGROUND
Before describing the translations from Cal, we first need some background in
actor machines. An actor machine consists of actions, communication ports,
state variables and a controller. Actions can read a fixed number of tokens from

the input ports, change values of the state variables and write a fixed number
of tokens to the output ports. Each action is associated with a set of conditions
that must be satisfied in order to be fired.

The controller of an actor machine is a state machine responsible for se-
lecting which action to execute depending on the conditions of the actions.
Figure A. is a graphical representation of a controller. Each state in the con-
troller (the circles or ellipses) is associated with a set of instructions that can be
executed in that state. There are three kinds of instructions:

test (diamond shaped),

wait (annular) and

call (rectangular).

The test instruction will test a condition and go to one of two states depending
on the outcome of the test. A sequence of tests is performed atomically with
respect to the state of the input ports. The wait instruction breaks the atomicity
of a test sequence and proceeds to a new state. Call instructions execute an
action and also break the test sequence atomicity.

An actor machine is executed by selecting one of the instructions in the
current state, executing that instruction and changing current state to the des-
tination state of the instruction.

In Cal, the action selection is not determined by the conditions of the ac-
tions alone. A Cal actor can also contain an action schedule and action pri-
orities. The action schedule determines in which order actions can be fired.
At each point in the schedule, a set of actions are available for selection. The
schedule also defines where the schedule continues depending on which action
is selected. The priorities set a partial order on the actions such that an action
can not be selected unless all its higher prioritized actions have been disabled
by some unsatisfied condition. Both action schedules and priorities can be en-
coded in the controller of an actor machine.

A.4 OUR WORK
We developed a number of translators from Cal to actor machines with different
properties.

0 A,1 1 v ≥ 0 2 A

3 A,1 4 v < 0 5 A

6

Figure A.1: Controller of the Split actor translated with RoundRobin.

A.4.1 RoundRobin

One of the translators we built, RoundRobin, mimics the behavior of traditional
code generators, such as the one described in [], mentioned in section A..
The resulting actor machine has at most one instruction in each controller state,
i.e. a single-instruction actor machine (SIAM). This is the baseline in the com-
parisons of the translators. Figure A. shows the controller of the Split actor in
Listing A. translated to an actor machine with the RoundRobin translator.

An actor machine generated by the RoundRobin translator tests the con-
ditions of one action at the time. If a test fails, the actor machine continues
with the tests of another action, but if all tests of an action succeed, that action
is fired and the actor machine goes back to the initial state of the controller.
This way, all actions will have their conditions tested, and if no action can be
selected, the actor machine will execute a wait-instruction and try again from
the start.

For Cal actors that have an action schedule, the RoundRobin translator
constructs one controller for each point in the schedule. The controllers are
then connected by changing the destinations of the call instructions to the state
where the controller of the next point in the schedule starts.

Action priorities are handled by ordering the actions such that the highest
prioritized action is tested first. This will work because of the atomicity of test
sequences; the conditions of all actions will be tested with the same view on the
input ports.

A.4.2 MemorizeTestMIAM

One problem with the RoundRobin translator is that some tests are performed
repeatedly when they can not change. From Figure A. we can see that the
availability of one token on port A must be tested twice to be able to select
action A.

MemorizeTestMIAM is a translator that tries to address this problem by
memorizing previous test results. It produces actor machines with many pos-
sible instructions in each state, called multi-instruction actor machine (MIAM).
The results of this translator preserve the generality of the input specification, at
the expense of size. Also, even when the actor itself is deterministic, the MIAM
resulting from its translation may be executed in many different ways.

Controller states. To memorize the test results, let each state in the actor ma-
chine controller represent information about the conditions of the actions. A
condition is either satisfied (1), unsatisfied (0) or unknown (X), depending on
if it is tested to be true, false of if it has not been tested yet. In the example in
Listing A., the two actions have three conditions in total:

• one token on port A

• that token is positive

• that token is negative.

A state is in this case represented by a tuple I × I × I , where I = {1,0,X} is
the information about a condition. The meaning of state (1,X,0), for example,
is that the first condition is satisfied, the second unknown and the third is un-
satisfied. In the rest of the paper, we drop the commas and parentheses when
describing a state, e.g. (1,X,0) is written 1X0.

Figure A. shows the controller of the Split actor translated with Memo-
rizeTestMIAM. The states nodes (ellipses) in the figure are annotated with the
information about the conditions. The first part of the tuple is the port condi-
tion, the second part is if the token is positive, and the last part is if the token
is negative.

Generation of controller. The controller is generated incrementally from a
queue of states to be processed. Initially, the queue contains only the start state
of the controller, which is the state where all conditions are unknown, XX . . .X.

1X1 A 110 A

v < 0 1X0 v ≥ 0

XXX A,1 1XX 100

0XX v ≥ 0 10X v < 0

11X A 101 A

Figure A.2: Controller of the Split actor translated with MemorizeTestMIAM.

If an action can be selected based on the information that a state provides,
there is no meaning in testing more conditions. In this case MemorizeTest-
MIAM will add call instructions to that state of the controller for every action
that is enabled, as shown in Figure A. in state 1X1, 101, 11X and 110.

If more conditions need to be tested in order to select an action, then the
translator will try to add tests to the current state. Actions that are disabled in
that state do not need any further testing, therefore only tests for actions that are
not disabled in current state are added. However, test instructions can depend
on each other, e.g. there must be a token available to check if that token is
positive or negative. MemoriseTestMIAM solves this problem by only adding
tests for guard conditions of an action when all port conditions of that action
are satisfied. In state 1XX in Figure A., the port conditions for action A and
A are satisfied, hence, tests for the guard conditions are added to this state.

If no call or test instruction has been added, the translator will add a wait
instruction that will throw away information about which tokens that are not
yet available.

XXX A, 1XX 100

0XX v ≥ 0 10X v < 0

11X A 101 A

Figure A.3: Controller of the Split actor translated with MemorizeTestSIAM(first).

Calculation of destination states. When an instruction is added to a state
in the controller, the destination states of that instruction should reflect the
information that the execution of the instruction gives or removes. Also, the
destination states should be added to the processing queue to be able to build
the whole controller.

Test instructions have two destination states, and the information that these
states represent should reflect the information gained by the test. Some condi-
tions imply other conditions, for instance, the presence of two tokens on a port
implies the presence of one token on that port, and the absence of one token
implies the absence of two tokens. MemorizeTestMIAM handles these cases,
but does not check if guard expressions are negations of each other.

When a call instruction is executed, the information about the ports that
the action reads from is no longer valid, since those tokens are consumed. The
guards can in general also change value after an action is fired. All conditions
are therefore set to unknown in the destination state of a call instruction.

For the destination states of the wait instructions, information about absent
tokens is removed. Since tokens can not be consumed unless an action is fired,
information about present tokens as well as guards is retained. If no information
is removed, the actor machine will not be able to select any more actions. This
is the case for state in Figure A., but to come to this state, both v ≥ 0 and
v < 0 need to be false at the same time.

Action Schedule and Priorities. Action schedules are handled by extending
the information associated with the controller states with the points in the ac-
tion schedule. I n is extended to I n × S , where S are the points the action

schedule. A state in a controller with n = 3 conditions and a schedule point
start could look like (1,X,0, start). The destination state of a call instructions
reflects the change in the schedule.

When it comes to priorities, this affects the order in which conditions are
tested. When choosing which tests to add to a state, the tests for the highest
prioritized among the not disabled actions are added. Call instructions can of
course only be added where all higher prioritized actions are disabled.

A.4.3 MemorizeTestSIAM

A MIAM can be reduced to a SIAM, by selecting one instruction in each state
of the MIAM controller. In practice, the choice of instruction sets the order in
which the tests are performed and this choice affects the amount of tests needed
at runtime.

The actor machine controller in Figure A. has two possible instructions in
state 1XX, but otherwise just a single instruction in each state. Hence, there
are only two possible reductions of this particular actor machine and Figure A.
shows one of them.

MemorizeTestSIAM(h) is a translator that use MemorizeTestMIAM to get a
MIAM, and a heuristic h to choose an instruction in each state. A very simple
choice heuristic, first, always picks the first in the list of instructions in each
state.

To explore the design space of the choice heuristic, we generated reductions
by picking instructions randomly in each state.

A.5 EVALUATION
For the evaluation of the translators, we used an MPEG- Part SP decoder
written in RVC-CAL with a short video file as input. The decoder consists of
 actors and the whole application has two additional actors, one for feeding
the decoder with input and one for getting the output. The input video is three
frames of a sample video (foreman).

To get an idea of the size of the generated code, we measured the number
of states in the controllers generated by the translators.

The efficiency of the translations was evaluated by counting the number
of tests needed to decode the video. First, the original Cal actor network was
executed (using []) to get a causation trace with the order in which the actions
were fired. The actor machines were then simulated with the information from
this trace. The result of each test instruction in the simulation was determined

Table A.1: Number of states in the controllers.

RoundRobin MemorizeSIAM(first) MemorizeMIAM

iq 4 5 8

iDcPred 36 29 68

iAcPred 6 9 48

idct2d 4 5 8

parseheaders 557 852 1203

mvrecon 32 28 28

interpolation 4 5 8

add 28 26 29

is 4 5 8

blkexp 12 10 23

framebuf 37 63 63

by the number of tokens on the channels in the network, and the execution
sequence from the original execution.

To evaluate the performance of different reductions from MIAM to SIAM,
we made random reductions by picking an instruction at random in each state
of the MIAM and simulated the resulting SIAM.

A.6 RESULT
The sizes of the controllers generated by the different translators are shown in
Table A.. MemorizeTestSIAM(first) generated on average 43% larger con-
trollers than RoundRobin. In two cases, mvrecon and framebuf, the actor
machines resulting from MemorizeTestMIAM were already SIAM. This is the
reason why the controller size was not reduced in MemorizeTestSIAM(first).

As shown in Figure A., the actor machines from MemorizeTestSIAM(first)
required fewer or the same amount of tests compared to the actor machines
from RoundRobin. For the whole sequence the memorizing actor machine
required 38% fewer tests than the baseline.

To explore how different choice heuristics affects the performance, random
reductions of the MIAMs were compared to each other. For Figure A. we
generated random reductions from MIAM to SIAM of the whole appli-
cation and simulated them. However, only the actor parseheaders showed any
difference in performance among the generated actor machines. The bars of

0 0.5 1 1.5 2
·105

iq

iDcPred

iAcPred

idct2d

parseheaders

mvrecon

interpolation

add

is

blkexp

framebuf

Number of performed tests

RoundRobin
MemSIAM

Figure A.4: Comparison of the number of tests for all actors in the test application between

the translators RoundRobin and MemorizeTestSIAM(first).

the histogram shows how many of the parseheaders actor machines among the
 generated ones, that fall into that interval in number of tests needed by
the actor machine to decode the test video. The actor machines that in the
leftmost bar needed the fewest tests.

A.7 FUTURE WORK
There are many ways to expand and build upon the work presented here. One
natural direction to continue is to find heuristics that yields efficient controllers
in the reduction from MIAM to SIAM, such the ones to the left in the his-
togram in Figure A.. Another interesting direction could be to do analysis of
the guard expressions to see if one test can give answer to several conditions.
In the example in Figure A. this would result in the failure-branch of the test
v ≥ 0 going directly to state 101.

1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

·105
0

20

40

60

80

Number of performed tests

N
u
m
b
er

o
f
co

n
tr
o
lle

rs

Figure A.5: Histogram over number of tests performed in parseheaders for 1000 random

reductions from MIAM to SIAM.

Since this is a first step toward efficient execution of dataflow actors, it
would be interesting to generate software from these actor machines and com-
pare the performance to prior art. Composition of actor machines, as described
in [], is also an interesting direction for this work.

A.8 ACKNOWLEDGMENT
This work has been supported by the strategic research area ELLIIT.

Paper B

Actor Classification using Actor
Machines
Gustav Cedersjö and Jörn W. Janneck
Department of Computer Science, Lund University

ABSTRACT Program analysis is an important tool in software development,

both for verifying desired properties and for enabling optimizations. For data-

flow programs, properties such as determinacy and static schedulability are

important for verifying correctness and creating efficient implementations.

In this paper we develop an analyzer for dataflow actors, the compu-

tational units of a dataflow program, that classifies actors based on these

properties. The analysis is performed on a language independent model for

dataflow actors called actor machine.

B.1 INTRODUCTION
Testing and verification are integral parts of software development. Some as-
pects of a program can be verified automatically through static analysis of the
program structure, a notable example being type systems. This paper presents a
classifier for a certain kind of programs, called dataflow programs, based on how
different parts of the program, called actors, communicate. The idea is that the
programmer knows of which classes the actors should be, and this tool statically
checks if that is actually the case.

Copyright © IEEE. Reprinted from Conference Record of The Forty-Seventh Asilomar
Conference on Signals, Systems & Computers, with permission from IEEE.

The classifier is based on an abstract model for actors called actor machines
[], and the classes that are recognized [, ,] are well known and well
studied. The main contributions of this paper in not primarily the classifier tool,
but a way of reasoning about the communication behavior of actor machines.

This paper continues by describing dataflow programs and actor machines
in section B. and B.. The actor classes and their definitions on the actor
machine are presented in section B.. Finally section B. comments on the
tool implementation, section B. on related work, and section B. concludes
this paper.

B.2 DATAFLOW PROGRAMS
A dataflow program is a network of computational units called actors, that com-
municate by sending data packets, tokens, over channels. Actors have input ports
and output ports on which they read and write tokens. Each channel in the net-
work graph connects one output port to one input port, and delivers all tokens
in first-in-first-out order.

Internally, actors have a set of actions that carry out the actual computation
by reading and writing tokens on the ports and updating the internal state of the
actor. The token rate is the number of tokens that an action reads and writes on
the ports. Each action has a fixed token rate, but different actions in the same
actor may have different token rates.

The actor state is defined as the values of its state variables and the tokens on
its input ports. The enabling conditions of an action are the conditions an action
pose on the actor state to be enabled for execution. Two kinds of conditions
exist: a port conditions is a condition on the length of an input sequence, and
a predicate condition is a predicate on the values of the state variables and the
input tokens. The actor execution alternates between testing conditions until
at least one action is enabled, and executing one of the enabled actions.

B.3 ACTOR MACHINE
The actor machine [] is a machine model for dataflow actors that focuses on
minimizing the overhead of action selection. Actor machines are used in []
to reduce the runtime testing of conditions, and [] shows how actor machines
can be composed to eliminate testing of port conditions.

X,1

Y,1

Y,1

x

X,1

y

y

x

actor Merge () X, Y =⇒ Z :

x: action X: [v] =⇒ Z: [v] end

y: action Y: [v] =⇒ Z: [v] end

end

Figure B.1: Controller and Cal source code of a merge actor.

The central piece of the actor machine is the controller that performs the
action selection. The controller is an automaton with a finite set of controller
states, each of which is associated with a set of possible instructions that can be
performed in that state. The controller is executed by performing one of the
instructions in the current state, starting in the initial state. Possible instructions
are test, exec and wait.

test Tests a condition and depending on the result proceeds to one of two
specified controller states.

exec Executes an action and proceeds to a specified controller state.

wait Does nothing but proceeds to a specified controller state.

Figure B. shows a visual representation of a controller and the source code
of a merge actor. (We use the language Cal [] to describe actors in this pa-
per, because the differences between most classes of actors presented here can
be described in Cal.) The circles are the controller states, the diamonds are
test-instructions, the rectangles are exec-instructions, and the rings are wait-

instructions. The dashed edges are followed when the test result is false, and
the solid edges are followed otherwise.

B.4 ACTOR CLASSES AND CLASSIFIER
Since it is the actions that carry out the communication of the actor, different
sequences of actions result in different communication patterns. To reason
about which actions can be selected in an actor state, we look at the possible
steps that a controller can take. If a predicate condition is tested and later
tested again without any action execution in between, the only possible step on
the second test is to follow the same branch as in the first test. However, port
conditions may first be false and later true because tokens may arrive at any
time.

Definition : A decision path is a sequence of possible steps in the controller
that ends with an exec and contains only one exec.

At the end of a decision path, knowledge about the state of the actor has been
acquired through the tests on the path, but not all test results are interesting in
this regard. A decision path may test the same condition several times, which
is what happens when waiting for a token to arrive, and then, only the last test
gives adequate information about the actor state where the action is selected.

Definition : The path knowledge of a decision path is a mapping from condi-
tions that are tested in the path to the result of the latest test of that condition
in the path.

With these two definitions, decision path and path knowledge, we will go
through a set of well studied classes of actors and define a classifier based on
the structure of an actor machine, starting with deterministic actors.

B.4.1 Deterministic actors

Definition : An actor is deterministic if there exists no actor state where more
than one action is enabled.

A non-deterministic actor can be hard to test for correctness, because such ac-
tor might behave differently in the testbed and on the target platform. A de-
terministic actor, however, can be tested by putting tokens on the input ports
and running the actor to verify the output it produces. Merge in Figure B. is

non-deterministic because when there is input on both X and Y, actions x and
y are both enabled.

Definition : An actor machine is classified as deterministic if for all pairs of
decision paths starting in the same state and ending with exec-instructions for
different actions, there exist a condition that is tested in both paths for which
the path knowledge of that condition differ on the two paths.

As an example, the controller in Figure B. has two decision paths that start in
the initial state and end with actions x and y respectively that contain only one
test each. The actor machine is not classified as deterministic, because the tests
on the two paths are for different conditions.

Theorem : A non-deterministic actor machine can not be classified as deter-
ministic.

Proof. As a consequence of Definition , an actor that is non-deterministic has
a state where more than one action is enabled. If there exists an actor state where
an actor machine can select two different actions, the controller must contain
a state with two decision paths to different actions that both are possible in
that actor state. If two decision paths are possible in the same actor state, all
conditions that are common for both paths will have the same result because the
conditions are predicates on the actor state. An actor machine with two such
paths can according to Definition not be classified as deterministic. Hence, a
non-deterministic actor machine can not be classified as deterministic.

Deterministic actors as described above can produce different results if the in-
put tokens arrive in a different order, even though the tokens on each port
individually arrive in the same order. The actors in the next section, however,
are not sensitive to timing.

B.4.2 Prefix monotonic actors

Prefix monotonic actors form an important subclass of the deterministic actors.
Kahn shows in [] that a network of prefix monotonic actors is also prefix-
monotonic. This property makes it easier to verify correctness not only of a
single actor, but a whole network of actors.

Prefix, denoted ⊑, is a partial order. On sequences s and s ′, prefix is defined
as s ⊑ s ′ if and only if the initial part of s ′ is s . On n-tuples of sequences

X,1

p(x)

f

t

actor Split (p) X =⇒ T, F:

t: action [x] =⇒ T: [x] guard p(x) end

f: action [x] =⇒ F: [x] end

priority t > f; end

end

Figure B.2: Controller and Cal source code of a split actor.

s = (s1, . . . , sn) and s′ = (s ′1, . . . , s ′n), prefix is defined as s ⊑ s′ if and only if
∀i (si ⊑ s ′i). A function g is prefix monotonic if x ⊑ x ′ implies g (x) ⊑ g (x ′).

Definition : A prefix monotonic actor is an actor that can be described as a
prefix monotonic function from k -tuples of sequences to n-tuples of sequences,
where the k -tuples are the input sequences and the n-tuples are the output
sequences.

Definition : An actor machine is classified as prefix-monotonic if it is classi-
fied as deterministic and the path knowledge for all tested port conditions in
all decision paths is true.

Figure B. shows the controller of an actor machine that is classified as prefix-
monotonic. The actor has one port condition and one predicate condition, and
in all decision paths where the port condition is tested, the knowledge of the
port condition is true.

Theorem : An actor machine that is classified as prefix monotonic is a prefix
monotonic actor.

Proof. In a deterministic actor machine, all pairs of decision paths from a con-
troller state to different actions have a condition for which the path knowledge
differ. If it is classified as prefix monotonic, the condition on which the path

knowledge differ can not be a port condition. As a consequence, when one
action is enabled, adding more input can not make another action enabled.
Therefore, independent of when the tokens arrive on the input ports, as long
as they arrive in the same order, the output of such actor must be the same.
In other words, given input sequences x to an actor machine classified as pre-
fix monotonic, let its output be y, for all prefixes of x the output of the actor
machine will be prefixes of y.

B.4.3 Kahn Processes

In [], Kahn describes a process language with a read operation that blocks on
one port until there is a token and with a write operation that is non-blocking.
The language describes prefix-monotonic actors where every token requested
from an input port is also consumed.

Definition : An actor machine is classified as a Kahn process if it is classified
as prefix-monotonic, and for all decision paths, the action it leads to consumes
all tokens that have been tested by the port conditions on the path.

B.4.4 Cyclo-Static Data Flow

In a cyclo-static data flow actor, the token rates of successive actions appear in
cyclic patterns. Engels et al. show in [], as an extension to the class described
in the next section (B..), that a network of such actors can be efficiently
implemented with a static schedule. A fixed bound on the sizes of the buffers
in the communication channels can also be determined when the schedule is
static.

In this paper, for classifying an actor as cyclo-static, we require the actions
to appear in cycles rather than just the token rates of the actions. This restric-
tion makes it possible to statically schedule not only the actors, but even the
individual actions of the actors. We also allow any number of initial actions
before the cycle starts.

Definition : An actor machine is classified as cyclo-static if it is a Kahn process
and it does not have any predicate conditions and the controller has a cycle
involving at least one exec-node.

Theorem : Actor machines classified as cyclo-static are cyclo-static.

Proof. In a Kahn process, different actions can not be selected based on the

X,1

Y,1

Y,1

X,1

m

actor SynchMerge () X, Y =⇒ Z :

m: action [x], [y] =⇒ [x, y] end

end

Figure B.3: Controller and Cal source code of a synchronous merge actor.

length of the input sequences. By further restricting the action selection to
not be based on predicate conditions, there can be only one successor action of
every action. The initial action together with the successor of each action form
a chain. If this chain is cyclic, then the actor is cyclo-static.

B.4.5 Synchronous Data Flow

Lee and Messerschmitt introduce the class of synchronous data flow actors in
[] and show that a network of such actors can be scheduled statically and with
fixed buffer sizes. A synchronous data flow actor is an actor where all actions
have the same token rate. Figure B. shows the controller of a synchronous actor
machine of a merge actor. Note that the order in which the two port conditions
are tested is non-deterministic, but the actor itself is still deterministic.

