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Abstract

Wave propagation of transient electromagnetic waves in time-varying media
is considered. The medium, which is assumed to be inhomogeneous and dis-
persive, lacks invariance under time translations. The spatial variation of
the medium is assumed to be in the depth coordinate, i.e., it is stratified.
The constitutive relations of the medium is a time integral of a generalized
susceptibility kernel and the field. The generalized susceptibility kernel de-
pends on one spatial and two time coordinates. The concept of wave splitting
is introduced. The direct and inverse scattering problems are solved by the
use of an imbedding or a Green functions approach. The direct and the in-
verse scattering problems are solved for a homogeneous semi-infinite medium.
Explicit algorithms are developed. In this inverse scattering problem, a func-
tion depending on two time coordinates is reconstructed. Several numerical
computations illustrate the performance of the algorithms.

1 Introduction

During the last decades, an impressive development in the field of inverse scattering
problems has occurred. Specifically, several recent conferences have addressed these
problems, see e.g., [2, 15, 16]. Many useful algorithms have been developed and
interesting new mathematics has been created.

The time domain techniques have been very successful in the solution of the
inverse scattering problem. These methods, which are based upon a wave splitting
concept in conjunction with imbedding or Green function techniques, have in this
context proved to be very efficient. These methods originate from work by Corones,
Krueger and co-workers, see Refs. [1, 3, 4, 11]. Several recent results using these
methods are collected in Ref. [5], and the interesting progress in the solution of the
three-dimensional inverse scattering problem is found in Ref. [17, 18].

The traditional underlying model for wave propagation in general is the wave
equation with coefficients that are independent of time. No changes in the material
parameters are allowed, i.e., the medium is assumed to be invariant under time
translations. The literature on the solution of the inverse scattering problem for a
non-stationary medium is sparse, see e.g. [12–14]. The inverse scattering problem
for the time-invariant wave equation using time domain techniques has been studied
extensively, and several numerical algorithms have been suggested in the literature.
The most relevant references, for the generalizations of this problem presented in
this paper, are Refs. [6–10].

In this paper a wider class of underlying differential equations is analyzed. The
properties of the medium can change during the scattering experiment. In order
to analyze such a situation, the coefficients of the partial differential equation must
be time dependent. To deal with these conditions, several new extensions of the
existing theory have to be introduced and examined. The concept of wave splitting
is introduced and the imbedding and Green function techniques are investigated.
The analysis is illustrated with several numerical computations for some simple
model problems.
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Model problems, where time dependent coefficients occur, can be found in tele-
communication problems, e.g., fading and modulation problems. Other interesting
fields of applications are found in control theory and linearizations of non-linear
electromagnetic effects, such as the Kerr effect. Microwave propagation in ferrites
also shows applications that can be modeled with time dependent coefficients.

In Section 2 the prerequisite equations are developed. The wave splitting concept
is introduced in Section 3, and the imbedding and Green function approaches are
analyzed in Sections 4 and 5, respectively. The homogeneous case is investigated in
Section 6 and some numerical illustrations are found in Section 7. The paper ends
with three appendices containing additional analysis.

2 Basic equations

In this paper, the Maxwell equations are the underlying differential equations of
the analysis. These equations give the dynamics of the electric field E(r, t), the
magnetic fieldH(r, t), the magnetic induction B(r, t) and the electric displacement
field D(r, t). 


∇×E(r, t) = −∂B

∂t
(r, t)

∇×H(r, t) =
∂D

∂t
(r, t)

(2.1)

All fields in this paper are assumed to be quiescent before a fixed time. This property
guarantees that all fields vanish at t→ −∞.

The medium is assumed to be inhomogeneous with respect to depth z and to be
non-magnetic. The relevant constitutive relations used in this paper are:


D(r, t) = ε0

(
ε(z)E(r, t) +

∫ t

−∞
χ(z, t, t′)E(r, t′) dt′

)
B(r, t) = µ0H(r, t)

(2.2)

Notice that no assumption on invariance to time translations has been made. The
properties of the medium can therefore change during the wave propagation, or
stated differently; the medium is aging. The permittivity and the permeability of
the medium are denoted ε0ε(z) and µ0, respectively.

For simplicity, the relative permittivity ε(z) is assumed to be independent of
time, continuous everywhere, and constant outside the slab [0, L], see Figure 1.
Generalizations to time-varying permittivity will be reported elsewhere. The sus-
ceptibility kernel χ(z, t, t′), which models the aging of the medium, is assumed to be
zero outside [0, L]. Furthermore, ε(z) and χ(z, t, t′) are assumed to be continuously
differentiable inside the slab as functions of z ∈ (0, L) and χ(z, t, t′) is assumed to
be twice continuously differentiable as a function of t and once continuously differ-
entiable as a function of t′, where t ≥ t′. It is convenient to extend the domain of
definition of χ(z, t, t′) to the region t < t′ by letting χ(z, t, t′) = 0, when t < t′. In
this way χ(z, t, t′) is defined for all t and t′.
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z

0 L

ε(z) = ε1 ε(z) ε(z) = ε2

χ(z, t, t′) = 0 χ(z, t, t′) 	= 0 χ(z, t, t′) = 0

Figure 1: Geometry of the problem.

The Maxwell equations, (2.1), and the constitutive relations, (2.2), combine to

∇× (∇×E(r, t)) = − 1

c20

∂2

∂t2

(
ε(z)E(r, t) +

∫ t

−∞
χ(z, t, t′)E(r, t′) dt′

)

The electric field E in this paper is assumed to depend on (z, t) only, and,
furthermore, to be transverse to the z-axis. The equation in the electric field then
reduces to a generalized scalar wave equation(

∂2

∂z2
− ε(z)

c20

∂2

∂t2
+ b(z, t)

∂

∂t
+ c(z, t)

)
E(z, t) +

∫ t

−∞
d(z, t, t′)E(z, t′) dt′ = 0

where the time dependent coefficients are


b(z, t) = − 1

c20
χ(z, t, t)

c(z, t) = − 1

c20

(
2
∂χ

∂t
(z, t, t′)|t′=t +

∂χ

∂t′
(z, t, t′)|t′=t

)

d(z, t, t′) = − 1

c20

∂2χ

∂t2
(z, t, t′)

This equation is the model equation of this paper.

