
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Improved Scheduling of Control Tasks

Cervin, Anton

1999

Link to publication

Citation for published version (APA):
Cervin, A. (1999). Improved Scheduling of Control Tasks. Paper presented at 11th Euromicro Conference on
Real-Time Systems, York, United Kingdom.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/5f1cbe59-07ca-4690-a8d5-d9bad19a8a99


11th Euromicro Conference on Real-Time Systems, York, England, June 1999.

Improved Scheduling of Control Tasks

Anton Cervin

Department of Automatic Control
Lund Institute of Technology

Box 118, SE-221 00 Lund, Sweden
anton@control.lth.se

Abstract
The paper considers the implementation of digital
controllers as real-time tasks in priority-preemptive
systems. The performance of a digital feedback con-
trol system depends critically on the timing of its
sampling and control actions. It is desirable to min-
imize the computational delay in the controller, as
well as the sampling jitter and the control jitter. It
is shown that by scheduling the two main parts of
a control algorithm as separate tasks, the compu-
tational delay can often be reduced significantly. A
heuristic method for assigning deadlines to the parts
is presented. Further modifications are given to re-
duce the jitter and to facilitate delay compensation.
The result is improved control performance under
maintained schedulability.

1. Introduction
Digital control systems constitute a large part of all
real-time systems. Despite of this, surprisingly little
effort has gone into studying their timely behavior
when implemented as periodic tasks in a computer.
In this paper, we concentrate on the implementation
of digital controllers as real-time tasks in priority-
preemptive systems.

An overview of a digital control system is shown in
Fig.1. At a fixed frequency, the controller requests

A-D
y(k)

Control
Algorithm

u(k)
D-A Process

Figure 1 Overview of a digital control system.

A-D conversion to obtain a measurement sample,
y(k), from the physical process, computes a control
signal, u(k), and requests D-A conversion, sending
the control signal to the process. Timing is very
critical to the stability and performance of the closed-

loop control system. Jitter in the sampling times and
output times can be viewed as disturbances acting
on the process. A computational delay between the
A-D and the D-A conversions decreases the stability
margin and the performance of the control system.

There are two common ways of synchronizing the
inputs and the outputs [Åström and Wittenmark,
1997]. In the first approach, which we refer to as
Textbook Implementation A, the control signal is
sent out as soon as it has been calculated. To mini-
mize the computational delay, the control algorithm
is split into two parts. The first part, called Calcu-
late Output, contains only the operations necessary
to produce a control signal. The rest of the calcula-
tions, called Update State, are postponed until after
the D-A conversion.

Detailed in source code, Textbook Implementation A
could look like this (the source code is a variant of
Modula-2, with support for real-time primitives):

LOOP
Wait(ClockInterrupt);
A_D_Conversion;
CalculateOutput;
D_A_Conversion;
UpdateState;

END

For example, consider the common control strategy
of using state feedback in conjunction with a state
observer (this includes the popular LQG controller).
The control algorithm can be structured on the
following form [Gustafsson and Hagander, 1991]:

ε(k) = y(k) − ŷ(k h k− 1) (1)
u(k) = û(k h k− 1) − M ε(k) (2)

x̂(k+ 1 h k) = Ax̂(k h k− 1) + Bu(k) + K ε(k) (3)
ŷ(k+ 1 h k) = Cx̂(k+ 1 h k) (4)
û(k+ 1 h k) = −Lx̂(k+ 1 h k) (5)

Here, the A-D conversion is implicated by the use
of the measurement variable y(k) in (1), and the



D-A conversion is implicated by the calculation of
the control variable u(k) in (2). Calculate Output
contains only a few scalar operations in (1) and (2),
while all the matrix multiplications have been moved
to the Update State part in (3)–(5).
A second common way of synchronizing the inputs
and the outputs is to send out the control signal at
the beginning of the next period. In this approach,
which we refer to as Textbook Implementation B, the
computational delay is always approximately equal
to one period. The delay is more deterministic, but
also longer.