Definition : An actor machine is a synchronous data flow actor if it is classified
as cylco-static and all actions have the same token rate.

This definition follows directly from the definition of cyclo-static actors and
synchronous actors.

B.5 IMPLEMENTATION
We have implemented a classifier tool based on the definitions in the previous
section. The tool uses the front-end and core data structures of a compiler for
dataflow programs with actor machines as intermediate representation. When
a front-end for a new language is added to the compiler, the classifier will im-
mediately be available for this language as well.

Some class definitions contain wordings like “all decision paths” and “all
pairs of decision paths”. Enumerating all decision paths can be impossible,
because there can be infinitely many decision paths in a controller. In fact, most
controllers we have seen contains a test-wait-loop, which generates infinitely
many decision paths. However, in all definitions where all decision paths might
be needed, the only thing that is required is the path knowledge of those paths.
Since the number of conditions in an actor machine is finite, the number of
variants of the path knowledge is also finite.

B.6 RELATED WORK
Zebelein et al. [] describe an abstract actor model for SystemC applications
on which they perform actor classification. Their classifier tries to find syn-
chronous data flow actors [] and cyclo-static data flow actors [] to enable
static scheduling of those actors in an application.

Wipliez and Raulet [] present a classifier for actors written in RVC-CAL
that tries to recognize the classes from [] as well as parameterized synchronous
data flow actors []. Their classifier use abstract interpretation to narrow down
the class of an actor.

The Model Compiler in the ACTORS-project [] also includes a classifier
for actors written in Cal. This compiler recognizes three classes: static, dynamic
and timing-dependent, where static corresponds to the class of cyclo-static actors,
dynamic to prefix-monotonic actors, and timing-dependent to the actors that are
not prefix-monotonic.

B.7 CONCLUSION
In this paper we develop a way to reason about the communication behavior
of actor machines. This is applied when classifying actor machines into classes
known from prior art, such as prefix monotonic actors and synchronous data
flow. The classifier is implemented in a tool that uses the front-end and data
structures of a compiler with actor machines as internal representation.

Paper C

Software Code Generation for
Dynamic Dataflow Programs

Gustav Cedersjö and Jörn W. Janneck
Department of Computer Science, Lund University

ABSTRACT In this paper we address the problem of generating efficient soft-

ware implementations for a large class of dataflow programs that is character-

ized by highly data-dependent behavior and which is therefore in general not

amenable to compile-time scheduling. Previous work on implementing data-

flow programs has emphasized classes of stream processing algorithms that

exhibit sufficiently regular behavior to permit extensive compile-time analysis

and scheduling, however many real-world stream programs, do not fall into

these classes and exhibit behavior that can, for example, depend on the val-

ues and even the timing of their input data. Based on an abstract machine

model, we partition the problem of implementing such programs in software

into three parts, viz. reduction, composition, and code emission, and present

solutions for each of them. Using the reference code of an MPEG decoder,

we evaluate the resulting code quality and compare it to the state of the art

compilers for the same class of stream programs, with favorable results.

Copyright © ACM. Reprinted from Proceedings of the th International Workshop on
Software and Compilers for Embedded Systems, with permission from ACM.

invpred

addressing

DCSplit IS

IAP

IQ

idct2d

texture_Y

texture_U

texture_V

motion_Y

motion_U

motion_V

parserserialize

mergeIN OUT

Figure C.1: Structural view of a dataflow program representing an MPEG-4 Simple Profile

decoder. Boxes with solid border are actors, and boxes with dashed border are networks

of actors. To get a better overview, some connections have been collapsed to a single arc.

Source code: https://github.com/orcc/orc−apps

C.1 INTRODUCTION
The end of clock scaling in modern computers is leading to a rapid increase in
and ubiquity of parallel computing platforms. At the same time, many of the
most computationally demanding application areas are dominated by the pro-
cessing of streams of data, e.g. digital signal processing, audio and video cod-
ing, cryptography, network and packet processing, image analysis, computer
graphics. The confluence of these developments has created renewed interest
in dataflow programming models, resulting, for instance, in the adoption of a
dataflow model (and an associated dataflow programming language) by MPEG
and ISO as the foundation for standardizing video codecs [] and for D
graphics coding [].

We will use the term dataflow program for a network of computational ker-
nels called actors such as the one depicted in Figure C., representing a sim-
ple video decoder. Each of the boxes with solid border represents an actor.
We also call these actors atomic actors to distinguish them from the results we

get when we compose them hierarchically into larger units—for instance, the
boxes with dashed border in the figure are assemblies of atomic actors (compos-
ite actors) that in turn are composed to create the complete decoder. Actors
have input and output ports through which they receive and send packets of
data, called tokens. The connections between actor ports are buffered, lossless,
order-preserving channels. We conceptualize the buffer capacity of each of these
channels initially as infinite, though of course any actual implementation will
need to impose some kind of bound on their size. Exchanging tokens along
these channels is the only way for actors to communicate—any internal state
an actor may maintain is kept distinct and invisible to all other actors.

The kind of dataflow program we will be concerned with here has the addi-
tional property that each actor in it performs its computation in a sequence of
discrete, atomic steps, also called firings. This variant of dataflow is also referred
to as dataflow with firing [] in order to differentiate it from models such as
Kahn processes [], where each computational kernel is a continuously execut-
ing process without any partitioning of its execution into steps. In each of its
steps, an actor may () consume input tokens, () produce output tokens, and
() modify its internal state.

In general, the steps of different actors may be executed independently of
each other, subject only to the availability of input. However, if several actors
are to be executed on a single processor, their steps need to be interleaved, i.e.
scheduled. For classes of actors whose behavior bears little or no dependency
on the values of the tokens being processed, and whose token rates (i.e. the
number of tokens produced and consumed at each port on each step) are very
predictable, scheduling can happen largely or even entirely at compile-time,
removing significant run-time overhead. However, in many practical applica-
tions, actor behavior does vary depending on the input data, and token rates
cannot be predicted statically. For instance, in our example in Figure C., only
ten out of the atomic actors could be identified as amenable to compile time
scheduling (using the actor classifier in []).

In this paper, we investigate the problem of software code generation for
a very general class of dataflow programs, which permits behavior that does
depend on internal state as well as input data, and is not even required to be
deterministic. Starting from a representation of actors as actor machines [], we
structure the problem of generating an efficient software implementation into
three parts: () a process called reduction that yields a sequential algorithm for
executing an actor, () a process called composition which computes an actor
that implements a network of actors, and finally () code generation, which

emits code (in this case, a C program) that can be compiled to the target. We
take an initial stab at each of these problems, and evaluate the resulting code
quality using the decoder in Figure C..

This paper is structured as follows. After reviewing some related work in the
next section, we summarize the basic machine model in section C.. Then we
first discuss a high-level notion of code generation related to a transformation of
those machines in section C.. In section C. we apply the same model to the
problem of composing a very general class of dataflow actors. In section C.,
we describe a compiler based on that machine model, and in section C. we
evaluate the effects of composition. In section C. we discuss the results and
possible directions for future work.

C.2 RELATED WORK
One of the earliest attempts to statically schedule dataflow programs focused
on a class called Synchronous Data Flow, or SDF []. SDF actors are limited
to constant token rates and a program consisting only of these actors permits
extensive analysis, can be shown to execute in bounded memory, and can be
scheduled entirely at compile-time. Cyclo-static Data Flow (CSDF) [] retains
those benefits while slightly extending expressiveness by allowing actors whose
token rates vary periodically in fixed cycles. Interestingly, neither class is strictly
speaking closed under composition, i.e. composing a network of SDF actors
will either lead to an actor that is itself not SDF, or that behaves differently from
the original program.

Since then, a variety of models (amounting to larger classes of dataflow
programs) have been devised with the goal of maintaining the benefits of static
analysis and scheduling while increasing the expressiveness. These include Para-
metric SDF (PSDF) [], Scenario-Aware Data-Flow (SADF) [], Variable-
Rate Data-Flow (VRDF) [], Schedulable Parametric Data-Flow (SPDF) [].
We view these efforts as complementary to our work in that they provide con-
crete techniques that could be applied to important subclasses of the dataflow
programs we want to represent. A more extensive discussion of approaches to
dealing with more dynamic dataflow behavior can be found in [].

Other work has aimed at overcoming the composition problem of SDF pro-
grams, such as Cluster Finite State Machines (CFSM) [] (itself not hierarchi-
cally compositional) and Deterministic SDF with Shared FIFOs (DSSF) [],
the latter essentially solving the composition problem for SDF. Our work is fo-
cused on a much more general class of dataflow programs, and for that reason

actor Foo () X =⇒ Y, Z:

A1: action X: [v] =⇒ Y: [v]

guard v ≥ 0

end

A2: action X: [v, w] =⇒ Z: [v + w]

end

priority A1 > A2; end

end

Listing C.1: A simple actor, written in Cal.

we also need to consider issues such as efficiency and overhead that do not ap-
ply to programs that can be completely scheduled at compile time, and which
cannot, in general, be measured without executing the program.

Finally, our work is motivated by the desire to efficiently implement actor
languages such as Cal []. The basic machine model it builds on is described
in [] (and more formally in []), while the translation of Cal into this model
is outlined in []. We will summarize the salient points in the next section.

C.3 ACTORS AND ACTOR MACHINES
The language we use to represent (atomic) actors is Cal []—Listing C. shows
an example. The actor has one input port and two output ports (X and Y, Z,
respectively), and two actions, A1 and A2. A1 consumes one input token and
produces one output token on Y, and it has a guard that specifies that it can
only fire if the value of the input token is not negative. A2 consumes two input
tokens and produces one output token on Z, and since it is priority-ordered
below A1, A2 can only fire when A1 cannot.

The details of the actor language matter little here—the important point
is that part of the specification of the actions in an actor are the conditions
that need to be satisfied for an action to be able to fire, and that there are two
kinds of conditions: input conditions and guards. Input conditions in Cal are
denoted by the input clauses of actions—e.g., X: [v, w] states there be two tokens
available on the input port X. Guards are boolean expressions that may depend

on input tokens and actor state. If all input conditions and guards of an action
are satisfied we say that it is enabled if no higher-priority action is enabled.

The execution of an actor can then be seen as alternating between two
phases: action selection, i.e. the determination of an enabled action (there might
be more than one, in which case any one of them may be chosen), involving
the evaluation of the conditions, i.e. input conditions and guards), and action
execution of an enabled action.

We shall codify this process of selecting actions by determining truth values
for the conditions and then executing an enabled action in an actor machine.
An actor machine implements an actor description, and its core is the controller,
a finite state automaton with three kinds of transitions (instructions) between its
states. The test(c ,σ1,σ2) instruction tests a condition c (either input condition
or guard) and transitions to state σ1 if the condition was satisfied, and to σ2
otherwise. The exec(a,σ) instruction executes an action a and then transitions
to state σ . Finally, the wait(σ) instruction simply transitions to state σ . The
purpose of the wait instruction is to indicate that some condition (e.g. the
availability of tokens) must be changed to select an action.

Intuitively, each controller state represents the current knowledge of the
actor machine about its environment, as ascertained by the testing of condi-
tions. For example, if we enumerate the conditions of Foo as c1 : (Foo.X,1),
c2 : (Foo.X,2) and c3 : 〈v >= 0 : v = X[0]〉, denoting, respectively, that there
be one input token at X, two input tokens at X, and that v >= 0 be true for v
being the first token on X, then each controller state represents a three-tuple on
the set {X,0,1}, denoting that the corresponding condition is either unknown,
or known to be false or true, respectively. For instance, the triple 1X1 would
represent the fact that we know that there is one input token, we do not know
whether there are two input tokens, and we know the guard of A1 to be satisfied.

Note that conditions are not always unrelated. For example, c2 implies c1,
since the presence of two tokens implies the presence of one on the same input
port. Also, since c3 requires an input token to be testable, it is said to depend
on c1, i.e. it can only be tested when we know c1 to be satisfied.

Figure C. shows a graphical depiction of the controller for Foo. The ellipses
represent controller states, the diamonds are test instructions (true branch
solid, false branch dashed), the boxes exec instructions, and the rings are waits.
The truth of (Foo.X,2) implies that of (Foo.X,1), so when we find condition
c2 true in state XXX (the initial state, which represents minimal information
about the actor’s environment) we transition to 11X. Conversely, when we find
condition c1 to be false in XXX, we transition to 00X.

Foo.A1 101

Foo.A1 1X1

c3 1X0 c2

100

c1 1XX c2 10X c3

XXX 00X Foo.A1 111

c2 11X c3

X0X c1 110

Foo.A2

Figure C.2: Basic actor machine for the Foo actor in listing C.1.

Notice that in state 00X nothing can be done but wait for more input to-
kens, and re-test the input conditions. That is the purpose of the wait in-
struction, which essentially throws away information about the environment
in order to re-test input conditions that have turned out to be false, but may
have become true in the meantime.

In state 111 (two tokens are available in the input port, and the guard is
true) we can fire A1. However, in that case we do not, as in the case of the other
exec instructions, go back to state XXX, but to state 1XX. The reason is that
we know that at least two input tokens are available before the firing, but as we
consume only one of them, at least one will remain, so (Foo.X,1) will still be
true.

An actor machine can be seen as an implementation of an actor in a language
like Cal, one of possibly many ways of representing that actor’s behavior. The

Foo.A2 110

Foo.A1 1X1

XXX c1 1XX c3 1X0 c2

00X 100

Figure C.3: A reduction of the actor machine in Figure C.2.

machine in Figure C. is a realization of a controller for Foo, and we will now
look at a few alternative controllers that we derive from this fairly general form.

C.4 REDUCTION AND CODE GENERATION
The controller in Figure C. might appear unnecessarily complex, since it per-
mits various ways in which to determine the next action to fire by testing the
three conditions on which this choice depends. In particular, it contains several
states that allow more than one instruction, for instance the initial state XXX.
We call such a machine a multi-instruction actor machine (MIAM), it is used to
represent a more general form of the controller. By contrast, a single-instruction
actor machine (SIAM) allows at most one instruction in each controller state.
SIAMs are an important subclass of actor machines because they directly cor-
respond to a sequential implementation of an actor. In fact, in order to im-
plement an actor on a sequential processor, we in essence need to construct a
SIAM implementing it, which is the first step toward code generation.

The process of constructing a single-instruction machine from a multi-
instruction machine, which we call reduction, is very straightforward in principle—
in any state with more than one instruction, any one of them may be chosen,
so we can arbitrarily pick one among them, remove all others, and also delete
all states and their associated instructions which can no longer be reached. For
instance, the machine in Figure C. results by testing condition c1 in state XXX
and then condition c3 in state 1XX.

Reduction not only makes the controller sequential, it can also significantly

Table C.1: Number of states in the controllers for actors in MPEG4 SP decoder, for a MIAM

and a SIAM generated from it.

Instance name
Number of states

MIAM SIAM

add 25 22

addressing (U and V) 12 12

addressing (Y) 61 22

blkexp 41 21

DCsplit 3 3

FrameBuff 318 90

IAP 31 18

idct2d 8 5

interpolation 29 16

invpred (U and V) 126 42

invpred (Y) 406 66

IQ 11 8

IS 33 33

Merger420 9 9

mvrecon 75 69

mvseq 596184 524

parseheaders 43981 1232

serialize 14 12

splitter_420_B 54 31

splitter_BTYPE 612 68

splitter_MV 42 42

reduce its size. Table C. shows controller sizes (measured in number of states)
for the MIAM and a SIAM generated from it, for the actors in the MPEG SP
decoder from Figure C.. For instance, note the very large MIAM controller of
the mvseq actor, which corresponds to a controller with many conditions that
can be checked in many different orders, and which reduces by more than three
orders of magnitude into a SIAM.

Since these choices can be made arbitrarily, we could also produce the ma-
chine in Figure C. as a reduction of the one in Figure C., by choosing to
test condition c2 in state XXX. Even though it turns out to be bigger, it is not
necessarily the inferior choice.

Foo.A1 101

Foo.A1 1X1

1XX c3 1X0 c2

100

10X c3

Foo.A1 111

XXX c2 11X c3

X0X c1 110

00X

Foo.A2

Figure C.4: Another reduction of the actor machine in Figure C.2.

The reason is that in generating sequential code we are not only concerned
with the size of the controllers, but also with their speed. A measure for the
speed of a controller is the number of tests it needs to perform in order to select
the actions an actor needs to fire for a given input. For statically schedulable
dataflow programs, that number is zero, since no run-time tests need to be
performed. For more general dataflow programs, however, some conditions
will need to be tested at run time. Reduction can be viewed as a generalization
of static scheduling for programs with data-dependent behavior.

Of course, in general we will need to weight these tests according to the amount of time
required to execute them.

In using this metric, we assume that the actor is deterministic and monotonic, and that
for a given input the actor machine will always execute the same sequence of actions.

1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

·105
0

10

20

30

40

Number of performed tests

N
u
m
b
er

o
f
co

n
tr
o
lle

rs

Figure C.5: Histogram over number of tests performed in parseheaders for 1000 random

reductions for the same video stream.

Different reductions of the same multi-instruction machine can differ sub-
stantially with respect to run-time efficiency, albeit in ways that will, in general,
depend heavily on the input data. Consider, e.g., the behavior of the two reduc-
tions above for (a) a slowly-arriving input stream of mostly positive numbers
and (b) a fast-arriving stream of negative values. (The difference in arrival speed
affecting the probability of the test for two input tokens succeeding right at the
start.)

While it is easy to compute some reduction of a given MIAM, it is in general
not trivial to compute a good one. In order to determine how much the choices
made during reduction matter in terms of execution speed, we have randomly
generated a population of reductions from a version of the parsehead-
ers actor in Figure C., which has the most complex SIAM controllers in the
program. Figure C. depicts the distribution of the number of tests the reduc-
tions performed for a given reference video stream, ranging from , to
,, a difference of over .

In the presence of good reference input data, this approach of randomizing
reductions and picking the best one after profiling could even be considered a
code generation technique, albeit a costly and crude one. Reliable heuristics,
however, that consistently point toward good choices during reduction have so
far proved elusive.

actor Bar () X =⇒ Y:

Do: action X: [v] =⇒ Y: [f(v)]

end

end

Listing C.2: Another very simple actor.

Bar Foo
X Y X

Y

Z

Figure C.6: A composition of two actors.

Bar.Do 1

X c1

0

Figure C.7: The controller of the actor in

Listing C.2.

C.5 COMPOSITION
A typical scenario when implementing streaming applications asks for a pro-
gram consisting of n actors to be mapped to a network of k < n processing
elements, such that several actors will end up sharing the same processing ele-
ment. This means that the instruction sequences that correspond to the execu-
tion of the actor machines on a processing element need to be interleaved, and
one way of doing this is to construct a composite actor machine whose controller
represents the interleaved execution of all the controllers of the component ma-
chines.

To make this more concrete, suppose we want to execute the dataflow pro-
gram in Figure C., which includes our actor Foo from Listing C. and the
actor Bar from Listing C.. The latter has the controller depicted in Figure C.,
with the sole condition c1 : (Bar.X,1).

One way of constructing the composite controller would be to build the
product automaton. This would be tantamount to an arbitrary interleaving of
the individual machines, but we can create much more efficient compositions
that eliminate many of the redundant tests of such an interleaving.

First of all note that our composite controller is in charge of executing all
actions that read to and write from the internal connections (i.e. connections
between two actors that are to be composed), so if we kept track of how many
tokens have been written to and read from each of them, there is no need to
test any input conditions on internal connections. The idea, then, is to make

Foo.A2

Foo.A1 X′110−2

1′00X−0 Bar.Do X′101−1 Bar.Do

X′00X−0 c1 X′10X−1 c4 1′100−1

0′00X−0 X′100−1 c1

0′100−1

Figure C.8: A controller for the composite in Figure C.6.

the number of tokens waiting on the internal connections part of the controller
state. For example, the states of composite controller of the program in Fig-
ure C. would include the knowledge about the one condition of Bar, about
the three conditions of Foo, and in addition they would contain a natural num-
ber denoting the number of tokens in the single internal connection between
those actors. Our initial state, therefore, might be written as X′XXX−0: we
separate the condition of Bar and those of Foo by a ′ symbol for readability, and
the token count follows the dash.

Note, however, that the first two conditions of Foo are input conditions,
dependent only on the number of input tokens available to Foo on X. There-
fore, if we know the connection to not contain any tokens, we also know those
conditions to be false, and thus we can start with initial state X′00X−0 instead.

Starting from this initial state, we can build up the composite controller in
a process called abstract simulation [], whereby we successively elaborate states
by following one (or more) of the instructions that can be executed in them,
leading us either to old states, or new ones. If any of the instructions changes
the number of tokens in any of the internal connections, we keep track of this in
the new states we transition to, including updates to any conditions that might
be affected.

A possible composite controller resulting from this process is shown in Fig-
ure C.. In general there may be many composite controllers, depending on

CCal MIAM SIAMCal MIAM SIAMCal MIAM SIAM

translation reduction code generation

Figure C.9: A basic compiler work flow for translating networks of Cal actors to a C programs

using actor machines as intermediate representation.

which, and how many, instructions we choose in those composite states that
allow more than one to be executed. The resulting composite machine in this
example is a SIAM, because we elaborated every state by following only one
instruction. In this case, the heuristic that decides which instruction to choose
will need to be built directly into the elaboration. Alternatively, composition
could follow several, even all, possible instructions in each state, leading to a
larger controller which, for sequential implementation, will need to be reduced
afterward. The trade-offs involved, as well as the heuristics used during com-
position, are the subject of our current investigations.

C.6 ACTOR MACHINE COMPILER
To evaluate the compilation techniques described in section C. and C., we
built a compiler and a composer for actor machines with a front-end for Cal
and a back-end producing C programs. The basic work flow of the compiler is
depicted in Figure C..

The first step in the compilation is to read a network of Cal actors and trans-
late them to multi-instruction actor machines. The result of this translation is
a network of actor machines that is semantically equivalent to the source net-
work. To simplify the translation, in the compiler, the Cal actors use the same
representation for statements and expressions as the actor machines do. The ac-
tor machines in this network are reduced to single-instruction actor machines,
and since good reduction heuristics are still to be found, we chose to reduce the
controller by simply selecting an arbitrary instruction in each controller state.
The network of actor machines is then passed to the C back-end that generates
a C program for that network.