2.1 Travel time coordinate transformation

In order to obtain a canonical set of equations, a travel time coordinate transforma-
tion is introduced. This coordinate transformation is not essential for the analysis,
but makes the numerical treatment introduced later in the paper simpler. The
transformation is 


x(z) =

1

lc0

∫ z

0

√
ε(z′) dz′

s =
t

l



4

where the time constant l is

l =
1

c0

∫ L

0

√
ε(z) dz

This transformation transforms the partial differential equation into the canon-
ical equation.

uxx(x, s)− uss(x, s) + A(x)ux(x, s) + B(x, s)us(x, s)

+ C(x, s)u(x, s) +

∫ s

−∞
D(x, s, s′)u(x, s′) ds′ = 0

(2.3)

where
u(x, s) = E(z(x), sl)

and where the coefficients in the partial differential equation are


A(x) =
1

2

d

dx
ln ε(z(x))

B(x, s) = − l

ε(z(x))
χ(z(x), sl, sl)

C(x, s) = − l

ε(z(x))

(
2
∂χ

∂s
(z(x), sl, s′l)|s′=s +

∂χ

∂s′
(z(x), sl, s′l)|s′=s

)

D(x, s, s′) = − l

ε(z(x))

∂2χ

∂s2
(z(x), sl, s′l)

(2.4)

Notice that all coefficients, except A(x), are time dependent. It is straightforward
to generalize the results below to the case where also the coefficient A(x) is time
dependent.

3 Wave splitting

The wave splitting of the fields is introduced to obtain a natural set of dependent
coordinates that is adapted to the scattering situation. In free space, i.e., outside the
slab, the wave splitting projects out the right- and left-moving parts of the solution,
respectively. The concept of wave splitting has also been generalized to three spatial
dimensions [17].

Proceeding formally, the wave splitting is defined by the following transformation
of the dependent variables [7]:(

u+

u−

)
=

1

2

(
1 −∂−1

s

1 ∂−1
s

) (
u(x, s)
ux(x, s)

)

with inverse (
u(x, s)
ux(x, s)

)
=

(
1 1
−∂s ∂s

) (
u+

u−

)
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where the anti-derivative ∂−1
s is defined as

∂−1
s f(s) =

∫ s

−∞
f(s′) ds′

The new fields u±(x, s) satisfy an hyperbolic partial differential equation equiva-
lent to (2.3). Equation (2.3) and the aforementioned definition of the wave splitting
imply that the fields u±(x, s) satisfy

∂

∂x

(
u+

u−

)
=

(
α β
γ δ

) (
u+

u−

)
(3.1)

The operators α, β, γ, and δ are


(αf(x, ·))(s) =− ∂f

∂s
(x, s)− A(x)−B(x, s)

2
f(x, s)

+

∫ s

−∞
A(x, s, s′)f(x, s′) ds′

(βf(x, ·))(s) =
A(x) + B(x, s)

2
f(x, s) +

∫ s

−∞
A(x, s, s′)f(x, s′) ds′

(γf(x, ·))(s) =
A(x)−B(x, s)

2
f(x, s)−

∫ s

−∞
A(x, s, s′)f(x, s′) ds′

(δf(x, ·))(s) =
∂f

∂s
(x, s)− A(x) + B(x, s)

2
f(x, s)

−
∫ s

−∞
A(x, s, s′)f(x, s′) ds′

where the kernel function A(x, s, s′) is defined as

A(x, s, s′) = − l

2ε(z(x))

∂χ

∂s
(z(x), sl, s′l)

4 Imbedding equation

The two new functions u±(x, s) that were introduced in the previous section are
related to each other. The relationship between u±(x, s) is closely associated to the
scattering operators of the problem, and can be obtained from Duhamel’s principle.
For a specific x value this relation can be represented as a time integral

u−(x, s) =

∫ s

−∞
R(x, s, s′)u+(x, s′) ds′ (4.1)

The kernel R(x, s, s′) can be interpreted as the scattering kernel for a subsection
[x, 1] of the full physical slab [0, 1]. The physical scattering problem of the slab [0, 1]
is therefore imbedded in a one-parameter family of sub-slabs [x, 1], where the left
end of the slab x varies between 0 and 1. The physical reflection kernel, measured in
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an experiment, corresponds to x = 0, i.e., R(0, s, s′). Note because of time varying
coefficients in (3.1), the kernel R is of a more general form than that usually taken.

Similar arguments give the relation between the transmitted field u+(1, s) and the
excitation u+(x, s). This relation yields the imbedded transmission kernel T (x, s, s′).

u+(1, s+1−x) = t(x, 1, s−x)u+(x, s)+

∫ s

−∞
T (x, s, s′)t(x, 1, s′−x)u+(x, s′) ds′ (4.2)

where the attenuation factor t(x, y, s) is

t(x, y, s) = exp

{
1

2

∫ y

x

B(x′, x′ + s)− A(x′) dx′
}

Straightforward calculations, using the definition of the reflection kernel in equa-
tion (4.1) and the dynamics, (3.1) give the imbedding equation for the reflection
kernel R(x, s, s′) in the domain 0 < x < 1, s > s′. The result is

∂R

∂x
(x, s, s′)− ∂R

∂s
(x, s, s′) +

∂R

∂s′
(x, s, s′) = −A(x, s, s′)

− B(x, s) + B(x, s′)

2
R(x, s, s′)

−
∫ s

s′
R(x, s, s′′)A(x, s′′, s′) ds′′ −

∫ s

s′
A(x, s, s′′)R(x, s′′, s′) ds′′

−
∫ s

s′
R(x, s, s′′)

A(x) + B(x, s′′)

2
R(x, s′′, s′) ds′′

−
∫ s

s′

{∫ s′′

s′
R(x, s, s′′)A(x, s′′, s′′′)R(x, s′′′, s′) ds′′′

}
ds′′

(4.3)

with an initial condition

R(x, s, s′)|s′=s = −A(x)−B(x, s)

4
(4.4)

and a boundary condition, at x = 1 (s > s′)

R(1, s, s′) = 0 (4.5)

An imbedding equation for the transmission kernel T (x, s, s′) can also be derived
using similar arguments as above; see Ref. [7] for an imbedding equation in a medium
that is invariant under time translations.

