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Taking Problem-Solving Seriously:
A Learning-Theoretic Analysis of the Wason Selection Task

Emmanuel J. Genot, Justine Jacot∗
University of Lund, Department of Philosophy, Kungshuset, Lundagård, 222 22 Lund (Sweden)

Abstract. Instructions in Wason’s Selection Task underdetermine empirical subjects’ representation
of the underlying problem, and its admissible solutions. We model the Selection Task as an (ambigu-
ous) interrogative learning problem, and reasoning to solutions as: (a) selection of a representation
of the problem; and: (b) strategic planning from that representation. We argue that recovering Wa-
son’s ‘normative’ selection is possible only if both stages are constrained further than they are by
Wason’s formulation. We conclude comparing our model with other explanatory models, w.r.t. to
empirical adequacy, and modeling of bounded rationality.

1 Introduction

For thirty years, the four-card Selection Task—hereafter “the ST” (see e.g. Wason 1968)—was in-
terpreted as showing that systematic reasoning biases get in the way of deductive reasoning. In the
1990s, Bayesian models of rational analysis reinterpreted the data as evidence for (successful) in-
ductive reasoning in the ST. Both analyses took deductive reasoning to coincide with classical logic,
a contention undermined by contemporary developments of non-classical logics (and their formal
semantics) largely ignored in the problem-solving literature.

Stenning and van Lambalgen (2008) have proposed a more sophisticated analysis of the ST,
based on semantic characterizations of nonclassical logics. It reveals ambiguities in the instructions,
underdetermining the representation of the underlying problem (and of its admissible solutions).
This analysis explains the variance of subjects’ selections by how the (perceived) semantic content
of instructions interplays with contextual factors, to induce particular inference patterns. It explains
cases problematic for the standard (Bayesian) rational analysis model. Yet, it falls short from gener-
alizing rational analysis, for want of a formal model of reasoning ‘to’ and ‘from’ an interpretation,
that would explain the heuristic value of semantic reasoning.
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This paper outlines such a model, based on a learning-theoretic generalization of Hintikka’s
game-theoretic interrogative model of inquiry (imi), which shares with other learning-theoretic frame-
work a representation of inquiry as a ‘game against Nature’ (see Hintikka et al. 1999, Kelly 2007,
Martin and Osherson 1998). We argue that strategic planning in interrogative games can capture
reasoning in the ST, when logical reasoning supervenes on, and is continuous with, semantic rea-
soning–-in particular linguistic interpretation of the instructions. Section 2 provides the background
on the ST (2.1), and our formal framework (2.2). Section 3 applies the model to represent the ST
(3.1) and examines its possible solutions (3.2). We conclude with a discussion of some empirical
results (4.1) and conceptual issues (sec. 4.2).

2 Background

2.1 “The Mother of All Reasoning Tasks”

Stenning and van Lambalgen (hereafter S&L) call Wason’s Selection Task (ST) the ‘Mother of All
Reasoning Task’, and give the following formulation for its ‘abstract’ (original) version:

Below is depicted a set of four cards, of which you can see only the exposed face but not the hidden
back. On each card, there is a number on one of its sides and a letter on the other. Also below there is
a rule which applies only to the four cards. Your task is to decide which if any of these four cards you
must turn in order to decide if the rule is true. Don’t turn unnecessary cards. Tick the cards you want to
turn. (S&L 2008, p. 44)

Rule If there is a vowel on one side, then there is an even number on the other side.
Cards A K 4 7

Neglecting quantification over letters, numbers and sides, Rule simplifies in a material condi-
tional: If P, then Q. Based on truth-conditions for material conditional, Wason assumed that the
‘normative’ selection is:

(A, ·), (7, ·) (Nor)
where each pair denotes a card, face initially visible first (‘·’ stands for an unknown value). However,
less than 10% of empirical subjects typically conform to (Nor).1 (Nor)-like selection is higher in
‘thematic’ variants—where the rule is given a less abstract content. Typical explanations assume that
(Nor) is ‘the’ context-independent logically competent—or simply ‘logical’—answer, but that: (a)
in abstract tasks, context-sensitive mechanisms override logical competence; and: (b) in thematic
variants, either familiarity helps recover it, or context-sensitive mechanisms emulates it for other
reasons.