C.6.1 Code Generator

Given a network of single-instruction actor machines, the code generator gen-
erates a single file C program that executes the actors in a round robin schedule,
letting each actor run until the next wait instruction before switching to the

next actor. The channels that connect the ports of the actors are implemented
with circular buffers of fixed size. For every input connection to the network,
there is a special actor that reads data from a file and writes the content to the
buffer, and output connections are handled similarly. These input and output
actors are scheduled with the same schedule as the other actors in the program.
The input and output files are specified as command line arguments to the pro-
gram.

Apart from the input and output ports that the channels connect, an actor
machine also contains a set of actions, a set of conditions (port conditions and
guards), a set of state variables that are grouped into scopes, and a controller
that performs the action selection. Actions are translated to functions in the C
program, conditions are translated to expressions, state variables become static
variables in C program and for each scope, a function that initializes its variables
is generated.

The actor machine controller, that drives the action selection, is arguably
the part of this compiler that differs the most from other Cal compilers such
as Orcc []. It is implemented with a function where each state in the con-
troller starts with a label after which the code for the instruction is put, and
the transitions between the states are implemented with goto-statements. List-
ing C. shows the controller function for the actor in Listing C.. There are
three kinds of controller instructions: exec, test, and wait. An exec(a,σ)
instruction start with function calls to the initializers of the scopes that need
to be initialized, and continues with a call to the function representing action
a, and a goto-statement to the label of σ . A test(c ,σ1,σ2) is implemented
with an if-statement on the expression representing c where the two branches
are goto-statements to the labels of σ1 and σ2. If c is a guard that needs to
initialize a scope, then a call to the appropriate initializer is placed before the
if-statement. On the wait(σ) instruction, the execution should continue with
another actor. This is implemented by saving σ to a variable and returning from
the function, letting the scheduler switch to another actor. In the beginning of
the controller function, there is a switch-statement on that variable where each
case has a goto-statement to the appropriate label.

C.6.2 Compiler Evaluation

In order to quantify the quality of the resulting code, we compiled the reference
implementation of the MPEG- Part Simple Profile decoder, written in RVC-
CAL, with the actor machine compiler and with the Open RVC-CAL Compiler
(Orcc) []. Figure C. shows a structural view of this video decoder that

static _Bool actor_0(void) {

_Bool progress = false;

static int state = −1;
switch (state) {

case −1: break;
case 0: goto S0;

case 2: goto S2;

}

S0: // test(tokens(X,1), S2, S1)

if (tokens_b0 ≥ 1) goto S2;

else goto S1;

S1: // wait(S0)

state = 0;

return progress;

S2: // test(space(Y,1), S4, S3)

if (tokens_b1 + 1 ≤ size_b1) goto S4;

else goto S3;

S3: // wait(S2)

state = 2;

return progress;

S4: // exec(Do, S0)

init_scope_0_0();

action_0_0();

progress = true;

goto S0;

}

Listing C.3: C function representing the controller of the actor in Listing C.2.

Table C.2: Execution time of the decoder in Figure C.1, compiled to Cwith two Cal compilers,

and from C using Clang with four different optimization levels, decoding a 300 frames QCIF

video.

Opt. flag Actor Machine Compiler Open RVC-CAL Compiler

-O0 1599 ms 2841 ms

-O1 923 ms 1158 ms

-O2 623 ms 682 ms

-O3 626 ms 667 ms

consists of actors and approximately lines of code. We compared the
two generated programs by their average execution time for decoding a given
video sequence. Orcc is currently the best-maintained compiler tool chain for
Cal (more precisely, for RVC-CAL), and is generating the most efficient code
for general dynamic dataflow programs. In this comparison, no actor machines
were composed. The actor machines were reduced to single-instruction actor
machines by arbitrarily choosing one of the instructions in each controller state.
The two C programs generated by the two Cal compilers were compiled using
Clang version .. with the optimization levels -O0 to -O3. These programs
were then executed on a computer with a GHz Intel Core i processor using
the UNIX time command to measure the time. In this comparison, we look at
the reported user time to compare the CPU time spent in the program.

The actor machine version was slightly faster than the Orcc version on the
highest optimization level for this example. Table C. shows the time to decode
a frame QCIF video with the programs generated by the two compilers for
different optimization levels, where the times are averages over executions.
These numbers suggest that the actor machine is in its basic form more efficient
than the Orcc representation, but also that a good optimizer can compensate
for this inefficiency.

C.7 ACTOR MACHINE COMPOSER
We implemented an actor machine composer for the actor machine compiler
described in the previous section. Figure C. shows the compilation flow of
a dataflow program where the composition step is included. After the multi-
instruction actor machines have been reduced to single-instruction actor ma-
chines, the network of actors is composed to a single actor, and the result of the

MIAM SIAM CCal MIAM SIAMCal MIAM SIAMCal MIAM SIAM

translation reduction composition reduction code generation

Figure C.10: Compiler work flow for compiling a network of Cal actors to a C program,

where actors are composed using actor machines.

composition that is a multi-instruction actor machine is reduced to a single-
instruction actor machine using the same method as mentioned earlier.

C.7.1 Composition Evaluation

To see how composition affects performance, we isolated a few pairs of directly
connected actors from the rest of the MPEG- decoder, and for each pair we
compared the execution times with and without composition. The input stim-
ulus to these pairs of actors was the same as the input they got when decoding
the video stream in the previous section.

The pairs of actors we looked at are runnable with bounded buffer sizes.
For the composed version of each pair, we used the smallest possible buffer
sizes. Buffer minimization was done manually for these examples. For the run-
time scheduled versions, minimizing buffer sizes may affect the performance
negatively because it introduces more tests at run time in the following way. If
an actor is scheduled to run as long as it makes progress, it will stop on a wait
instruction, usually after a failing test. The next time the actor is scheduled,
the condition will be tested again to see if its truth value has changed. By using
larger buffers, the port conditions will be true for a longer time, the actors can
run with fewer context switches, and the number of reevaluated conditions is
reduced. Because of this effect, we ran the run-time scheduled versions not only
with minimal buffers, but also with the buffer sizes multiplied by , , ,
and .

To measure the difference between the run-time scheduled and the com-
posed versions, we used the actor machine compiler in both cases and compiled
the generated C programs with Clang on optimization levels -O0 to -O3. To do
the actual measurement, we added timers to the generated code that measures
the time spent in the actors, not including the special file reading and writing
actors.

IQ

idct2d

[0,63]
[1,0]
[1,0]

[1,63]

[64]
[1]

[64]

Figure C.11: Composition example A. The input and output ports are annotated with the

cyclic token rates of the actor.

Table C.3: Execution times of example A, composed and run-time scheduled with different

buffer sizes, compiled on different optimization levels. Measurements are normalized against

the scheduled -O0 version with minimal buffers (36.4 ms).

Opt. flag Composed
Scheduled, buffer size factor

1 2 4 8 16 32

-O0 0.90 1.00 0.97 0.92 0.91 0.94 0.93

-O1 0.36 0.47 0.43 0.40 0.38 0.38 0.38

-O2 0.17 0.28 0.24 0.21 0.19 0.19 0.18

-O3 0.17 0.28 0.24 0.21 0.19 0.19 0.18

Example A: Cyclo-Static Data Flow. The first pair of actors we composed and
evaluated is the cyclo-static data flow network in Figure C. consisting of the
actors IQ and idct2d from the texture part of the MPEG- decoder in Figure C..
The IQ actor has a cyclic token consumption and production pattern — first it
consumes a token on two input ports each and produces one token on the
output port, then it consumes tokens on the third input port and produces
 tokens on the output port. The idct2d actor always consumes one token on
one port, tokens on the port connected to the IQ actor, and produces
tokens on the output port. Creating a static schedule for this kind of dataflow
programs has been done before [], but in this paper we show a new way of
building such schedule by composing actor machines.

Table C. shows the execution time for the composed and the scheduled
versions of this network, compiled with different optimization levels. For easier
comparison, the times in the table are normalized against the scheduled version
with minimal buffers and without optimizations. One thing to note about the

addressing

invpred

Figure C.12: Composition example B.

Table C.4: Execution times of example B, composed and run-time scheduled with different

buffer sizes, compiled on different optimization levels. Measurements are normalized against

the scheduled -O0 version with minimal buffers (4.1 ms).

Opt. flag Composed
Scheduled, buffer size factor

1 2 4 8 16 32

-O0 0.74 1.00 0.90 0.74 0.70 0.66 0.65

-O1 0.49 0.74 0.61 0.52 0.47 0.44 0.43

-O2 0.27 0.54 0.41 0.33 0.29 0.26 0.24

-O3 0.26 0.55 0.41 0.33 0.28 0.26 0.24

results is that doubling the buffer sizes increases the performance. We believe
this is due to fewer conditions being retested if the same actor runs for a longer
time before switching. Note also that the composed version is faster than the
scheduled one, even when the buffer sizes of the scheduled network are times
larger.

Example B: Dynamic program. The second example is a pair of actors where
the actions can not be scheduled statically, because the sequence of firings de-
pends on the values of the input tokens. Figure C. shows a structural view of
this example, which is part of the texture network in the MPEG- decoder
in Figure C.. This example is runnable with the three buffers connecting
addressing and invpred having space for only a single token each.

Table C. shows the execution times for the different versions on different
optimization levels. For easier comparison, the times are normalized against the

An exception to this appears to be the lowest optimization level where we observe a slight
slowdown for larger buffers. As we use a general-purpose CPU for our experiments, we might
be observing cache effects here, but more experiments would be required to isolate the cause.

run-time scheduled version with optimization level -O0 and minimal buffers
between the two actors. This example also shows a speedup when using com-
position instead of run-time scheduling. On the high optimization levels, this
speedup is the same as for the run-time scheduled with times larger buffers.
The scheduled version even performs better for very large buffers. This, too,
might be attributable to the higher locality of the use of data, which would
again suggest an effect of the processor cache.

C.8 CONCLUSION
In this paper we have structured the problem of software code generation for
dynamic dataflow programs into reduction, composition, and code emission,
based on the actor machine model. We implemented some basic solutions for
each of those stages, and evaluated them quantitatively with respect to the speed
of the generated code. Our basic code generation improves on the reference
(by Orcc) even with randomly chosen reduction and no composition. Com-
position, again without any heuristic to guide it toward better results, further
improves on this by between and percent for the same buffer size, even
though uncomposed (scheduled) actor networks can “catch up” if given much
larger buffers. As embedded targets are common for many typical applications,
we need to gather more data for these platforms, and also for other applications
than video coding.

These results are most encouraging, and we believe there is still potential
for improvements based on more sophisticated approaches to reduction, com-
position, and code emission. This opens large areas of investigation that we
have so far only begun to explore. Good solutions to the problems will be en-
abling techniques for effectively and efficiently implementing general dataflow
programs. As we have shown, different reductions can vary considerably with
respect to their run-time efficiency, so one area of future work will be robust
heuristics that help us produce better reductions. These might require knowl-
edge, such as in the form of statistics, about the nature of the input streams.

Composition of realistic dataflow programs will always have to deal with the
possibility of combinatorial explosion of the controller state space. In practice,
it will often do this by trading off controller size against run-time performance
(i.e. more tests). The challenge is to identify good trade-offs, and help designers
navigate the huge design space resulting from the many ways in which actors
may be composed. The idea of extending the controller state to include other

information about the program could be expanded by the use of abstract inter-
pretation, which would allow us to track not only token counts in the controller
state, but also maintain information about the values of tokens. This, in turn,
could be used to eliminate the testing for some of the guards.

Finally, actor machines admit a variety of styles for generating code, of
which we have only begun to explore one. In addition to run time, code size
(which we did not discuss in this paper) can be important especially for embed-
ded targets, and we expect different code generation techniques to vary widely
in both speed and code size, likely leading to another dimension of trade-offs.

ACKNOWLEDGMENT
This work has been supported by the strategic research area ELLIIT.

Paper D

Finding Fast Action Selectors for
Dataflow Actors
Gustav Cedersjö, Jörn W. Janneck and Jonas Skeppstedt
Department of Computer Science, Lund University

ABSTRACT The parallel structure of dataflow programs and their support for

processing streams of data make dataflow programming an interesting tool

for doing stream processing on parallel processing architectures. The compu-

tational kernels, the actors, of a dataflow program communicate with other

actors via FIFO channels. The actors in the dataflow model used in this paper

may perform different actions depending on the state of the actor and on the

data that has been sent to the actor that is present on its ingoing channels.

For this kind of dataflow programs, decisions on what to do in an actor

in a given state has to be made at runtime in a process called action selection.

Each action is associated with a set of conditions on the state and the input

channels. All conditions must be fulfilled for the action to be selected, and

the task of the action selector is to test different conditions to select an action.

This paper builds upon previous work on the actor machine—a machine

model for dataflow actors where the action selection is central. We present

two heuristics that based on profiling data creates fast action selectors using

the actor machine. The heuristics are implemented in the Tÿcho Dataflow

Compiler and are evaluated using a video decoder written in Cal.

Copyright © IEEE. Reprinted from Conference Record of The Forty-Eighth Asilomar
Conference on Signals, Systems & Computers, with permission from IEEE.

D.1 INTRODUCTION
Recent shift towards more parallel computing platforms and the popularization
of stream applications such as signal processing, video encoding and cryptogra-
phy has renewed the interest in dataflow programming. Dataflow programs are
graph structured, where the nodes are computational kernels, called actors, and
the edges are unidirectional channels through which the actors communicate.
There are several popular tools and programming languages for different vari-
ants of this general model, including Simulink from MathWorks, LabVIEW
and G from National Instruments, Cal [] and its dialect RVC-CAL [] that
is used in video coding and is standardized by ISO/IEC, and Esterel [] that
is used in safety critical control systems.

Dataflow programs are often classified by properties that make them amend-
able for some efficient implementation techniques. Synchronous dataflow []
and cyclo-static dataflow [] are examples of classes that enable efficient schedul-
ing of the actors at compile time. The dataflow programs in this paper are
written in RVC-CAL, and contains actors from a broad class of dataflow where
many of the efficient implementations techniques for the more restricted classes
can not be applied. Throughout the rest of the paper we use the name Cal to
mean both Cal and its dialect RVC-CAL.

Listing D. shows a simple dataflow actor written in Cal. It has three ports
to which channels are to be connected—one input port X and two output ports
Y and Z. The actor defines two actions A1 and A2. If at least one token on port
X is available and its value is positive, then action A1 can be executed. This actor
also specifies a priority between the actions, meaning actions of lower priority
can only be executed when the higher prioritized actions cannot. The effect
of the priority in this example is that action A2 can only be executed if two or
more tokens are available on X and the value of the first token is negative.

Software implementations of this kind of actor usually alternates between
action selection and action execution where the action selection is done by testing
the conditions of the actions until an action is found for which all conditions are
fulfilled. The order in which these conditions are tested can affect the execution
time of the actor. Traditionally, software implementations of Cal actors have
been testing the condition of the actions in action priority order, in example Foo

starting with action A1 by testing if there is a token on port X, and in that case
test if the value is positive, and if any of those two conditions are not fulfilled
continue with action A2 by testing if there are two tokens on port X.

A weakness with this approach is that it does not remember what is has

actor Foo () X =⇒ Y, Z:

A1: action X: [v] =⇒ Y: [v]

guard v ≥ 0

end

A2: action X: [v, w] =⇒ Z: [v + w]

end

priority A1 > A2; end

end

Listing D.1: A simple actor, written in Cal.

tested. Assuming the input port is empty, this action selector will first test if
there is one token (for action A1), and then immediately test if there are two
tokens (for action A2) which can never be true. Also, if the input is a dense
stream of mostly negative values, it might be more efficient to start by testing
if there are two tokens available, and then test if the value of the first token is
positive.

In this paper we develop heuristics, based on execution statistics, to find
efficient action selectors for the actors of a video decoder. The heuristics are
described on the actor machine—an abstract machine for dataflow actors—and
are implemented in the Tÿcho Dataflow Compiler. They are evaluated by the
number of tested conditions, and the number of clock cycles on a Power pro-
cessor.

The paper continues with related work in section D. and D., and then
describes our work in section D., D. and D., and finally concludes with
section D..

D.2 RELATED WORK
To our knowledge, the most used compiler for RVC-CAL is the Open RVC-
CAL Compiler (Orcc) []. This is also the compiler with the most complete
support for RVC-CAL. The C and C++ code generators for this compiler use
the traditional approach to action selection, briefly described in section D..

Apart from the action priority, mentioned earlier, Cal actors can also define
a schedule that restricts when actions can be selected. The schedule is described
as a finite state machine, where each transition is associated with a set of actions
that can be selected using that transition. The C and C++ backends of Orcc
takes care of both the schedule and the priorities at compile time. The schedule
transitions are implemented by unconditional branches, and the priorities are
handles by testing the actions in an order that satisfies the action priorities.

The problem of testing conditions whose value can be inferred from previ-
ous tests is solved by generating code that makes it possible for an optimizing
compiler to remove redundant tests in many cases.

One difference to the actor machine that is relevant in this paper is that the
actor machine can reason about the order of tests in ways that are not possible
here, where conditions are more tightly associated with specific actions.

The profiling technique and design flow used in this paper is inspired by
the work of Casale Brunet et al. [] where a high-level platform-independent
profiled simulation is used to derive a causation trace of the execution. The
causation trace is used to guide mapping, scheduling and buffer sizing when
compiling the program.

D.3 ACTOR MACHINE
This paper builds upon previous work on the actor machine, most notably
on [], where the traditional approach to action selection, used for example
by Orcc, is compared to action selectors based on the actor machine.

The actor machine [] is an abstract machine for dataflow actors, that can
represent a broad class of dataflow actors, even broader than that of Cal. The
main focus of the actor machine is on the action selection process which is
represented by a controller. One controller can represent several possible action
selectors, and can be reduced to a single action selector using a simple selection
process described in section D...

D.3.1 Controller

The controller is a finite state machine where the state represents knowledge
about the conditions. A condition is either known to be true (1), known to be
false (0) or unknown (_). Example Foo in Listing D. contains three conditions:

Actor machines can represent actors with actions that require more tokens than they con-
sume, which is not possible in Cal but is possible in for example computation graphs.

• c1 = tokens(X) ≥ 1, the availability of one token on input port X,

• c2 = peek(X,1) ≥ 0, the value of the first token on port X being positive,
and

• c3 = tokens(X) ≥ 2, the availability of two tokens on input port X.

The state of the controller for this actor can be represented by a -tuple of
knowledge (c1, c2, c3), where for example (1,0,_)means that the first condition
is true, the second is false and the third is unknown. This representation of
knowledge enables the controller to avoid unnecessary tests.

There are three kinds of transitions between controller states: test, exec
and wait. The test transitions test a condition and proceed to a state that
“knows” about result of the test. The exec transitions execute an action and
proceed to a state where knowledge about conditions that might have changed
have been removed. If the controller reaches a state where it knows that there
are too few tokens available to select any action, it has to wait and remove the
knowledge about the absent tokens and try again later. This is done with the
wait transition.

There are two relations between conditions that are important for the con-
struction of an actor machine. The first relation is a dependency c1 → c2,
meaning c1 can not be tested unless c2 is true. Dependencies can be used to de-
scribe that there need to be a token available to be able to test the value of that
token. The other relation is implication c1 =⇒ c2, meaning if c1 is true, then
c2 is also true. In the example above, we have three relations on the conditions:

• The dependency c2→ c1 means that a token must be available to test if
its value is positive.

• The implication ¬c1 =⇒ ¬c3 describes that two tokens can not be
available if one token is not.

• The last implication c3 =⇒ c1 is the dual of the previous: two available
tokens implies one available token.

Starting with the state vector (_,_,_) and using the relations described
above, we can derive a controller for actor Foo that describes several possible
action selectors for this actor. Figure D. shows a visual representation of the
resulting controller. The ellipses represent the states, the rectangles represent
the exec transitions, the diamonds represent the test transitions and the rings

_ _ _

tokens(X) ≥ 1

tokens(X) ≥ 2

1 _ 1
peek(X,0) ≥ 0

_ _ 0

tokens(X) ≥ 1

1 0 _

tokens(X) ≥ 2

1 _ _

peek(X,0) ≥ 0

tokens(X) ≥ 2

1 1 _
A1

0 _ 0

1 0 1

A2
1 0 0

1 1 1

A1

1 _ 0

peek(X,0) ≥ 0

1 1 0

A1

Figure D.1: Actor machine controller of actor Foo. The gray nodes represent states, and

the white nodes represent transitions.

represent the wait transitions. The dashed edges should be followed if the con-
dition is false.

From two of the states in the controller in Figure D., state (_,_,_) and
(1,_,_), more than one transition is possible. In state (_,_,_), either c1 or
c3 can be tested, because both are unknown and neither of them depends on
another condition. In state (1,_,_) either c2 or c3 can be tested, because both
are unknown, c2→ c1 is satisfied and c3 does not depend on another condition.

D.3.2 Controller reduction

To execute a controller, only one of the transitions from a state can be taken.
The choice of transition can be made arbitrarily, but it affects the performance
in general. The choice can be made at compile time, where the time to make
a decision is not as critical as in runtime. (On the other hand, the decision
could be a better informed decision at runtime.) By reducing the controller at
compile time, the size of the program code is also reduced.

The process of selecting transition can be made by successive reductions of
the controller. Reduction is the process of selecting a non-empty subset of the
transitions in each state and pruning all unreachable states. A fully reduced
controller is a controller where all states contain exactly one transition.

D.4 REDUCTION HEURISTICS
We have developed two heuristics for reducing the actor machine controller.
Neither of the reducers produce a fully reduced controller in general, but it
might do it in some cases. Both heuristics relies on profiling information from
the execution of the actors. The first is based on action firing frequencies and
the second is based on the probability of conditions to be true. The reducers
are implemented in the Tÿcho Dataflow Compiler.

D.4.1 Profiling

The Tÿcho Dataflow Compiler can compile Cal programs to C programs with
facilities for producing execution traces of the actor machine controllers. By
changing the preprocessor definition trace_instruction to true when com-
piling the C program, the compiled program will report the sequence steps
that the controllers in the program take. The trace is a text file with one line
per controller transition. Each line describes which actor that performed a con-
troller transition and what kind of transition it was. In addition to this informa-
tion, exec transitions also report which action it executed, and test transitions
which condition it tested and the result of that test.

