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Abstract.
It is shown how the framework of Integral Quadratic
Constraints can be applied to analyze systems with
hysteresis, in spite of the fact that hysteresis operators
are unbounded and that not all system variable can be
expected to approach zero.

1. Introduction
Backlash and other hysteresis phenomena are com-
mon in mechanical and hydraulic systems. They may
severely limit the overall system performance, but the
effects are often hard to analyse. The purpose of this
paper is to demonstrate how recently developed tools
for nonlinear system analysis can be applied to systems
with hysteresis and in particular backlash.

The most common approach to analysis of hysteresis
is maybe passivity theory. Such analysis is based on the
physical insight that passive components can only ex-
tract energy from the system, not generate new energy.
Mathematically, the passivity property characterizes a
nonlinearity in terms of positivity of a certain quadratic
integral. However, the passivity property alone carries
very little information about the nonlinearity. In order
to better predict the system behaviour, it is strongly
desirable to exploit more quantitative information.

Stability criteria based on Lyapunov functions, pas-
sivity and absolute stability have been developed over
several decades. Many results of this kind were re-
cently unified and generalized using the notion integral
quadratic constraint (IQC) [6]. In general, the more in-
formation about the nonlinearity that can captured in
the form of IQC’s, the better analysis one can make.
The computational treatment of the inequalities leads
to a convex optimization problem with linear matrix in-

equality constraints. Such problems can be solved with
great efficiency using interior point methods [2]. Fur-
thermore, it was shown that technical problems in the
earlier treatments of anti-causal multipliers [3] can be
avoided using a so called homotopy argument.

Many of the earlier treatments of hysteresis, such
as [7, 1] can be interpreted and generalized in terms
of IQC’s, see [5]. The contribution of this paper is to
prove a new set of integral quadratic constraints for
hysteresis and to demonstrate how these constraints
can be used in analysis of stability and performance.

Notation
L

n is the linear space of all functions f : (0,∞) → R
n

which are square integrable on any finite interval. Ln
2

is the subspace of signals f ∈Ln with k f k < ∞, where

k f k = 〈f , f 〉1/2 , 〈f , g〉 =
∫ ∞

0
f (t)∗g(t)dt.

The set of proper rational transfer matrices G = G(s)
of size k by m is denoted by RLk×m

∞ . The subset of
stable G ∈RLk×m

∞ is denoted by RHk×m
∞ . Each element

G ∈ RLk×m
∞ is associated with a corresponding causal

LTI operator G : Lm → L
m. An element G ∈RLk×m

∞ is
called proper if G(∞) = 0. For a, b ≥ 0 and f ∈Lk, the
projection Pa

b f ∈Lk is defined by

(Pa
b f )(t) =

{
f (t), b < t ≤ a

0, otherwise

The shorthand PT f is used for P0
T f , and PT f means

PT
0 f .

2. Multivalued Nonlinear Operators
The word operator will be used to denote an in-
put/output system. Mathematically, it simply means



any function (possibly multi-valued) from one signal
space Lk to another: an operator ∆ : Ll → L

m is defined
by a subset S ∆ ⊂ Ll ×Lm such that for every v ∈Ll there
exists w ∈Lm with (v, w) ∈S∆. The notation

w = ∆(v) (1)

simply means that (v, w) ∈S∆.
The notion of causality is introduced to represent ex-

istence and continuability of solutions of such equations
forward in time: an operator ∆ is said to be causal if the
set of past projections PTw of possible outputs w = ∆(v)
corresponding to a particular input v does not depend
on the future PTv of the input, i.e. PT∆ = PT∆PT for
all T ≥ 0.