The imbedding equation (4.3) has the characteristic direction

ξ̂ =
x̂− ŝ + ŝ′√

3

in the (x, s, s′)-space. Standard theory of hyperbolic equations shows that Cauchy
data on a surface γ parameterized by


x = f1(t1, t2)

s = f2(t1, t2)

s′ = f3(t1, t2)
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will give a locally unique solution to the imbedding equation, provided the Jacobian
J does not vanish, i.e.,

J =

∣∣∣∣∣∣
∂f1
∂t1

∂f2
∂t1

∂f3
∂t1

∂f1
∂t2

∂f2
∂t2

∂f3
∂t2

1 −1 1

∣∣∣∣∣∣ 	= 0

Therefore, with the initial data specified on the plane s′ = s, as in equation (4.4),
the problem (4.3) is well-posed.

4.1 Propagation of discontinuity

In this section the propagation of singularity of the reflection kernel is analyzed in
greater detail. In particular, an equation defining the finite jump discontinuity of
the kernel is derived.

Any finite jump discontinuity in R(x, s, s′), that is initiated on the plane s =
s′, see (4.4), propagates along the characteristic direction ξ̂. From the continuity
requirements of the susceptibility kernel χ(z, t, t′) mentioned in Section 2, the only
finite jump discontinuity in the reflection kernel that can be initiated is at x = 1.
The direction vector

τ̂ =
ŝ + ŝ′√

2

together with the characteristic direction ξ̂ of the imbedding equation (4.3) span a
plane Γ

s− s′ = 2(1− x)

with normal n̂

n̂ =
2x̂ + ŝ− ŝ′√

6

The reflection kernel R(x, s, s′) is discontinuous across this plane.
The finite jump discontinuity in the reflection R(x, s, s′) across the line s = s′ is

(see (4.4) and (4.5))

[R(1, s, s)] =
A(1−)−B(1−, s)

4

where square brackets are used to denote the finite jump discontinuity with respect
to the normal n̂, i.e.,

[R(x, s, s− 2(1− x))] = R(x+, s+, s− 2(1− x))−R(x−, s−, s− 2(1− x))

If the plane Γ is parameterized as

x = 1− q

s = p + q

s′ = p− q
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then the jump discontinuity of the reflection kernel, which is determined by the
imbedding equation (4.3), satisfies

d

dq
[R(1− q, p + q, p− q)]

=
B(1− q, p− q) + B(1− q, p + q)

2
[R(1− q, p + q, p− q)]

The solution to this ordinary differential equation is

[R(x, s, s− 2(1− x))] = [R(1, s + x− 1, s + x− 1)] exp

{∫ 1

x

h(x, s, x′) dx′
}

where

h(x, s, x′) =
B(x′, s + x + x′ − 2) + B(x′, s + x− x′)

2
Specifically, at x = 0 the finite jump discontinuity of the physical reflection kernel
R(0, s, s′) after one round trip is

[R(0, s, s− 2)] = [R(1, s− 1, s− 1)] exp

{∫ 1

0

h(0, s, x′) dx′
}

=
A(1−)−B(1−, s− 1)

4
exp

{
1

2

∫ 1

0

[B(x′, s + x′ − 2) + B(x′, s− x′)] dx′
}

(4.6)

5 Green functions

The relationship between the split fields u± in Section 4 was evaluated at a specific
x-value and the reflection kernel R(x, s, s′) was interpreted as the reflection kernel
for a subslab [x, 1] of the physical slab [0, 1]. This interpretation was performed by
the use of an imbedding argument.

In contrast to the analysis presented in the previous section, this section contains
an analysis of the relationship between the exterior excitation u+(0, s) and the inter-
nal fields u±(x, s) of the physical slab [0, 1]. The operator that maps the excitation
u+(0, s) to the internal fields u±(x, s) has an integral representation. This represen-
tation leads to the definition of the Green functions G±(x, s, s′) of the propagation
problem.

By using Duhamel’s principle, the explicit representation of the mapping of the
excitation u+(0, s) to the internal fields u±(x, s) is obtained.


u+(x, x + s) = t(0, x, s)u+(0, s) +

∫ s

−∞
G+(x, s, s′)t(0, x, s′)u+(0, s′) ds′

u−(x, x + s) =

∫ s

−∞
G−(x, s, s′)t(0, x, s′)u+(0, s′) ds′

(5.1)

where, as above, the attenuation factor is defined as

t(x, y, s) = exp

{
1

2

∫ y

x

B(x′, x′ + s)− A(x′) dx′
}
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The Green functions equations are obtained from the definition of the Green
functions, (5.1), and the dynamics of the field u±(x, s), see (3.1). The domain of
these equations is 0 < x < 1, s > s′. The equations are

∂G+

∂x
(x, s, s′) +

B(x, x + s′)−B(x, x + s)

2
G+(x, s, s′)

− A(x) + B(x, x + s)

2
G−(x, s, s′)−A(x, x + s, x + s′)

−
∫ s

s′
A(x, x + s, x + s′′)

(
G+(x, s′′, s′) + G−(x, s′′, s′)

)
ds′′ = 0

(5.2)

and

∂G−

∂x
(x, s, s′)− 2

∂G−

∂s
(x, s, s′)− A(x)−B(x, x + s)