To gather statistics about the transitions and conditions of a dataflow pro-
gram the following steps are taken. First, the dataflow program is compiled
to a C program. This C program is then compiled with the tracing facilities
enabled. The resulting executable is then executed with typical input stimu-
lus. The resulting trace file is later analyzed to calculate statistics as input to the
reduction heuristics.

The usefulness of the statistics as a basis for a reducer depends on the input
being typical for that application. It is possibly also affected by how the actor
machine controller is reduced. Assuming condition z1 and z2 are correlated,
and the controller is reduced such that condition z2 is only ever tested if for
example z1 is true, then the resulting trace will not give any information about
the probability of z2 when z1 is false.

D.4.2 Reduction based on action execution frequency

The first reduction heuristic is based on action execution frequency, and it tries
to find the shortest hypothetical sequence of tests that leads to the most fre-
quent action. The sequence is hypothetical in the sense that it does not have
to be possible for real, it just have to be present in the controller. The rationale
for this reducer is that the most frequent action has the highest probability to
be selected. The reason for selecting the shortest sequence is that all other se-

quences contain tests for conditions that are not needed in order to select this
action.

The reducer calculates the shortest sequence of transitions up to and includ-
ing the next exec or wait, where the length of this sequence is a pair (f −, t)
that is compared in lexicographical order, first comparing f − and then break-
ing ties with t . If the sequence ends with an exec then f − is the negation of
its action frequency, and if the sequence ends with a wait then f − = 1. This
gives the exec transitions of the most frequent action the smallest value and all
wait transitions a value larger than any exec. The second part of the length,
t , is the number of test transition on the path.

D.4.3 Reduction based on condition probabilities

The second reduction heuristic is arguably much simpler in its description and
implementation. It is based on the fact that when actor machines are con-
structed in the compiler, the conditions of the actions are most often con-
structed such that they have to be true for the action to be selected. The heuristic
therefore selects the conditions with the highest probability to be true.

If there is an exec transition from the current state, then all exec transi-
tions are selected. Otherwise, if there is a test transition in the current state,
then pmax is calculated as the highest condition probability among the test
transitions from this state, and all tests with a probability p ≥ pmax − d are
selected, where d = 1

10 is a threshold to be able to select more than one tran-
sition for later reductions. If neither an exec or a test is available, then the
wait transition is selected, if there is one.

D.5 EXPERIMENTAL SETUP
To evaluate how the reduction heuristics affect the performance, we imple-
mented the reducers in the Tÿcho Dataflow Compiler and evaluated them using
a simple video decoder. The program that we used for evaluation is the reference
implementation of the MPEG- Part Simple Profile decoder in the Reconfig-
urable Video Coding framework. This program was compiled to C using the
Tÿcho Dataflow Compiler and the resulting C program was compiled with gcc
.. with optimization flag -O2.

We executed the programs and counted how many tests the different con-
trollers needed to decode a given video sequence. We also measured the execu-
tion time using the ASIM Power Architecture simulator []. The simulation
was performed without cache to emulate an embedded system.

To estimate the space of possible controllers, we created instances of
the program where the reduction was made by random choice. We then mea-
sured number of tests and the execution time of these programs to use as a
reference when comparing the other reducers. Since the reduction heuristics
we developed does not produce fully reduced controllers, we combined them
with a random reducer to to see how the space of possible controllers after the
reduction was reduced.

D.6 RESULTS
This work builds upon previous work by Cedersjö and Janneck [] where ran-
dom reductions of actor machine controllers are compared to the traditional
action selection approach. The two approaches were compared using the parser
actor of a similar video decoder—the most complicated actor regarding action
selection—by counting the number of performed tests. Because none of the
randomly reduced controllers retest known conditions, all of the ran-
domly reduced controllers in that paper required fewer tests than the traditional
approach did.

In this paper we compare controllers from two reduction heuristics to ran-
dom reductions for a whole dataflow program rather than just a single actor.
Figure D. shows a histogram over the number of test transitions that in-
stances of the example program need to decode the example video. The plot is
divided into three parts by the following reduction strategies:

random reduce the controller by selecting one transition at random in each
state.

action-frequency first reduce the controller with using the heuristic based on
action frequency, described in section D.., and then apply random
reduction.

condition-probability first reduce the controller using the heuristic based on
condition probabilities, described in section D.., and then apply ran-
dom reduction.

Figure D. shows that the controllers produced by the two heuristics require
fewer transitions than the randomly reduced controllers. This also shows that
 random reductions is not enough to find the extremes in the space of pos-
sible reductions.

0

20

40

60

0

20

40

60

0

20

40

60

random
action−

frequency
condition−

probability

3100000 3200000 3300000 3400000
Number of tests

N
um

be
r

of
 c

on
tr

ol
le

rs

Figure D.2: Histograms over the number of tests required to decode a video sequence (fore-

man, 5 frames, QCIF). The histograms are grouped by the reducer that was used when com-

piling the program.

0

20

40

0

20

40

0

20

40

random
action−

frequency
condition−

probability

53500000 54000000 54500000 55000000
Clock cycles

N
um

be
r

of
 c

on
tr

ol
le

rs

Figure D.3: Histograms over the number of clock cycles required by a Power processor to

decode a video sequence (foreman, 5 frames, QCIF). The histograms are grouped by the

reducer that was used when compiling the program.

Since different tests take different amount of time to execute, and also be-
cause an optimizing C compiler has the possibility to reduce the number of
tests, we measured the execution time of the optimized and compiled C pro-
grams. Figure D. shows a histogram over the number of clock cycles on a
Power processor using the same programs as in Figure D.. The figure shows
that the fastest of the randomly reduced programs are approximately as fast as
programs where the heuristics were used.

D.7 CONCLUSIONS
In this paper we presented two heuristics for creating fast action selectors for
dynamic dataflow actors. We compared the performance of the action selectors
that these heuristics produce, both in terms of the amount of tests they perform
and the execution time of the whole dataflow program.

Paper E

Processes and Actors: Translating
Kahn Processes to Dataflow with
Firing

Gustav Cedersjö and Jörn W. Janneck
Department of Computer Science, Lund University

ABSTRACT Dataflow programming is a paradigm for describing stream pro-

cessing algorithms in a manner that naturally exposes their concurrency and

makes the resulting programs readily implementable on highly parallel archi-

tectures.

Dataflow programs are graph structured, with nodes representing com-

putational kernels that process the data flowing over the edges. There are two

major families of languages for the kernels: process languages and languages

for dataflow with firing. While processes tend to be easier to write, the ad-

ditional structure provided by the dataflow-with-firing style increases the an-

alyzability of dataflow programs and supports more efficient implementation

techniques.

This paper seeks to combine these benefits in a principled manner by

constructing a family of translations from a process language to dataflowwith

firing. In order to formally relate these descriptions, we first introduce a notion

of firing to the semantics of Kahn processes, which allows us to give a precise

Copyright © IEEE. Reprinted from Proceedings International Conference on
Embedded Computer Systems: Architectures, Modeling and Simulation (SAMOS XVI), with
permission from IEEE.

definition of equivalence between programs written in these different styles.

Then we introduce a family of translations between them and and show that

they retain meaning of a program. The presented language and its translation

has been implemented in a compiler for the dataflow programming language

Cal.

E.1 INTRODUCTION
Dataflow programming is a graph-based programming model, where the nodes
perform computation on the data that flow over the edges. In the dataflow
models we use in this paper, the edges represent buffered, lossless and order-
preserving channels. Nodes may have local state variables that are updated
throughout the execution, but there are no mutable state variables that are
shared between nodes. All communication is done by sending data items (to-
kens) over the channels.

Dataflow programs exhibit a lot of concurrency, because each node can
execute independently of the other nodes whenever it has data to process. It
also tends to create small modules with few dependencies, which is good for
modularity.

There are two major families of languages for expressing the computation in
the nodes—process languages and languages for dataflow with firing. Process
languages, such as that of Kahn [], describe the computation in the nodes as
sequential programs that explicitly read and write on the channels. Languages
for dataflow with firing are instead structured around the concept of a firing,
typically describing a set of actions that can be fired upon given conditions,
where each action has a known number of tokens it consumes and produces.
The difference in how the languages are structured affects how common idioms
are expressed—where process languages can use if and while statements to con-
trol the execution, languages for dataflow with firing use the firing conditions
of the actions to achieve the same control flow.

Figure E. and E. show a program that computes the sum of n tokens, both
as a Kahn process and as dataflow with firing. The process version is arguably
much simpler, because the control flow better follows the text of the program.

Dataflow programming languages are often associated with a particular ex-
ecution model or a few different models. Kahn processes, for example, are typ-
ically executed using threads or with demand-driven cooperative scheduling, as
described in [], and this paper introduces another execution model for Kahn

process SumN() X, N =⇒ Sum :

n; sum; x;

repeat

N −→ n;

sum := 0;

while n > 0 do

X −→ x;

sum := sum + x;

n := n − 1;

end

Sum←− sum;

end

end

Figure E.1: A process that computes the sum of n tokens.

processes. For dataflow with firing, there are several execution models that take
advantage of the firings to create an efficient implementation.

Synchronous dataflow [] is a model where the number of tokens an actor
consumes and produces is the same in every firing. For programs written in this
model and for a slightly more general model called cyclo-static dataflow [], a
schedule can be completely determined at compile-time, removing the need for
scheduling decisions at runtime. However, not all parts of a program need to
be cyclo-static or synchronous dataflow to take advantage of these implemen-
tation techniques, as demonstrated in [] for StreamIt, and in [] for Cal.
Also, [] and [] show in two different ways that actors with dynamic token
rates can be composed, effectively creating a semi-static schedule of the com-
posed actors. Section E.. discusses a few implementations of dataflow with
firing, comparing them to a traditional process implementation.

There are also other benefits of the firing semantics. One is the possibility
to record traces of the action firings and create a dependency graph between
the firings of a particular execution. In [], such traces are used to guide the
choice of implementation parameters in a design space exploration of a dataflow
program.

In this paper we combine the simplicity of processes with the benefits of

actor SumN() X, N =⇒ Sum :

n; sum;

start: action N:[nbr] =⇒
do

sum := 0;

n := nbr;

end

add: action X:[x] =⇒
guard n > 0

do

sum := sum + x;

n := n − 1;

end

done: action =⇒ Sum:[sum]

guard n ≤ 0 end

schedule Start:

Start (start) −→ Sum;

Sum (add) −→ Sum;

Sum (done) −→ Start;

end

end

Figure E.2: An actor that computes the sum of n tokens.

having them represented as dataflow with firing by designing a Kahn process
language with a translation to dataflow with firing. The main contributions
of this paper are the translation from the Kahn process language to dataflow
with firing, and a way of expressing action firings in the denotational seman-
tics of Kahn processes. Additionally, we elaborate on how the Kahn process
source program can be transformed to the recursive functions of its denota-
tional semantics—a detail that is only sketched by Kahn [].

This paper continues in section E. and E. with some background on
Kahn processes, the process model that we have chosen to implement, and
then a short introduction to Cal, the target language of the translation. Sec-
tion E. introduces a process language whose translation to Cal is presented
in section E.. Section E. discusses the language design and the translation
to dataflow with firing. Related work is discussed in section E., and finally,
section E. concludes the paper.

E.2 PROCESS MODEL
The process model we use in this paper is the one of Kahn [], often referred to
as Kahn process networks. A process is described as a sequential program that
can communicate with other processes via blocking reads and non-blocking
writes on channels. Kahn showed that a network of such processes always pro-
duces the same values on the channels, irrespective of how their executions are
interleaved.

E.2.1 Semantics

The semantics of Kahn processes have been described in [], and its details are
beyond the scope of this paper. We will, however, discuss some of its building
blocks to show the correctness of the translations we are presenting in this paper.

The semantics is denotational rather than operational, and the processes are
described as functions on sequences of values. The sequences may be of finite
or denumerably infinite length. There is a complete partial order on sequences
called the prefix order ⊑, with a ⊑ b if and only if a is the initial segment
of b . The functions that describe the processes must be monotonic on this
partial order, meaning a ⊑ b ⇒ f (a) ⊑ f (b). Another way to describe prefix
monotonicity is that if such a function applied to sequence a yields the result
r , and the same function is applied to sequence b that starts with a, then the
result will start with r . The monotonicity describes an important property of
the execution of processes, viz. that a process cannot change the output it has

actor Merge() X, Y =⇒ Z :

action X:[v] =⇒ Z:[v] end

action Y:[v] =⇒ Z:[v] end

end

Figure E.3: Non-deterministic merge actor.

already produced. The functions must also be Scott-continuous, which on the
prefix order means that in addition to being monotonic, a function may not
depend on whether an input sequence is finite or infinite. Kahn processes are
by construction Scott-continuous functions.

A network of processes is described as an equation system where the data
on the communication channels are variables and the processes are continuous
functions over these variables. The semantics of the program is the smallest
solution to the equation system with respect to the prefix order. This solution
is unique and can be computed, or if infinite, arbitrarily well approximated,
with fixed point iteration. A consequence of the solution being unique is that
the execution order of the processes cannot affect the data they produce.

E.3 CAL
Cal [] is a language for describing actors of dataflow with firing, originally
developed as part of the Ptolemy project []. A variant of Cal has been stan-
dardized by MPEG in ISO/IEC -: for describing video codecs.

An actor consists of ports, state, actions and additional constraints on when
actions can be fired. Figure E. shows an actor written in Cal. It has three
actions, tagged with start, add and done. Two of the actions also have a guard,
i.e. a boolean expression that must be true for the action to fire. The actions are
also, in this example, constrained by an action schedule—a finite state machine
that controls which actions can be fired.

Cal can express computation that is not possible using Kahn processes,
namely actors that are not monotonic on the prefix order or not even deter-
ministic. The Merge actor in figure E. is an example of a non-deterministic
actor. It takes a token either from port X or port Y and puts its value on Z.

process flowchart denotational
semantics

actor flowchart
with actions

denotational
semantics
with firing

A B

C

B ′D

Figure E.4: An overview of the transformations presented in this paper.

E.4 PROCESS LANGUAGE
In this section we describe a small language for writing Kahn processes, which
we in the next section translate to dataflow with firing. Figure E. shows an
overview of the transformations that are performed on the processes. We will
refer to this figure for each transformation we introduce.

E.4.1 Language Grammar

The grammar of the language is shown in figure E.. Some parts of the grammar
are not described in this paper, namely expression, identifier and type, and for
those productions we use the corresponding productions from the Cal language
report []. The process example in figure E. is written in this language, and
later in the paper, there are a few more examples.

A process begins with the keyword process followed by the name of the
process. Then follows a list of formal parameters in parentheses, and the actual
parameters for these are bound at compile time, when instantiating the dataflow
graph. After the parameter list comes the input and output port declarations.
These are also bound to the communication channels when instantiating the
graph.

The body of the process starts with a list of variable declarations, followed
by the process description. The process description is either repeated, indicated
by the repeat keyword, or just executed once, in case the begin keyword is used.
The statements in the process description is what the process executes at run-
time.

There are five kinds of statements of which three of them are known from
many other imperative programming languages: if statements, while loops and
assignments. The read and write statements are central for the semantics of

Kahn processes. The read statements look like this

Port −→ variable

and reads one token from Port, which must be an input port, and assigns the
value to variable. The read is blocking, which means that the execution will not
proceed unless there is a token available. The write statements, however, are
non-blocking and look like this:

Port←− expression

The expression is evaluated and the value is written to Port, which must be an
output port.

E.4.2 Semantics

The semantics of this language is the semantics of Kahn processes, as described
in [], where the processes are viewed as functions on sequences. We use
[v1, v2, . . . , vn] to denote a sequence of n elements, and [v1, v2, . . .] to denote a
sequence of infinite length. Concatenation, denoted X .Y , is the sequence that
starts with X and continues with Y , or just X if X is infinite. We use [] to
denote an empty sequence.

The first step towards describing a process as a function on sequences is to
describe it as a flowchart with one node in the flowchart per statement. This
step is labelled A in the overview in figure E..

The read and write statements are represented by input/output nodes (par-
allelograms). Assignments are represented by process nodes (rectangles). The
branching statements if and while are represented by groups of nodes: one de-
cision node (diamond) for the condition test, one subchart for each alterna-
tive execution path, and a connection node (small circle) where the control
flow converges. Entry points and exit points are represented by terminal nodes
(rounded rectangles), labeled start and stop, respectively.

The flowchart is then translated to a function on sequences. This is trans-
formation B in the overview in figure E.. The denotational semantics of
Kahn processes is defined on this form, and Kahn refers to the methods of
McCarthy [] on how to do the translation.

Each node in the flowchart is translated to a function that refers to its suc-
cessor nodes for the continued execution. The functions are parameterized by
the state variables and input streams. For simplicity, we only consider one state
variable v , one input sequence X and one output sequence, but later we gen-

entity = ”process” identifier ”(” parameters ”)” ports ”==>” ports ”:”

{declaration}

process

”end”.

parameter = [type] identifier.

parameters = [parameter {”,” parameter}].

port = [type] identifier.

ports = [port {”,” port}].

declaration = [type] identifier [”:=” expression] ”;”.

process = (”repeat” | ”begin”) {statement} ”end”.

statement = if | while | read | write | assignment.

if = ”if” expression ”then” {statement} [”else” {statement}] ”end”.

while = ”while” expression ”do” {statement} ”end”.

read = identifier ”−−>” identifier ”;”.
write = identifier ”<−−” expression ”;”.

assignment = identifier ”:=” expression ”;”.

Figure E.5: Simplified grammar of a process language.

eralize this to tuples. A start node start initializes the state of the process,

start(v,X) = next(v ′,X), (E.)

where v ′ is the initial value of v and next represents the successor node in the
flowchart. A stop node stop represents the end of the execution and is therefore
the empty sequence:

stop(v,X) = [].

A connection node conn is defined as its successor next and can be omitted. An
assignment node is defined as

assign(v,X) = next(f (v),X),

where f computes the new value of v and next is the successor node. A condi-
tional node, cond has two possible successor nodes, true and false, and is defined
as

cond (v,X) =
¨
true(v,X) if p(v),
false(v,X) otherwise,

where p is the predicate on the state variables that is the condition of the node.
A write node write that writes a value f (v) derived from the state to the output
port is defined as follows:

write(v,X) = [f (v)].next(v,X). (E.)

Finally, a read node that reads a token and assigns it to v is defined as

read (v,X) =
¨
next(h ,T) if X = [h].T,
[] if X = [],

(E.)

where the execution stops if there is no token available. The description of a
process is completed by a function that hides the state variables and is defined
as the start function with any values of the variables:

process(X) = start(⊥,X).
If a process function is constructed using only the functions described above,
the process will be monotonic on the prefix relation, because extension of an
input to the function can only affect extensions of its output. It will also be con-
tinuous, because the function cannot depend on the finiteness of the sequences.
The function therefore represents a Kahn process.

process Delay () X =⇒ Y :

v := 0;

repeat

Y←− v;

X −→ v;

end

end

start1

Y←− v;2

X −→ v;3

Figure E.6: A process definition and its corresponding flowchart with numbered nodes.

To generalize this to handle more state variables and input ports and output
ports, the variables can be represented by a tuple, and the input sequences by a
tuple of sequences and the output by a tuple of sequences as well. We extend the
prefix order to tuples of sequences with (X1, . . . ,Xn) ⊑ (Y1, . . . ,Yn) ⇐⇒ X1 ⊑
Y1∧. . .∧Xn ⊑ Yn and define the concatenation operation (X1, . . . ,Xn).(Y1, . . . ,Yn)
as elementwise concatenation (X1.Y1, . . . ,Xn .Yn). The assign function will only
change one of the elements of the variable tuple, read will only read from one
of the streams to one of the variables, and write will only add to one of the
elements of the output sequence tuple.

As an example of this translation, the process in figure E. is first trans-
formed to the flowchart in the figure. The nodes of this flowchart are numbered
1 to 3, which corresponds to the functions Delay1 to Delay3. These functions
are defined as described above:

Delay1(v,X) =Delay2(0,X) by (E.),
Delay2(v,X) = [v].Delay3(v,X) by (E.),

Delay3(v,X) =
¨
Delay2(h ,T) if X = [h].T,
[] if X = []

by (E.).

The process is defined as follows:

Delay(X) =Delay1(⊥,X).
We can now simplify function Delay3 by substituting Delay2:

Delay3(v,X) =
¨
[h].Delay3(h ,T) if X = [h].T,
[] if X = [].

Delay

Figure E.7: A cyclic dataflow program with the Delay process.

Now we can see thatDelay3 is equivalent to its X argument and further simplify
it to

Delay3(v,X) = X .

Similarly we can simplify Delay by substituting Delay1 and then Delay2 and
then finally Delay3 and get the following:

Delay(X) = [0].X .

This definition is a very compact description of the process that captures the
essence of the unit delay.

Figure E. shows a small cyclic network with one Delay process. The corre-
sponding equation system in the semantics of Kahn processes is¨

Y =Delay(X),
X = Y .

(E.)

In general, there are several solutions to the equation systems of Kahn process
networks, but the smallest solution with respect to the prefix order is what
defines the semantics. In this case, the smallest solution to the equation system
in (E.) has an output sequence that is an infinite sequence of zeros: Y =
[0,0,0, . . .].

E.5 TRANSLATION TO DATAFLOW WITH FIRING
The translation from process to dataflow with firing is done in three steps. (The
corresponding labels from figure E. are shown in parentheses.)

. Construct a flowchart of the process. (A)

. Group nodes in the flowchart into actions. (C)

. Create a dataflow actor from the actions. (D)

The first step makes it easier to reason about the statements in the code. The
second step cannot be done arbitrarily without the risk of changing the seman-
tics of the program. We therefore show how this step can be performed without
changing what the process computes by making sure that the result of B and
B ′ in figure E. are the same. In the third step, we take a process with actions
and create a Cal actor with the same control flow.