The operator ∆ is bounded if there exists C such
that

kPTwk ≤ CkPTvk ∀T > 0, w = ∆(v), v ∈Ll (2)

The gain k∆k of ∆ is defined as the infimium of all such
C . The operator ∆ is exponentially bounded if there
exist a > 0 and C > 0 such that

keatPT wk ≤ CkeatPT vk ∀T > 0, w = ∆(v), v ∈ Ll

(3)

For proofs of exponential stability of feedback sys-
tems, the following concept will be used: the operator
∆ is said to have fading memory if there exist C > 0
and a > 0 such that for every h = (v, ∆(v)) ∈Ll + m and
for every τ ≥ 0 there exists hτ = (vτ , ∆(vτ )) such that
Pτ hτ = 0 and

keatPτ (h− hτ )k ≤ CfkeatPτ hk (4)

The fading memory condition is somehow related to
controllability and observability, since apparently only
the “unexposed” memory needs to be fading. The next
lemmata state some important facts about the concept
fading memory.

LEMMA 1
Every linear time-invariant operator of finite order has
fading memory.

LEMMA 2
Every bounded operator with fading memory is expo-
nentially bounded.

Proofs of Lemma 1 and Lemma 2 are given in section 6.
For example, a pure integrator is unbounded but

has fading memory by Lemma 1. In contrast, the
composition of a pure integrator and saturation does
not have fading memory. (To see that this is indeed
true, apply non-zero constant input at the saturation
level.) The example also shows that a composition of

two operators with fading memory does not necessarily
have fading memory itself.

We also need a notion of distance between two
operators. For this, we define the gap between G and
H as δ (G, H), where

δ̄ (G, H) := sup
g ∈SG

inf
h ∈S H

sup
T > 0

kPT g − PT hk
kPT gk

δ (G, H) := max(δ̄ (G, H), δ̄ (H, G))

and supremum is taken over all nonzero g ∈ G and
all T > 0 with kPT gk 6= 0. The operator Gτ is said
to depend continuously on τ if δ (Gτ 1 , Gτ 2) → 0 as
jτ 1 − τ 2j → 0. This definition of gap is very close to
the one suggested by Georgiou and Smith in [4]. The
notion of gap can be used to verify boundedness in the
following way:

LEMMA 3
Let the operator ∆0 be causal and bounded and let ∆ be
causal. If

δ (∆0, ∆) < (2 + k∆0k)
−1

then ∆ is bounded.

3. Interconnections
It is standard to analyse systems with nonlinearities by
writing them as a feedback interconnection of a linear
time-invariant operator G and a possibly nonlinear and
uncertain operator ∆, described by integral quadratic
constraints. The interconnection is a relation of the
form {

v = G(w) + f

w = ∆(v) + e
(5)

and it is said to be well posed if the set of all solutions
to (5) defines a causal operator [G, ∆] : ( f , e) 7→ (v, w).
The interconnection is called stable or exponentially
stable if in addition [G, ∆] is bounded or exponentially
bounded respectively. Noting that [G, ∆] has fading
memory whenever G and ∆ do so, Lemma 2 can be
reformulated in terms of stability as follows.

COROLLARY 1
If G and ∆ have fading memory and their interconnec-
tion is stable, then the interconnection is exponentially
stable.

To derive well-posedness of interconnections with hys-
teresis, one has to work with operators that are not
open-loop bounded. We then use the notions of continu-
ity and boundedness in a local context.



We say that operator F is locally incremental (F ∈
F li) if for any T > 0 there exist C0 , C1 , τ > 0, and θ < 1
such that

kPt+τ F(w)k ≤ θkPt
t+τ wk + C0 + C1kPtwk (6)

for all t ∈ [0, T], w ∈L.
We write wi → w ∈ Ln when kwi − wk → 0, and

wi →∗ w if sup kwi − wk < ∞ and 〈g, wi − w〉 → 0 for
every g ∈ L

n
2 . An operator F is said to be locally *-

continuous if for every t > 0 there exists d > 0 such
that from every input-output sequence wi = F(yi) with
Pt−d(wi − w0) = 0, Pt−d(yi − y0) = 0, and Pt+ d yi →∗

Ptd y, one can extract a subsequence wi(j) such that
Pt+ dwi(j) →∗ w and Pt+ dw = Pt+ dF(y). In this case we
write F ∈F l∗.