An influential example is Oaksford and Chater’s (hereafter OC) Bayesian rational analysis (see
O&C 1994). Rational analysis derives the optimal behavior of a cognitive system, under environ-
mental constraints, from specific hypotheses about its goal(s) and computational limitations. A cog-
nitive system can then be contextually optimal even if its output does not obey context-independent

1Typical results for the abstract version, as reported by S&L 2008, are: (A, ·), 35%; (A, ·) and (4, ·), 45%;
(A, ·) and (7, ·), 5%; (A, ·), (4, ·) and (7, ·), 7%; and other selections, 8%.
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standards. OC assumed that, in the abstract task, subjects treat cards as a sample, and Rule as an
inductive hypothesis, and showed that selections coincided with statistically optimal data selection.2

For the thematic task, OC assumed that conditional were read deontically, i.e. as rules that can be
(dis)obeyed. That subjects tend to review exhaustingly potential violators (resulting in (Nor)-like
selections) reveals strong preferences for the rule not to be violated.

However, as pointed out by S&L 2008, developments in contemporary logical theory (and es-
pecially formal semantics) undermine the hypothesis of a single context-independent logical com-
petence. Moreover, empirical evidence casts some doubt on the assumption that, within a category
of ST (abstract/thematic), subjects are always doing the same thing (see tutorial dialogs reported in
S&L 2008.) On the contrary, selections vary with the perceived goal, which can be manipulated by
facilitating or hindering particular interpretations of the instructions.

2.2 Interrogative learning: a formal model

Let us formally define a problem as a triple P = 〈K,H,Q〉, where K is a set of states s.t. any κ ∈ K
is (uniquely) identified by values for a set of relevant parameters; H is a set histories—sequences of
positions at which some value for some parameters are obtained or estimated (gradually identifying
an underlying state); and Q is the principal question of the problem, which is typically a partition
of states in K, although sometimes overlapping answers can be considered.

H corresponds to the view of an omniscient modeler: for every h ∈ H, there is some learning
method (see below) addressing P that generates it. Constrains on H apply to all lm for P. We say
that P is finite iff H is finite; and with finite horizon iff every h ∈ H is of finite length. If h is of
length n, h′ extends h iff h′|n = h, where h′|n is the initial segment of length n of h′; h(n) denotes the
item occurring at the nth position of h; and h _ e is the extension of h with e.

An (interrogative) learning method (lm) for some P = 〈K,H,Q〉 is a (partial) function l : H 7−→
(A∪Q)×Q∪{?}, where A is a set of (noninterrogative) actions; Q is a set of instrumental questions;
and ‘?’ indicates suspension between answers in Q. l(H) is the subset of H generated implementing
l in P. A family L = {l1, . . . , ln} can induce a partial representation l1(H) ∪ · · · ∪ ln(H) ⊆ H of P.
We say that h ∈ H is: (a) l-terminal iff l is undefined for extensions of h; and: (b) maximal iff it
is l-terminal for every l. When source(s) of answer is (are) ‘strategic,’ the model covers strategic
reasoning about games, since answering strategies can be anticipated by considering constraints on
histories.3 For some problem P = 〈K, E,Q〉, interrogative lm l, and l-terminal h ∈ H:

2The standard ratios of vowels and even numbers over letters and numbers induces the following ordering:
(A, ·) > (4, ·) > (7, ·) > (K, ·) (see O&C 1994, p. 625).

3The model generalizes Martin and Osherson’s First-Order Paradigm, and Hintikka’s Interrogative-
deductive games. Both represent problems in some first-order language L, and take K to be the set of models
of some set Γ ⊆ L of premises. Every κ ∈ K is identified by a complete diagram (set of literals, i.e. atomic
sentences and their negations). In the first model, parameters are always literals subformulas of elements of Γ,
and for any l, A = ∅ and Q includes all yes-or-no questions about literals (from the vocabulary of Γ); addition-
ally, any l can generate a complete diagram, i.e. Nature eventually answers all atomic questions. In Hintikka’s
model, parameters are arbitrary subformulas of elements of Γ; and for any l, A includes ‘semantic actions’ to
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. l stabilizes on q in h at h(n) iff l(h|n) = 〈X, q〉 for some (possibly empty) X ⊆ A ∪ Q, and: (a) h
is of length m ≥ n, and for any n′ s.t. n ≤ n′ ≤ m, l(h|n′) = 〈X′, q〉, or: (b) h is infinite, and for
any n′ > n, l(h|n′) = 〈X′, q〉 (for some possibly empty X′ ⊆ A ∪Q).. l solves P on h at h(n) iff (i) l stabilizes on q at h(n) and: (b) any κ ∈ K compatible with values of
parameters obtained in h is in q;. l decides P on h iff h is of finite length n, and l solves P on h at h(m) for some m ≤ n.. l solves (decides) P on K—or solves P simpliciter—iff: (a) l solves (decides) P on every l-
terminal h ∈ H; and: (b) every κ ∈ K is (partially) characterized in at least one l-terminal
h ∈ l(H)