E.5.1 Grouping nodes into actions

A dataflow actor is executed in atomic steps, called action firings. An action
can only be fired if its conditions are fulfilled. We call these firing conditions.
The tokens that an action reads, for example, must be present in order to fire.
It also means that the number of tokens that an action requires must be known
before firing that action. Typically, but not necessarily, it is even known at
compile-time.

An example of a possible action is a chain of read, write and assignment
nodes in the flowchart. Because a chain only has one possible control flow,
where each statement is executed exactly once, the number of tokens that will
be consumed and produced by executing a chain is known at compile-time.
However, an action grouping is not correct just because it contains valid actions.
It must also represent the same sequence-function.

To determine if a process with its statements grouped to actions is equivalent
to the original process, we add action firing to the functions on sequences and
check if the function is still the same. Referring to figure E., we check that the
results of B and B ′ are the same.

If an action a is a sequence of statements that start with s and reads n tokens
from X , then the atomicity is modeled as

a(v,X) =
¨
s (v,X) if X = [h1, . . . , hn].T,
[] otherwise.

(E.)

The execution “continues” only when the input sequence X is long enough
to execute the whole sequence of statements. The definition in (E.) can be
generalized to handle more than one input sequence by adding more firing
conditions.

As an example, we use the Delay process in figure E. and its corresponding
flowchart in figure E.. Let the write statement of node together with the
read statement of node be an action. The requirement for this action to fire
is that X has at least one element, because of the read statement. The effect of

making an action of statement and is that the write will not be executed
unless there is a token available for the read. To show that this translation is
incorrect, we construct the function that corresponds to this translated process:

Delay′(X) =Delay′1(⊥,X),
Delay′1(v,X) =Delay

′
a(0,X) by (E.),

Delay′a(v,X) =
¨
Delay′2(v,X) if X = [h].T,
[] if X = []

by (E.),

Delay′2(v,X) = [v].Delay
′
3(v,X) by (E.),

Delay′3(v,X) =
¨
Delay′a(h ,T) if X = [h].T,
[] if X = []

by (E.).

This set of functions differs from theDelay functions in the following two ways.
Delay′ contains a function Delay′a that describes the atomicity of Delay′2 and
Delay′3, and all references to Delay2 are instead references to Delay′a .

A translation is correct only if its function is equivalent to the original func-
tion. If we apply Delay and Delay′ to the empty sequence

Delay([]) = [0],
Delay′([]) =Delay′1(⊥, []) =Delay′a(0, []) = [],

we see that the translation is incorrect.

E.5.2 Action grouping schemes

We will present a series of action grouping schemes that yield correct trans-
lations from processes to dataflow with firing. We only consider grouping
schemes that group chains of statement nodes, i.e. sequences of read, write
and assignment statements. The condition nodes are translated to their own
actions without any firing conditions that only designate its successor action in
the execution.

There is a trivial action grouping that is always correct, that is the grouping
where each statement becomes its own action. In this grouping, only the actions
with a read statement will have a firing condition. This condition is also the
same as the condition of the read statement itself. Let a be the action with one
read statement r ,

X −→ v;

whose successor is n:

a(v,X) =
¨
r (v,X) if X = [h].T,
[] if X = [],

r (v,X) =
¨
n(h ,T) if X = [h].T,
[] if X = [].

We can see that a = r . For an action a with a write or assignment statement s ,
the action is equal to the statement, because the action has no firing condition:

a(v,X) =
¨
s (v,X) always,
[] never.

This grouping results in very fine grained actions, but dataflow actors are
usually not written in this way, firstly because it is very tedious to write that
many actions, secondly because it is usually not necessary, and thirdly because
it is usually more efficient to write fewer and larger actions. The actions need
to be scheduled, either at compile time or at runtime, and the more actions
to schedule, the more time it tends to take. For these reasons, we study some
grouping schemes with larger actions as well.

Regular expressions on sequences of statements. To describe different group-
ing schemes, we use regular expressions over sequences of statements. Let r , w
and a denote the set of read, write or assignment statement, respectively. Alter-
nation is denoted x |y which is the union of all sequences in x and y . Concate-
nation x y is the set of sequences that are concatenations of a sequence in x with
a sequence in y . The Kleene star x ∗ represents concatenation of any number of
sequences in x , including zero sequences. As an example, the expression (r |a)∗
denotes any sequence of read and assignment statements.

Actions with only writes and assignments. If sequences of write and assign-
ment statements, (w |a)∗, are grouped to actions, the resulting function of the
action will be identical to the function of the statements. Write and assignment
statements do not read any tokens, and the action will therefore have no condi-
tions. Let s be the first statement in a sequence in (w |a)∗, followed by the rest

of the process, and a be an action with these statements:

a(v,X) =
¨
s (v,X) always,
[] never.

Action a is trivially equal to statements s .

Actions with only reads and assignments. If sequences of read and assignment
statements, (r |a)∗, are grouped to actions, the resulting function will have con-
ditions on the lengths of the sequences corresponding to the number of read
statements for each stream. Assume the read statements of an action a reads n
tokens from X , the action will then be defined as

a(v,X) =
¨
s (v,X) if X = [h1, . . . , hn].T,
[] otherwise,

where s represents the execution starting at the first statement in the action.
Since the statements of the action doesn’t produce any output, we know that
when the sequence is shorter than what all statements read, the output is empty:

∀k < n. s (v, [x1, . . . , xk]) = [].

That is also true for the action:

∀k < n.a(v, [x1, . . . , xk]) = [].

When the sequences, however, are long enough for all the read statements of
the action, we get the following:

∀k ≥ n.a(v, [x1, . . . , xk]) = s (v, [x1, . . . , xk]).

Both when the inputs are sufficiently long and when they are not, the action
represents the same function as its statements.

Actions with reads and assignments and then writes and assignments. The
two regular expressions above can be combined to (r |a)∗(w |a)∗, accepting first
reads and assignments and then writes and assignments. To study what affect
this action has on the function, we first study the case with two consecutive

actions a1 with statements from (r |a)∗ and a2 with statements from (w |a)∗. As
we have seen earlier, action a1 requires all tokens that it reads to be present before
proceeding, and action a2 does not require anything to continue. An action a
that contains the statements of a1 followed by a2, will have the same conditions
as a1, because a2 does not have any conditions. The function that represents a
will therefore be identical to the function that represents a1 followed by a2. To
illustrate this, assume the simple case with one read statement r followed by
one write statement w followed by another statement n. First, we make actions
ar of r and aw of w . The functions for this now looks like the following:

ar (v,X) =
¨
r (v,X) if X = [h].T,
[] if X = [],

r (v,X) =
¨
aw (h ,T) if X = [h].T,
[] if X = [],

aw (v,X) = w (v,X),
w (v,X) = [v].s (v,X).

The important part is that aw will be the same for all groupings in (w |a)∗,
making it possible to use w directly wherever aw is used and eliminate aw :

ar (v,X) =
¨
r (v,X) if X = [h].T,
[] if X = [],

r (v,X) =
¨
w (h ,T) if X = [h].T,
[] if X = [],

w (v,X) = [v].s (v,X).

If instead we make one action a of both r and w we get the same functions:

a(v,X) =
¨
r (v,X) if X = [h].T,
[] if X = [],

r (v,X) =
¨
w (h ,T) if X = [h].T,
[] if X = [],

w (v,X) = [v].s (v,X).

Grouping statements by (r |a)∗(w |a)∗ to actions preserves the semantics of the
process.

E.5.3 Translation to dataflow actor

From the flowcharts with actions, the translation to dataflow with firing (trans-
formation D in figure E.) is quite straightforward. We use Cal as the target
language for this last step, and we explain the translation with the SumN process
in figure E. and the actions of figure E.

When the actions of a process are identified, they are translated to Cal ac-
tions that perform the same task, and each action gets a unique action tag.
We call these actions statement actions. From the grouping in figure E., the
following actions are constructed.

a: action N:[temp] =⇒
do

n := temp;

sum := 0;

end

b: action X:[temp] =⇒
do

x := temp;

sum := sum + x;

n := n − 1;

end

c: action =⇒ Sum:[sum] end

From the decision node, two actions are constructed, one that can be fired
when the condition is true, and one when the condition is false. We call these
pairs of condition actions. Note that these actions neither consume nor produce
any tokens.

d_true: action =⇒
guard

n > 0

end

d_false: action =⇒
guard

not (n > 0)

end

Finally, an action schedule is created to ensure that the actor has the same
control flow as the original process. The schedule will have one state for each
statement action, and one state for each pair of condition actions. The transi-
tions are then constructed to reflect the control flow of the process.
schedule A :

A (a) −→ D;

D (d_true) −→ B;

D (d_false) −→ C;

B (b) −→ D;

C (c) −→ A;

end

The execution starts in state A with action a that reads how many numbers
should be summed, and continues to state D. In D, there are two actions, one
that can be executed when n > 0 and another action otherwise. Depending
on which of the two is fired, the execution proceeds to either B or C. State B

represents the body of the loop and when action b is fired the execution proceeds
with the loop condition in state D again. After the loop, in state C, action c is
executed an the output is produced. The execution then continues in state A to
start a new summation.

The start node of the flowchart corresponds to the variable initialization of
the process, and this is just copied to the resulting actor. This example does not
have any stop node, but stop nodes are represented by states in the schedule
without any transitions that leaves them.

The end result is not as polished as the handwritten Cal version in figure E.,
but it is not far from it.

E.6 DISCUSSION

E.6.1 Implementation efficiency

Even though this paper is not about efficient implementations of dataflow with
firing, its existence is highly relevant for this work. Some restricted classes of
dataflow with firing, such as synchronous dataflow and cyclo-static dataflow are
well known for their efficient implementation techniques, but even dynamic
dataflow can be efficienly implemented. To demonstrate the efficiency com-
pared to a traditional process implementation, we implemented the proposed
language and the translation to Cal in the Tÿcho dataflow compiler and de-
signed a small program with four processes, depicted in figure E.. We made

start

N −→ n;

sum := 0;

n > 0

X −→ x;

sum := sum + x;

n := n − 1;

Sum←− sum;

a:

b:

c:

truefalse

Figure E.8: Flowchart of the SumN process in figure E.1 with an example grouping.

LFSR Even Inc Sum

Figure E.9: A programwith four processes. LFSR is a linear feedback shift register, producing

the n = 107 first numbers of a maximum length sequence of 16 bits, followed by a 0. Even

filters out all odd values, forwarding only the even numbers to Inc, that increments the

numbers by 1. Sum computes the sum of all numbers until it gets a 1 (the incremented 0 at

the end of the stream) and prints the sum.

two process implementations; one in our proposed language that we compiled
using the Tÿcho dataflow compiler, and one with goroutines in Go that we
compiled using gc. To get an indication of how much overhead the parallel
descriptions induces in terms of scheduling and bookkeeping, we also made a
sequential implementation in C that performs the same computation using a
single loop.

In the Go implementation, the size of the channels that connects the gor-
outines affects the performance significantly. Figure E. shows the execution

The other official Go compiler—gccgo—produced slower programs for this example.

0

2

4

6

8

0 1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

Buffer size

Ex
ec

u
ti
o
n
ti
m
e
(s
)

Figure E.10: Execution time of the Go program with different buffer sizes, where 0 indicates

rendezvous communication.

Table E.1: Execution Time of the Program in Figure E.9

Mean (ms) Standard deviation (ms)

Go (gc) 1811.4 13.6

Kahn processes (Tÿcho) 203.0 3.7

Kahn processes (Tÿcho)a 158.3 2.8

Kahn processes (Tÿcho)b 64.9 2.5

C (Clang)c 64.6 2.8

a compiled with actor merging
b compiled with actor merging and buffer to variable conversion
c a sequential program that computes the same result

time for buffer sizes ranging from to , where means rendezvous com-
munication. Using large buffers in the program implemented with Tÿcho did
not result in any significant performance difference.

The Tÿcho dataflow compiler can merge actors using actor machine com-
position, as described in [], similar to what is done with RVC-CAL actors
using the Open RVC-CAL Compiler (Orcc) in []. The resulting merged ac-
tor does not need to check that state of the channels that are connected to itself.
If these self-loop channels are of size , they can be replaced by variables, which
is also done by Tÿcho. Table E. shows the execution time of five different
implementations:

. the Go implementation with channel sizes set to ,

. the Kahn process implementation compiled with Tÿcho,

. the Kahn process implementation compiled with Tÿcho with actor merg-
ing,

. the Kahn process implementation compiled with Tÿcho with actor merg-
ing and with buffers converted to variables, and

. the sequential C program.

The Kahn process implementations that are transformed to dataflow with fir-
ing are clearly faster than the goroutine implementation, even without actor
merging. With actor merging and the buffer to variable transformation, the
programs is as fast as the sequential C program.

All measurements were performed on a computer with a quad-core Ghz
Intel Core i processor running OS X, and the sequential C program and the
C programs produced by Tÿcho were compiled with Clang using the flag -O2.

E.6.2 Program simplicity

We believe that many dataflow actors could be much simpler described as pro-
cesses, most importantly because the control flow of a process better follows
the text flow of the source program than it would do in a dataflow-with-firing
style. To get an indication on what kinds of actors would benefit from being
expressed as processes, we have identified some patterns commonly used in Cal
actors by studying the example applications from orc-apps—a collection of Cal
applications. The patterns we identified are the following:

. Actors with only one action.

. Fixed sequences of actions in the sense that action B always follows action
A.

. Iterative token production or consumption with an unknown number of
tokens.

. Actors that select different actions depending on the value of a particular
token or state variable.

https://github.com/orcc/orc-apps

Table E.2: Number of tokens in the source code of the actors and their respective processes.

Actor Process Ratio Patterns

SyntaxParsera 682 412 60% 2, 3, 4

Mgnt_DCSplitb 97 107 110% 1

Algo_Byte2bitb 122 81 66% 2, 3

Algo_SelectMB_4c 491 200 41% 2, 3, 4

Algo_PictureRecon…Sat…b 355 255 72% 2, 4

KeySchedulee 757 629 83% 2

a from JPEG decoder
b from MPEG-4 Part 2 decoder
c from MPEG-4 AVC decoder
d from AES cipher

In our opinion, pattern is often clearly expressed in Cal and we see no point
in rewriting such actors in a process style. However, expressing pattern ,
and is, in our opinion, more complex in Cal than it is in our process lan-
guage. Fixed sequences of actions (pattern) involve at least two actions and
an action schedule. When trying to follow the control flow of such an actor,
the reader must consult the action schedule to see in which order the actions
are fired. When expressed as a process, this pattern is simply a sequence of
statements. Pattern and can in our process language be expressed by (re-
spectively) a while-loop and if-statement, but encoding the same pattern in a
Cal actor requires at least two actions whose firing conditions only differ in a
guard expression, representing the branching condition.

A review of existing Cal applications and the feasibility of translating them
to processes is out of the scope for this paper. We have, however, collected
a few actors that use the patterns described above and translated them to our
process language. We have not measured how readable they are, or how well
the program text follows the control flow, but since the simplified control flow
also results in smaller programs, we have measured the size of the programs in
number of source code tokens. As the result in table E. shows, the actor with
only one action (pattern) uses more tokens in the process version than the
actor version, but the other patterns are expressed using fewer tokens in their
process versions.

E.6.3 Language Design

The first objective of the language design is to enable programmers to write
processes and have them executed as actors. The second objective is to make
it easy to use processes in Cal programs. We have made some design choices
motivated by these objectives.

The look and feel of the language resembles Cal to a large extent. The reason
for this decision is to make it easier for Cal programmers to start using the
language. Not only does it look like Cal, the types, statements and expressions
are borrowed from Cal as well. By representing and computing values in the
same way, the interaction between the two languages becomes straightforward.
In the larger version of the language that is implemented in the Tÿcho dataflow
compiler, the process description is actually implemented as a new language
construct for Cal actors, rather than a separate language of its own.

E.6.4 More general groupings

We saw in the Delay′ example that actions that start with writes and continue
with reads are not equivalent to just the statements themselves. There are, how-
ever, other correct grouping schemes that recognize larger actions. The schemes
we have looked at all consist of sequences of statement nodes, but there are ex-
amples where loops and conditionals can be part of actions as well. If, for ex-
ample, the two execution paths of an if-statement have the same read and write
pattern, they could be considered for inclusion in the same action. The same is
true for loops where no communication happens. The grouping schemes that
we have shown in this paper are therefore not the most coarse-grained.

E.7 RELATED WORK

E.7.1 Language

The process language we introduced makes it possible to write dataflow pro-
grams as combinations of processes and dataflow with firing, but it is not the
first example of such combination. StreamIt [] is a language for Synchronous
dataflow—a flavor of dataflow with firing where the number of tokens con-
sumed and produced by an actor is the same on every invocation. In version
. of StreamIt the restriction of a fixed input and output rate was lifted, ef-
fectively making StreamIt a language for expressing both synchronous dataflow
and Kahn processes. The implementation in [] also treats them separately,
heavily optimizing the parts with fixed token rates and dynamically scheduling

all interaction that deals with dynamic token rates. Our approach is instead to
unify the two by translating the process to dataflow with firing. In StreamIt,
however, the filters with dynamic token rates can not in general be translated
to their current model for dataflow with firing, synchronous dataflow, because
that model is not expressive enough.

E.7.2 Translation

In [], Falk et al. presents a translation from Kahn processes expressed in
SystemC to dataflow with firing by constructing a control flow graph in which
all read statements precede the write statements in the basic blocks. This is
equivalent to the most general action grouping scheme presented in this paper.
The novelty of our work is the connection to the semantics of Kahn processes
to show that the action grouping is correct.

One aspect of this work is that it enables programmers to write programs
in an imperative style and have it executed with a different execution model
that we believe is better in many ways. Related to this, Capriccio [] is a
threading package for C that enables programmers to write threaded code with
blocking operations, have it executed using cooperatively scheduled coroutines
and event-based operations instead of blocking ones. Similarly, Tame [] and
the work of Adya et al. [] both try to unify the models of threaded with
event-driven programs, partly using program transformations not unlike those
we do.

Even though there are similarities between these systems and ours, we be-
lieve that the challenges differ very much. One of their main challenge is mem-
ory management for automatic variables. That is not an issue for our language,
because the processes are essentially stack-free at the points where they need
to be. Our main challenge, on the other hand, is to make sure that the exact
semantics of Kahn processes is retained in the translation.

In [], Lee shows a translation from dataflow with firing to Kahn pro-
cesses, which is the reverse of our translation, and gives conditions on when
this translation is possible.

E.7.3 Process model

In this work, we use Kahn process networks as our process model. There are
other well-known process models, such as Communicating Sequential Pro-
cesses [] or pi calculus []. We chose Kahn process networks over these
calculi because the communication model of Kahn process networks closely
resembles the one of dataflow with firing. Because of this similarity, several

aspects of combining Kahn process networks and dataflow with firing have al-
ready been studied. In [], Lee shows that a certain class of dataflow with
firing is determinate by transformation to Kahn process networks. In [],
Kienhuis and Deprettere introduce a model for dataflow with firing that is able
to describe Kahn process networks.

When proving the equivalence of the programs before and after action
grouping, we extended the Kahn process model with a notion of actions. There
is a related model, called Stream Based Functions [] that instead extends a
model for dataflow with firing with the expressiveness of Kahn processes. This
model is used in Compaan [] to transform nested loop programs to Kahn
process networks.

E.8 CONCLUSIONS AND FUTURE WORK
We have introduced a Kahn process language and a family of translations from
this language to dataflow with firing and Cal. It enables programmers to write
their dataflow programs as processes and still use the efficient implementation
techniques and analysis tools that available for Cal. For software implementa-
tions, if the number of processes exceeds the number of processors, which is
the most common case, their corresponding actors can be merged to reduce
communication overhead using actor machine composition [] or by merg-
ing Cal actors []. For programmable hardware, Xronos have been shown to
synthesize hardware directly from the RVC-CAL reference implementation of
an MPEG- decoder []. On the analysis side, the profiling infrastructure of
TURNUS uses execution traces of Cal programs to explore the design space of
their implementations [].

We have also elaborated on the translation from a Kahn process language
to its denotational semantics, introducing a way of reasoning about process
languages, building upon the works of Kahn [] and in turn McCarthy [].
This way of reasoning enabled us to introduce the concept of an action to the
semantics of Kahn processes.

To conclude the paper, we have shown a way of giving programmers the
simplicity of writing processes and at the same time treat them as Cal actors
with all of its benefits. As future work, on the language side, we would like to
investigate ways of letting programmers affect the action grouping. We would
also like to integrate more features of Cal into the process language and vice
versa. On the translation side, we would like to study action grouping schemes
that can identify even larger actions.

Paper F

Tÿcho: A Framework for Compiling
Stream Programs

Gustav Cedersjö and Jörn W. Janneck
Department of Computer Science, Lund University

ABSTRACT Many application areas for embedded systems, such as DSP, me-

dia coding and image processing, are based on stream processing. Stream

programs in these areas are often naturally described as a graphs, where

nodes are computational kernels that send data over the edges. This structure

also exhibits large amounts of concurrency, because the kernels can execute

independently as long as there is data to process on the edges. The explicit

data dependencies also help making efficient sequential implementations of

such programs, allowing programs to be more portable between platforms

with various degrees of parallelism.

The kernels can be expressed in many different ways; for example, as

sequential programs with read and write statements for the communication,

or as a set of state transitions that can be performed and conditions for when

these transitions can bemade. Traditionally, there has been a tension between

how the kernels are expressed and how efficiently they can be implemented.

There are very efficient implementation techniques for stream programs with

restricted expressiveness, such as synchronous dataflow.

In this paper we present a framework for compiling stream programs, that

we call Tÿcho. It handles kernels of different styles and with a high degree of

expressiveness, using a common intermediate representation. It also provides

Submitted to ACM Transactions on Embedded Computing Systems.

efficient implementation, especially for, but not limited to, the restricted forms

of stream programs.

F.1 INTRODUCTION

F.1.1 Compiler Framework

GCC and Clang are well known compilers for C and C-like languages such
as C++, Objective-C and OpenMP. Both compilers use language independent
intermediate representations of programs, on which most optimizations are per-
formed, i.e. GIMPLE [] in GCC and LLVM IR [] in Clang. The benefits
of having a common intermediate representation is that optimizations that op-
erate on that form become available to all input languages, and code generators
for specific targets can generate code from all input languages.

