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Abstract

In this paper we present an observer-based adap-
tive control scheme for robot manipulators, for
which we have both unmeasured velocity and un-
certain parameters. Using the observer back-
stepping method, a reduced-order adaptive veloc-
ity observer can be designed independently from
the state-feedback controller, which uses damping
terms to compensate the presence of the estimation
error in the tracking error dynamics. The result-
ing closed-loop system is semiglobally asymptot-
ically stable with respect to the estimation error
and tracking errors. Furthermore a simulated ex-
ample shows the performance of the control scheme
applied to a two-link manipulator.

1 Introduction

The problem of output-feedback adaptive control
for robot manipulators is hard to sclve with tra-
ditional methods. Some results have been stated
for systems in output-feedback form, in which
the nonlinearities depend only on the measured
output, and the unmeasured states are not cou-
pled with the unknown parameters. Krstic et
al. [3] have developed some output feedback
adaptive control schemes for these systems, using
Kfilters and tuning functions, or gradient-least
square identifiers, together with the backstepping
method. Unfortunately, robot systems cannot in
general be written in this form, as the nonlin-
earities depend strongly on the velocity, that we
suppose to be unmeasured, and there is further
coupling between velocity and inertial parameters,
which could be uncertain or completely unknown.
Erlic and Lu [1] have recently presented a reduced-
order adaptive velocity observer for robot manip-
ulators that cannot be implemented directly, only
a discrete-time approximation can. However this
solution has been used in a closed-loop together
with a PD-type controller and seemed to have a
good behaviour. In this paper we want to show
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how the adaptive observer can be designed inde-

" pendently from the control law, using observer vee-

torial backstepping. Such a solution has been al-
ready used by Fossen and Grpvlen for control of dy-
namically positioned ships [2]. It allows the adap-
tive observer to be designed independently from
the state-feedback controller. The main idea of
the method is to apply the backstepping to the
error between the desired velocity and the esti-
mated velocity, and compensate the estimation er-
ror terms that appear in the tracking error dynam-
ics with nonlinear damping, as they were distur-
bances. Furthermore, the proposed control scheme
is applied in a simulation to a two-link manipula-
tor, to show its performance.

2 System Model and Properties

Model equations of a n-links rigid-body motion
robotic system can be written in matrix form as

M(g)g+Cle.9)¢+Glg) =7 (1)
g angular positions g¢g&R"
¢ angular velocities ¢&R"
§ angular accelerations g€ R”
with  M{g) moment of inertia M & RY"
C(q,4)g Coriolis, centripetal and frictional

forces C e R™™

G(q) = gravitational forces G € R™™*

It iz assumed that only the positions ¢ are
available for meagsurement. The matrices in Eq.
(1) have the following important properties:

Property 1 0 < My, < M ()] < My
My, My are positive constants.

where

Property 2 C(g.¢1)¢: = Cla. ¢2)

Property 8 {C(q.9)ll < Cafigfl
positive constant.

where Cy is a

Property 4 M(q)—2C(q.q}) s skew symmetric.
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Property 5 M(q)y + C(g.6)6 + Glg =
9o(g.6,¥) + @(q.5,9)0  where Ly € R
and 8 € R? is the unknown parameter vector,

It is further assumed that the robot velocity is
bounded by a known constant @p,,, such that
lg()ll € Omgz,  VEER. (2)

We define the state vector as
_(mY_{ 4
==(2)-(3) @
then, from Eq. {1) we can write
a M Yag) (7 — Clag 1)1 — G(ch)) 4)

32:2 =. 0 (5)

i

3 The reduced-order adaptive observer--

Consider a reduced-order adaptive observer for es-
timating the angular velocity and the unknown pa-
rameter vector, when the angle is measurable. The
observer equation [1] is given by

W(qa "2157, é\) + Kil (6)
M (@7 (r— Claii - G(a)
‘where %; is the velocity estimate, #; = x; — & is
the observation error, KX > 0 is a diagoral gain

matrix. The estimated parameters used in (6) are
cbtained with the following adaptation law:

1 =

. W(q’ il’ 7, é)

N

8 = —T¢7 (g, 81, ¥)5 (7)

where @7 (g, ;) is the regressor determined by
property 5 and I" > 0 is a diagonal gain matrix.