PROPOSITION 1
Let F : Ln → L

n be a causal operator which is
both locally *-continuous and locally incremental. Then
equation w = F(w + v) has a solution for every v ∈Ln,
and the corresponding operator v 7→ w is causal, locally
*-continuous, and locally incremental.

Theorem 1 is a general result which helps to establish
well-posedness of various interconnections. The follow-
ing statement describes an important special case when
the proposition can be applied.

PROPOSITION 2
Let f be a function that maps Rn into the set of convex
compact subsets of Rn. Assume f is linearly bounded,
i.e.

jzj ≤ c0 + c1jxj ∀ z ∈ f (x), x ∈ Rn,

and continuous, i.e.

zi ∈ f (xi), xi → x, zi → z ⇒ z ∈ f (x).

Define the operator ∆ f : Ln → L
n by

∆ f (v) = w ⇔ w(t) ∈ f (v(t)) ∀ t.

Let L be the causal LTI operator with an impulse
response h(t) which is integrable over an interval t ∈
(0, d). Then the composition F = ∆ f ○ L is locally *-
continuous and locally incremental.

4. Stability via Integral Quadratic
Constraints

A functional σ : Ln
2 → R is called quadratically

continuous if for every ε > 0 there exists C > 0 such
that

σ (h) ≤ σ (g) + εkgk2 + Ckh − gk2 ∀ g, h ∈Ln
2 (7)

The operator ∆ : Ll → L
m is said to satisfy the integral

quadratic constraint (IQC) defined by σ if

σ (h) ≥ 0 ∀h = (v, ∆(v)) ∈Ll + m
2

Integral quadratic constraints are most often used
on the form∫ ∞

−∞

[
v̂(jω)

∆̂(v)(jω)

]∗

Π(jω)

[
v̂(jω)

∆̂(v)(jω)

]
dω ≥ 0

where Π(jω) is a bounded Hermitean k + m by k + m
matrix-valued function. The corresponding functional
will be denoted σ Π. Moreover, the operator G will be
replaced by a transfer matrix G(s) and the stability cri-
terion can be written on the following form, recognized
from Theorem 2 in [6].

PROPOSITION 3
Consider a G ∈ RH

l×m
∞ and a causal, locally contin-

uous and incremental operator ∆ : L
l → L

m such
that G(∞)∆ is lower triangular. Suppose that Π ∈
RH

(l + m)×(l + m)
∞ , ε > 0 and σ Π(0, w) + εkwk2 ≤ 0 ≤

σ Π(v, 0) for all v, w. If[
G(jω)

I

]∗

Π(jω)

[
G(jω)

I

]
≤ −ε I (8)

for all ω ∈R and

σ Π(v, ∆(v)) ≥ 0

for all v ∈Ll
2[0,∞), then the interconnection of G and

∆ is stable. Moreover, if ∆ has fading memory, then the
interconnection is exponentially stable.

An alternative to the condition σ Π(0, w) + εkwk2 ≤ 0 is
to assume existence of some G0 ∈RHl×m

∞ such that (8)
holds with G replaced by G0 and the interconnection of
G0 and ∆ is stable. The conditions above are recovered
with G0 = 0.

5. Application to Hysteresis
Let f+ and f− be bounded continuous functions, map-
ping vectors inRn to convex subsets ofRn. Let h : Rn →
R be a function, and let U ⊂ Rn be a set. We say that
two scalar signals y,ξ satisfy the hysteresis relation de-
fined by f and h (notation ξ = hys(y) = hys f ,h(y)),
if ẏ ∈ L and there exists a locally Lipschitz function
x : [0,∞)→ Rn such that

ẋ ∈

{
f+(x) ẏ, if ẏ ≥ 0

f−(x) ẏ, if ẏ ≤ 0
x(0) ∈ U

ξ (t) = h(x(t))

(9)



6

-

-
�

�
�

�
�

�

-

-

-
-

-

��	

-

-
��	-

��	

�

�

�

���

���
���

���

���

���

��	
��	

��	
��	

��	
��	

���

���

���

ξ

y

ξ = y − 1

ξ = y + 1

Figure 1. Backlash hysteresis

In (9), f+ and f− define the admissible trajectories for
the phase vector x for the cases when y is respectively
increasing or decreasing, while h defines how the
possibly higher-dimensional dynamics of x results in
variations of the scalar output ξ .