2
G+(x, s, s′)

+
B(x, x + s′) + B(x, x + s)

2
G−(x, s, s′) +A(x, x + s, x + s′)

+

∫ s

s′
A(x, x + s, x + s′′)

(
G+(x, s′′, s′) + G−(x, s′′, s′)

)
ds′′ = 0

(5.3)

with the initial condition

G−(x, s, s′)
∣∣
s′=s

= −A(x)−B(x, x + s)

4
(5.4)

The boundary conditions for G±(x, s, s′) at x = 0 and x = 1 are obtained by using
the definition of the Green functions G±(x, s, s′), (5.1), and by a comparison with
the definitions of the imbedded scattering kernels R(x, s, s′) and T (x, s, s′), (4.1)
and (4.2). The boundary values at x = 0 and x = 1 (s > s′) are


G+(1, s, s′) = T (0, s, s′)

G−(1, s, s′) = 0

G+(0, s, s′) = 0

G−(0, s, s′) = R(0, s, s′)

From the definition of the Green functions G±(x, s, s′) in (5.1) and the definitions
of the imbedded scattering kernels R(x, s, s′) and T (x, s, s′) in (4.1) and (4.2), it is
possible to obtain additional relations between the imbedding kernels R(x, s, s′) and
T (x, s, s′) and the Green functions G±(x, s, s′). These relations are

G−(x, s, s′) = R(x, x + s, x + s′) +

∫ s

s′
R(x, x + s, x + s′′)G+(x, s′′, s′) ds′′

and

G+(1, s, s′) = T (x, x + s, x + s′) +
1

t(x, 1, s′)

{
t(x, 1, s)G+(x, s, s′)

+

∫ s

s′
T (x, x + s, x + s′′)t(x, 1, s′′)G+(x, s′′, s′) ds′′

}
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The Green function G−(x, s, s′) has a finite jump discontinuity along the plane
Γ

s− s′ = 2(1− x)

The derivation of this discontinuity follows the same line of arguments as for the
reflection kernel R(x, s, s′) in Section 4.1. The result is[

G−(x, s, s− 2(1− x))
]

=
[
G−(1, s− 2(1− x), s− 2(1− x))

]
exp

{∫ 1

x

h(x, s, x′) dx′
}

=
A(1−)−B(1−, s + 2x− 1)

4
exp

{∫ 1

x

h(x, s, x′) dx′
} (5.5)

where

h(x, s, x′) =
B(x′, s + x′ − 2(1− x)) + B(x′, s + 2x− x′)

2

This finite jump discontinuity agrees at x = 0 with the result in (4.6).

6 Homogeneous, semi-infinite medium

In this section the simplifications that occur in a homogeneous, semi-infinite medium
are discussed.

6.1 Imbedding equation

For a homogeneous, semi-infinite medium the imbedding equation (4.3) simplifies
considerably. In a homogeneous medium A(x) = 0 and the x-dependence in all
parameters vanishes. Furthermore, the reflection kernel R(x, s, s′) is independent
of the imbedding parameter x so that the kernel satisfies the following simplified
equation (s > s′):

∂R

∂s
(s, s′)− ∂R

∂s′
(s, s′) = A(s, s′) +

B(s) + B(s′)

2
R(s, s′)

+

∫ s

s′
R(s, s′′)A(s′′, s′) ds′′ +

∫ s

s′
A(s, s′′)R(s′′, s′) ds′′

+
1

2

∫ s

s′
R(s, s′′)B(s′′)R(s′′, s′) ds′′

+

∫ s

s′

{∫ s′′

s′
R(s, s′′)A(s′′, s′′′)R(s′′′, s′) ds′′′

}
ds′′

(6.1)

with an initial condition

R(s, s′)|s′=s =
B(s)

4
(6.2)
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and where the material functions are

B(s) = − l

ε
χ(sl, sl)

A(s, s′) = − l

2ε

∂χ

∂s
(sl, s′l)

(6.3)

Numerical algorithms for the direct and the inverse scattering problem are easily
obtained from the imbedding equation (6.1). For the direct problem, the susceptibil-
ity kernel χ(sl, sl′) is known and the problem is to calculate R(s, s′) for 0 ≤ s ≤ T ,
0 ≤ s′ ≤ s for some specified T . In the inverse problem, R(s, s′) is specified for
0 ≤ s ≤ T , 0 ≤ s′ ≤ s and χ(sl, sl′) is to be determined.

Integration along the characteristic of (6.1) gives

R(s, s′)−R(s− h, s′ + h) =

∫ s

s−h

{
A(λ, s′ + s− λ)

+
B(λ) + B(s′ + s− λ)

2
R(λ, s′ + s− λ)

+

∫ λ

s′+s−λ
R(λ, s′′)A(s′′, s′ + s− λ) ds′′

+

∫ λ

s′+s−λ
A(λ, s′′)R(s′′, s′ + s− λ) ds′′

+
1

2

∫ λ

s′+s−λ
R(λ, s′′)B(s′′)R(s′′, s′ + s− λ) ds′′

+

∫ λ

s′+s−λ

{∫ s′′

s′+s−λ
R(λ, s′′)A(s′′, s′′′)R(s′′′, s′ + s− λ) ds′′′

}
ds′′

}
dλ

Up to this point, this is an exact result without approximations. This equation is
the starting point for the discretization of the imbedding equation.

Define a staggered mesh in the (s, s′)-plane, see Figure 2.