These compilers are great for C-like languages, but not all languages are like
C. For example, Haskell [] is very different from C, and the most well known
Haskell compiler, GHC, uses an intermediate representation, called Core [],
that is very different from GIMPLE and LLVM IR. Core captures the essence
of Haskell programs and GHC performs optimizations and program transfor-
mations on that form. However, the LLVM IR is still used in the backend of
GHC, where complementary optimizations are performed.

In this paper, we present a compiler framework for stream programs called
Tÿcho. The core of its intermediate representation is language-independent,
specific for stream programs, and supports optimizations that are important for
stream programs. Similar to how GHC handles different optimizations on dif-
ferent representations, this framework performs optimizations related to stream
programs and generates code that is further optimized by other compilers, such
as GCC or Clang.

F.1.2 Stream Programs

A stream program is a parallel program that operates on streams of data. It is
structured as a network of concurrently executing components that communi-
cate by streaming data over channels, see Figure F.. The components of these
networks are computational kernels that read from and write to the channels
and perform computation. Kernels may also have internal mutable state that
influences the computation, but no state variables are shared between kernels.

A simple way to describe a kernel is as a process—a sequential program with
read and write operations on the channels. In [], Kahn describes the seman-

Figure F.1: High-level view of a stream program, where the boxes are computational kernels

that communicate via its ports, the triangles, over the channels, represented by lines between

the ports.

tics of a process language, often referred to as Kahn process networks, and shows
that programs written in this language or style are deterministic—the output
will always be the same for a given input—irrespective of how the processes are
scheduled.

Dataflow with firing [] suggests a different way of describing kernels, cen-
tered around the concept of firing. An actor—a dataflow kernel with firing—
has a set of transitions that perform the computation, and each transition has a
set of conditions that describe the requirements for a transition to be fired. If,
for example, a transition reads a token from a particular channel, the conditions
for that transition include “the presence of at least one token on that channel.”

There is a trade-off between expressiveness and efficient implementations
for stream programs, and many restricted forms of dataflow with firing has
been developed to reach different points in this tradeoff. Synchronous data-
flow [] is subclass of dataflow with firing that can be scheduled at compiletime.
Cyclo-static dataflow [] is a slightly more general class with the same property.
Boolean-controlled dataflow [] is an even more general class that in some cases
can be scheduled at compiletime. In this paper, we are primarily interested in
very general dataflow with firing.

F.1.3 Problem

Stream programs can be realized on platforms with various degrees of paral-
lelism, ranging from software implementations for a single CPU to processor
arrays [], GPUs [] and FPGAs []. Different platforms have their own
sets of challenges and optimization opportunities.

In this paper, we take a look at three aspects of efficient software code gen-
eration of stream programs for CPU-based platforms, with a focus on dataflow
with firing:

• efficient transition selection for kernels with multiple transitions,

• efficient scheduling through kernel fusion, and

• efficient variable sharing between conditions and transitions.

The problem we are addressing is how these aspects can be handled with the
additional requirements that

• the solution should be applicable to a general class of stream programs,
and

• the solution should be language-independent.

An example for which the additional requirements do not hold is static schedul-
ing of synchronous or cyclo-static dataflow programs. Even though it is language-
independent, it is not applicable to a very general class of stream programs.

The proposed solution is a framework for compiling stream programs called
Tÿcho. To meet the generality requirement, the kernel representation in Tÿcho
is based on a machine model for dataflow with firing, called actor machine,
that supports a broad class of stream program kernels. The actor machine is
presented in Section F.. Section F. describes the actor machine based ker-
nel representation in Tÿcho, and presents frontends for two kernel languages of
different styles, to illustrate the language-independence. Section F. addresses
the problem of efficient transition selection in the presence of multiple transi-
tions. The solution to efficient scheduling is presented in Section F., where a
new actor machine fusion algorithm is presented and evaluated. Section F. de-
scribes two techniques to optimize variable initialization when variables can be
shared between conditions and transitions. Section F. discusses related work
and Section F. concludes the paper.

F.2 ACTOR MACHINE

F.2.1 Dataflow with Firing

Dataflow with firing is a family of stream programs with a concept, introduced
by Dennis [], called firing. The kernels are called actors, and a firing is an
execution step of an actor. A set of transitions describes what steps an actor
can take, and the act of making a transition is a firing. In a transition, an
actor may () read input data items, or tokens, () update its internal state,
and () produce output tokens. The number of tokens that are consumed and
produced in a transition is predefined, but may vary among the transitions.
Each transition is associated with a set of conditions that are the prerequisites
for firing the transition. The conditions include, for example, the availability
of the tokens that the transition consumes.

Examples of dataflow with firing include synchronous dataflow [], cyclo-
static dataflow [] and Cal [].

F.2.2 Actor Machine Controller

The actor machine [] is a simple machine model for dataflow with firing. It is
focused on the process of selecting transitions by testing conditions. It is per-
mitting the expression of a wide range of stream program kernels. It is, for ex-
ample, not limited to the statically schedulable programs, such as synchronous
dataflow, or even deterministic programs. Nonetheless it supports important
stream program optimizations, such as kernel fusion [,], for creating effi-
cient implementations. Tÿcho uses the actor machine as a basis for its kernel
representation, and the main reasons are the generality in what kernels it can
describe, combined with the efficient implementation techniques it enables.

The central component of the actor machine is its controller. It is a state
machine where the set of states S encode knowledge about the conditions of
a kernel. Each state s ∈ S is associated with a set of instructions that lead
to other states. There are three kinds of instructions: exec, test, and wait.
An exec(t , s ′) has two parameters: one transition t ∈ T , and one target state
s ′ ∈ S , that when executed performs transition t and proceeds to state s ′. A
test(c , st , s f) has three parameters: a condition c ∈ C , and two states st , s f ∈ S ,
and when executed it tests the condition and proceeds to st if true and to s f
otherwise. The target states st and s f keep track of the knowledge whether c
is true or false, to make sure that condition c is not retested needlessly. Some
conditions, however, can change by an external event, e.g. the condition of
there being tokens available for input could change because of some other kernel

actor Merge () A, B =⇒ C :

a: action A:[v] =⇒ C:[v] end

b: action B:[v] =⇒ C:[v] end

end

Listing F.1: A non-deterministic merge kernel written in Cal.

uuu c3 uut c1 tut ta

uuf fut c2 f tt tb

f f t

Figure F.2: A graphical representation of an actor machine controller that implements the

merge actor in Listing F.1.

producing that input. To discard knowledge about such conditions, a wait(s ′)
instruction makes the actor machine proceed to a state s ′ where those conditions
are unknown. The wait instruction is therefore also a signal that this actor
machine cannot make progress unless an external event occurs.

Listing F. shows a small Merge kernel written in the actor language Cal.
It has two actions, labeled a and b, that describe two transitions ta and tb ,
respectively. Action a reads one token v from port A and writes its value to the
output port C. The other action does the same thing, but with port B.

Figure F. shows a graphical representation of an actor machine that im-
plements the Merge actor in Listing F.. The ellipses represent states, the di-
amonds, rectangles and rings represent test, exec and wait instructions, re-
spectively. The dashed edges point to the target state of the test when the
condition is false. The two actions of the Merge actor have three conditions in
total: condition c1 is the availability of a token on port A, condition c2 is the
availability of a token on port B, and condition c3 is the availability of a space
for a token on port C. The knowledge about these three conditions is repre-
sented by a triple 〈k1, k2, k3〉 of values from the set {t, f , u}, where ki = t and
ki = f , means the condition ci is known to be true and false, respectively, and
ki = u means that condition ci is unknown. For instance, in state 〈u,u, t〉, it is

uuu uut fut f f t uut utt uuu
test
c3

test
c1

test
c2

wait test
c1

exec
ta

ta

Actor machine controller state progression

Actor state progression

Figure F.3: State progression of an actor machine controller and the actor it implements.

uut

c1

c2

Figure F.4: A fragment of a multi-instruction actor machine with a state where condition c3
is known to be true, but condition c1 and c2 are unknown.

not known whether there are any tokens on the input ports, but it is known to
have space for output.

It is important to distinguish the state of the actor machine controller from
the state of the actor. The controller state changes with every actor machine
instruction, but the actor state is only changed by transitions, which are fired
by the exec instruction. Figure F. illustrates the state progression of the actor
machine controller and the actor state for a particular execution of the Merge

actor and its implementation in Figure F.. When the execution starts, there
is no token on any of the input ports but there is space for an output token.
From there, condition c3 is tested, followed by c1 and c2 and a wait, because
no transition could be selected. So far, the actor state is unchanged and only
the controller has made progress. At some point after c1 was tested, a token
arrived, and now c1 is tested again, this time with a successful result. The last
step of the controller progression is the firing of transition ta , which also affects
the actor state, shown in the progression in Figure F..

The example in Figure F. is a single-instruction actor machine, which
means it has at most one instruction in each state. Actor machines with more
than one instruction per state are called multi-instruction actor machines. In
state 〈u,u, t〉, for instance, any of c1 and c2 could have been tested, and the state
could have test instructions for both conditions, as depicted in Figure F..

To create an efficient implementation of a stream program, the translation
of kernels to single-instruction actor machines can be done in two steps, by first
creating multi-instruction actor machines and then reducing the controllers to
single-instruction actor machines. The multi-instruction actor machines de-
scribe many possible single-instruction actor machines, and the purpose of
reduction is to find efficient single-instruction actor machines among those.
By separating the translation to actor machine and the instruction selection
(through reduction), different source languages can use the same instruction
selection strategies by using the same reducers.

F.3 THE TŸCHO COMPILATION FRAMEWORK

F.3.1 Overview

Tÿcho is an open source framework for building compilers for stream programs.
The framework is built upon an intermediate representation for kernels based
on actor machines, together with a simple network description of how the ker-
nels are connected. The Tÿcho code base includes an example compiler, the
Tÿcho compiler (tychoc), that reads Cal programs and Kahn process networks
and generates optimized C code from the intermediate representation.

Compilers are built as a sequence of compilation phases, starting with a
phase that reads the source code of the kernels and the network descriptions
of how the kernels are connected. After all kernels and network code is parsed
follows phases that perform name analysis, type analysis and other analyses. If
the program is valid, the following phases evaluate the network descriptions
to build a concrete network of kernels, and kernels are translated to actor ma-
chines. At this stage of the compilation, the language specific parts have been
replaced by a network of actor machines. Optimization phases are performed
on this representation, before finally handing over the program to the backend
phase.

To build a new compiler for a different backend or a different kernel lan-
guage, some phases need to be implemented while others from the framework
can be reused. Different compilers will have different sequences of phases with

different sequences of optimizations, based on what is good for the target plat-
form and depending on what is required by the source languages.

F.3.2 Actor Machine Intermediate Representation

The intermediate representation of the stream program kernels is based on actor
machines. Just like in the formal model, the actor machines of the intermediate
representation contains input and output ports for communication, conditions,
transitions and state.

Conditions and Transitions. The transitions are described in a procedural lan-
guage with statements for consuming input and producing output through the
ports. An important aspect of dataflow with firing is that the internal state of an
actor does not change between firings, and since conditions are tested between
the firings, they cannot change the state. Conditions are therefore written in a
purely functional language that cannot change state variables or consume input
tokens or produce output tokens. The order in which conditions are evaluated
cannot affect the result of the evaluation.

The procedural and the functional languages are tightly integrated, with the
functional language being the expression part of the procedural language. Func-
tions and procedures are first class values, and their definitions are expressions
in the functional language.

Controller. The controller is represented as a bipartite graph where the ver-
tices are states or instructions. It is constructed lazily, to allow large multi-
instruction controllers to be described without requiring the complete graph to
fit in memory.

A reduced controller is a controller where some instructions are removed,
typically making some other states and instructions unreachable and implicitly
removed. Transformed controllers can be constructed as a layer on top of an
existing controller, referring to states and instructions of the controller beneath.
Reductions, for example, can be implemented as such.

Variable Scopes. The state of an actor machine is represented by variables,
and the variables are grouped into scopes. An initialization expression of a
variable in a scope may refer to any variable in that scope, similar to let rec in
ML. Recursive functions and procedures, and even mutually recursive ones,

can therefore simply refer to each other as long as they are declared in the same
scope.

Scopes can have two kinds of lifespans—they are either persistent and live
as long as the actor machine executes, or transient and become invalid right
after each firing. Persistent scopes are initialized before the actor machine starts
executing. A transient scope is initialized before its variables are used, if it is not
already initialized. For example, if two conditions refer to variables in the same
scope, the scope does not need to be reinitialized when evaluating the second
condition, given that no transition has been fired in between. More generally,
if it can be determined statically that the variables of a transient scope will have
the same values if it is initialized again, it does not need to be reinitialized.

The decoupling of the variable scopes from the conditions and transitions
enables some interesting optimizations. Common subexpression elimination
between conditions can be implemented by moving the common subexpres-
sion to a variable in a transient scope that both conditions refer to. The actor
language Cal supports sharing variables between conditions and transitions,
which naturally translates to a transient scopes that both the conditions and
the transition refer to.

F.3.3 Frontend: Cal and RVC-CAL

Cal [] is a language for dataflow actors with firing. Listing F. on page
shows an example actor written in Cal. Tÿcho includes frontends for two ver-
sions of Cal, one that is based on the Cal Language Report [] and one that
is based on RVC-CAL []. Since RVC-CAL is a subset of Cal, the RVC-CAL
actors are represented internally by the abstract syntax tree for Cal actors.

A Cal actor has internal state variables and ports through which it commu-
nicates. The computation is described by a set of actions, where each action is
a transition combined with its associated conditions. An action may also de-
clare variables in an action scope that is visible both to the transition and the
conditions. An action scope needs to be initialized before testing a condition
that requires it, or before firing the transition. After an action has fired, all ac-
tion scopes are invalidated and needs to be reinitialized the next time they are
required.

The translator from Cal actor to actor machine translates each action to a
transition, a set of conditions, and a transient scope with the variables of the
action scope. Then, a multi-instruction controller is created that implements
the action selection according to the semantics of Cal. There are a few other
constructs in Cal actors that affects the action selection (action priorities, action

process SumN () uint N, int X =⇒ int Sum :

int sum;

uint n;

int x;

repeat

sum := 0;

N −→ n; // reads a value from port N to variable n

while n > 0 do

X −→ x; // reads a value from port X to variable x

sum := sum + x;

n := n − 1;

end

Sum←− sum; // writes the value sum to port Sum

end

end

Listing F.2: An example process that computes the sum of a given number of values. The

read and write statements are marked with comments.

schedules and initialization actions), all of which are taken into account in the
creation of the controller.

F.3.4 Frontend: Kahn Processes

Tÿcho also has a frontend for a Kahn process language that, syntactically, is in-
fluenced by Cal, but is very different in the way the computation is structured.
Listing F. shows an example kernel in this process language. The process lan-
guage is designed to be similar to Cal, and borrows the expression language and
types directly from Cal. The statements are extended to include a read opera-
tion and a write operation, which do not collide with any of the current syntax
of Cal. The process declaration is also similar to the actor declaration of Cal.

Another requirement on the language design is that the processes should
be implementable without requiring to maintain a stack between the read and
write operations. As a consequence of this requirement, read and write op-
erations are only allowed in the process body and not in procedures, because
procedures can be recursive.

In [], a translation from Kahn processes to dataflow actors is presented,
which is the basis for the Kahn process frontend in Tÿcho. The idea is to iden-

tify segments in the code that can be expressed as transitions, i.e. producing
and consuming a fixed number of tokens. The translator in [] starts by trans-
lating the process to a flowchart and then groups the nodes of the flowchart
to sequences of statements with the goal of finding long sequences that can be
grouped to a transition without changing the behavior of the kernel. The rea-
son for finding long sequences of statements rather than short is that it reduces
the overhead, both in the rest of the compilation and at runtime. Instead of
creating a flowchart, the translator in Tÿcho starts with a control flow graph
where the basic blocks are split such that every basic block becomes a valid
transition and with the same requirement that the behavior of the process is
retained. Variables of a Kahn process are translated to variables in a persistent
scope of the actor machine intermediate representation.

F.3.5 Backend: C

Tÿcho has a backend that generates C programs. The generated code is then
compiled using a C compiler for the target platform. The state variables of a
kernel, together with the state of the actor machine controller and references to
the buffers that it communicates through, is represented by a struct. Values of
this struct are called state objects. The conditions and transitions are represented
by functions that take a reference to a state object as parameter. The controller
is also implemented by a function that takes a reference to a state object as
parameter, and the controller function returns true if it has fired a transition,
and false otherwise. Listing F. illustrates the code that is generated for the
controller in Figure F..

Functions and procedures of the intermediate representation may refer to
variables declared in enclosing scopes. The C backend implements functions
and procedures as fat pointers—objects with a pointer to a function and a
pointer to an object describing the envorinment, where the environment object
contains pointers to the variables of the enclosing scopes that the function or
procedure uses.

F.4 TRANSITION SELECTION

F.4.1 Background

Dataflow actors with firing are executed as a sequence of transition firings, and
before each firing the actor needs to select which transition to fire. The ex-

_Bool Merge_run(Merge_state *self) {

_Bool progress = false;

switch (self−>controller_state) {
case Merge_uuu: goto uuu;

case Merge_uut: goto uut;

}

uuu: // Test(c3, uut, uuf)

if (Merge_c3(self)) goto uut; else goto uuf;

uut: // Test(c1, tut, fut)

if (Merge_c1(self)) goto tut; else goto fut;

tut: // Exec(ta, uuu)

progress = true; Merge_ta(self); goto uuu;

uuf: // Wait(uuu)

self−>controller_state =Merge_uuu; return progress;

fut: // Test(c2, ftt, fft)

if (Merge_c2(self)) goto ftt; else goto fft;

ftt: // Exec(tb, uuu)

progress = true; Merge_tb(self); goto uuu;

fft: // Wait(uut)

self−>controller_state =Merge_uut; return progress;

}

Listing F.3: Simple implementation of an actor machine controller in C that executes until it

cannot make any progress.

ecution can therefore be seen as a process that alternates between selecting a
transition by testing conditions and executing the selected transition.

The actor machine controller describes this process where test instructions
test conditions and exec instructions execute transitions. It also describes the
situations when no transition can be selected using the wait instruction. One
important aspect of the actor machine is the ability to encode knowledge in
the states of the controller, which enables an actor machine to avoid testing
conditions that it already has tested.

Given the knowledge that is encoded in a controller state, there are in gen-
eral several things that could be done. If two conditions, c1 and c2, are unknown
in controller state s , testing either c1 or c2 are candidates for a next step of ex-
ecution. However, if transition t can be executed in the same state, s , it is
probably better to execute t immediately, because the selection process is all
about selecting a transition. A multi-instruction actor machine controller may
have all three instructions in state s but only one of them can be executed each
time the controller is in that state.

A multi-instruction controller can be seen as a family of single-instruction
controllers, i.e. all controllers that can be generated by selecting one of the
instructions in each state. The process of selecting a non-empty subset of the
instructions in each state is called reduction. If the reduction yields a single-
instruction controller, it is called a full reduction. Different reductions yield
different performance when executing the actor machine.

The space of possible single-instruction controllers that a multi-instruction
controller represents can be explored by randomly choosing one instruction in
each state. By repeating this process to get different implementations of the
same program, the implementations can then be benchmarked to find which
one is the fastest. This process can, however, be very time consuming, and
needs to be repeated if the program changes. An alternative approach is to use
reduction heuristics that select instructions.

F.4.2 Controller Reducers

To support the claim that Tÿcho provides efficient transition selection, we present
a few reduction heuristics that optimize the transition selection. Some of the
heuristics have been presented in []. We categorize the reducers using two
metrics: whether the reducer uses profiling information and whether the re-
ducer looks at more than one state when making a decision. The reducers that
only consider one state (or possibly a fixed number of states) to make a reduc-
tion decision are called local reducers, and the ones that consider arbitrarily many

states are called regional reducers. Reducers that look at the whole controller at
the same time are called global reducers. This paper does not include any global
reducers, but the regional reducers might consider all states depending on the
actual controller they reduce.

Reducer: Random. The random reducer selects an instruction in each con-
troller state at random and yields a full reduction of the controller. The pseu-
dorandom number generator can optionally be given a seed, to be able to make
reproducible builds of a program, otherwise it will start with a seed based on the
current time. This is a local reducer that does not use any profiling information.

Reducer: Instruction Priority. The instruction priority reducer prioritizes in-
structions in the following order: exec then wait and finally test. If a state
contains an exec instruction, then all exec instructions are selected. Other-
wise, if a state contains a wait instruction, then all wait instruction are selected.
Finally, if there are only test instructions, then all instructions are selected.

The reason for prioritizing exec instructions is that the process is all about
finding a transition to execute. The reason for prioritizing wait instructions
over test instructions is not as obvious. The wait instructions are only allowed
in states where no transition can be executed until one of the known conditions
are retested, and to retest a condition, the knowledge about it must first be
discarded by a wait instruction. This means that from a state with a wait
instruction, there exist no sequence of test instructions that lead to an exec
instruction without first going through a wait. By taking the wait instruction
as early as possible, the required conditions can be retested to reach an exec.
It is also possible that results from test instructions might be discarded in the
coming wait anyway.

This is a local reducer that does not use any profiling information, and
because it selects all instructions of a kind, it does not, in general, yield a full
reduction.

Reducer: Most Differentiating Test. A test is differentiating if the sets of
transitions that are reachable from the target states are different. The more
different the sets are, the more differentiating the test is.

Let r : S →P (T) be a function from a state s to the set of transitions of
exec instructions that are reachable from s going through only test instruc-

tions. Given a test(c , st , s f), the size of the symmetric set difference between
r (st) and r (s f) is the metric of how differentiating the test is. In a state with
test instructions, this reducer selects all tests with the highest value of the dif-
ferentiation metric.

The rationale behind this reducer is that the most differentiating test in-
structions brings the decision process closer to an exec or a wait instruction,
while the least differentiating test instructions does not matter for most tran-
sitions and should be postponed to states where it matters more.

This reducer is a regional reducer, because it traverses the controller to see
which transitions are reachable. It does not, in general, yield a fully reduced
controller, because several test instructions could get the same value of the
differentiation metric. The reducer does not use any profiling information.