Informally, l stabilizes in one history h whenever it outputs the same answer from some position
on, until it stops generating new positions (if it does); solves P (in h) iff it stabilizes, and gets the
answer right (in h); and decides P (in h) whenever it solves it and stops doing anything (immediately,
or later). Finally, l solves (or decides) P simpliciter if l always gets the answer right, and examines
enough histories to get it right in all states (even under uncertainty about the actual state).

By the above definitions, halting on success is only a special case of decision: l may stabilize and
still output actions (e.g. ‘control’ questions), before it stops. Therefore, a lm for P can solve P with-
out deciding it—“no bell rings” when P is solved, i.e. when l stabilizes (see Kelly 2007). Another
consequence is that any solvable problem with finite horizon is decidable: additional ‘nonredun-
dancy’ constraints on lm (e.g. halting on success, etc.) are of special interest for such problems.

Instructions in the ST have several possible interpretations (see below). Such cases can be cap-
tured through generalized problems, associating to a set I of instructions a family PI=P1, . . . , Pn of
possible representations (corresponding to possible interpretations), including a designated problem
Pa

k , the intended interpretation of I, or actual problem. A ‘dynamic’ representation of Pa
k for an

agent X can be obtained with an awareness function, mapping every h ∈ HPa
k

to a set P′I of problems
compatible with X’s current representation of Pa

k .4 X’s representation can be (strictly) partial, if
P′ = {P j}, and HP j ⊂ HPa

k
; ambiguous, if P′ is not a singleton; or incorrect, if none of her repre-

sentations in P′ is a partial representation of Pa
k . In problem-solving experiments reasoning to the

intended interpretation Pa
k of I is a coordination problem between subject and experimenter.

3 The Selection Task as a Learning Problem

3.1 Interpreting the instructions

Reasoning to an interpretation of the instructions of § 2.1 can be done using them heuristically to
select a family of lm L, that in turn yields a (partial) representation of the problem. If the representa-

analyze elements of Γ in subformulas; and Q, both yes-or-no questions, and questions with presuppositions
obtained by actions in A. Also, not all answers are available (even in the limit).

4Formally, P′i = 〈K′,H′,Q′〉 ∈ P′ iff there is a P′′ = 〈K′′,H′′,Q′′〉 s.t. every history in H′′ is the initial
segment of some history in H′, and H′′ = l(Hi) for some lm l that X is considering heuristically. Awareness
functions were introduced in game theory by Halpern and Rego (2006), to model players reasoning from partial
or incorrect representations of games they play.
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tion is ambiguous, one then has to find a ‘best’ candidate. Reasoning from an interpretation requires
yet another heuristic use of the instructions, inducing a preference ordering over lm that solve the
problem (if any). An essential constraint is:

Don’t turn unnecessary cards (Nec)

Lastly, subjects must report the selection according to the ‘best’ lm. One should expect subjects to
either go back-and-forth between the two reasoning tasks.5 Unfortunately, the instructions yield no
unique representation of ST, and even if one considers only 4-cards settings, (Nec) is ambiguous,
and induces no unique ranking (see S&L 2008, ch. 3 for details).

To get an idea of the difficulty of the task faced by subjects, it will be sufficient to restrict our
attention to a ‘generic’ problem 〈KST,HST,QST〉 where: (a) every κ ∈ KST is characterized by four
cards, with A, K, 4 and 7 as only possible values; (b) h ∈ HST is generated by turning cards; and: (c)
QST ={Rule,¬Rule}, where Rule satisfies a material conditional. Other representations discussed
will be subsets of HST.