-4 Stability of the observer

The following thecrem establishes the stability
properties for the above cbserver {1):

Theorem 1 Consider the observer (6) with the
adaptation law (7). Define

@ = Amin(KM(q) + M{q)K)/2, (8)
the initial estimation error as
eo=e(0) = ( #7(0) 67(0) )" (9)
and
Pi=Anin(P), Pu= Amaz(P) (10)

with P=diag{ M(q) T }. If

0> Cr@max + (11)

where Cy is given in property 3, f > 0 is a fixed
constant, and the initial estimation error e(0) be-
longs to the ball B,, defined by

B~ {er e feul < /2 (e = ) )}
then

}3.130 =0 (12)
A proof of Theorem 1 is given in Appendix A

Remark 1 It is important lo note that- the ob-
server (6), (7) is not implementable in case the
velocity measurements are not available. This is
because (6) and {7) involve the use of #; = x — %;.
However, an implementable discrete-time approxi-
mation of it is possible and is shown in Appendix
B.

& Observer Backstepping

Consider the robot equation (1), and suppose that
the estimates of the unmeasured velocity x; and
the unknown parameters & are given by the adap-
tive observer (6) and (7). Define & smooth refer-
ence trajectory gy satisfying

Gd, §d» @a € Lo, (13)
and the first error variable z; = g — g4. We have
21 =X — Q‘d. i (14)

The main idea of backstepping is to choose one of
the state variables as virtual control. It turns out

that
Si=fh =23+ (15)

is an excellent choice for the virtual control. £ is
defined as the sum of the next error variable z,,
and ay which can be interpreted as a stabilizing
function. Hence

fHy=ztar+I— 4. (16)
We choose the following stabilizing function
ay=—Ciz1— D121+ gu (17)

where C; € R*** is a strictly positive constant
feedback design matrix, usually diagonal, and
D; € R*™™" is a positive diagonal damping matrix
defined as

Dy = diagldy, ..., d,] (18)

where d; > 0(i = 1,...,r). The damping term
~Dyz; has been added because %; in (14) can be
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treated as a disturbance term to be compensated.
Then we can write

i = _(01 +D1)z1+22+£1- (19)

The next step is to specify the desired dynamics of
zg; from (15), we have

il

2y 51-Ii1=5‘51+(01+D1)21—6d (20)

i

- (Cl + D1)221 + (Cl + Dl) (22 + .'h) — g
M(g) (v~ Ca. 00} - 6()) + K.

+

Now we choose the control law as follows

T

~M(q) [" (Cl + D1)221 + (Cl + D1) z3
— g+ Cozo+ Dozg + 21]
Clg.21)% + G(a), (21)

where (2 € R*™" is a strictly positive constant
feedback design matrix, usually diagonal. Substi-
tuting (21) into (20), we have

+

—Cozg — Dozg — 21 + Q% (22)
(ci+D1) +k. (23)

2g =
Q

The damping matrix Ds ¢ R™*" i defined in terms
of the rows of Q—i.e., the columns of QT—as -

D = diagld, 10T @n,. .., donol w,) (24)

where QT = [@y,...,0,) and d; > 0 (i = n+
1,...,2n).

Stability Analysis of the Closed-Loop System

From (19}, (22) and (52), we can write the error
dynamics as

3 = —(C+D,+E)z+ Wiy (25)
M{g)xi = —C{g.x1)x1 + Clq,%1)E —M(q)Kz
~ o(g.2,9)0 (26)

where

|

W

]
—

Consider the following Lyapunov function candi-
date

V{z,%1,0) = %(zrz +iTM () + éTr—lé) (30)

Figure 1: Simulation results for the first link

its time derivative along the solutions of {25) and
{26) iz

V = —TCz—2TD,z+2"Wx,
- H(M(gK +Clg,m) - Clg. ))&
il .
+ & (3M@ - Clam)a
— 87(¢7(q. 51, ¥)0 +T7'8) (31)
where we have used the fact that z7Ez = 0, and
property 2. Now, using (7), property 4 and adding
the zero term
1/ 74,- .
7 (x,Tle - xlTle) =0 (32)
Eq. (31) becomes
. 1
V = —2TCz-2TD,z+2TWi; - ZifPa’cl
- . 1.8,
— #(M(gk +Clgn) - C(g.51) - JF) 1.

Defining the matrix P as

6
1

P=pl, p=) A (33)
{1

i=1
we have, a5 shown in the Appendix C,
~2" Doz + 2" Wiy~ i—i}'Pﬁl <0. (34)
Hence we can write

V < —2"Ca— i (M(9)K +Cla.x)

[

Clg &) - —i»P) i | (35)
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Using properties 1, 3, and assumption (2), we have

. . 1 ...
V £ —(a—Cy&me: — Cu|la] - ZP)||x1|f2
- 27Cz2 (36)

where @ = Amin(KM () + M(q)K)/2. Hence V <
0if

- 1
G > CayOnar + Cu||Za || + Zp. (37)

~ As the region of attraction can be arbitrarily in-
creased by the gain K, we have semi-global expo-
nential stability.