At a first glance, digital controllers seem to fit right
into the rate-monotonic framework—each controller
could be described as a periodic task τ i having a pe-
riod Ti and a worst-case computation time Ci. Well
known tests [Liu and Layland, 1973] [Joseph and
Pandya, 1986] can be applied to check for schedu-
lability. But with that kind of thinking, the specific
timing needs of digital controllers are ignored. Even
if a set of control tasks are schedulable using rate-
monotonic scheduling, the controllers can suffer from
significant sampling jitter, computational delay, and
output jitter. Lower-priority tasks can be preempted
by higher-priority tasks at any point in the code.
With a more detailed task model, where each control
task is decomposed into subtasks, these issues can be
dealt with. Decomposition of control tasks has been
suggested before [Gerber and Hong, 1993] [Burns
et al., 1994] [Gerber and Hong, 1997], but only for
the sake of increased schedulability. The key prob-
lems that we address are:

1. Derivation of a more detailed task model which
captures the specific timing needs of control
tasks.

2. Assignment of task attributes (priorities, dead-
lines, offsets, etc.) to optimize the control per-
formance, subject to the schedulability con-
straints.

Previous work on task attribute assignment with
respect to control performance [Seto et al., 1996]
[Kim, 1998] have focused on task period selection for
single-task models of controllers. The detailed timely
behavior has not been addressed.

The rest of this paper is outlined as follows. Section 2
deals with periodic sampling. In Section 3, the prob-
lems of deriving a task model and assigning task at-
tributes are treated, and corresponding schedulabil-
ity analysis is reviewed. Section 4 discusses different
strategies for delay compensation. Section 5 gives an
example, where the theory in the paper is applied to
a control example with three inverted pendulums.
Simulations of processes, controllers, and real-time

kernel together show that a more detailed schedul-
ing can reduce jitter and computational delay, and
thus give better control performance.

2. Periodic sampling
Digital control theory assumes that measurement
samples are taken periodically. As for the textbook
implementations discussed in Section 1 however, a
control task may very well be preempted by higher-
priority tasks when it is time to request an A-D
conversion. This can lead to serious sampling jitter
for lower-priority control tasks.

The code segment found in Section 1 also assumes
that the A-D conversion works like a function that re-
turns a value. This must not be true today, however,
when most A-D converters can be treated as asyn-
chronous input devices. Some A-D converters can be
programmed to automatically sample at a given rate.
Others must be periodically requested to start the
conversion. This could be done by a dedicated high-
priority, low-cost task. Whichever way the conversion
is initialized, the A-D converter will give a hardware
interrupt when it has finished. An interrupt handler
can then retrieve the value and signal to the control
task that a new sample is available. This effectively
solves the problem of sampling jitter.

Now assuming that a semaphore NewSample is
signaled each time a new sample is available to the
control task, we modify our code to

LOOP
Wait(NewSample);
GetSample;
CalculateOutput;
D_A_Conversion;
UpdateState;

END

3. Scheduling
In this section, we investigate the possibility of
scheduling the parts of the control algorithm as sep-
arate tasks. Basic scheduling analysis and subtask
scheduling analysis is reviewed, and the problem of
deadline assignment for the subtasks is treated.

3.1 Basic scheduling analysis
Disregarding the different parts of the control algo-
rithm, a digital controller can be described as a pe-
riod task τ i having period Ti, deadline Di, worst-case
execution time Ci, and priority Pi. If it is assumed
that Di = Ti, the rate-monotonic priority assignment
is optimal (in the schedulability sense) [Liu and Lay-
land, 1973]. The worst-case response time Ri of a



task can be calculated from the equation

Ri = Ci +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj (6)

where hp(i) is the set of tasks with higher prior-
ity than τ i [Joseph and Pandya, 1986]. The task set
is schedulable if Ri ≤ Di for all tasks. The rate-
monotonic model is sufficient for controller imple-
mentations where the control signal is sent out at
the beginning of the next period. For implementa-
tions where the control signal is sent out as soon as
possible, however, the scheduling model does not re-
flect the fact that the Calculate Output part should
finish as soon as possible. The result is unnecessar-
ily large delays and output jitter for lower-priority
control tasks.