Let us furthermore consider representations induced by patient and credulous lm, that (resp.) wait
for ‘Nature’s answers’ before they assess QST, and do not doubt them. These two assumptions make
reasoning purely ‘deductive-interrogative’ (with no ampliative reasoning, and as little redundancy as
possible).6 Even under such extremely favorable conditions, the ST problem is a tough nut to crack.

Under the above assumptions, the ST problem is a triple PST=〈KST,HST,QST〉, where:. KST ={{(A, x1), (K, x2), (4, x3), (7, x4)} : x1, x2 ∈ {4, 7} and x3, x4 ∈ {A,K}}; and:. For all h ∈ HST, h(n) = {(A, x1), (K, x2), (4, x3), (7, x4)}, with x1, x2 ∈ {·, 4, 7} and x3, x4 ∈

{·, A,K}.7 Furthermore every h ∈ HST satisfies:
H0 h|1 = h0 = 〈{(A, ·), (K, ·), (4, ·), (7, ·)}〉 (back values are initially unknown); and
H1 if h(n) = {(A, x1), (K, x2), (4, x3), (7, x4)} and e = {(A, x′1), (K, x′2), (4, x′3), (7, x′4)} then: h _

e ∈ HST iff: (a) xi , x′i , for some xi (one back is revealed at each position after the first) ;
and: (b) if xi , ·, then x′i = xi (no value is forgotten once revealed).. QST = {Rule,¬Rule}, with κ ∈ Rule iff x1 = 4 and x4 = K, or equivalently (given KST): κ ∈ ¬Rule

iff x1 = 7 or x4 = A.

In any particular instance of PST, κ0, the underlying state of Nature in KST, is uniquely identified
at each maximal history—the last position is identical with some κi ∈ KST s.t. κi = κ0. Identifying
κ0 only ‘up to’ inclusion in Rule (or ¬Rule) suffices to assess QST. Given that states which differ
only w.r.t. unknown back values at h(n), are indiscernible from κ0 at h(n), and that extensions of h0
‘shrink’ indiscernibility,8 κ0 need not be uniquely identified for PST to be solved. Since AST = ∅,

5Subjects may also rely massively on semantic ‘precomputations’ (see S&L 2008, § 4.2) for either or both
tasks. OC’s analysis may indicate that subjects ‘precompute’ the range of values on sides of cards, possibly
from preconceptions about card decks (we thank Ingar Brinck for bringing this to our attention).

6Such lm treat the problem as one of pure discovery (see Hintikka et al. 1999), and are Ockham efficient,
minimizing the number of retractions (see Kelly 2007).

7The first element of each pair stands for the initially visible side in some state κ ∈ KST or in h; and ‘·’
indicates an unknown value at (the last position of) h.

8A formal definition would be: for every h ∈ ST of length n, h(n) induces an relation Rh ⊆ K2
ST, defined as:
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any lm for PST is a (partial) function l : HST 7−→ QST × Q ∪ {?}, with (for any l addressing PST).
Without further restrictions:

QST = {turn[S ] : S ⊆ {(A, ·), (K, ·), (4, ·), (7, ·)}} (QST)

Note that a complete (extensional) representation of KST is not necessary to solve PST if the rule
is read as a material conditional. Intensional tests for the properties “being a state where x1 = 4
and x4 = K” or “being a state where x1 = 7 or x4 = A” are each sufficient to assess membership of
equivalence classes that decide QST (intensional tests are cognitively more realistic than extensional
ones, see S&L 2008, p. 178). While a (Nor)-like selection always fulfills both tests, a shorter
selection may sometimes suffice, which expresses more formally as:

Lemma 1. Selections of (A, ·) and (7, ·), together or in (any) sequence, are: (a) sufficient to solve
every instance of PST; (b) unnecessary to solve some instances of PST.

Proof. (a) Immediate from the definition of QST. (b) turn[(A, ·)] and turn[(7, ·)] are sufficient
when resp. (A, 7) ∈ κ0 and (7, A) ∈ κ0, to stabilize on ¬Rule, and decide PST. �

The importance of Lem. 1 comes from the ambiguity of (Nec), which can be given either narrow
or wide scope. The former warrants only a‘history-bounded’ heuristic use, in order to obtain, from
some history h, a history h∗ identical with h save for steps redundant in h to identify κ0 up to
inclusion in Rule or ¬Rule. The latter allows for ‘cross-history’ comparisons, i.e. to obtain, from
some history h, a history h∗ identical with h save for steps redundant in some h′ (possibly distinct
from h).