Reducer: Most Probable Condition. This reducer is introduced in [] and is
based on a platform-independent profiling metric. The program is first instru-
mented to record the truth values of every tested condition in the controller,
and then executed with some input. The empirical probabilities of the condi-
tions are then calculated and used as input for this reducer which selects the
test instructions with the conditions that have the highest probability to be
true.

Let P̂ (c) be the empirical probability that c is true, and δ = 0.1 be a
probability interval. Given the set of conditions Cs of all test instructions
in a state s , all test instructions with a condition c ∈ Cs such that P̂ (c) ≥
maxc ′∈Cs

P̂ (c ′)−δ are selected.
The idea behind this reducer is that testing the most probable conditions

will quickly lead to a transition that is likely to be selected. It might, however,
be the case that an unlikely transition requires many conditions that are very
likely, and few conditions that are unlikely.

This reducer is a local reducer that uses profiling information and does not,
in general, yield a fully reduced controller.

Reducer: Most Probable Transition. This reducer is also introduced in []
and is also based on a platform-independent profiling metric: the transition
probabilities. The program is first instrumented to record how many times
each transition is executed, and then executed with some input. The relative
frequencies of the transitions then guide the reducer.

The symmetric set difference between A and B is (A∪B) \ (A∩B).

The reducer is a regional reducer that traverses the controller to see which
transitions are reachable, i.e. the transitions for which there is an exec instruc-
tion that is reachable through a sequence of test instructions. Given a state,
this reducer finds which transitions are reachable and selects the most probable
transition as its target. Then it selects all instructions that are on a path no
longer than the shortest path to an exec instruction with the target transition.

The rationale behind this reducer is that it will with as few tests as possible
reach the most probable transition.

The reducer is a regional reducer that uses profiling information. Because
there can be many paths of equal length that is the shortest path to the target
transition, this reducer does not, in general, yield a fully reduced controller.

F.4.3 Evaluation

We evaluate how the reducers in the previous section affect the performance of
a stream program. The evaluation is similar to [], but in addition to the two
profiling based reducers, we also evaluate the reducer that selects differentiating
tests.

None of the three reducers that we evaluate yield fully reduced controllers.
To evaluate the effect of these reducers, we sample the space of possible single-
instruction controllers that these multi-instruction controllers describe, using
the random reducer. We also sample the space of single-instruction controllers
without first applying any of the three reducers. The instruction priority reduc-
tion is applied before all other reducers. In summary, there are four chains of
reducers that are evaluated:

most-differentiating-tests instruction priority, and thenmost differentiating tests,
and then random.

most-probable-transitions instruction priority, and then most probable transi-
tions, and then random.

most-probable-conditions instruction priority, and then most probable condi-
tions, and then random.

baseline instruction priority, and then random.

We use as benchmark the reference implementation of the MPEG- Part
 SP decoder from the RVC framework, consisting of Cal actors of various
degrees of complexity. We generate variants of each chain of reducers with
different random seeds and generate C programs from each of them. The C

baseline

most-differentiating-tests

most-probable-conditions

most-probable-transitions

21.4 21.5 21.6
Execution time (ms)

R
ed

u
ce
r
ch

ai
n

Figure F.5: Box plot of execution time of the benchmark grouped by which reducers are

used. The multi-instruction actor machines that are the result of the reductions are sampled

using a random reducer.

programs are compiled using GCC .. for a -bit PowerPC system and are
simulated using the cycle-accurate ASIM Power Architecture simulator [].

The execution times of the benchmark, compiled with the four chains of
reducers, are presented in Figure F. as a box plot. The reducer that aims for the
most probable transitions resulted in the smallest median and quartiles and the
smallest variance. The reducer that selects the most probable conditions resulted
in the smallest minimum. The reducer that selects the most differentiating test
resulted in a slightly lower median than the baseline, but did not yield as fast
programs as the baseline in the best case. The results show that Tÿcho can
optimize the transition selection by controller reduction.

F.5 KERNEL FUSION

F.5.1 Background

When more than one kernel is executed on the same processor, they need
to be scheduled. Programs with thread based concurrency are often imple-
mented using preemptive scheduling, but stream programs, and especially data-
flow with firing, can often be scheduled more efficiently. Some stream pro-
grams can be executed with a static schedule that is computed at compiletime,
e.g. synchronous dataflow []. Other stream programs, for example Boolean-
controlled dataflow [] can be scheduled statically to some extent, and only

requires some scheduling decisions to be done at runtime. Stream programs
that cannot be scheduled using these efficient techniques could still contain
subprograms that can.

One way of implementing a schedule for a set of kernels is by fusing the
kernels. The fused kernel performs the computation of the original kernels in
the order that the schedule describes. Actor machine fusion (that is sometimes
called actor machine composition) implements kernel fusion for actor machines
and is one of the motivations for the machine model []. Cedersjö and Janneck
presented an algorithm for actor machine fusion in [], but this algorithm was
never shown to be scalable.

In this section we review the algorithm in [] and present a new, improved
algorithm. We compare the new actor machine fusion algorithm to a Cal actor
fuser by Boutellier et al. [].

F.5.2 Actor Machine Fusion

As discussed earlier, an actor machine consists of one controller and sets of
communication ports, transitions, conditions and scopes. A fused actor ma-
chine is still an actor machine and consists of one controller and the disjoint
unions of, respectively, the communication ports, transitions, conditions and
scopes of the original actor machines. The controller is created by merging the
controllers of the original actor machines and injecting additional knowledge
about the state of the system to avoid test instructions.

Controller State. A controller that is fused from n actor machines keeps track
of the controller states of its original actor machines in a tuple s ∈ S1×· · ·× Sn .
Each element si ∈ Si in the tuple s = 〈s1, . . . , sn〉 is the current controller state
of original actor machine i .

An important aspect of actor machine fusion is the ability to remove test
instructions that are not needed. Similar to how actor machines translated from
Cal keeps track of result of tested conditions by encoding the knowledge in its
states, a fused actor machine can keep track of how its original actor machines
communicate. The states of a fused controller keeps track not only of the states
of its original actors, S1×· · ·×Sn , but also of additional knowledge K about the
program state, such as the number of tokens on a specific buffer. The complete
state of a fused controller is denoted 〈s, k〉 ∈ S1 × · · · × Sn ×K , where K is an
abstraction of the program state.

Program State Knowledge. An actor machine condition evaluator e : Σ ×
C → {t, f} is a function that evaluates an actor machine condition for a given
program state. We useΣ to denote the set of program states and C for the set of
conditions. A transition executor is described by a partial function u :Σ×T 7→
Σ, where T is the set of transitions. The transition executor is defined for all
legal transitions in the given state—u is for example undefined for transitions
that read tokens in states where the tokens are not present.

The additional knowledge that a fused controller encodes is an abstraction
K of the program state Σ. The abstraction K : Σ→ K maps program state
to a simpler representation K that captures some aspects of the program state,
e.g. the number of tokens on a particular buffer.

At compiletime, when the actor machine fusion is performed, the full pro-
gram state Σ is not known, which makes it impossible to evaluateK . Instead,
the knowledge abstraction is represented by a -tuple (K , k0, ê , û), where K is
the set of abstract knowledge, k0 = K (σ0) is the knowledge about the initial
state, σ0, of the program. The functions ê : K ×C 7→ {t, f} and û : K ×T 7→ K
are the duals of e and u that operate on the abstract state K instead of the pro-
gram state Σ. The function ê is consistent with e iff ê (K (σ), c) = e (σ , c) for
all σ ∈Σ and c ∈ C for which ê (K (σ), c) is defined. Similarly, û is consistent
with u iffK (u(σ , t)) = û(K (σ), t) for all σ ∈Σ and t ∈ T for which u(σ , t)
is defined.

In this article, we use an abstraction that captures the number of tokens
on buffers that are internal to the fused actor machine. In this abstraction,
K = B1 × · · · × Br , where Bi is the set of integers from 0 to the buffer size
of buffer i , the initial knowledge is k0 = 〈0, . . . ,0〉. The evaluation function
ê is defined for all conditions that test for tokens or for space on the internal
buffers. The transition function û is defined for all transitions that do not
consume tokens that are not present or produce tokens that do not fit on the
internal buffers, and it returns a new element of K where the number of tokens
are updated according to what the transition does.

Controller FusionAlgorithm. For each controller state 〈s, k〉 ∈ S1×· · ·×Sn×K
in the fused controller, the fusion algorithm generates instructions by selecting
which instructions of the original actor machines should be present in the fused
state. The target states of the instructions is then adapted to the state space of
the fused controller. The initial state of the fused controller 〈s0, k0〉 consists
of the tuple of initial states of the original controllers together with the initial

knowledge state. The fused controller can be created by generating instructions
for the initial state and all states that are targets of the generated instructions.

Given a state 〈s, k〉, the fusion algorithm calls a function select instruc-
tions (s(i), k) for each original actor machine i to get the instructions of each
actor machine controller. A simple implementation of select instructions
returns all instructions from the controller state of that actor machine. How-
ever, to remove test instructions whose conditions are known by k , select
instructions needs to consider the additional knowledge represented by k
and select instructions accordingly. This article presents two implementations
of select instructions that use the knowledge k .

If the set of instructions returned by the calls to select instructions
contains an exec instruction, then there is no need to test any more conditions,
therefore only exec instructions are selected in that case. Similarly, if there are
no exec instructions, but there are test instructions, they are prioritized over
wait instructions, because wait instructions indicate that the actor machine
cannot execute a transition and a test could potentially lead to an exec.

If an exec(t , s ′) instruction is selected from the controller of actor ma-
chine i to be included in the fused controller state 〈s, k〉, then the instruction
is adapted with a new target state 〈s[i 7→ s ′], û(k , t)〉, i.e. element i of the state
tuple s is updated to s ′, and the knowledge is updated using û. Similarly, when
a test(c , s ′, s ′′) instruction is selected from actor machine i for the fused con-
troller state 〈s, k〉, it is transformed to test(c , 〈s[i 7→ s ′], k〉, 〈s[i 7→ s ′′], k〉).
When wait instructions are selected, they are merged to a single wait instruc-
tion. Given a controller state 〈s, k〉, for each i from 1 to n, let wi be either
the target state of the wait instruction that is selected from controller s(i)
if such instruction is selected, or s(i) otherwise. The merged instructions is
wait(〈〈w1, . . . ,wn〉, k〉).
Instruction Selector . As mentioned in the previous section, a simple imple-
mentation of select instruction selects all instructions from the given actor
machine state. This selector does not eliminate any test transitions and the
state space of the resulting controller can therefore be very large.

In this section we present an instruction selector that is based on the algo-
rithm in [], but is generalized to handle additional knowledge of any knowl-
edge abstraction and not just the number of tokens on the internal buffers. The
idea behind Algorithm F. is to check if the conditions of the test instructions
are known by the additional knowledge, and in that case perform the selection
from the target state instead.

The algorithm in [] was successfully applied to small examples of Cal pro-
grams with performance improvements as result, but was not tested on larger
examples.

Algorithm F. Instruction selector .
function select instructions(state s , knowledge k)

X ← all instructions in s
return
∪

x∈X apply knowledge(x , k)

function apply knowledge(instruction x , knowledge k)
match x with

case test(c , s ′, s ′′) do
match ê (k , c) with

case true do
return select instructions(s ′, k)

case false do
return select instructions(s ′′, k)

case undefined do
return {x}

case exec(_,_) or wait(_) do
return {x}

Instruction Selector . When scheduling two actor machines A and B , if it
is known that A cannot reach an exec before B has performed one of its exec
instructions, then there is no need to perform any test instruction of A before
the exec instruction in B has been executed. For example, if B produces a
token that A requires, then there is no need to check the other conditions of A
before B has produced that token.

This observation is used in the second instruction selector, Algorithm F..
Before selecting instructions, liveness analysis is performed on the actor ma-
chine controller, checking if there exist a sequence of test instructions that
could lead to an exec instruction, taking the additional knowledge in the cur-
rent state into account. If there is a possibility to reach an exec instruction,
then instructions are selected as in the previous algorithm, otherwise, only wait
instructions are selected. The wait instructions are needed for the fused state

where all original actor machines have stalled to generate a combined wait in-
struction.

Algorithm F. Instruction selector .
function select instructions(state s , knowledge k)

X ← all instructions in s
X ←∪x∈X apply knowledge(x , k)
if stalled(s , k) then

return the wait instructions in X
else

return X

function apply knowledge(instruction x , knowledge k)
▷ see Algorithm F.

function stalled(state s , knowledge k)
X ← all instructions in s
return
∧

x∈X stalled at instruction(x , k)

function stalled at instruction(instruction x , knowledge k)
match x with

case exec(_,_) do
return false

case wait(_) do
return true

case test(c , t , f) do
match ê (k , c) with

case true do
return stalled(t , k)

case false do
return stalled(f , k)

case undefined do
return stalled(t , k) ∧ stalled(f , k)

F.5.3 Evaluation

We evaluate the efficiency of the actor machine fusion algorithm by measuring
the execution time of stream programs with and without actor machine fusion.
To compare to prior art, we also reproduce the experiments of Boutellier et
al. [].

We generate two C programs from each of the four RVC-CAL programs
in [] using the Tÿcho compiler, one with actor machine fusion and one with-
out. These eight programs, together with the corresponding eight C programs
of [], that were generated using Orcc, are then compiled to three different
target architectures. All programs are executed ten times on each platform, and
we present the mean and the standard deviation of the execution times.

Boutellier et al. [], uses the number of clock cycles per processed sam-
ple as a platform independent performance metric. The numbers are achieved
by subtracting an estimate of the time spent on I/O operations from the to-
tal execution time and dividing it by the number of processed samples. The
estimated time spent on I/O is computed by timing a different program that
only performs the I/O operations. In this paper, we instead compare the whole
program performance including the time spent on I/O operations. The main
reason is that, on our platforms, the execution time of one program doing a
series of I/O operations is not an accurate estimate of the time spent doing the
same I/O operations in a different program.

The result is presented in Table F.. The applications Adaptive LMS and
Digital predistortion became much faster after kernel fusion on all three plat-
forms and both stream program compilers. Both applications were very fine-
grained with small and simple kernels, and were completely scheduled in both
kernel fusion algorithms. For the ZigBee transmitter baseband, the kernel fu-
sion did not make any measurable difference, which is not surprising because
the application only contains four kernels that are much more complex than the
ones in the previous examples. The MPEG- decoder became slightly faster af-
ter kernel fusion on all architectures except on the PowerPC system with the
Tÿcho compiler.

We believe the main reasons why Orcc, in most of these examples, produces
faster code than Tÿcho, are the difference in how closures are implemented
and how actor state is handled. Orcc supports the kinds of closures that are
permitted in RVC-CAL, which can be implemented without pointers, while
Tÿcho handles closures more generally. Tÿcho includes some optimizations for
closures, but does not detect all cases that are permitted in RVC-CAL. The actor

Table F.1: Number of clock cycles per input sample.

ARM PowerPC Intel x86

x̄ σ x̄ σ x̄ σ

Application: Adaptive LMS (39 kernels)

Tÿcho, baseline 4522 41.4 3029 25.1 1548 33.4

Tÿcho, with fusion 172 1.9 181 0.2 107 4.3

Orcc, baseline 13773 46.1 11679 39.8 3359 97.2

Orcc, with fusion 108 0.2 80 0.1 70 14.5

Application: Digital predistortion (80 kernels)

Tÿcho, baseline 6765 52.8 3451 13.2 1974 40.1

Tÿcho, with fusion 1569 55.9 1544 1.2 823 18.7

Orcc, baseline 3050 52.9 1358 1.1 1245 32.7

Orcc, with fusion 383 0.8 471 1.4 594 19.4

Application: Zigbee transmitter baseband (4 kernels)

Tÿcho, baseline 33216 1266.2 10900 530.0 36366 201.3

Tÿcho, with fusion 30127 715.5 10997 604.5 36276 219.1

Orcc, baseline 29814 514.8 9317 293.5 35541 160.5

Orcc, with fusion 30159 1209.5 9319 204.8 35999 337.6

Application: MPEG-4 part 2 SP decoder (34 kernels)

Tÿcho, baseline 90115 921.7 53392 106.5 31810 229.0

Tÿcho, with fusion 76284 1096.9 56362 289.8 29127 175.7

Orcc, baseline 51306 1370.2 29131 128.9 16886 212.1

Orcc, with fusion 34184 138.4 25120 81.6 14492 181.6

state is also handled differently; Orcc translates actor variables to static variables
of the C program, while Tÿcho puts all variables in a state object. The reason
for using a state object is for code reuse and to makes it easier to move kernels
in memory or between computers.

F.6 ACTOR MACHINE SCOPE OPTIMIZATIONS

F.6.1 Background

The variable scopes of the actor machine based kernel representation in Tÿcho
offers some optimization opportunities. In this section, we discuss two opti-

mizations; one that is applicable when several conditions or transitions use the
same variable scopes, and one that is applicable when only one condition or
transition use a particular variable scope.

F.6.2 Scope Initialization

Problem. Actor machine scopes have, as discussed in Section F.., two dif-
ferent lifespans—persistent, that live as long as the actor, and transient, that
live until and including the next transition. A scope needs to be initialized
before being used by a condition, a transition or by the initializer of another
scope. Transient scopes, therefore needs to be initialized repeatedly throughout
the execution of the actor machine.

Since the lifespan of transient scopes end after each transition, and only
the transitions can change the values of their variables, transient scopes can be
initialize before every time it is used. All conditions between two transitions
will see the same values in the transient scopes, irrespective of how many times
it is reinitialized.

It is, however, unnecessary to reinitialize a scope if its variables will get the
same values. For example, if first a condition uses a transient scope, and then
a transition uses the same transient scope, the scope does not need to be ini-
tialized before the second use (unless another transition has been performed in
between).

Some transient scopes are unaffected by some transitions. If a transient
scope will always be initialized to the same values before and after a transition
has executed, then it is unaffected by that transition. Even though, the lifespan
of such scope has ended, it will be initialized to the same values on its next use.
This is a situation that occurs more often when kernels are fused, because the
transitions cannot update the variables that originate from other kernels.

The problem we are addressing here is the unnecessary reinitialization of
transient scopes that takes time that is better spent on actual computation.

Solution. Our solution is to perform static analysis on the actor machine con-
troller, the transitions and the scopes to reduce the amount of reinitialization.

The first thing that is analyzed is how controller instructions use the actor
machine scopes. Two functions are defined; req : I →P (Z) which gives the
transitive dependencies on scopes of an instruction, and kill : I →P (Z)which
is a mapping from instructions to the set of scopes that are no longer alive after
the instructions has executed.

The function req is the transitive closure of the scope dependencies, mean-
ing for example if i ∈ I uses a variable in scope z1 ∈ Z and an initializer in z1
in turn requires a variable in z2 ∈ Z , then {z1, z2} ⊆ req(i). Regarding kill, if
a transition that is executed by instruction i ∈ I consumes a token from a port
q , and Zq ⊆ Z is the set of scopes that are initialized with a token from port
q , then Zq ⊆ kill(i), because the scopes in Zq might get initialized to different
values after the transition.

To describe how states and instructions relate, we define a relation tgt ⊆
I × S that is the relation between instructions and their target states, and a
function src : I → S that maps instructions to their source state.

We define two functions aliveI : I → P (Z) and aliveS : S → P (Z) in
terms of each other. The first, aliveI , maps instructions to the set of scopes that
are alive after that instruction. The second, aliveS , maps states to the set of
scopes that are alive in that state. Let Zp be the set of persistent scopes,

aliveS (s) = Zp ∪
∩

(i ,s ′)∈tgt,s=s ′
aliveI (i), and

aliveI (i) =
�
aliveS (src(i))∪ req(i)

� \ kill(i).
The set of scopes that needs to be initialized before executing instruction i is its
required scopes, except the persistent scopes and the ones that are already alive:
(req(i) \ Zp) \ aliveI (i).

F.6.3 Scope Lifting

Problem. Input patterns of an action in Cal declare variables for the input
tokens that are visible both to its guards and its action body. An action may
also declare other variables that are visible in both places. When a Cal actor is
translated to an actor machine in Tÿcho, these variables are put into an actor
machine scope with a transient lifespan (see Section F..). Transient actor
machine scopes, just like action scopes, end their lifespan after each transition
or action firing.

We have found that declaring local variables inside a condition or a tran-
sition often yields faster programs than referring to variables that are in actor
machine scopes. One reason that makes it faster is that the C compilers can do
more optimizations on local variables than variables in the state object, because
it has more information about what happens to the variable if it is local to the
function.

In this section, we address the problem of lifting variable declarations of
transient scopes to conditions and transitions to increase program performance.

Baseline

Liveness analysis

Scope lifting

Both

0.95 1.00 1.05
Execution time (s)

O
p
ti
m
iz
at
io
n
s

Figure F.6: Execution time of MPEG-4 Part 2 SP decoder, compiled using different optimiza-

tions

Solution. Our solution is to lift all transient scopes that are used by exactly one
condition or one transition. It could be beneficial to lift other scopes as well, for
example if the optimizations that are enabled by lifting a variable reduces the
execution time more than the repeated initialization of the variable increases
the execution time, but that is beyond the scope of this paper.

F.6.4 Evaluation

We have implemented scope liveness analysis and scope lifting in the Tÿcho
compiler, and measured the execution time of the reference implementation of
the MPEG- part SP decoder from the RVC framework with and without
the two optimizations. The programs were tested on an Intel Core i, running
macOS, which introduces some randomness from other processes running on
the system. The generated C programs were compiled using Clang with opti-
mizaiton flag -O3. Figure F. shows that scope lifting was more effective than
liveness analysis on this example, and that the combination was the most effec-
tive optimizaiton.

F.7 RELATED WORK
Tÿcho uses a language independent kernel representation as its intermediate
representation. There are also other tools for stream programs with that prop-
erty, for example SDF [] and DIF [].

SDF is a set of tools for analyzing, transforming and scheduling synchronous
dataflow graphs. A kernel of a synchronous dataflow program has the same
token production and consumption rates on every firing []. Many interest-
ing operations on these programs can therefor be performed without knowing
what computation is actually performed in the kernels. SDF is made language-
independent by ignoring the computation in the kernels. It also includes a tool
for generating random graphs representing valid programs.