We could allow Di ≤ Ti, in which case the deadline-
monotonic priority assignment is optimal [Leung and
Whitehead, 1982]. Eq. (6) holds for this case also.
The deadlines could be used to improve the response
time (and thus the computational delay) of a few
selected tasks. Decreasing the deadlines of all tasks
could render the task set unschedulable.

3.2 Subtask scheduling analysis
For simplicity, it is assumed that the requests for
A-D and D-A conversions can be neglected in the
analysis. Let each control task τ i consist of two
subtasks, τ CO i (Calculate Output) and τ US i (Update
State). The worst-case execution time of the subtasks
are assumed to be known and equal to CCO i and CUS i
respectively.

We first look at the timing analysis developed by
Härbour et al. [Gonzalez Härbour et al., 1994]. In
their model, each subtask is assigned a fixed prior-
ity and a deadline, and the subtasks are executed
serially. For control tasks, Update State has a nat-
ural deadline DUS i = Ti. The deadline for Calculate
Output must at least be constrained by

CCO i ≤ DCO i ≤ Ti − CUS i (7)

Since Calculate Output is more time-critical than
Update State, it is natural to enforce a higher
priority on it. For this special case, the deadline-
monotonic priority assignment is optimal [Gonza-
lez Härbour et al., 1994].

3.3 Deadline assignment
The scheduling model above assumes that deadlines
have been assigned to all Calculate Output subtasks.
A key question is, how should this be done?

To maximize control performance, the deadlines (and
thus computational delays) should be minimized.

This could be stated as an optimization problem—
for instance to minimize a weighted sum of the
deadlines

f =
∑

i

DCO i

Ti
(8)

under the schedulability constraint. A first try would
be to let all the Calculate Output parts have higher
priorities than all the Update States parts. Unfortu-
nately this might render the task set unschedulable.

To find the optimal deadline assignment in the gen-
eral case, an exhaustive search among the different
priority orderings must be carried out. With n tasks,
there are 1 ⋅ 3 ⋅ 5 ⋅ ⋅ ⋅ (2n− 1) possible subtask priority
assignments!

For cases where exact minimization is unrealistic,
some heuristic deadline assignment method must
be used. For soft real-time systems, several such
methods exists, for instance the equal flexibility
deadline assignment [Kao and Garcia-Molina, 1993].
They are not applicable here, since they cannot
guarantee that all deadlines are met.

For control tasks, we present the following heuris-
tic which attempts to minimize the deadlines of the
Calculate Output parts while maintaining schedula-
bility:

1. Start by assigning effective deadlines to the
Calculate Output parts, i.e. set DCO i := Ti −
CUS i.

2. Assign deadline-monotonic priorities.

3. Calculate response times according to (6).
4. Decrease deadlines by assigning DCO i := RCO i.

5. Repeat from 2 until no further improvement is
given (for instance by the criterion in Eq. (8)).

The heuristic works because of the optimality of the
deadline-monotonic priority assignment. The task
set must be schedulable after each improvement—
at least by the previous priority ordering.

3.4 Offset scheduling
Another scheduling model that could be applied to
the parts of a control algorithm is offset scheduling
[Audsley et al., 1993]. The subtasks are not serially
executed—rather, the subtask τ US i is released with
a fixed offset OUS i compared to the release of τ CO i.
The offset must be chosen somewhere in the interval

DCO i ≤ OUSi ≤ Ti − CUS i (9)

and DCO i must be chosen in the interval

CCO i ≤ DCO i ≤ OUS i (10)



τ USi

τ CO i

0 DCO i OUS i DUS i=Ti

t

Figure 2 The parts τ CO i and τ U Si are scheduled using
an offset.

Fig. 2 shows the execution of the two subtasks in
isolation.