3.2 Solving the ST Problem

Let us call the Wason lm, denoted (lW ), the function defined in Fig. 1.; (lW ) decides PST (see below),
and the more constrained ‘one-shot’ ST problem P1

ST, where admissible lm must stop after pick-
ing a single element of QST—i.e. where K1

ST = KST, Q1
ST=QST, but H1

ST is generated by one-time
selections.

lW (h _ e) =


〈turn[(A, ·), (7·)], ?〉 if h = h0 and e = ∅

〈turn[∅],Rule〉 if h = h0 and e = {(A, 4), (K·), (4·), (7·)},
〈turn[∅],¬Rule〉 if h = h0 and e , {〈(A, 4), (K·), (4·), (7·)〉},
undefined otherwise

(lW )

Figure 1.

The ambiguity of (Nec) is irrelevant in P1
ST: a card is redundant in some h ∈ H1

ST only if its
selection reduces indiscernibility more than necessary in h (narrow scope) or some possibly distinct

Rh = {〈κi, κ j〉 : κi, κ j ∈ KST and κi∩κ j = h(n)\{(x, y) : y = ·}}. Rh is an equivalence relation (reflexive, symmetric
and transitive), and partitions KST between states excluded by, and compatible with, evidence available at h(n).
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h′ ∈ H1
ST (wide scope). But there is no way to sufficiently reduce indiscernibility in P1

ST with
a selection ‘smaller’ than turn[(A, ·), (7, ·)], unless one already knows that κ0 ∈ ¬Rule and why
(which value satisfies the intensional test of the ‘disjunctive’ property). This being blatantly circular,
we have immediately:

Observation 2. (lW ) is the only lm deciding P1
ST under (Nec).

Two immediate consequences of Obs. 2 are that: (a) (lW ) is the only lm deciding PST with a one-
shot selection without unnecessary cards; and: (b) to a competent subject whose representation of
PST is limited to P1

ST, (Nor) is the unique admissible selection (and report). If the problem is viewed
as a game against Nature, (lW ) is a uniform strategy: its recommendation is identical, whatever the
underlying state is (figuratively, whatever Nature’s strategy is).

A uniform strategy or lm may be dominated depending on costs of questions, estimated proba-
bilities of states and answers–-and specifically in PST, on the perceived value of exhaustive answers.
There is no unique way to set these parameters, which instructions of § 2.1 leave unconstrained (see
below for thematic versions). Fig. 2. displays two non-uniform strategies for PST. When (Nec) is
given narrow scope, it holds that:

Observation 3. (a) (lW ) is the only uniform lm deciding PST without unnecessary cards. (b) (l1) and
(l2) are the only non-uniform lm deciding PST without unnecessary cards.

l1(h _ e) =



〈turn[(A, ·)], ?〉 if h = h0 and e = ∅

〈turn[∅],¬Rule〉 if h = h0 and e = e1 = 〈(A, 7), (K, ·), (4, ·), (7, ·)〉,
〈turn[(7, ·)], ?〉 if h = h0 and e = e2 = 〈(A, 4), (K, ·), (4, ·), (7, ·)〉,
〈turn[∅],¬Rule〉 if h = h0 _ e2 and e = e2.1 = 〈(A, 4), (K, ·), (4, ·), (7, A)〉,
〈turn[∅],Rule〉 if h = h0 _ e2 and e = e2.2 = 〈(A, 4), (K, ·), (4, ·), (7,K)〉,
undefined otherwise

(l1)

l2(h _ e) =



〈turn[(7, ·)], ?〉 if h = h0 and e = ∅

〈turn[∅],¬Rule〉 if h = h0 and e = e′1 = 〈(A, ·), (K, ·), (4, ·), (7, A)〉,
〈turn[(A, ·)], ?〉 if h = h0 and e = e′2 = 〈(A, ·), (K, ·), (4, ·), (7,K)〉,
〈turn[∅],¬Rule〉 if h = h0 _ e′2 and e = e′2.1 = 〈(A, 7), (K, ·), (4, ·), (7,K)〉,
〈turn[∅],Rule〉 if h = h0 _ e′2 and e = e′2.2 = 〈(A, 4), (K, ·), (4, ·), (7,K)〉,
undefined otherwise

(l2)

Figure 2.

