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Abstract

Modes of propagation of electromagnetic pulses in open circular waveguides
are investigated systematically. Core and cladding both consist of simple
(linear, homogeneous, isotropic), dispersive materials modeled by temporal
convolution with physically sound susceptibility kernels. Under these circum-
stances, pulses cannot propagate along the guide unless the sum of the (first)
initial derivatives of the electric and magnetic susceptibility kernels of the
medium in the core is less than the corresponding sum for the medium in the
cladding. Only a finite number of pulse modes can be excited, and relevant
temporal Volterra integral equations of the second kind for these modes are
derived. A theory of functions of integral operators is developed in order to
obtain the results.

1 Introduction

Propagation of guided time-harmonic electromagnetic waves in closed and open di-
electric structures is a technically important subject, see, e.g., [2, 3, 5, 6, 12, 15].
Pulse propagation in waveguides has been considerably less attended to: Kristens-
son [10] managed to analyze the modes of propagation in closed empty guides using
wave splitting technique. The results in [10] were extended to closed guides with
isotropic fillings in [1]. The modes of propagation of electromagnetic pulses in open
slab waveguides were discussed in [13] using a wave splitting technique in the normal
direction. In the present article, the results in [13] are modified to cover pulse prop-
agation in open circular waveguides, e.g., optical fibers. However, wave splitting is
not referred to. Instead, the problem is solved using an Ansatz that gives the right
radial dependence.

In section 2, the basic field equations for relevant for pulse propagation in sim-
ple (linear, homogeneous, isotropic), dispersive materials are presented. We make
use of a complex time-dependent electromagnetic field, cf. Stratton [14]. Modes of
propagation of pulses in the circular waveguide are analyzed in section 3. Specifi-
cally, conditions for propagation of pulse modes on the susceptibility kernels of the
dielectric constituents are presented and dispersion equations derived. In appen-
dix A, functions of causal convolution operators, several of which are referred to in
section 3, are discussed.

2 Basic equations for simple, dispersive media

2.1 Notation

The following notation is used: position is denoted by r = (x, y, z), time by t,
electric and magnetic field vectors by E(r, t) and H(r, t), respectively, and electric
and magnetic flux densities by D(r, t) and B(r, t). Each field vector is written in
the form E(r, t) = exEx(r, t)+eyEy(r, t)+ezEz(r, t) = (Ex(r, t), Ey(r, t), Ez(r, t)),
where ex, ey, and ez are the basis vectors in the Cartesian frame. The dynamics
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of the fields is modeled by the macroscopic Maxwell equations: ∇ × E(r, t) =
−∂tB(r, t) and ∇ × H(r, t) = J(r, t) + ∂tD(r, t), where J(r, t) is the current
density. For brevity, the independent variables (r, t) are often suppressed. The speed
of light in vacuum and the intrinsic impedance of vacuum are denoted by c0 and
η0, respectively. The constitutive relations of a simple, causal, time-invariant, and
continuous material is written in the form c0η0D = εE and c0B = µη0H , where the
relative permittivity and permeability operators of the medium are ε = 1+χe(t)∗ and
µ = 1 + χm(t)∗, respectively, and the asterisk (∗) denotes temporal convolution [7]:
[εE] (r, t) = E(r, t) + (χe ∗E)(r, t) = E(r, t) +

∫ ∞
−∞ χe(t− t′)E(r, t′) dt′, where the

integral kernels χe(t) and χm(t) are the susceptibility kernels of the medium. Owing
to causality, these functions vanish for t < 0, and, for t > 0, they are assumed to be
twice continuously differentiable. At a few occasions, the temporal Heaviside step
H(t) appear. Finally, the positive square root is intended wherever the square-root
operator

√
appears.

2.2 Constitutive models

In this article, the continuity condition [4, 13]

χe(+0) = χm(+0) = 0. (2.1)

is imposed on the susceptibility kernels of the isotropic medium. Condition (2.1) is
met by the well-known Lorentz model (the resonance model),

χe(t) =
ω2

p√
ω2

0 −
(

ν
2

)2
exp

(
−νt

2

)
sin

(√
ω2

0 −
(ν

2

)2

t

)
H(t),

which applies to bound electrons in insulators, and, by the Drude model,

χe(t) =
ω2

p

ν
(1 − exp (−νt))H(t),

which applies to free electrons in conductors (set ω0 = 0 in the Lorentz model), and
by any linear combination of these models. On the other hand, the Debye model
(the relaxation model) for polar liquids χe(t) = α exp (−βt)H(t) and Ohm’s law for
conductors (set β = 0 in the Debye model) violate the condition (2.1). Models that
violate (2.1) have been described as “unphysical” in a major textbook on classical
electrodynamics [6].

2.3 The complex electromagnetic field vector

Any time-dependent electromagnetic field (E,H) in a simple medium can be rep-
resented uniquely by the complex field vector [13, 14]

Q =
1

2
(E − iZη0H) =

1

2

(
E − iY−1η0H

)
, (2.2)
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which satisfies the first-order dispersive wave equation

∇× Q = −ic−1
0 ∂tN Q − iη0ZJ/2. (2.3)

The real temporal integral operators

Z = 1 + Z(t)∗,
Y = 1 + Y (t)∗,
N = 1 +N(t)∗

are the relative intrinsic impedance, the relative intrinsic admittance, and the index
of refraction of the medium, respectively. These operators are intrinsic operators of
the medium related by N = µY and NY = ε. In the non-magnetic case, N = Y .

Boundary conditions at an interface between two dispersive materials are that
the tangential parts of Re (Q) and Re (iYQ) be continuous.

2.4 The intrinsic operators of the medium

Since NN = µε, the refractive kernel N(t) satisfies the Volterra integral equation
of the second kind

2N(t) + (N ∗N)(t) = χe(t) + χm(t) + (χe ∗ χm)(t).