This task model is more general than the priority-
constrained model and thus provides a higher degree
of schedulability. The price for this improvement
is a more complex optimization problem. We have
to choose both deadlines and offsets. The deadline
monotonic priority assignment is no longer optimal,
the response time calculations are more complicated,
and the simple heuristic presented before cannot be
used. Still, with the right set of computer tools, this
approach could very well produce better results than
the priority-constrained approach.

3.5 Implementation

Even though we have modeled Calculate Output
and Update State as two separate tasks in the
schedulability analysis, this does not imply that we
have to implement them as such. If we have used
the priority-constrained approach, and if the real-
time operating system allows priorities to be changed
dynamically, we can simply insert ChangePriority
commands into our existing code:

LOOP
ChangePriority(P_CO);
Wait(NewSample);
GetSample;
CalculateOutput;
D_A_Conversion;
ChangePriority(P_US);
UpdateState;

END

4. Delay compensation
After scheduling the parts of the control algorithm as
separate tasks, we should have been able to reduce
the worst-case computational delay of the controller
significantly. If the remaining delay is very small, it
can be neglected altogether. Otherwise we have the
option of redesigning the controller to compensate
for the delay.

4.1 Compensation assuming a fixed delay
Compensating for a fixed computational delay is
straight forward [Åström and Wittenmark, 1997].

Essentially, it is just a matter of introducing an extra
state in the controller. This causes a slight increase
in the computation time of the control algorithm.
The task set could become unschedulable, in which
case we would respond by increasing the sampling
period of some controllers. If the performance gain
due to the delay compensation is greater than the
performance loss due to the slower sampling, the
compensation pays off.

The implementation must be modified once again,
this time to ensure that the delay between the A-D
and D-A conversions really is constant. It becomes
necessary to have time-stamped samples, i.e. the
GetSample function now returns both the sample
time and the sample itself. After Calculate Output,
we delay the control task until the deadline DCO . We
also raise the priority momentarily when requesting
the D-A conversion, so that the output jitter is kept
small (we assume that the request can be neglected
in the schedulability analysis):

LOOP
ChangePriority(P_CO);
Wait(NewSample);
GetSample(t, value);
CalculateOutput;
ChangePriority(High);
WaitUntil(t+D_CO);
D_A_Conversion;
ChangePriority(P_US);
UpdateState;

END

4.2 Compensation assuming a random delay
The computational delay for a controller is generally
not constant. Because of variations in execution
time and interference from higher-priority tasks, the
delay will be of stochastic nature. If the distribution
of the delay is known, it is possible to derive a
compensating controller that performs better than
its fixed-delay counterpart [Nilsson et al., 1996]. The
increase in computation time will be larger though.
It is an open question, under what conditions the
different compensation strategies really pay off.

5. An example
As an example, the suggested improvements from
the previous sections are applied to a control prob-
lem, step by step. Simulations show that control per-
formance can be improved significantly.

5.1 The control problem
The control problem is to stabilize three identical
inverted pendulums, see Fig. 3. The measurement
signal is the angle y, and the control signal is the
acceleration u of the pivot point. The process can be



y

u

Figure 3 An inverted pendulum. The pendulum can be
stabilized in the upright position y = 0 by controlling the
acceleration u of the pivot point.

described by the transfer function

Y(s) = 1
s2 − 1

U (s) (11)

The pendulums are affected by input disturbances
and measurement noise, both modeled as sequences
of white noise. Furthermore, it is assumed that
the desired closed-loop behavior of the different
processes is given by

s2 + 2ζ ω is+ω2
i = 0 (12)

where ζ = √
3/2 = 0.886, ω1 = 3 rad/s, ω2 = 5

rad/s, and ω3 = 7 rad/s.

5.2 Controller design

For each process, we design a digital controller with
state feedback and Kalman filtering using pole place-
ment, see for instance [Åström and Wittenmark,
1997]. The observer poles are chosen to have the
same damping and twice the speed of the desired
closed-loop behavior.