Obs. 3a follows from Obs. 2 and the above remarks. Obs. 3b follows from Lem. 1, and that using
heuristically (Nec) with narrow scope does not warrant elimination of more possible moves than
those already avoided by (l1) and (l2).

If a subject’s representation of PST is rich enough to include either l1(HST) or l2(HST), some pref-
erence for uniform strategies is required to favor (lW ). In PST, uniform strategies exhaust potential
counterinstances. This explains their being correlated with a strong preference for a rule not to be
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violated (see O&C 1994).
Also, a subject who selects (l1) or (l2), will only ‘tick’ both (A, ·) and (7, ·) if she has some reason

to report selection made in the ‘longest’ history, e.g. if she has a preference for shorter methods (or
smaller representations) and perceives the game as strictly competitive—i.e. that Nature prefers a
state which maximizes the number of moves necessary to decide PST—which seems unnatural (not
to say flat-out irrational).

Finally, if a subject’s representation includes l1(HST) or l2(HST), and her interpertation consider
wide scope to (Nec) admissible, she will deem the problem possibly unsolvable, an evaluation that
the proviso ‘if any’ may even facilitate. Indeed, if (Nec) is given wide scope, it follows immediately
from Lem. 1b that:

Observation 4. There is no lm deciding PST without unnecessary cards.

4 Conclusions

4.1 Do deontic aspects matter?

Wason’s explicit assumption that (Nor) is normative, makes P1
ST the best candidate for being his own

representation of the (abstract) problem (by Obs. 2). Coordinating on that representation is easy for
readers who know Wason’s favored solution. The ‘logical’ character of (Nor) has seldom been called
into question, which shows Wason’s assumptions influence precomputations of his learned readers.
By contrast, relatively unschooled empirical subjects must, in order to recover P1

ST, reason under a
self-imposed restriction to one-shot selections. Otherwise (Nor)-like selection depend on particular
preferences for uniform strategies, or expectations that Nature plays competitively.9

Variants with ‘deontic’ rules typically induce preferences for strategies that find all violators.
(O&C 1994) exploits this feature to explain (Nor)-like selections in ‘thematic’ tasks, represent-
ing preferences with utilities, and using Bayesian decision theory. Our framework dispenses with
computation (and maximization) of expected utility, and generalizes preference-based reasoning to
abstract tasks. Adequately constrained preferences favor selections of uniform one-shot strategies,
or sequential strategies that do not halt on success (and end up with the (Nor)-like selection in all
histories), whether or not the rule is deontic.

Relevance theorists, who view logical and semantic reasoning as largely context-independent,
have predicted that (Nor)-like selections would be elicited in contexts where deontic readings are
excluded, through context-dependent biases induced by pragmatic ‘relevance effects,’ and validated
that prediction empirically (see Girotto et al. 2001). While this model seems at odds with our

9S&L 2008, p. 105-106, 111-112 report dominant (Nor)-like selections in an competitive game, where
subjects play against a program responding (unbeknown to them) to their selection so as to realize only the
‘longest’ histories. Shorter selections are favored, which makes the setting competitive, although subjects are
unaware of this. S&L 2008 explain the dominance of (Nor) by the reduced computational cost of planning one
‘run’ (rather than multiple contingencies), but do not interpret this in game-theoretic terms, missing also the
fact that the game is no longer vs. an unbiased Nature, making the task only remotely related to the original ST.
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analysis, once understood that subjects can rely on ‘precomputed’ partial semantic representations,
or implement automatically intensional heuristics, there is no obstacle to consider that contextual
factors trigger ‘default’ semantic computations (see S&L 2008, pp. 113–114), nor to associate them
with preference patterns.

A topic for future research is therefore to test the hypothesis that ‘relevance effects’ can be ex-
plained by constraints favoring (possibly precomputed) uniform strategies in abstract variants of the
ST. If successful, this would offer a partial vindication of the decision-theoretic aspects of OC’s
rational analysis, initially (and incorrectly) restricted to ‘thematic’ tasks, through its generalization.
The resulting model would outperform the explanatory power of Bayesian analysis, and overcome
objections of Relevance theorists, without reverting to a classical competence model.