Volterra integral equations of the second kind are uniquely solvable in the space
of continuous functions in each compact time-interval and the solutions depend
continuously on data [9]. Consequently, the refractive kernel inherits causality and
smoothness properties from the susceptibility kernels.

The admittance and impedance kernels satisfy Volterra integral equation of the
second kind

Y (t) + (Y ∗ χm)(t) = N(t) − χm(t),

Z(t) + (Z ∗N)(t) = χm(t) −N(t).

and inherit causality and regularity from the susceptibility kernels. Observe that
the continuity condition (2.1) implies that

N(+0) = Y (+0) = Z(+0) = 0. (2.4)

2.5 Decomposition of the complex field

The complex electromagnetic field vector defined by (2.2) can be decomposed in its
transverse and longitudinal components:

Q = Q⊥ + ezQz.

Similarly, the nabla operator is written as ∇ = ∇⊥ + ez∂z and the Laplacian as
∆ = ∆⊥ + ∂2

z . Decompositions as these are standard in waveguide theory.
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Recall that the complex field satisfies the first-order vector wave equation (2.3)

∇× Q = −ic−1
0 ∂tN Q (2.5)

in the absence of the source term. Consequently,

∇ · Q = 0. (2.6)

Taking the curl of both members of equation (2.5) and using (2.6) result in a second-
order vector wave equation for the complex field:

−∆Q = −c−2
0 ∂2

t N 2 Q. (2.7)

Decomposing the complex field in transverse and longitudinal components iden-
tifies the transverse and longitudinal parts of (2.5):

∂z(ez × Q⊥) + ∇⊥Qz × ez = −ic−1
0 ∂tN Q⊥,

∇⊥ × Q⊥ = −ic−1
0 ∂tNQzez.

The transverse part can be written as

∂zQ⊥ = ∇⊥Qz + ic−1
0 ∂tN ez × Q⊥, (2.8)

where

Qz = −ic0∂−1
t N−1∇⊥ · ez × Q⊥. (2.9)

Equation (2.8) expresses the dynamics of the transverse field along the axis of the
waveguide in terms of the transverse gradient of the longitudinal field component,
which can be interpreted as a driving term. Equation (2.9) expresses the longitudinal
field component in terms of the transverse rotation of the transverse field.

3 Modes in open circular waveguides

Consider a straight, cylindric open waveguide extended in the z-direction. The core
is denoted by V1 and the cladding by V2. The cross-sections of the core and of the
cladding are denoted by Ω1 and Ω2 and the boundary of the cross-section by ∂Ω.
The reference direction of the normal vector field n = n(r⊥) along ∂Ω is outward
with respect to the core. The tangential vector field τ = τ (r⊥) along ∂Ω is defined
by τ = n × ez. The binormal vector field along ∂Ω is thus ez.

As in [13], it is appropriate to introduce the intrinsic operators

N =

{
N1 = 1 +N1(t) ∗ (r⊥ ∈ V1),

N2 = 1 +N2(t) ∗ (r⊥ ∈ V2),

Y =

{
Y1 = 1 + Y1(t) ∗ (r⊥ ∈ V1),

Y2 = 1 + Y2(t) ∗ (r⊥ ∈ V2),
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and

Z =

{
Z1 = 1 + Z1(t) ∗ (r⊥ ∈ V1),

Z2 = 1 + Z2(t) ∗ (r⊥ ∈ V2).

for the two constituents and define wavenumber operators as

K = c−1
0 ∂tN =

{
K1 = c−1

0 ∂tN1 (r⊥ ∈ V1),

K2 = c−1
0 ∂tN2 (r⊥ ∈ V2),

The general idea of an open waveguide is that it should support modes that

1. travel along the guide only, i.e., not in transverse directions, and

2. are confined mainly to the core in order to carry finite energy.

By definition, pulses are propagated along the z-axis only, and owing to the
absence of optical response in permittivity and permeability operators of the con-
stituents [11], wave-fronts travel with the vacuum speed c0. The aim is to look for
up-going or down-going modes of propagation with the z-dependencies

exp
(
∓zc−1

0 ∂tNz

)
, (3.1)

respectively, where the real temporal integral operator

Nz = 1 +Nz(t) ∗ (for all r⊥),

is referred to as the longitudinal refractive index. The integral kernel Nz(t) is sup-
posed to inherit causality and regularity from the susceptibility kernels; in particular

Nz(+0) = 0. (3.2)

The propagator (3.1) can, therefore, be factored as

δ
(
t∓ zc−1

0

)
∗ exp

(
∓zc−1

0 N ′
z(t)∗

)
= δ

(
t∓ zc−1

0

)
∗

(
1 + P∓(z, t)∗

)
,

where the kernels P∓(z, t), for fixed z, satisfy the temporal Volterra integral equa-
tions of the second kind [8]

tP∓(z, t) = ∓tzc−1
0 N ′

z(t) ∓
(
tzc−1

0 N ′
z ∗ P∓)

(z, t) (3.3)

in terms of the kernel N ′
z(t). In particular, P∓(0, t) = 0, and, by differentiation of

both members of (3.3), P∓(z,+0) = ∓zc−1
0 N ′

z(+0). The short-hand notation

∂z = ∓c−1
0 ∂tNz = ∓Kz (3.4)

is used frequently below, depending on whether the mode is up-going or down-going.
For modes with the z-dependencies (3.4), one can write

Q± (r⊥, z, t) = exp (∓zKz)q
± (r⊥, t) , (3.5)
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and the transverse equation (2.8) becomes

(∓KzI⊥⊥ − iK ez × I⊥⊥) · q±
⊥ = ∇⊥q

±
z ,

where I⊥⊥ is the identity operator in the transverse plane. Multiplying both mem-
bers of this equality by (∓KzI⊥⊥ + iK ez × I⊥⊥) gives(

K2
z −K2

)
q±
⊥ = (∓KzI⊥⊥ + iK ez × I⊥⊥) · ∇⊥q

±
z ,

and assuming that the operator(
K2

z −K2
)−1

= (−∇⊥ · ∇⊥)−1

exists gives

q±
⊥ =

(
K2

z −K2
)−1

(∓KzI⊥⊥ + iK ez × I⊥⊥) · ∇⊥q
±
z .