(s, s′) = (2ih + jh, jh), i = 0, 1, 2, 3, . . . , j = 0, 1, 2, 3, . . .

and denote by

Ri,j = R(ih, jh)

Ai,j = A(ih, jh)

Bi = B(ih)

, i = 0, 1, 2, 3, . . . , I, j = 0, 1, 2, 3, . . . , J

the values at the mesh points in the lower half triangle.
Approximate all integrals by the trapezoidal rule. The result of this approxima-

tion is

Ri,j −Ri−1,j+1 =
h

2

{
Ai,j +Ai−1,j+1 +

Bi + Bj

2
Ri,j +

Bi−1 + Bj+1

2
Ri−1,j+1

+Ki,j +Ki−1,j+1 + Li,j + Li−1,j+1 +Mi,j +Mi−1,j+1 +Ni,j +Ni−1,j+1

} (6.4)
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s

s′

h

2h 4h

s = s′

Figure 2: Definition of the mesh in the s-s′-plane and the computational molecule
of the algorithms based upon the imbedding equation.

where i = j + 2, j + 4, j + 6, . . . , I, j = 0, 1, 2, 3, . . . , J and


Ki,j = 2h

i−j
2∑′′′

n=0

Ri,j+2nAj+2n,j

Li,j = 2h

i−j
2∑′′′

n=0

Ai,j+2nRj+2n,j

Mi,j = h

i−j
2∑′′′

n=0

Ri,j+2nBj+2nRj+2n,j

Ni,j = 2h

i−j
2∑′′′

n=0

Ri,j+2nLj+2n,j

and for i = j these expressions are 

Ki,i = 0

Li,i = 0

Mi,i = 0

Ni,i = 0

Note that i− j always is an even integer in this algorithm, and the triple prime on
the summation symbols signifies that first and last terms in the summation are to



13

be halved. The initial values of Ri,j are

Ri,i =
Bi

4
, i = 0, 1, 2, 3, . . . , I

The local truncation error made in (6.4) is of order O(h3).

6.1.1 Direct algorithm

The direct algorithm requires Ri,j to be calculated diagonally from left to right from
the diagonal line s = s′. This leads to an implicit algorithm in (6.4). However, Ri,j

may be eliminated on the right-hand-side of (6.4) to O(h3) so yielding the following
explicit form of the algorithm. Note for sufficiently small step size h, this explicit
algorithm is always possible.

.
Ri,j =

1

Ni,j

{
Ri−1,j+1 +

h

2

[
Ai,j +Ai−1,j+1 +

Bi−1 + Bj+1

2
Ri−1,j+1

+K′i,j +Ki−1,j+1 + L′i,j + Li−1,j+1 +M′
i,j +Mi−1,j+1 +N ′i,j +Ni−1,j+1

]}
(6.5)

where i = j + 2, j + 4, j + 6, . . . , I, j = 0, 1, 2, 3, . . . , J . The denominator Ni,j is

Ni,j = 1− h

2

Bi + Bj

2
− h2

2
(Ai,i +Aj,j)−

h2

16

(
B2
j + B2

i

)
+ O(h3)

and the truncated sums are


K′i,j = 2h

i−j
2∑′′

n=1

Ri,j+2nAj+2n,j

L′i,j = 2h

i−j−2
2∑′

n=0

Ai,j+2nRj+2n,j

M′
i,j = h

i−j−2
2∑

n=1

Ri,j+2nBj+2nRj+2n,j

N ′i,j = 2h

i−j−2
2∑

n=1

Ri,j+2nLj+2n,j + hRi,iL′i,j

The single and double primes on the summation symbols signify respectively, that
either the first or last term in the summation is to be halved.

The starting values of the direct algorithm are

Ri,i =
Bi

4
, i = 0, 1, 2, 3, . . . , I

The computations in (6.5) proceed from the diagonal i = j in the direction away
from the diagonal; computing Ri,j in each subdiagonal i − j = 2n, n = 1, 2, . . .
sequentially, from bottom to top. The computations that illustrate this algorithm
in Section 7 are limited to the square 0 ≤ s, s′ ≤ 2 for practical reasons.
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6.1.2 Inverse algorithm

The inverse algorithm based upon the discretized imbedding equation, see (6.4),
is obtained in a similar way to the direct problem. In the inverse algorithm the
(discretized) values of the reflection kernel R(s, s′) are assumed to be known from a
scattering experiment. The goal in the inverse algorithms is to retrieve the function
Ai,j. The function B(s) is easily recovered from the diagonal values of R(s, s′), see
(6.2), as

Bi = 4Ri,i, i = 0, 1, 2, 3, . . . , I

The functions R(s, s′) and B(s) are therefore known at all relevant mesh points in
the s-s′-plane.

From the discretized version of the imbedding equation, (6.4), it is straightfor-
ward to make the following rearrangement of terms.

Ai,j =
1

N ′i,j

{2

h
(Ri,j −Ri−1,j+1)−Ai−1,j+1 −

Bi + Bj

2
Ri,j −

Bi−1 + Bj+1

2
Ri−1,j+1

−K′′i,j −Ki−1,j+1 − L′′i,j − Li−1,j+1 −Mi,j −Mi−1,j+1 −N ′′i,j −Ni−1,j+1

}
(6.6)

where i = j + 2, j + 4, j + 6, . . . , I, j = 0, 1, 2, 3, . . . , J . The denominator Ni,j in
the inverse algorithm is

N ′i,j = 1 +
h

2

Bi + Bj

2
+

h2

16
BiBj

and the truncated sums are


K′′i,j = 2h

i−j−2
2∑′

n=0

Ri,j+2nAj+2n,j

L′′i,j = 2h

i−j−2
2∑′′

n=1

Ai,j+2nRj+2n,j

N ′′i,j = 2h

i−j−2
2∑

n=1

Ri,j+2nLj+2n,j + hRi,iL′′i,j

The starting values of A(s, s′) on the diagonal s = s′ are obtained by evaluating
the imbedding equation (6.1) at s = s′. The result is

A(s, s) =
∂R

∂s
(s, s′)

∣∣∣∣
s=s′
− ∂R

∂s′
(s, s′)

∣∣∣∣
s=s′
− 1

4
B2(s)

The computations in the inverse algorithm proceed from the diagonal i = j in
a downward direction; computing Ai,j in each subdiagonal i − j = 2n, n = 1, 2, . . .
sequentially, from bottom to top. The computations presented in Section 7 are
limited to the square 0 ≤ s, s′ ≤ 2 for convenience.
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Finally, the susceptibility kernel χ(sl, s′l) is obtained by numerical integration
of A(s, s′), see (6.3).