4.2 Heuristics without biases

Bayesian models impose unrealistic (intractable) computational demands on cognitive systems (see
Binmore and Shin 1992, Kwisthout et al. 2011). Whether our model is, in that respect, an im-
provement, is an open problem. On the one hand, its treatment of semantic reasoning is related to
constraint satisfaction in AI and logical programing, where a problem is identified with a set of vari-
ables, taking values from specific domains, and a set of constraints over possible value assignments
to them. Heuristics for intractable problems are well studied, and may translate into lm and partial
strategies.10

The role we give to preference- and heuristics-based reasoning to model bounded rationality,
is influenced by evolutionary theories of inference, according to which logical reasoning exapted
communication abilities (see Brinck and Gärdenfors 2003, Skyrms 2011).11 This may seem at odds
with Gigerenzer’s well-known approach to bounded rationality through ‘fast and frugal’ heuris-
tics (which also addresses the computational issue of Bayesian models), since he has claimed that
heuristic-based ‘ecological’ rationality do not converge through evolution towards ‘normative’ stan-
dards of logical reasoning and decision-making (see e.g. Gigerenzer 2000). However, iterations of
‘fast and frugal’ choice heuristics converge to well-behaved choice functions (see Arlò-Costa and
Pedersen 2011). And lm qua heuristics are partial (algorithmic) strategies, sometimes sufficient to
solve classical underlying games with tractable reasoning (see Halpern and Rego 2006). Empirical
results in ST can be explained by the failure of experimenter to constrain the representation of the
game enough for the subject to choose the appropriate solution, yielding a uniform (game-theoretic)
model for both reasoning ‘to’ and ‘from’ an interpretation in problem-solving tasks.

10We thank Claes Strannegård for pointing to us the connection with constraint satisfaction.
11In particular, we have argued in (Genot and Jacot 2012b) that consequence relations (classical or otherwise)

can supervene on heuristics for treatment of semantic information in argumentative games.
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Arlò-Costa, H. and Pedersen, A.P. (2011). Bounded Rationality: Models for Some Fast and Fru-
gal Heuristics. In van Benthem et al. (eds), Games, Norms and Reasons, pp. 1–21. Springer
Netherlands.

Binmore, K. and Shin, H.S. (1992). Algorithmic Knowledge and Game Theory. In Bicchieri and
Della Chiara (eds), Knowledge, Belief and Strategic Interaction, ch. 9, pp. 141–154. Cambridge
University Press.

Brinck, I. and Gärdenfors, P. (2003). Cooperation and Communication in Apes and Humans. Mind
& Language, 18(5):484–501.

Genot, E.J. and Jacot, J. (2012b). Semantic Games for Algorithmic Players. 6th Workshop on
Decision, Games and Logic, June 2012, Munich (Germany).

Gigerenzer, G. (2000). Adaptive Thinking: Rationality in the Real World. Oxford University Press.
Girotto, V., Kemmelmeier, M., Sperber, D., and van der Henst, J.-B. (2001). Inept reasoners or

pragmatic virtuosos? Relevance and the deontic selection task. Cognition, 81(2):B69–B76.
Halpern, J.Y. and Rego, L.C. (2006). Extensive Games With Possibly Unaware Players. In Joint

Conference on Autonomous Agents and Multiagent Systems, pp. 744–751. AAMAS.
Hintikka, J., Halonen, I., and Mutanen, A. (1999). Interrogative Logic as a General Theory of

Reasoning. In Inquiry as Inquiry, pp. 47–90. Kluwer.
Kelly, K. T. (2007). Simplicity, Truth, and the Unending Game of Science. In Bold et al. (eds),

Foundations of the Formal Sciences V: Infinite Games, pp. 223–270. College Publications.
Kwisthout, J., Wareham, T., and van Rooij, I. (2011). Bayesian Intractability Is Not an Ailment That

Approximation Can Cure. Cognitive Science, 35(5):779–784.
Martin, E. and Osherson, D. (1998). Elements of Scientific Inquiry. The MIT Press.
Oaksford, M. and Chater, N. (1994). A Rational Analysis of the Selection Task as Optimal Data

Selection. Psychological Review, 101(4):608–631.
Skyrms, B. (2011). Pragmatics, Logic and Information Processing. In Benz et al. (eds) Language,

Games, and Evolution, pp. 177–187. Springer Berlin / Heidelberg.
Stenning, K. and van Lambalgen, M. (2008). Human Reasoning and Cognitive Science. The MIT

Press.
Wason, P.C. (1968). Reasoning about a rule. Quaterly Journal of Experimental Psychology,

20(3):273–281.