By (3.5) and the wave equation (2.7), one has

−∆⊥q
±
z (r⊥, t) =

(
K2

z −K2
)
q±z (r⊥, t) (3.6)

in the core and in the cladding.
At the boundary,

τ · q±
⊥ = −

(
K2

z −K2
)−1 (

±Kz∂τq
±
z + iK ∂nq

±
z

)
,

where the tangential and normal derivatives are given by

∂τq
±
z = τ · ∇⊥q

±
z = −ez · n ×∇⊥q

±
z , ∂nq

±
z = n · ∇⊥q

±
z .

Recall that the quantities 


Re (q±z ),

Re (iYq±z ),

Re (τ · q±
⊥),

Re (iYτ · q±
⊥)

(3.7)

are continuous at the boundary ∂Ω.

3.1 Condition for existence of pulse modes

For a specific mode, (3.4) applies, and [13]

K2 − ∂2
z =K2 −K2

z = c−2
0 ∂2

t (2 + (N +Nz)(t)∗) (N −Nz)(t) ∗
=c−2

0 (2 + (N +Nz)(t)∗) ((N −Nz)
′(+0) + (N −Nz)

′′(t)∗) ,

where the initial conditions (3.2) and (2.4) have been used. The positive square-root
of this operator is well defined if only N ′(+0) �= N ′

z(+0). Thus,

N ′
1(+0) �= N ′

z(+0) �= N ′
2(+0). (3.8)
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From the proceeding sections follows that pulse modes with finite energy cannot
propagate unless

N ′
1(+0) ≤ N ′

z(+0) ≤ N ′
2(+0), (3.9)

a result that was obtained for the slab waveguide [13]. Combining (3.8) and (3.9)
gives

N ′
1(+0) < N ′

z(+0) < N ′
2(+0), (3.10)

and, in particular,

N ′
1(+0) < N ′

2(+0), (3.11)

that is,

(χe
1)

′(+0) + (χm
1 )′(+0) < (χe

2)
′(+0) + (χm

2 )′(+0),

which is the condition for existence of propagating finite energy pulse modes in
the slab. A discussion of the condition (3.11) and the corresponding condition for
propagating time-harmonic modes of angular frequency ω (in the lossless case) [2]

n2(ω) < n1(ω),

where the index of refraction ni(ω) is the Fourier transform of the distribution
δ(t) +Ni(t), where δ(t) is the Dirac delta function (i = 1, 2), can be found in [13].

In view of the above inequalities, it is appropriate to introduce dimensionless
numbers defined by

λi = 2R2c−2
0 N ′

i(+0) (i = 1, 2, z), (3.12)

where R is a characteristic length parameter of the problem (later specified to be
the radius of a circular cylindric geometry).

3.2 Open circular waveguides

The idea of the open waveguide is that the propagating pulse should be confined to
the core mainly. Therefore, an appropriate way of formulating the problem (3.6) is

−∆⊥q
±
z (r⊥, t) =

(√
K2

z −K2
1

)2

q±z (r⊥, t) (r⊥ ∈ Ω1) ,

∆⊥q
±
z (r⊥, t) =

(√
K2

2 −K2
z

)2

q±z (r⊥, t) (r⊥ ∈ Ω2)

in the core and in the cladding, respectively. A brief theory of functions of temporal
integral operators is given in section A.

One of the relevant square-root operators is of the form

R
√

K2
2 −K2

z =
√
λ2 − λz + U2(t)∗,
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where the λ’s are given by (3.12) and

2
√
λ2 − λzU2(t) + (U2 ∗ U2) (t) = (λ2 − λz) (N2(t) +Nz(t))/2

+ [2(N ′′
2 (t) −N ′′

z (t)) + ((N ′′
2 −N ′′

z ) ∗ (N2 +Nz)) (t)]
(
Rc−1

0

)2
.

(3.13)

Since Nz(t) = (H ∗N ′
z)(t) combined with

N ′
z(t) = N ′

z(+0)H(t) + (H ∗N ′′
z )(t),

gives

Nz(t) = N ′
z(+0)tH(t) + ((tH) ∗N ′′

z )(t),

equation (3.13) is a temporal Volterra integral equation of the second kind in the
unknown kernels U2(t) and N ′′

z (t) for a fixed value of N ′
z(+0). Observe that N ′′

2 (t)
and for that matter N ′′

1 (t) are known quantities since differentiation of both members
of equation (2.4) gives the temporal Volterra integral equation of the second kind

2N ′′(t) +N ′(+0)N(t) + (N ∗N ′′)(t) = (χe)′′(t) + (χm)′′(t) + ((χe)′ ∗ (χm)′)(t),

where N(t) in the left member and the function in the right member are known,
and 2N ′(+0) = (χe)′(+0) + (χm)′(+0) is known as well.

The other square-root operator of interest is of the form

R
√

K2
z −K2

1 =
√
λz − λ1 + U1(t)∗,

where

2
√
λz − λ1U1(t) + (U1 ∗ U1) (t) = (λz − λ1) (Nz(t) +N1(t))/2

+ [2(N ′′
z (t) −N ′′

1 (t)) + ((N ′′
z −N ′′

1 ) ∗ (Nz +N1)) (t)]
(
Rc−1

0

)2
.