χ(sl, s′l) = −ε
l

(
2

∫ s

s′
A(s′′, s′) ds′′ + B(s′)

)

6.2 Green functions equations

For a homogeneous, semi-infinite medium the Green functions equations (5.2) and
(5.3) will simplify. The function A(x) = 0 and the x-dependence in all parameters
vanishes. However, the Green functions G±(x, s, s′) still are dependent on x, s and
s′. The Green functions equations become for x > 0, s > s′

∂G+

∂x
(x, s, s′) +

B(x + s′)−B(x + s)

2
G+(x, s, s′)

− B(x + s)

2
G−(x, s, s′)−A(x + s, x + s′)

−
∫ s

s′
A(x + s, x + s′′)

(
G+(x, s′′, s′) + G−(x, s′′, s′)

)
ds′′ = 0

(6.7)

and

∂G−

∂x
(x, s, s′)− 2

∂G−

∂s
(x, s, s′) +

B(x + s)

2
G+(x, s, s′)

+
B(x + s′) + B(x + s)

2
G−(x, s, s′) +A(x + s, x + s′)

+

∫ s

s′
A(x + s, x + s′′)

(
G+(x, s′′, s′) + G−(x, s′′, s′)

)
ds′′ = 0

(6.8)

with the initial conditions

G−(x, s, s′)
∣∣
s′=s

=
B(x + s)

4
(6.9)

and

G+(x, s, s′)
∣∣
s′=s

=

∫ x

0

(
B2(x′ + s)

8
+A(x′ + s, x′ + s)

)
dx′ (6.10)

This last initial condition follows by integrating (6.7).
The material functions are defined as aforementioned by


B(s) = − l

ε
χ(sl, sl)

A(s, s′) = − l

2ε

∂χ

∂s
(sl, s′l)

The boundary values at x = 0 (s > s′) are{
G+(0, s, s′) = 0

G−(0, s, s′) = R(s, s′)

where R(s, s′) is the physical reflection kernel.
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6.2.1 Direct algorithm

The direct algorithm based upon the Green functions equations is obtained using
similar arguments as in Section 6.1. Integrate the Green functions equations, (6.7)
and (6.8), along the characteristics. More explicitly, integrate (6.7) in x from x− h
to x and (6.8) from x to x + h. The result is

G+(x, s, s′) = G+(x− h, s, s′) +

∫ x

x−h

{B(x′ + s)−B(x′ + s′)

2
G+(x′, s, s′)

+
B(x′ + s)

2
G−(x′, s, s′) +A(x′ + s, x′ + s′)

+

∫ s

s′
A(x′ + s, x′ + s′′)

(
G+(x′, s′′, s′) + G−(x′, s′′, s′)

)
ds′′

}
dx′

and

G−(x, s, s′) = G−(x + h, s− 2h, s′) +

∫ x+h

x

{B(s + 2x− x′)

2
G+(x′, s + 2x− 2x′, s′)

+
B(x′ + s′) + B(s + 2x− x′)

2
G−(x′, s + 2x− 2x′, s′) +A(s + 2x− x′, x′ + s′)

+

∫ s+2x−2x′

s′
A(s + 2x− x′, x′ + s′′)

(
G+(x′, s′′, s′) + G−(x′, s′′, s′)

)
ds′′

}
dx′

Note that the time s′ in these equations is only a parameter. For each value of s′

these equations are solved in the domain 0 < x < 1, s > s′.
The discretization mesh in the (x, s)-plane is defined in a similar fashion as

before, see Figure 3.

(x, s) = (kh, (2i + j)h), k = 0, 1, 2, 3, . . . , i = 0, 1, 2, 3, . . . , j = 0, 1, 2, 3, . . .

Denote the function values as

G±k,i,j = G±(kh, ih, jh)

Ai,j = A(ih, jh)

Bi = B(ih)

where



k = 0, 1, 2, . . . , K

i = 0, 1, 2, . . . , I

j = 0, 1, 2, . . . , J

and approximate all integrals by the trapezoidal rule. The result is

G+
k,i,j =G+

k−1,i,j +
h

2

{Bk+i −Bk+j

2
G+
k,i,j +

Bk+i−1 −Bk+j−1

2
G+
k−1,i,j

+
Bk+i

2
G−k,i,j +

Bk+i−1

2
G−k−1,i,j +Ak+i,k+j +Ak+i−1,k+j−1

+ Pk,i,j + Pk−1,i,j

}
and

G−k,i,j =G−k+1,i−2,j +
h

2

{Bk+i−1

2
G+
k+1,i−2,j +

Bk+i

2
G+
k,i,j

+
Bk+j+1 + Bk+i−1

2
G−k+1,i−2,j +

Bk+j + Bk+i

2
G−k,i,j

+Ak+i−1,k+j+1 +Ak+i,k+j + Pk+1,i−2,j + Pk,i,j
}
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s′ + 2h

s′ + 4h

Figure 3: Definition of the mesh in the x-s-plane and the computational molecule
of the algorithm based upon the Green functions equation.

where k = 1, 2, 3, . . . , K, i = j + 2, j + 4, j + 6, . . . , I, j = 0, 1, 2, 3, . . . , J and the
convolution term Pk,i,j is defined as

Pk,i,j = 2h

i−j
2∑′′′

n=0

Ak+i,k+j+2n

(
G+
k,j+2n,j + G−k,j+2n,j

)

For i = j the convolution term Pk,i,j is

Pk,i,i = 0 , k = 0, 1, 2, 3, . . . , K

The local truncation error made using the trapezoidal rule in the exact expression
above is of order O(h3).