For example, the ideal backlash relation, defined by
the condition

y − ξ = sgn ξ̇ ,

is a special case of (9) with n = 2 and

f±(x1, x2) = (1 , 0.5[1− sgn(1 ∓ x1 ± x2)])

h(x1, x2) = x2

U = {(0,ξ ) : jξ j ≤ 1}

See Figure 1 showing the motion of the x-state as y
varies.

Interconnections with hysteresis nonlinearities typ-
ically have many possible equilibria for y,ξ , so they are
unstable in the sense that y does not tend to zero. Nev-
ertheless, it is possible to prove exponential decay of ẏ
and ξ̇ .

THEOREM 1
Assume that U is compact, h is a globally Lipschitz
function,

jh(x1) − h(x2)j ≤ Ljx1 − x2j ∀ x1, x2 ∈ Rn,

and jrj ≤ R for any r ∈ f±(x). Then the set of all pairs
( ẏ,ξ ), where y and ξ satisfy the hysteresis relation
(9), defines a causal, locally *-continuous, and locally
incremental operator ẏ → ξ . Moreover, the operator
ẏ → ξ̇ is causal and bounded (with the norm not
exceeding RL).

COROLLARY 2
Let the assumptions of Theorem 1 be satisfied and
suppose that hys f ,h has fading memory. Let G(s) =
C(sI − A)−1B . If

RLjG(iω)j < 1 ∀ ω

������c b
s+ a

--- -? s -ξy wv −

+

Figure 2. Feedback “encapsulation” of hysteresis

then ẏ and ξ̇ tend to zero exponentially for all solutions
to

ẋ = Ax − Bξ , ξ = hys f ,h(y), y = C x (10)

The corollary can be viewed as a generalization of the
circle criterion. Our next step will be a more specific
result for the ideal backlash relation described above.

For a > 0, b > −a define the operator w = ∆bkl(v)
by the relations

ẏ = −ay + b(v− ξ ), y(0) = 0

ξ = hys f ,h,U(y)

w = ξ̇
(11)

See Figure 2. The operator has properties as follows.

THEOREM 2
The operator (1/s) ○ ∆bkl is causal, locally *-continuous,
and locally incremental. The operator ∆bkl is causal,
bounded, has fading memory, and satisfies the IQC’s

0 ≤
〈

w,
b[1 + H(s)]

s + a
(v + w/a)

〉
(12)

− (1 + b/a)
〈

w,
H(s)− H(0)

s
w
〉

0 =
〈

w,
bs

s + a
v −

b
s + a

w − w
〉

(13)

for every H ∈RL∞ with kHkL1 ≤ 1.

Combination with Proposition 3 gives the following
stability criterion for systems with backlash.

COROLLARY 3
Let G(s) = C(sI − A)−1B . If there exist ε > 0, η ∈R
and H ∈RL∞ with kHkL1 ≤ 1 such that

G(0) > −1 (14)

Re
[
(G(iω) + 1)

(
η +

1 + H(iω)

iω

)]
> ε ∀ω 6= 0

(15)

then for the solutions of (10)with f , h, U corresponding
to backlash, the derivatives ξ̇ and ẏ tend to zero
exponentially.