(3.14)

This is a temporal Volterra integral equation of the second kind in the kernels U1(t)
and N ′′

z (t) for a fixed value of N ′
z(+0).

The boundary conditions for the longitudinal fields are{
Re

{
q±z (r⊥, t)

}
1

= Re
{
q±z (r⊥, t)

}
2

(r⊥ ∈ ∂Ω) ,

Re
{
iYq±z (r⊥, t)

}
1

= Re
{
iYq±z (r⊥, t)

}
2

(r⊥ ∈ ∂Ω) ,

whereas the boundary conditions for the transverse fields are


Re
{

(
√

K2
z −K2)−2

(
±Kz∂τq

±
z (r⊥, t) + iK∂nq

±
z (r⊥, t)

)}
1

= Re
{
−(

√
K2 −K2

z)
−2

(
±Kz∂τq

±
z (r⊥, t) + iK∂nq

±
z (r⊥, t)

)}
2

(r⊥ ∈ ∂Ω) ,

Re
{
iY(

√
K2

z −K2)−2
(
±Kz∂τq

±
z (r⊥, t) + iK∂nq

±
z (r⊥, t)

)}
1

= Re
{
−iY(

√
K2 −K2

z)
−2

(
±Kz∂τq

±
z (r⊥, t) + iK∂nq

±
z (r⊥, t)

)}
2

(r⊥ ∈ ∂Ω) .
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For a circular geometry with radius R, the appropriate Ansatz is

q±z =



Jν

(
r
√
K2

z −K2
1

) (
Jν

(
R

√
K2

z −K2
1

))−1 (
e−iνφf±

1 + eiνφg±1
)

(r < R),

Kν

(
r
√
K2

2 −K2
z

) (
Kν

(
R

√
K2

2 −K2
z

))−1 (
e−iνφf±

2 + eiνφg±2
)

(r > R),

where ν is an arbitrary non-negative integer, Jν is a Bessel function of the first kind,
Kν is a modified Bessel function of the second kind, and f±

1 (t), g±1 (t), f±
2 (t), and

g±2 (t) primarily are arbitrary complex-valued functions. According to the results
obtained in section A, the modified Bessel functions operators are given by

Kν

(
r
√
K2

2 −K2
z

)
= Kν

(
r/R

√
λ2 − λz

)
+ V2(r, t)∗,

where the kernels V2(r, t) for fixed r satisfy the temporal Volterra integral equations
of the second kind

(r/R)2
(√

λ2 − λz + U2(t)∗
)2

(tW2(r, t))

+ r/R
(√

λ2 − λz + U2(t)∗
)

(tV2(r, t))

−
(

(r/R)2
(√

λ2 − λz + U2(t)∗
)2

+ ν2

)
(
Kν

(
r/R

√
λ2 − λz

)
+ V2(r, t)∗

) (
trR−1U2(t)

)
= 0,

(3.15)

where

tV2(r, t) =
(
K ′

ν

(
r/R

√
λ2 − λz

)
+W2(r, t)∗

) (
trR−1U2(t)

)
(3.16)

in terms of the kernel U2(t). Similarly, the Bessel functions operators are given by

Jν

(
r
√
K2

z −K2
1

)
= Jν

(
r/R

√
λz − λ1

)
+ V1(r, t)∗,

where the kernels V1(r, t) for fixed r satisfy the temporal Volterra integral equations
of the second kind

(r/R)2
(√

λz − λ1 + U1(t)∗
)2

(tW1(r, t))

+ r/R
(√

λz − λ1 + U1(t)∗
)

(tV1(r, t))

+

(
(r/R)2

(√
λz − λ1 + U1(t)∗

)2

− ν2

)
(
Jν

(
r/R

√
λz − λ1

)
+ V1(r, t)∗

) (
trR−1U1(t)

)
= 0,

(3.17)
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where

tV1(r, t) =
(
J ′

ν

(
r/R

√
λz − λ1

)
+W1(r, t)∗

) (
trR−1U1(t)

)
(3.18)

in terms of the kernel U1(t).
Observe, that, for r = R, equations (3.13), (3.15), (3.16),(3.14), (3.17), and (3.18)

constitute six coupled Volterra integral equations of the second kind in the seven
kernels N ′′

z (t), U1(t), U2(t), V1(R, t), V2(R, t), W1(R, t), and W2(R, t). The dispersion
relation presented below provides us with a seventh Volterra integral equation of
the second kind in the seven kernels above. Solving these equations simultaneously
determines the modes of propagation.

The boundary conditions for the longitudinal field components imply that{
f±

1 +
(
g±1

)∗
= f±

2 +
(
g±2

)∗
,

Y1

(
f±

1 −
(
g±1

)∗)
= Y2

(
f±

2 −
(
g±2

)∗)
.

(3.19)

Differentiating the longitudinal field components gives

∂τq
±
z =



i
ν

r
Jν

(
r
√
K2

z −K2
1

) (
Jν

(
R

√
K2

z −K2
1

))−1 (
e−iνφf±

1 − eiνφg±1
)

(r < R),

i
ν

r
Kν

(
r
√

K2
2 −K2

z

) (
Kν

(
R

√
K2

2 −K2
z

))−1 (
e−iνφf±

2 − eiνφg±2
)

(r > R)

and

∂nq
±
z =



∂rJν

(
r
√
K2

z −K2
1

) (
Jν

(
R

√
K2

z −K2
1

))−1 (
e−iνφf±

1 + eiνφg±1
)

(r < R),

∂rKν

(
r
√
K2

2 −K2
z

) (
Kν

(
R

√
K2

2 −K2
z

))−1 (
e−iνφf±

2 + eiνφg±2
)

(r > R).