Remark 2 Using again (64) and (65) for the im-
plementation of the adaptive observer, the imple-
mentation of controller (21) involves simply the
calculation of t(t) at time instant ¢ = iA.

~ 6 A Simulated Example

We consider a two-link manipulator, with masses
my,my [Kg], lengths 1, l; [m], angles ¢1,q2 [rad],
and torques 71,72 [Nm]. The end-effector load my
is assumed to be unknown but constant with equa-
tions

7 = M(g)§+C(q.49)d+G(g). 8=ma
mald + 2malilacs  mal}+
- 2
M(q’) - +(m1 + mz)ll +M2l1l2(.‘2
Niglg + melilsco m2l22
o —2malilosegs  —malilosage
Clad) = ( mglilasagn 0

1 + + I
Glg) = ( mg 29012m2(;:g1612m2) 19¢1 ) (38)

with the short notation cz = cos(ga), 12 =
cos(qy + gz), ete. The model parameters are m; =
1[Kg], me =15(Kg], L =1[m], L = 1]m].
Furthermore the regressor ¢ = 9¢(q,4,§) associ-
ated with the unknown parameter mgy is

(Ig + 21105 + l‘lq)lil + (l% + 111202)(']72
—(2010a50G1 G2 + L11283G3) + (lagerz + Liges)

(82 + Lilaco)dy + B2 + Lilas2gt + Lagese

The velocity estimate provided by the reduced-
order adaptive cbserver at the ith time instant is
calculated with (64) and (65) where

0

M (gli — 1)) (e(i— 1)
Clqi —1),21(i - 1)) (i - 1)
Gla(i—1))

p(i—1)

Figure 2: Simulation results for the second link

812 + 2611 1ne;
n N2 H12 /)
Mg = +(my+ )] 655+ 0lilzey
612 + Gl11ze; mal2
A ~ _ —29111282.’212 -—élllzszﬁm
Clod) = ( 8lilasnis 0 ) (1)
A _ blagers + (m1 + B)lige
#a = ( flageis (42)

X311 ¥
Xy = . = 43

' (m) 4 (Wz) (43)

with ¢ = ¢(g, %1, ) as
(12 + 2l lsce + )y + (BB + llaco)yn
— (2l dgsinadiz + hilzseity) + (lageiz + higer)
(13 + l11202)l,lf1 + l%l[/g + lllg.‘?g.‘ifl + lageys
The reference signals §4, ¢4, ¢ are obtained with
a second-order filter with poles in —g, that is
2

F(s) = (s—ia')‘f

(44)
Furthermore the observer-controller parameters
and the initial conditions are

K =51, A=001[s],
di=1(G=1,...,4),
g(0) = {0,0} [rad],

£:1(0) = {1,1} [rad/s],

r=01 a=2
C=2I, G=2I
4(0) = {0,0} [rad/s]
8(0} = 0.7 [Kg].

Results in figures 1, 2 and 3 show a good behaviour
of the proposed adaptive observer-controller, even
if the input torques have high peaks in the very
first seconds, due to the initial velocity estimation

(39} error.

2094

(40)



7 Discussion

In 1996 Lim et al. [6] have presented an output
feedback controf scheme for robot manipulators,
based on an observed integrator backstepping pro-
cedure, which achieves semiglobal exponential sta-
bility for tracking errors. The adaptive observer-
controller propused in this paper is an extension
of that result, covering also parameter uncertain-
ties and smooth time-varying parameters, thanks
to the adaptation law. Furthermore, it allows us
to eliminate the need of tachometers, that are re-
quired by adaptive controllers [4] and introduce
some noise anyway. With setisor noise, controller
gains are not allowed to be high, so it results in
larger tracking errors, and velocity filtering can be
only partially a solution because of the introduced
time delay that can not be accepted in high per-
formance tracking. A passivity-based approach for
designing observer-based adaptive robot control is
shown by Berghuis in [5}, by using a bounded
adaptation law, but achieving only stability for the
tracking error dynamics. Instead, as pointed out
above, the control scheme presented in this paper
achieves asymptotic stability both for the estima-
tion error and the tracking errors.

8 Conclusion

An output feedback adaptive control scheme for
robot manipulators has been presented, that al-
lows the separate design of the adaptive observer
from the state-feedback controller. By apply-
ing Lyapunov stability theory, for the closed-loop
system semiglobal asymptotic stability has been
proven, with respect to position and velecity track-
ing errors and velocity estimation error. Using this
approach, the behaviour of the closed-loop system
seems to be good even for gmall observer gains,
that means low sensitivity to noise and smooth
control signals.