From this discretized version of the Green functions equations the direct scatter-
ing algorithm can be derived by solving for G±k,i,j. The index j in this algorithm is
just a parameter. For each j = 0, 1, 2, 3, . . . , J the direct algorithm requires solution
of {

A11
k,i,jG

+
k,i,j + A12

k,i,jG
−
k,i,j = F 1

k,i,j

A21
k,i,jG

+
k,i,j + A22

k,i,jG
−
k,i,j = F 2

k,i,j

(6.11)
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where k = 0, 1, 2, 3, . . . , K, i = j + 2, j + 4, j + 6, . . . , I and


A11
k,i,j = 1− h

2

Bk+i −Bk+j

2
− h2

2
Ak+i,k+i

A12
k,i,j = −h

2

Bk+i

2
− h2

2
Ak+i,k+i

A21
k,i,j = −h

2

Bk+i

2
− h2

2
Ak+i,k+i

A22
k,i,j = 1− h

2

Bk+j + Bk+i

2
− h2

2
Ak+i,k+i

The right hand side of (6.11) is

F 1
k,i,j = G+

k−1,i,j +
h

2

{Bk+i−1 −Bk+j−1

2
G+
k−1,i,j +

Bk+i−1

2
G−k−1,i,j

+Ak+i,k+j +Ak+i−1,k+j−1 + P ′k,i,j + Pk−1,i,j

}
F 2
k,i,j = G−k+1,i−2,j +

h

2

{Bk+i−1

2
G+
k+1,i−2,j +

Bk+j+1 + Bk+i−1

2
G−k+1,i−2,j

+Ak+i−1,k+j+1 +Ak+i,k+j + P ′k,i,j + Pk+1,i−2,j

}
and the truncated convolution term is

P ′k,i,j = 2h

i−j−2
2∑′

n=0

Ak+i,k+j+2n

(
G+
k,j+2n,j + G−k,j+2n,j

)

From equation (6.11) it is straightforward to calculate the G±k,i,j as functions of
known quantities. The initial values of the Green functions are, see (6.9) and (6.10),


G−k,j,j =

Bk+j

4

G+
k,j,j = h

k∑′′′

n=0

(
B2
n+j

8
+An+j,n+j

)

and the boundary values of the Green functions at x = 0 are{
G+

0,i,j = 0

G−0,i,j = Ri,j

The boundary value G+
0,i,j is exact and the values of G−0,i,j = Ri,j are the sought

quantities of the direct algorithm. Note that the matrix on the left hand side in
(6.11), i.e., (

A11
k,i,j A12

k,i,j

A21
k,i,j A22

k,i,j

)
is non-singular for sufficiently small step size h. The algorithm starts from the
horizontal line i = j, where the initial values of the Green functions are known
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Figure 4: The reflection kernel R(s, s′) corresponding to the medium in (7.1).

and proceeds to higher i-values, on each line i = constant calculating the Green
functions from the left to the right. This is the direct numerical algorithm for the
computation of the Green functions.

Despite the fact that the Green functions algorithm developed in this section
contains less numerical integration when compared to the imbedding approach which
was developed in Section 6.1, the latter one is faster. This is due to the fact that the
reflection kernel in the imbedding approach is only a function of two arguments, but
the Green functions are functions of three variables. The s′ coordinate in the Green
functions method is a parameter, and for each value of s′ a new direct problem
has to be solved. The reflection kernel is obtained as boundary values at x = 0
of the Green functions. However, the more complex calculations that occur in the
Green function approach also provide the internal field of the medium, whereas the
imbedding approach lacks this property.

7 Numerical examples

The analysis developed in this paper is illustrated with some numerical computations
of model problems.

The direct scattering problem is solved using the Green function approach de-
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Figure 5: The amplitude of the reflected field u−(0, s) for three different delayed
excitations, u+(0, s) = H(s− s0) sinω(s− s0) for ω = 10.

scribed in Section 6.2.1. The reconstruction of the susceptibility kernel, however,
is made using the inverse scattering algorithm based upon the imbedding method
developed in Section 6.1.2. The reason for using two different numerical algorithms
in the solution of the direct and the inverse scattering problems, is to avoid any
reconstruction bias. Two model problems and the corresponding reconstructions of
noise-less data are presented.

Example 1: This model is a generalized resonance model. The susceptibility
kernel χ(t, t′), which is discussed further in Appendix B, is


ε = 1

χ(sl, s′l) =
ω2
p(sl)

ν0

e−ν(sl−s
′l)/2 sin ν0(sl − s′l)

In Figure 4 the reflection kernel corresponding to the medium

χ(sl, s′l) = (1 + .4 sin 10s)2e−.5(s−s
′) sin 2(s− s′) (7.1)

is depicted.
To illustrate how the reflected field u−(0, s) is affected by different excitations,

the medium is excited by a delayed sinusoidal wave.

u+(0, s) = H(s− s0) sinω(s− s0)

The effect on the reflected field for three different delay factors s0 is computed in
Figure ??. Large variations in the response of the medium are found, so illustrating
the medium is far from being time translation invariant.

The reconstruction of the medium using the inverse algorithm (6.6) is depicted
in Figure 6. The relative error is always less than 1% in this reconstruction using a
64× 64 mesh in (s, s′).



21

0
0.5

1
1.5

2 0

0.5

1

1.5

2

-0.5

0

0.5

1

1.5

s´

s

Figure 6: The reconstructed susceptibility kernel χ(sl, s′l) in (7.1).