Using the boundary conditions for the transverse fields gives

±
(√

K2
z −K2

1

)−2
ν

R
Kz

(
f±

1 +
(
g±1

)∗)
+

(√
K2

z −K2
1

)−2

K1∂rJν

(
R

√
K2

z −K2
1

) (
Jν

(
R

√
K2

z −K2
1

))−1 (
f±

1 −
(
g±1

)∗)
= ∓

(√
K2

2 −K2
z

)−2
ν

R
Kz

(
f±

2 +
(
g±2

)∗)
−

(√
K2

2 −K2
z

)−2

K2∂rKν

(
R

√
K2

2 −K2
z

) (
Kν

(
R

√
K2

2 −K2
z

))−1 (
f±

2 −
(
g±2

)∗)
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and

± Y1

(√
K2

z −K2
1

)−2
ν

R
Kz

(
f±

1 −
(
g±1

)∗)
+ Y1

(√
K2

z −K2
1

)−2

K1∂rJν

(
R

√
K2

z −K2
1

) (
Jν

(
R

√
K2

z −K2
1

))−1 (
f±

1 +
(
g±1

)∗)
= ∓ Y2

(√
K2

2 −K2
z

)−2
ν

R
Kz

(
f±

2 −
(
g±2

)∗)
− Y2

(√
K2

2 −K2
z

)−2

K2∂rKν

(
R

√
K2

2 −K2
z

) (
Kν

(
R

√
K2

2 −K2
z

))−1 (
f±

2 +
(
g±2

)∗)
.

The functions
(
f±

2 ±
(
g±2

)∗)
can be eliminated using (3.19), resulting in two equa-

tions in the unknowns
(
f±

1 ±
(
g±1

)∗)
. Consequently, one obtains the system of inte-

gral equations (
A11 A12

A21 A22

) (
f±

1 +
(
g±1

)∗
f±

1 −
(
g±1

)∗) =

(
0
0

)
,

where


A±
11 = A±

22 = ± ν

R
Kz

((√
K2

z −K2
1

)−2

+

(√
K2

2 −K2
z

)−2
)
,

A±
12 = K1

(√
K2

z −K2
1

)−2

∂rJν

(
R

√
K2

z −K2
1

) (
Jν

(
R

√
K2

z −K2
1

))−1

+ K2

(√
K2

2 −K2
z

)−2

∂rKν

(
R

√
K2

2 −K2
z

) (
Kν

(
R

√
K2

2 −K2
z

))−1

Y−1
2 Y1,

A±
21 = K1

(√
K2

z −K2
1

)−2

∂rJν

(
R

√
K2

z −K2
1

) (
Jν

(
R

√
K2

z −K2
1

))−1

+ K2

(√
K2

2 −K2
z

)−2

∂rKν

(
R

√
K2

2 −K2
z

) (
Kν

(
R

√
K2

2 −K2
z

))−1

Y−1
1 Y2,

Letting f±
1 +

(
g±1

)∗
be arbitrary, f±

1 −
(
g±1

)∗
are determined by

f±
1 −

(
g±1

)∗
= −

(
A±

11

)−1 A±
12

(
f±

1 +
(
g±1

)∗)
.

The conditions for non-trivial solutions are

A±
11A±

22 −A±
12A±

21 = 0.
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Two different kinds are distinguishable, namely

K1

(√
K2

z −K2
1

)−1

J ′
ν

(
R

√
K2

z −K2
1

) (
Jν

(
R

√
K2

z −K2
1

))−1

= −K2

(√
K2

2 −K2
z

)−1

K ′
ν

(
R

√
K2

2 −K2
z

) (
Kν

(
R

√
K2

2 −K2
z

))−1

M+

±

√√√√(
K2

(√
K2

2 −K2
z

)−1

K ′
ν

(
R

√
K2

2 −K2
z

) (
Kν

(
R

√
K2

2 −K2
z

))−1

M−

)2

+ A2
11,

(3.20)

where

M± =
Y−1

1 Y2 ± Y−1
2 Y1

2
.

This is the dispersion equation for the open waveguide.
In particular, the initial values that determine the modes are given by

J ′
ν

(√
λz − λ1

)
√
λz − λ1Jν

(√
λz − λ1

) ∓ ν(√
λz − λ1

)2

= − K ′
ν

(√
λ2 − λz

)
√
λ2 − λzKν

(√
λ2 − λz

) ± ν(√
λ2 − λz

)2 (λ1 < λz < λ2),

that is1,

∓ Jν±1

(√
λz − λ1

)
√
λz − λ1Jν

(√
λz − λ1

) =
Kν±1

(√
λ2 − λz

)
√
λ2 − λzKν

(√
λ2 − λz

) (λ1 < λz < λ2), (3.21)

where the upper equation is valid when ν = 0 and the inequalities λ1 < λz < λ2 are
assumed to hold in both cases, implying that the right and left members are both
real2. This is indeed the case; for if λz > λ2, then3

J ′
ν

(√
λz − λ1

)
√
λz − λ1Jν

(√
λz − λ1

) ∓ ν(√
λz − λ1

)2

= −

(
H

(1)
ν

)′ (
−
√
λz − λ2

)
√
λz − λ2H

(1)
ν

(
−
√
λz − λ2

) ∓ ν(√
λz − λ2

)2 (λz > λ2),

1Use the formulae J ′
ν(z) = ∓Jν±1(z) ± νJν(z)/z and K ′

ν(z) = −Kν±1(z) ± νKν(z)/z.
2Recall that the Bessel functions and the modified Bessel functions of the first and second kinds

are real for real arguments, and that, by definition, Iν(z) = i−nJν(iz).
3Recall that, by definition, Kν(z) = (π/2) · in+1H

(1)
ν (iz).
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in which the right member is imaginary4, whereas the left member is real, and if
λz < λ1, then, by definition,

− Iν±1

(√
λ1 − λz

)
√
λ1 − λzIν

(√
λ1 − λz

) =
Kν±1

(√
λ2 − λz

)
√
λ2 − λzKν

(√
λ2 − λz

) (λ1, λ2 > λz),

in which the left member is negative, whereas the right member is positive5. In
either case, no solutions exist, and, consequently, equation (3.21) holds. Observe
that inequality (3.10) follows.