Appendix A—Proof of Theorem 1
Consider the Lyapunov function
V(e(t)) = 37 ()Pe(s) (45)

where
e(ty=( () 87() )" {46)
it follows that
Pl V() < el 47)

The time derivative of V(e(t)) along trajectories of
X% and @ is

. \ 1 . " L
V=3TM(q)% + EEfM(q)h +87r-'9.  (48)

Subtracting (6) from (4), we have

M(g)%1 = —C{g,x1)x;+Clg.%1)%
~ M(QK# -0 (49)

where

© = (M@y+Clgi)i +6lg))
- (#@y+ g+ 6@) (0)

By applying property 5, we have

e = ¢0(f1,£1,¥’).+ fi’(qsfhvf)ﬂ_— @o(g, %1, ¥)
- (g3, ¥)0 = ¢(q,%1,¥)8 {51)
and (49) becomes
M(g)% ~C(g,x1)x; + C(q,il)i}
M(q)Kx — 9(g, %1,¥)9. (52)

Now, substituting (52) into (48) and using prop-
erty 2, we have

1

V = & (M@K +Clam) - Cla.) )
+ #(3M@ - 0a.m)a
+ éT( ~T 8- (g4, w)ix) (53)

which in conjunction with (7), properties 1, 3 and
4, and assumption (2), gives

V < (@~ Cu®Omoz — Cu|1D2)*.  (54)

Hence V < ~Al& |2 if @ > Cyy@max + Culin] + A--
Since ||| > {j#1|l, this condition holds if

el < G (@~ B) = . (55)

From (54), (55) and (47), if follows that if

e < | 2 (G te =) —omar)  (66)
then

V< -Blin)? vizo0 (57)
and the desired result follows.

Appendix B—An implementable
approximation of the ohserver

Integrating (6) and (7) over the time interval [ty £]

and using the estimated initial conditions #)(to)
and 9(fp) we obtain

#nE)y=rf)+ f! t[w(q,ih’r,é) — K#jdt  (58)
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Figure 3: Parameter estimate

where

f(2) = £1(to) + K{q(t) — a(to)] (59)
is known, and

00 =0 -T [ P @mpnde  (60)

Using %; =« — %1 with x = dg/dt, (60) becomes

“ N q(t)
o(1) . = 9(‘9)“Ff o7 (g, 21, ¥)dg

g(zo)

t
+ [ | ¢7(q 21, y)E1de. (61)

to
The system of integral (58) and (61), together
with initial conditions %,(%) and 6(¢y), provides
an equivalent version of the adaptive observer (6)
and (7), but is also not implementable since the
evaluation of 6{t) in (61) involves the differentia-
" tion of the joint position g(z). From (58) and (61),
it follows that for an arbitrary fixed time interval

A >0, we have

B0 = &(—A)+Klglt) - gt — )]

{4
+ / [w(q. %1,7,8) — KirJdt  (62)
t—A

and
R R 4(t) S
6() = B(t—A)~T f o7(q, 31, w)dg
g(e=A)
. t
+ T f o7 (g, &1, W) 5 dt. (63)
t—A

Assuming that w(q,%1,7,8), o(g.£1,¥) and g(t)
are continuous time functions and that A is suffi-
ciently small, (62) and (63) suggest a discrete im-
plementation of the proposed observer as follows

#() = (I-AK)&(i—1)+Ap(i—1)
+ Klq(i) — q(i —1)] (64)

6() = 6(—-1)+Te (i — 1)[A%(i~1)
o= g +e(i-1)] (65)

Remark 3 Although (64) and (65) are only an ap-
proximation of the proposed observer (58} and (61),
anyway they are implementable and approach to
(58) and (61) as A approaches to zero. Therefore
(64) and (65) stand for a good represeniative of the
observer if the sampling interval A is sufficiently
small.

Appendix C—Proof of (34)
The left side of Eq. (34) can be expanded as
— 2TDz+ 2TWi; — %ifPi; + (66)
= —2TDiz1— 2l Doz + 27% + 2i Q¥ — g:‘:}”i;
Using definitions (18), (23), and (24) together with
2 = [51,52,53]T and zz = [2_4,55,551T, (66) can be
rewritten as follows

1
— 2Dz +2TWE — Zsz{,vzl

3
_ ; [di (2~ 2%‘_5;1) ! (2 - -;Eil)

H

; 1 T
+ diys (Z£+3a)i+3 -3 di+3x1) |
(§i+3wi+3 o f:) <0 (87)
2d;,3 -

because all the guadratic terms in (67) are less
than or equal to zero.
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