Example 2: The second example illustrates a generalized Debye model in which
the relaxation time τ is allowed to vary with time, see Appendix C. The suscepti-
bility kernel used in this example is,

χ(sl, s′l) = 2 exp

{
−

∫ s

s′

ds′′

τ(s′′)

}
(7.2)

where the relaxation time changes from τ1 to τ2 as

1

τ(s)
=




1
τ1
, 0 ≤ s ≤ s1

τ1+τ2
2τ1τ2

− τ1−τ2
2τ1τ2

cos π s−s1
s2−s1 , s1 ≤ s ≤ s2

1
τ2
, s2 ≤ s ≤ 2

A reconstruction of an explicit example is depicted Figure 7, where τ1 = 1, τ2 = 6,
s1 = .9 and s2 = 1.4. The relative error in this reconstruction is less than 0.3%
using a 64× 64 mesh in (s, s′).

8 Summary

In this paper new equations for the reflection kernel and the Green functions have
been derived, when the medium is such that the solutions to the differential equations
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Figure 7: The reconstructed susceptibility kernel χ(sl, s′l) in (7.2).

do not admit time translation. It is also shown in Appendix A that these new
equations reduce to the well known equations when the medium does admit time
translation invariance.

For the special case of a semi-infinite medium, where the material has no spatial
dependence, it is shown that the functional equations are only functions of two inde-
pendent variables. For this more tractable problem, a few computational examples
for the direct and inverse problem illustrate the method.

Extensions of these methods to more general problems will be reported elsewhere.
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Appendix A Invariance under time translations

In this appendix it is shown that the equations of Sections 4 and 5 reduce to those
to be found in previous literature [1, 3, 6, 11] when the medium is assumed to admit
time translation invariance.

If the medium is invariant under time translations, the susceptibility kernel
χ(z, t, t′) is only a function of z and the difference t − t′. This implies that the
reflection kernel R(x, s, s′) also is only a function of x and s− s′ and the imbedding
equation for R(x, s) satisfies (0 < x < 1, s > 0)

∂R

∂x
(x, s)− 2

∂R

∂s
(x, s) = −A(x)

2

∫ s

0

R(x, s− s′)R(x, s′) ds′

− ∂

∂s

{1

2
D(x, s) +

∫ s

0

R(x, s− s′)D(x, s′) ds′

+
1

2

∫ s

0

R(x, s− s′)

∫ s′

0

D(x, s′ − s′′)R(x, s′′) ds′′ ds′
}

with the initial condition

R(x, 0) = −A(x)−B(x)

4

The functions A(x) and B(x) and D(x, s) have in this appendix slightly different
definitions compared to the definitions in the main sections in this paper.



A(x) =
1

2

d

dx
ln ε(z(x))

B(x) = − l

ε(z(x))
χ(z(x), 0)

D(x, s) = − l

ε(z(x))
χ(z(x), sl)

Note the difference in the definition of the function D(x, s) and the definition of the
function D(x, s, s′) in (2.4).

The finite jump discontinuity of the reflection kernel is

[R(x, 2(1− x))] = [R(1, 0)] exp

{∫ 1

x

B(x′) dx′
}

=
A(1−)−B(1−)

4
exp

{∫ 1

x

B(x′) dx′
}

where square brackets are used to denote the finite jump discontinuity, i.e.,

[R(x, s)] = R(x, s+)−R(x, s−)

The Green functions equations simplify in a similar fashion for a time invariant
medium. The Green functions are also functions of just two arguments, x and s−s′.
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The Green functions equations G±(x, s) satisfy (0 < x < 1, s > 0)

2
∂G+

∂x
(x, s) =A(x)G−(x, s)−B(x)G+(x, s)

+
∂

∂s

{
D(x, s) +

∫ s

0

D(x, s− s′)
(
G+(x, s′) + G−(x, s′)

)
ds′

}

and

2
∂G−

∂x
(x, s)−4

∂G−

∂s
(x, s) = A(x)G+(x, s)−B(x)G−(x, s)

− ∂

∂s

{
D(x, s) +

∫ s

0

D(x, s− s′)
(
G+(x, s′) + G−(x, s′)

)
ds′

}

where the same definitions of the functions A(x), B(x) and D(x, s) as above have
been used. The initial condition is

G−(x, 0) = −A(x)−B(x)

4

Appendix B Resonance model

The polarization vector, P (r, t), is assumed to satisfy the following dynamics at
each space point:

d2P

dt2
(t) + ν(t)

dP

dt
(t) + ω2

0(t)P (t) = ε0ω
2
p(t)E(t)

This is a generalized resonance (Lorentz) model in which the collision frequency
ν(t), the resonance frequency ω0(t) and the plasma frequency ωp(t) are allowed to
vary with respect to time. The constitutive relations, given by (2.2), are used to
rewrite this equation as an initial value problem for the susceptibility kernel χ(t, t′).
The result is 



ε = 1

2
∂χ

∂t
(t, t′)

∣∣∣∣
t′=t

+
∂χ

∂t′
(t, t′)

∣∣∣∣
t′=t

= ω2
p(t)

χ(t, t) = 0

∂2χ

∂t2
(t, t′) + ν(t)

∂χ

∂t
(t, t′) + ω2

0(t)χ(t, t′) = 0

The solution to this problem for constant collision frequency ν and the resonance
frequency ω0 is 


ε = 1

χ(t, t′) =
ω2
p(t)

ν0

e−ν(t−t
′)/2 sin ν0(t− t′)

where

ν0 =
√
ω2

0 − ν2/4
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Appendix C Debye model

In this model, the underlying dynamics of the polarization vector is assumed to
satisfy, see also Ref. [6]

dP

dt
(t) = ε0α(t)E(t)− 1

τ(t)
P (t)

at each point in space. The first term on the right hand side is the term responsible
for the alignment effects in the medium, while the second models the effect of random
order. The relaxation τ and the alignment frequency α are assumed to be time
varying. The constitutive relations, given by (2.2), imply that the following relations
hold: 


ε = 1

χ(t, t) = α(t)

∂χ

∂t
(t, t′) +

1

τ(t)
χ(t, t′) = 0

The solution to these equations is

ε = 1

χ(t, t′) = α(t′) exp

{
−

∫ t

t′

dt′′

τ(t′′)

}
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