Before discussing the solutions of equation (3.21), it is appropriate to recall
some elementary properties of the Bessel functions of the first kind that will be used
tacitly in the next paragraph. Denoting the positive zeros of Jν in increasing order
by ξνk, k = 1, 2, 3, · · · , one has, as a consequence of Rolle’s theorem and some Bessel
function recursion formulae, for any k, that

0 < ξνk < ξ(ν+1)k < ξνk+1 (ν = 0, 1, 2, 3, · · · ).

Moreover, J ′
ν (ξνk) �= 0 for all k, so that Jν assumes both positive and negative values

in a neighborhood of any of its zeros.
Equation (3.21) has at most a finite number of solutions. The right member is

a positive, continuous function that is finite at all points λz except at the endpoint
λz = λ2 for all the upper cases and for the lower case when ν = 1. For the lower
cases ν > 1, one has

lim
λz→λ2

Kν−1

(√
λ2 − λz

)
√
λ2 − λzKν

(√
λ2 − λz

) =
1

2(ν − 1)
.

The left member is a piecewise continuous function that is infinite at the endpoint
λz = λ1 for all the lower cases with the limit value +∞, and at the zeros λz = λ1+ξ

2
νk

of Jν

(√
λz − λ1

)
with the limit values −∞ and +∞ depending on whether one

approaches the zero from the left or from the right. For the upper cases, one has

lim
λz→λ1

− Jν+1

(√
λz − λ1

)
√
λz − λ1Jν

(√
λz − λ1

) = − 1

2(ν + 1)
.

The zeros of the left member are those of Jν±1

(√
λz − λ1

)
for the upper and lower

cases, respectively, that is, λz = λ1 + ξ2
(ν±1)k. Using these facts, one can draw the

following conclusions:

Upper case. No solutions exist if λ2 ≤ λ1 + ξ2
ν1 and at least k solutions exist if

λ2 ≥ λ1 + ξ2
(ν+1)k. The different situations are illustrated in Figure 1 and Figure 2.

4In order that the right member be real, there must be a real number a, such that
(
H

(1)
ν

)′
(x) =

a
(
H

(1)
ν

)
(x) for x =

√
λz − λ2, and, consequently, J ′

ν(x) = aJν(x) and Y ′
ν(x) = aYν(x). This

implies that the Wronskian W (Jν , Yν) (x) ≡ JνY ′
ν(x) − Yν(x)J ′

ν(x) = 0, contradicting the well-
known result that W (Jν , Yν) (x) = −1/x.

5Recall that the modified Bessel functions Iν and Kν are positive for (real) positive arguments.
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Figure 1: Right and left members of equation (3.21) for the upper case when
ν = 1, λ1 = 1, and λ2 = 15. There are no solutions.

Lower case. When ν = 1, at least one solution exists. When ν > 1, then at least
k solutions exist if λ2 ≥ λ1 + ξ2

(ν−1)k. The situation for ν = 1 is depicted in Figure 3
and Figure 4.

Concluding, solving equation (3.21) gives the set of possible initial derivatives
N ′

z(+0) of the longitudinal refractive kernel that determines the variety of pulse
modes. Once N ′

z(+0) has been obtained, equations (3.20), (3.13), (3.15), (3.16),
(3.14), (3.17), and (3.18) constitute a system of seven coupled Volterra integral equa-
tions of the second kind in the seven kernels N ′′

z (t), U1(t), U2(t), V1(R, t), V2(R, t),
W1(R, t), and W2(R, t). These seven equations are to be solved simultaneously,
and the solutions determine the pulse modes. The problem is thus similar to the
corresponding one for the slab waveguide [13].

It remains to solve the problem presented in this article and the problem in [13]
in full detail numerically for realistic susceptibility kernels. This is left as an open
problem.

Appendix A Functions of causal convolution op-

erators

In this section some functions of causal convolution operators are defined and con-
volution equations for these functions derived.

If c is complex constant and if C(t) is a complex function that vanishes for t < 0
and is bounded and continuous for t < 0, then

C = c+ C(t)∗ = (cδ(t) + C(t)) ∗

is said to be a causal convolution operator with the kernel cδ(t)+C(t). The operator
C is said to of the first kind if c = 0; otherwise, it is of the second kind.
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Figure 2: Right and left members of equation (3.21) for the upper case when
ν = 1, λ1 = 1, and λ2 = 200. There are four solutions.

Recall the simple facts that convolution is commutative and that causal convo-
lution is associative. Among the causal convolution operators, there exists a causal
convolution operator of the second kind, referred to as the identity operator and
denoted by I = δ(t)∗, with the property that IC = C for each causal convolution
operator C of the first or of the second kind. To each causal convolution operator C
of the second kind, there is a causal convolution operator of the second kind, referred
to as the inverse of C and denoted by C−1, with the property that CC−1 = I. By
introducing F (z) = z−1, one has CF (C) = I and F (C) = F (c) + FC(t)∗, where

cFC(t) + F (c)C(t) + FC(t) ∗ C(t) = 0. (A.1)

The inverse of C can also be written explicitly as

C−1 = c−1

(
1 +

C(t)

c
∗
)−1

= c−1 + c−1

∞∑
n=1

(−1)n

(
C(t)

c
∗
)n

,

where the series converges uniformly in each bounded interval. The set of kernels
of causal convolution operators of the second kind and the convolution operation ∗
constitute an Abelian group, a fact that often, tacitly, will be used below. Unless
stated otherwise, C will denote a given second-kind causal convolution operator.