The Dataflow Interchange Format (DIF) is a language-independent text-
based stream program description language. It is a vendor-agnostic format
for tools and developers that can represent a wide variety of stream programs,
with specific constructs for more restricted forms of dataflow, such as boolean-
controlled dataflow [], cyclo-static dataflow [] and synchronous dataflow [].
Similar to SDF, the DIF package includes tools for computing properties and
making transformations of the stream programs.

SDF and DIF recognizes specific classes of dataflow with firing that can be
efficiently implemented, for example using static scheduling. The approach to
scheduling in Tÿcho starts in the other end, by providing a scheduling technique
through kernel fusions, that is efficient for statically schedulable programs, but
applicable to other programs as well, with reduced efficiency.

In Section F.. we compare the performance of the kernel fusion per-
formed by Tÿcho to the Cal actor merger in []. The merger in [] is based
on the idea that one actor is leading the execution of a set of following actors
that depend directly on the leader or some of the followers. The leader may
have data dependent behavior but the behavior of the following actors should
be determined by what the leader does. The Cal actor merger computes the
variable dependency graph across all actors that are to be merged. From this
graph, a subgraph is constructed containing only the nodes that could influence
action selection. This information is later used to decide how the actions can
be combined to larger actions. The result of this process is a single actor that
performs the task of all the merged actors.

The kernel fusion based on actor machines that is presented in this paper,
is arguably much simpler, because it only looks at the controllers, the buffer
sizes and the token rates of the transitions and performs simple operations on
them. On the other hand, the performance of the programs merged with []
and compiled with Orcc was better than programs fused with the Tÿcho based
solution presented in this paper.

Another problem addressed by this paper is transition selection, which is
related to tree pattern matching; a language construct that is common in func-

tional programming languages such as ML. Both problems are about testing
conditions to determine which part of the code to execute. A common opti-
mization objective of both transition selection and of pattern matching is to
test as few conditions as possible. In an early work in this area [], the authors
note that building the minimal decision tree is NP-hard, and describes some
heuristics for finding small decision trees.

The most effective transition selectors were created using profiling data.
This technique is often called profile-guided optimization, which is studied
in []. We used two kinds of profiles for our heuristics, one counting how
many times the conditions were true and false, respectively, and one counting
how often the transitions were executed. These kinds of profiles are most similar
to the control flow profiles, described in [].

F.8 CONCLUSIONS
In this paper, we have presented a framework for compiling stream programs
and how that framework solves three problems of stream program compilation.
The first problem is about stream program kernels with several transitions—that
can do different things in different situations—how to create efficient decision
structures for transition selection. That problem was solved using the actor
machine as the basis for the intermediate representation in Tÿcho, and further
improved using actor machine reduction. We reviewed two reducers from one
of our previous papers that use profiling data and presented one new reduction
strategy that does not require profiling. An interesting direction for future work
is towards more efficient reducers that does not use profiling data.

The second problem is also about making decisions; how to achieve efficient
scheduling by fusing kernels to one. This problem was also solved in Tÿcho
on the intermediate representation based on actor machines. We presented
a new actor machine fusion algorithm and how it differs from our previous
algorithm. We evaluated the new algorithm by comparing it to a Cal actor
merger. An interesting extension of this work, inspired by the Cal actor merger,
would be to fuse a sequence of transitions into a single transitions. We believe
this extension could reduce the size of the controller, at the cost of changing
scheduling properties and buffer size requirements.

The last problem is about how to efficiently implement variable sharing be-
tween conditions and transitions. First, we showed how to use liveness analysis
for the variable scopes in the actor machine controller to remove some vari-

able initializations. We also showed how to lift variable declarations from the
variable scopes of the actor machine to the conditions and transitions. These
optimizations were also performed on the actor machine based intermediate
representation in Tÿcho.

All three problems were solved on a language-independent representation
of stream programs, and using techniques that are applicable to a broad class
of stream programs. To demonstrate language independence and generality, we
presented two compiler frontends; one for a Kahn process language and one for
Cal—a language representing a very broad class of dataflow with firing.

Bibliography

[] E. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proceedings of
the IEEE, vol. , no. , pp. –, .

[] J. Falk, J. Keinert, C. Haubelt, J. Teich, and S. S. Bhattacharyya, “A
generalized static data flow clustering algorithm for MPSoC scheduling
of multimedia applications,” in Proceedings of the th ACM international
conference on Embedded software, EMSOFT ’, (New York, NY, USA),
pp. –, ACM, .

[] R. Gu, J. W. Janneck, M. Raulet, and S. S. Bhattacharyya, “Exploiting
statically schedulable regions in dataflow programs,” Journal of Signal Pro-
cessing Systems, vol. , no. , pp. –, .

[] J. W. Janneck, “A machine model for dataflow actors and its applications,”
in Signals, Systems and Computers (ASILOMAR), Conference Record
of the Forty Fifth Asilomar Conference on, pp. –, IEEE, .

[] R. M. Karp and R. E. Miller, “Properties of a model for parallel compu-
tations: Determinacy, termination, queueing,” SIAM Journal on Applied
Mathematics, vol. , no. , pp. –, .

[] J. B. Dennis, “First version of a data flow procedure language,” in Pro-
gramming Symposium, pp. –, Springer, .

[] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete, “Cycle-static
dataflow,” Signal Processing, IEEE Transactions on, vol. , no. , pp. –
, .

[] T. M. Parks, J. L. Pino, and E. A. Lee, “A comparison of synchronous and
cycle-static dataflow,” in Signals, Systems and Computers, . Con-

ference Record of the Twenty-Ninth Asilomar Conference on, vol. , pp. –
, IEEE, .

[] J. T. Buck and E. A. Lee, “Scheduling dynamic dataflow graphs with
bounded memory using the token flow model,” in Acoustics, Speech, and
Signal Processing, . ICASSP-., IEEE International Conference
on, vol. , pp. –, IEEE, .

[] W. Thies, M. Karczmarek, and S. Amarasinghe, “StreamIt: A language
for streaming applications,” in International Conference on Compiler Con-
struction, (Grenoble, France), Apr .

[] M. Drake, H. Hoffman, R. Rabbah, and S. Amarasinghe, “MPEG- de-
coding in a stream programming language,” in International Parallel and
Distributed Processing Symposium, (Rhodes Island, Greece), Apr .

[] J. Eker and J. W. Janneck, “CAL language report: Specification of the
CAL actor language,” tech. rep., December .

[] S. S. Bhattacharyya, G. Brebner, J. W. Janneck, J. Eker, C. Von Platen,
M. Mattavelli, and M. Raulet, “OpenDF: a dataflow toolset for recon-
figurable hardware and multicore systems,” ACM SIGARCH Computer
Architecture News, vol. , no. , pp. –, .

[] H. Yviquel, A. Lorence, K. Jerbi, G. Cocherel, A. Sanchez, and M. Raulet,
“Orcc: Multimedia development made easy,” in Proceedings of the st
ACM International Conference on Multimedia, MM ’, pp. –,
ACM, .

[] M. Wipliez, G. Roquier, and J.-F. Nezan, “Software code generation for
the RVC-CAL language,” Journal of Signal Processing Systems, vol. ,
no. , pp. –, .

[] E. Gebrewahid, M. A. Arslan, A. Karlsson, and Z. Ul-Abdin, “Support
for data parallelism in the CAL actor language,” in Proceedings of the rd
Workshop on Programming Models for SIMD/Vector Processing, WPMVP
’, (New York, NY, USA), pp. :–:, ACM, .

[] G. Kahn, “The semantics of a simple language for parallel programming,”
in In Information Processing’: Proceedings of the IFIP Congress, vol. ,
pp. –, .

[] R. Milner, A Calculus of Communicating Systems. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., .

[] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe, “A theory of commu-
nicating sequential processes,” J. ACM, vol. , pp. –, June .

[] D. May, “Occam,” SIGPLAN Not., vol. , pp. –, Apr. .

[] B. Kienhuis and E. F. Deprettere, “Modeling stream-based applications
using the SBF model of computation,” Journal of VLSI signal processing
systems for signal, image and video technology, vol. , no. , pp. –,
.

[] B. Kienhuis, E. Rijpkema, and E. Deprettere, “Compaan: Deriving pro-
cess networks from matlab for embedded signal processing architectures,”
in Proceedings of the eighth international workshop on Hardware/software
codesign, pp. –, ACM, .

[] T. Stefanov, B. Kienhuis, and E. Deprettere, “Algorithmic transformation
techniques for efficient exploration of alternative application instances,”
in Proceedings of the tenth international symposium on Hardware/software
codesign, pp. –, ACM, .

[] W. Plishker, N. Sane, M. Kiemb, K. Anand, and S. S. Bhattacharyya,
“Functional DIF for rapid prototyping,” in Rapid System Prototyping,
. RSP’. The th IEEE/IFIP International Symposium on, pp. –
, IEEE, .

[] C.-J. Hsu, F. Keceli, M.-Y. Ko, S. Shahparnia, and S. S. Bhattacharyya,
“DIF: An interchange format for dataflow-based design tools,” in Interna-
tional Workshop on Embedded Computer Systems, pp. –, Springer,
.

[] W. Plishker, N. Sane, and S. S. Bhattacharyya, “A generalized scheduling
approach for dynamic dataflow applications,” in Proceedings of the Con-
ference on Design, Automation and Test in Europe, pp. –, European
Design and Automation Association, .

[] M.-Y. Ko, C. Zissulescu, S. Puthenpurayil, S. S. Bhattacharyya, B. Kien-
huis, and E. F. Deprettere, “Parameterized looped schedules for com-
pact representation of execution sequences in DSP hardware and software

implementation,” IEEE Transactions on Signal Processing, vol. , no. ,
pp. –, .

[] J. Falk, C. Haubelt, and J. Teich, “Efficient representation and simulation
of model-based designs in SystemC,” in Proc. of FDL, vol. , .

[] K. Strehl, L. Thiele, M. Gries, D. Ziegenbein, R. Ernst, and J. Te-
ich, “FunState—an internal design representation for codesign,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. , no. ,
pp. –, .

[] J. Falk, C. Zebelein, J. Keinert, C. Haubelt, J. Teich, and S. S. Bhat-
tacharyya, “Analysis of SystemC actor networks for efficient synthesis,”
ACMTransactions on Embedded Computing Systems (TECS), vol. , no. ,
p. , .

[] C. Zebelein, J. Falk, C. Haubelt, and J. Teich, “Classification of general
data flow actors into known models of computation,” in Formal Meth-
ods and Models for Co-Design, . MEMOCODE . th ACM/IEEE
International Conference on, pp. –, IEEE, .

[] E. Gebrewahid, M. Yang, G. Cedersjö, Z. U. Abdin, V. Gaspes, J. W.
Janneck, and B. Svensson, “Realizing efficient execution of dataflow actors
on manycores,” in Embedded andUbiquitous Computing (EUC), th
IEEE International Conference on, pp. –, IEEE, .

[] N. Fors, G. Cedersjö, and G. Hedin, “JavaRAG: a Java library for refer-
ence attribute grammars,” in Proceedings of the th International Confer-
ence on Modularity, pp. –, ACM, .

[] D. E. Knuth, “Semantics of context-free languages,” Theory of Computing
Systems, vol. , no. , pp. –, .

[] G. Hedin, “Reference attributed grammars,” Informatica (Slovenia),
vol. , no. , pp. –, .

[] J. W. Janneck, G. Cerdersjö, E. Bezati, and S. C. Brunet, “Dataflow ma-
chines,” in Signals, Systems and Computers, th Asilomar Conference
on, pp. –, IEEE, .

[] U. M. Mirza, M. A. Arslan, G. Cedersjö, S. M. Sulaman, and J. W. Jan-
neck, “Mapping and scheduling of dataflow graphs—a systematic map,”
in Signals, Systems and Computers, th Asilomar Conference on,
pp. –, IEEE, .

[] E. A. Lee, “A denotational semantics for dataflow with firing,” Tech. Rep.
UCB/ERL M/, EECS, University of California at Berkeley, Jan. .

[] J. Gorin, M. Wipliez, F. Prêteux, and M. Raulet, “LLVM-based and scal-
able MPEG-RVC decoder,” Journal of Real-Time Image Processing, vol. ,
no. , pp. –, .

[] L. Augustsson, “Compiling pattern matching,” in Functional Program-
ming Languages and Computer Architecture, pp. –, Springer, .

[] S. Casale-Brunet, M. Mattavelli, and J. W. Janneck, “Profiling of dataflow
programs using post mortem causation traces,” in Signal Processing Systems
(SiPS), IEEE Workshop on, pp. –, IEEE, .

[] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous
data flow programs for digital signal processing,” Computers, IEEE Trans-
actions on, vol. , no. , pp. –, .

[] M. Engels, G. Bilsen, R. Lauwereins, and J. Peperstraete, “Cycle-static
dataflow: model and implementation,” in Signals, Systems and Computers,
. Conference Record of the Twenty-Eighth Asilomar Conference on,
vol. , pp. –, IEEE, .

[] G. Cedersjö and J. W. Janneck, “Toward efficient execution of dataflow
actors,” in Signals, Systems and Computers (ASILOMAR), Conference
Record of the Forty Sixth Asilomar Conference on, pp. –, IEEE,
.

[] M. Wipliez and M. Raulet, “Classification and transformation of dynamic
dataflow programs,” in Design and Architectures for Signal and Image Pro-
cessing (DASIP), Conference on, pp. –, IEEE, .

[] B. Bhattacharya and S. S. Bhattacharyya, “Parameterized dataflow mod-
eling for DSP systems,” Signal Processing, IEEE Transactions on, vol. ,
no. , pp. –, .

[] K.-E. Årzén, A. Nilsson, and C. von Platen, “Model compiler,” Tech. Rep.
De . (M Release), Lund University, .

[] ISO/IEC, “Information technology – MPEG systems technologies – Part
: Codec configuration representation.” ISO/IEC -, nd Edition,
.

[] S. Lee, T. Lim, E. Jang, J. H. Lee, and SeungwookLee, “MPEG Reconfig-
urable Graphics Coding framework: Overview and applications,” in Proc.
 IEEE Visual Communications and Image Processing Conference (VCIP
), IEEE, .

[] G. Cedersjö and J. W. Janneck, “Actor classification using actor ma-
chines,” in Conference Record of the Forty Seventh Asilomar Conference
on Signals, Systems and Computers, IEEE, .

[] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete, “Static
scheduling of multi-rate and cyclo-static DSP applications,” in Workshop
on VLSI Signal Processing, IEEE Press, .

[] S. Stuijk, M. C. Geilen, B. D. Theelen, and T. Basten, “Scenario-
Aware Dataflow: Modeling, analysis and implementation of dynamic
applications,” in Proceedings of the International Conference on Embedded
Computer Systems: Architectures, Modeling and Simulation (IC-SAMOS),
pp. –, .

[] M. H. Wiggers, M. J. G. Bekooij, and G. J. M. Smit, “Buffer capacity
computation for throughput-constrained modal task graphs,” ACMTrans.
Embed. Comput. Syst., vol. , pp. :–:, Jan. .

[] P. Fradet, A. Girault, and P. Poplavko, “SPDF: A schedulable parametric
data-flow MoC,” in Design, Automation Test in Europe Conference Exhibi-
tion (DATE), , pp. –, march .

[] S. S. Bhattacharyya, E. F. Deprettere, and B. D. Theelen, “Dynamic
dataflow graphs,” in Handbook of Signal Processing Systems, pp. –,
Springer, nd ed., .

[] S. Tripakis, D. Bui, B. Rodiers, and E. A. Lee, “Compositionality in Syn-
chronous Data Flow: Modular code generation from hierarchical SDF
graphs,” in Proceedings of the st ACM/IEEE International Conference on
Cyber-Physical Systems, no. UCB/EECS--, Oct .

[] J. W. Janneck, “Actor Machines — a machine model for dataflow actors
and its applications,” Tech. Rep. LTH -, LU-CS-TR -, De-
partment of Computer Science, Lund University, .

[] M. Wipliez, G. Roquier, and J.-F. Nezan, “Software code generation for
the RVC-CAL language,” Journal of Signal Processing Systems, vol. ,
no. , pp. –, . ./s---z.

[] G. Berry and G. Gonthier, “The Esterel synchronous programming lan-
guage: Design, semantics, implementation,” Science of computer program-
ming, vol. , no. , pp. –, .

[] S. Casale-Brunet, A. Elguindy, E. Bezati, R. Thavot, G. Roquier, M. Mat-
tavelli, and J. W. Janneck, “Methods to explore design space for MPEG
RMC codec specifications,” Signal Processing: Image Communication,
vol. , no. , pp. –, .

[] J. Skeppstedt, “The ASIM Power Architecture simulator.”

[] G. Kahn and D. MacQueen, “Coroutines and networks of parallel pro-
cesses,” research report, .

[] R. Soulé, M. I. Gordon, S. Amarasinghe, R. Grimm, and M. Hirzel, “Dy-
namic expressivity with static optimization for streaming languages,” in
Proceedings of the th ACM international conference on Distributed event-
based systems, pp. –, ACM, .

[] G. Cedersjö and J. W. Janneck, “Software code generation for dynamic
dataflow programs,” in Proceedings of the th International Workshop on
Software and Compilers for Embedded Systems, pp. –, ACM, .

[] J. Boutellier, J. Ersfolk, J. Lilius, M. Mattavelli, G. Roquier, and O. Silven,
“Actor merging for dataflow process networks,” Signal Processing, IEEE
Transactions on, vol. , no. , pp. –, .

[] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A
framework for simulating and prototyping heterogeneous systems,” Int.
Journal of Computer Simulation, .

[] J. McCarthy, “Recursive functions of symbolic expressions and their com-
putation by machine, part i,” Communications of the ACM, vol. , no. ,
pp. –, .

[] R. Von Behren, J. Condit, F. Zhou, G. C. Necula, and E. Brewer,
“Capriccio: scalable threads for internet services,” in ACM SIGOPS Op-
erating Systems Review, vol. , pp. –, ACM, .

[] M. N. Krohn, E. Kohler, and M. F. Kaashoek, “Events can make sense.,”
in USENIX Annual Technical Conference, pp. –, .

[] A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and J. R. Douceur,
“Cooperative task management without manual stack management.,” in
USENIX Annual Technical Conference, General Track, pp. –, .

[] C. A. R. Hoare, “Communicating sequential processes,” Communications
of the ACM, vol. , no. , pp. –, .

[] R. Milner, Communicating and mobile systems: the pi calculus. Cambridge
university press, .

[] A. C. J. Kienhuis, Design space exploration of stream-based dataflow archi-
tectures. TU Delft, Delft University of Technology, .

[] E. Bezati, S. C. Brunet, M. Mattavelli, and J. W. Janneck, “Synthesis and
optimization of high-level stream programs,” in Electronic System Level
Synthesis Conference (ESLsyn), , pp. –, Ieee, .

[] J. Merrill, “Generic and gimple: A new tree representation for entire func-
tions,” in Proceedings of the GCC Developers’ Summit, pp. –,
.

[] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the international
symposium on Code generation and optimization: feedback-directed and run-
time optimization, p. , IEEE Computer Society, .

[] S. P. Jones, Haskell language and libraries: the revised report. Cambridge
University Press, .

[] S. Marlow and S. P. Jones, “The Glasgow Haskell compiler,” tech. rep.,
.

[] H. P. Huynh, A. Hagiescu, W.-F. Wong, and R. S. M. Goh, “Scal-
able framework for mapping streaming applications onto multi-GPU sys-
tems,” SIGPLAN Not., vol. , pp. –, Feb. .

[] E. Bezati, M. Mattavelli, and J. W. Janneck, “High-level synthesis of data-
flow programs for signal processing systems,” in Image and Signal Process-
ing and Analysis (ISPA), th International Symposium on, pp. –
, IEEE, .

[] G. Cedersjö and J. W. Janneck, “Processes and actors: Translating Kahn
processes to dataflow with firing,” in Embedded Computer Systems: Archi-
tectures, Modeling and Simulation (SAMOS), International Conference
on, pp. –, IEEE, .

[] G. Cedersjö, J. W. Janneck, and J. Skeppstedt, “Finding fast action se-
lectors for dataflow actors,” in Signals, Systems and Computers, th
Asilomar Conference on, pp. –, IEEE, .

[] S. Stuijk, M. Geilen, and T. Basten, “SDF3: SDF for free,” in Applica-
tion of Concurrency to System Design, . ACSD . Sixth International
Conference on, pp. –, IEEE, .

[] M. Baudinet and D. MacQueen, “Tree pattern matching for ML.” .

[] R. Gupta, E. Mehofer, and Y. Zhang, “Profile-guided compiler optimiza-
tions,” in The Compiler Design Handbook: Optimizations and Machine
Code Generation, CRC Press, .

	Abstract
	Effektiva datorprogram för strömmande data
	Contents
	Acknowledgments
	Background
	Introduction
	Thesis

	Stream Programs
	Dataflow with Firing
	Process languages
	Actor Machine

	Related Work
	Stream-Based Functions
	Functional Dataflow Interchange Format
	SysteMoC and Actor FSM

	Contributions
	Included Papers
	Related Papers

	Conclusions
	Conclusions
	Future Work

	Publications
	Toward Efficient Execution of Dataflow Actors
	Introduction
	Related Work
	Background
	Our Work
	Evaluation
	Result
	Future Work
	Acknowledgment

	Actor Classification using Actor Machines
	Introduction
	Dataflow programs
	Actor Machine
	Actor Classes and Classifier
	Implementation
	Related Work
	Conclusion

	Software Code Generation for Dynamic Dataflow Programs
	Introduction
	Related work
	Actors and Actor Machines
	Reduction and Code Generation
	Composition
	Actor Machine Compiler
	Actor Machine Composer
	Conclusion

	Finding Fast Action Selectors for Dataflow Actors
	Introduction
	Related work
	Actor machine
	Reduction Heuristics
	Experimental setup
	Results
	Conclusions

	Processes and Actors: Translating Kahn Processes to Dataflow with Firing
	Introduction
	Process Model
	Cal
	Process Language
	Translation to dataflow with firing
	Discussion
	Related Work
	Conclusions and Future Work

	Tÿcho: A Framework for Compiling Stream Programs
	Introduction
	Actor Machine
	The Tÿcho Compilation Framework
	Transition Selection
	Kernel Fusion
	Actor Machine Scope Optimizations
	Related Work
	Conclusions

	Bibliography