6. Selected Proofs

Proof of Lemma 1. Let the linear time-invariant opera-
tor v = G(w) have the minimal realization

ẋ = Ax + Bw

v = C x + Dw

Given some g = (G(w), w) and τ > 0, define
gτ = (G(wτ ), wτ ) as follows. Choose gτ to minimize∫ τ +1

τ jgτ (t)j2dt under the constraints

0 = Pτ gτ = Pτ +1(gτ − g)

By controllability of (A, B) there exists a c1 > 0,
independent of g and τ , such that

kPτ
τ +1(gτ − g)k ≤ c1jx(τ )j

and by observability of (C , A) there exists a c2 > 0,
independent of g and τ , such that

jx(τ )j ≤ c2kPτ−1
τ gk

Hence

ketPτ (gτ − g)k = ketPτ
τ +1(gτ − g)k

≤ eτ +1c1kx(τ )k

≤ eτ +1c1c2kPτ−1
τ gk

≤ e2c1c2ketPτ gk

2

Proof of Lemma 2. By the definition of fading memory,
there exists a > 0 and Ca > 0 such that for every
z = (v, ∆(v)) and for every τ ≥ 0 there exists zτ =
(vτ , ∆(vτ )) such that Pτ zτ = 0 and

keatPτ (z− zτ )k ≤ CakeatPτ zk

Boundedness of ∆ implies existence of C such that for
all T > τ > 0

kPτ
T zk ≤ kPT zτ k + kPτ

T(z− zτ )k

≤ CkPT vτ k + kPτ
T(z− zτ )k

= CkPτ
T [v + (vτ − v)]k + kPτ

T(z− zτ )k

≤ CkPτ
T vk + (2C + 1)kPτ

T(z− zτ )k

≤ CkPτ
T vk + (2C + 1)e−aτ CakeatPτ zk

In particular, there exist constants C0, C1, independent
of τ and T , such that∫ T

τ
jzj2dt ≤ C0e−2aτ

∫ τ

0
e2atjzj2dt + C1

∫ T

τ
jvj2dt (16)

for any τ ∈ [0, T]. Multiplying (16) by 2ε e2ετ , where
ε ∈ [0, a), integrating the products from τ = 0 to τ = T ,
and adding (16) with τ = 0 to the result yields∫ T

0
e2ε tjzj2dt ≤

C0ε
a − ε

∫ T

0
e2ε tjzj2dt + C1

∫ T

0
e2ε tjvj2dt

When C0ε < a − ε , the exponential bound is proved. 2

Proof of the IQC’s in Theorem 2. First note that

0 ≤ ξ̇ (t)(y− ξ )(t) ∀t

In addition, ξ̇ (t) can be nonzero only if jy − ξ j = 1. It
is therefore possible to add perturbations to the factor
y − ξ without violating the inequality. More precisely,

0 ≤ ξ̇ (t)[y− ξ + h ∗ (y− ξ )](t) ∀t

for every convolution kernal h with
∫∞
−∞

jhjdt ≤ 1,
becuase the magnitude of the term h ∗ (y − ξ ) is then
at most one. Noting that

〈
ξ̇ ,ξ

〉
= 0 for ξ , ξ̇ ∈L2 gives

0 ≤
〈
ξ̇ , y − ξ + h ∗ (y− ξ )

〉
= 〈w, [1 + H(s)]y− ξ )〉
= 〈w, [1 + H(s)](y− ξ ) + [1 + H(0)](1 + b/a)ξ 〉
= 〈w, [1 + H](y + ξ b/a)〉 − 〈w, [H − H(0)](1 + b/a)ξ 〉

=
〈

w,
b[1 + H(s)]

s + a
(v + w/a)

〉
− (1 + b/a)

〈
w,

H(s)− H(0)
s

w
〉

The equality (13) is just that

0 =
〈
ξ̇ , ẏ − ξ̇

〉
=
〈

w,
bs

s + a
v −

b
s + a

w − w
〉

2

Proof of Corollary 3. Let b = aG(0). Then b > −a so
∆bkl is properly defined and

G1(s) : =
[

s + a
b

G(s) + 1
]
/s

is stable because the b was chosen to cancel the
unstable pole. From (10) and (11) follows that{

v = G1(w) + b−1(aC + C A)eAtx(0)

w = ∆bkl(v)

so to conclude exponential decay of ξ̇ and ẏ, it is
sufficient to verify (8) where Π corresponds to a convex
combination of (12) and (13). This condition becomes
the inequality (15). 2
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