A.1 Entire functions

Let F (z) be an entire function, let f(z) = F ′(z) be the derivative of F (z), and define

F (C) =

∞∑
n=0

FnCn,

f(C) = F ′(C) =
∞∑

n=0

nFnCn−1,
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Figure 3: Right and left members of equation (3.21) for the lower case when ν = 1,
λ1 = 1, and λ2 = 15. There is one solution.

where the complex numbers Fn are the coefficients in the Taylor expansion of F (z):

F (z) =
∞∑

n=0

Fnz
n.

Then F (C) and f(C) are causal convolution operators of the form{
F (C) = F (c) + FC(t)∗ = (F (c)δ(t) + FC(t)) ∗,
f(C) = f(c) + fC(t)∗ = (f(c)δ(t) + fC(t)) ∗,

where the causal kernels FC(t) and fC(t) are related as

tFC(t) = f(c)tC(t) + fC(t) ∗ (tC(t)) .

For use of the rule

tδ(t) = 0 (A.2)

and repeated use of the rule

t(U(t) ∗ V (t)) = (tU(t)) ∗ V (t) + U(t) ∗ (tV (t)) (A.3)

gives

t

( ∞∑
n=0

FnCnδ(t)

)
=

∞∑
n=0

nFnCn−1 (t (Cδ(t))) ,

that is,

t (F (C)δ(t)) = F ′(C) (t (Cδ(t))) , (A.4)
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Figure 4: Right and left members of equation (3.21) for the lower case when ν = 1,
λ1 = 1, and λ2 = 200. There are five solutions.

which is equivalent to the wanted formula. Observe that C may be of the first kind.
Equation (A.4) applies to the exponential function, F (z) = exp (z) = f(z):

t (F (C)δ(t)) = F (C) (t (Cδ(t))) , (A.5)

that is,

tFC(t) = exp (c)tC(t) + FC(t) ∗ (tC(t)) .

Formula (A.4) is now to to be generalized for an operator C of the second kind.
Set G(z) = F (z−1), where F (z) is entire. Since C−1 exists, formula (A.4) gives

t
(
F (C−1)δ(t)

)
= F ′(C−1)

(
t
(
C−1δ(t)

))
,

which, using that F ′(z−1) = −G′(z)z2 and the rules (A.2) and (A.3), results in

t (G(C)δ(t)) = −G′(C)C (Cδ(t)) ∗
(
t
(
C−1δ(t)

))
= G′(C)C

(
C−1δ(t)

)
∗ (t (Cδ(t))) ,

that is,

t (G(C)δ(t)) = G′(C) (t (Cδ(t))) .

Consequently, formula (A.4) holds for G(z) = F (z−1), where F (z) is entire.
A useful example is given by the powers of z, that is, F (z) = zn, where n is an

integer. Since this function satisfies the Euler equation zF ′(z) = nF (z), (A.4) gives

C (t (F (C)δ(t))) = nF (C) (t (Cδ(t))) ,

that is,

ctFC(t) + C(t) ∗ (tFC(t)) = nF (c)tC(t) + nFC(t) ∗ (tC(t)) .

Observe that this equation trivially holds when n = 1, n = 0, and n = −1, cf. (A.1).
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A.2 General results

Formula (A.4) is of great generality. For if F (z) and G(z) are complex functions
such that satisfy (A.4) and if α and β are complex numbers, then (αF + βG)(z)
and (F ·G)(z) satisfy (A.4). The first of these assertions is immediate. The second
formula,

t (F (C)G(C)δ(t)) = (F (C)G′(C) +G(C)F ′(C)) (t (Cδ(t))) ,

follows by sidewise addition of the formulae{
G(C) (t (F (C)δ(t))) = G(C)F ′(C) (t (Cδ(t))) ,
F (C) (t (G(C)δ(t))) = F (C)G′(C) (t (Cδ(t))) ,

and using (A.3).

A.3 The logarithm and other transcendental functions

Recall that the principal branch of the logarithm of a number z in the along the
negative real axis cut complex plane is the complex number defined by

ln (z) =

∫ z

1

dt

t
,

where the path of integration from 1 and z must not pass the origin or the negative
real axis, but is otherwise arbitrary. Choosing the straight line between the points
1 and z as the path of integration gives an expression that proves useful in defining
the principal branch of the logarithm of a causal convolution operator of the second
kind, namely

ln (z) =

∫ 1

0

ds (1 + s(z − 1))−1 (z − 1).

The logarithm of causal convolution operator C = c+C(t)∗, where c belongs to the
along the negative real axis cut complex plane, is the causal convolution operator

ln (C) = ln (c+ C(t)∗) =

∫ 1

0

ds

(
1 +

s

1 + s(c− 1)
C(t)∗

)−1
c− 1 + C(t)∗
1 + s(c− 1)

.

By expanding the inverse operator as

(
1 +

s

1 + s(c− 1)
C(t)∗

)−1

=
∞∑

n=0

(−1)n

(
s

1 + s(c− 1)

)n

(C(t)∗)n

one gets, after manipulation,

ln (C) = ln (c) +
∞∑

n=1

(−1)n−1

n

(
C(t)

c
∗
)n

a(c, n),
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where6

a(c, n) = ncn
∫ 1

0

ds
sn−1

(1 + s(c− 1))n+1
= 1.

This formula shows that

ln (C) = ln (c) + ln (C/c)

as expected and that

t (ln (C)δ(t)) = C−1 (t (Cδ(t))) , (A.6)

that is, (A.4) holds with F (z) = ln (z) and F ′(z) = z−1. This result could also have
been obtained by putting

exp (ln (C)) := C
and substituting this into the equality

t (exp (ln (C))δ(t)) = exp (ln (C)) (t (ln (C)δ(t))) .

As an example of other transcendental functions, consider f(z) = za (principal
branch), where a is a complex number, that is f(z) = exp (a ln (z)). Then using (A.5)
and (A.6) gives

t (Caδ(t)) = Ca (t (a ln (C)δ(t))) = aCaC−1 (t (Cδ(t))) ,

that is, (A.4) holds with F (z) = za and F ′(z) = azaz−1. For the square root function
(a = 1/2) and for the square function (a = 2), this equation, via (A.3), reduces to
the familiar equations C1/2C1/2 = C and CC = C2, respectively.

6This is evident when c = 1. If c �= 1, then the binomial theorem gives

a(c, n) =
ncn

(c − 1)n−1

∫ 1

0

ds

n−1∑
k=0

(
n − 1

k

)
(1 + s(c − 1))−2−k(−1)k

=
cn

(c − 1)n

n−1∑
k=0

n

k + 1

(
n − 1

k

) (
c−1−k − 1

)
(−1)k+1

=
cn

(c − 1)n

n−1∑
k=0

(
n

k + 1

) (
c−1−k − 1

)
(−1)k+1

=
cn

(c − 1)n

n∑
k=1

(
n
k

) (
c−k − 1

)
(−1)k

=
1

(c − 1)n

(
n∑

k=0

(
n
k

)
(−1)kcn−k − cn

n∑
k=0

(
n
k

)
(−1)k

)

=
1

(c − 1)n
((c − 1)n − cn (1 − 1)n) = 1.
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A.4 Bessel functions

Since the Bessel functions

Jn(z) =
(z

2

)n
∞∑

j=0

(−1)j 1

j!(n+ j)!

(z
2

)2j

and the modified Bessel functions

In(z) =
(z

2

)n
∞∑

j=0

1

j!(n+ j)!

(z
2

)2j

of the first kind and integer order are entire functions, equation (A.4) can be applied
to their first derivatives:

t (F ′(C)δ(t)) = F ′′(C) (t (Cδ(t))) . (A.7)

Combining (A.4) and (A.7) with the respective second-order differential equation
gives useful identities. For instance, the Bessel equation

z2J ′′
n(z) + zJ ′

n(z) +
(
z2 − n2

)
Jn(z) = 0

transforms into — recall the notation jn(z) = J ′
n(z) —{

C2 (t (jn(C)δ(t))) + C (t (Jn(C)δ(t))) +
(
C2 − n2

)
Jn(C) (t (Cδ(t))) = 0,

t (Jn(C)δ(t)) = jn(C) (t (Cδ(t))) ,

which, since {
Jn(C) = Jn(c) + JnC(t)∗ = (Jn(c)δ(t) + JnC(t)) ∗,
jn(C) = jn(c) + jnC(t)∗ = (jn(c)δ(t) + jnC(t)) ∗

constitutes a system of convolution equations in the kernels JnC(t) and jnC(t):


(c+ C(t)∗)2 (tjnC(t)) + (c+ C(t)∗) (tJnC(t))

+
(
(c+ C(t)∗)2 − n2

)
(Jn(c) + JnC(t)∗) (tC(t)) = 0,

tJnC(t) = (jn(c) + jnC(t)∗) (tC(t)) .

The ascending series for the modified Bessel functions of the second kind and
integer order are

Kn(z) =
1

2

(z
2

)−n
n−1∑
j=0

(−1)j (n− j − 1)!

j!

(z
2

)2j

+ (−1)n−1 ln
(z

2

)
In(z)

+ (−1)n 1

2

(z
2

)n
∞∑

j=0

1

j!(n+ j)!
(ψ(j + 1) + ψ(n+ j + 1))

(z
2

)2j

,
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where In(z) are the modified Bessel function of the first kind and integer order and

ψ(1) = −γ,

ψ(n) = −γ +
n−1∑
i=1

1

i
,

i.e.,
Kn(z) = z−nPn(z) + (−1)n+1 ln (z)In(z) + An(z),

where Pn(z) is a polynomial and An(z) is analytic. Since equation (A.4) is valid for
the functions Pn(z), ln (z), In(z), and An(z), equation (A.4) holds also for Kn(z) ac-
cording to the results stated in section A.2. Moreover, (A.4) holds for the derivative
kn(z) = K ′

n(z). Therefore, by introducing{
Kn(C) = Kn(c) +KnC(t)∗ = (Kn(c)δ(t) +KnC(t)) ∗,
kn(C) = kn(c) + knC(t)∗ = (kn(c)δ(t) + knC(t)) ∗

and using the modified Bessel equation

z2K ′′
n(z) + zK ′

n(z) −
(
z2 + n2

)
Kn(z) = 0,

one obtains a system of convolution equations in the kernels KnC(t) and knC(t),
namely{

C2 (t (kn(C)δ(t))) + C (t (Kn(C)δ(t))) −
(
C2 + n2

)
Kn(C) (t (Cδ(t))) = 0,

t (Kn(C)δ(t)) = kn(C) (t (Cδ(t)))
or 


(c+ C(t)∗)2 (tknC(t)) + (c+ C(t)∗) (tKnC(t))

−
(
(c+ C(t)∗)2 + n2

)
(Kn(c) +KnC(t)∗) (tC(t)) = 0,

tKnC(t) = (kn(c) + knC(t)∗) (tC(t)) .
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