The sampling interval Ti of each controller can be
chosen according to the rule of thumb

0.1 < ω iTi < 0.6 (13)
Knowing that we have limited computing resources,
we tend toward the upper bound and choose T1 = 167
ms, T2 = 100 ms, and T3 = 71 ms.

5.3 Performance evaluation
In the following, several different implementations
of the controllers are evaluated by simulations. To
capture the detailed timing behavior, the simulations
include models of the process, the digital controllers,
and the real-time kernel.

The three controllers are released simultaneously
at time zero and then simulated for a time Tsim =
1000 s. Every simulation uses the same sequences
for process noise and measurement noise. For each
controller, we record the performance loss

Ji =
∫ Tsim

0
y2

i (t)dt (14)

As a reference, the controllers are first evaluated in a
simulation where the execution times, the sampling
jitter, and the control jitter are all assumed to be
zero. The reference values obtained are:

Ref.

J1 2.40

J2 1.35

J3 1.16

In the rest of the simulations, it is assumed that
the execution time of the entire control algorithm is
constant Ci = 28 ms, and that the execution times of
the parts are constant CCO i = 10 ms and CUSi = 18
ms.

5.4 Implementation 1—Textbook
Implementation A

Not caring about the different parts of the control
algorithm, we model the controllers as the three
periodic tasks τ1, τ2, and τ3. Having no further
information, we assume Di = Ti and assign rate-
monotonic priorities. We check that the task set is
schedulable by calculating response times:

T D C P R

τ1 167 167 28 1 140

τ2 100 100 28 2 56

τ3 71 71 28 3 28

In Textbook Implementation A (see Section 1), the
A-D conversion takes place at the very beginning
of Calculate Output, and the D-A conversion takes
place at the very end of Calculate Output. The
lower-priority tasks suffer from a lot of interference,
resulting in poor control performance for Controller
1 and 2:

Ref. Impl. 1

J1 2.40 4.90

J2 1.35 4.27

J3 1.16 1.28

A close-up of the behavior of Controller 1 is shown in
Fig. 4. It is clearly seen that the interference causes
both the samples and the control actions to occur at
irregular times.

5.5 Implementation 2—Textbook
Implementation B

We now evaluate the implementation where the con-
trol signal is sent out at the beginning of the next
period, i.e. Textbook Implementation B. The compu-
tational delay is always equal to one period, and the
controllers are easily redesigned to compensate for



0 0.5 1 1.5 2 2.5 3
−1

0

1

2
x 10

−3

0 0.5 1 1.5 2 2.5 3
−0.05

0

0.05

Process output y1

Control signal u1

Sample

Figure 4 Close-up behavior of Controller 1 when Text-
book Implementation A (Implementation 1) is used. No-
tice the large jitter in the control actions.

this, see Section 4. To keep the example simple, we
assume that the compensating control algorithm has
the same execution time as the non-compensating
one. New simulations give the following results:

Ref. Impl. 1 Impl. 2

J1 2.40 4.90 4.16

J2 1.35 4.27 1.96

J3 1.16 1.28 1.45

This implementation is sometimes better and some-
times worse than Textbook Implementation A—the
output jitter is smaller, but the computational delay
is larger.

5.6 Implementation 3—Improved scheduling

Referring to the procedure detailed in Section 3, we
now let each control task τ i consist of the subtasks
τ CO i and τ US i. The optimal set of deadlines DCO i—
by for instance the criterion in Eq. (8)—can easily be
found using an exhaustive search over the possible
priority orderings. But instead we shall illustrate the
use of our heuristic for choosing deadlines. The task
set is

T C

τ CO 1 167 10

τ US1 167 18

τ CO 2 100 10

τ US2 100 18

τ US3 71 10

τ US3 71 18

The deadlines of the Update State parts are equal

to their periods. The deadlines of the Calculate Out-
put parts are initialized to DCO i := Ti − CUS i. As-
signing deadline-monotonic priorities and calculat-
ing response-times we get

T D C P R

τ CO 1 167 149 10 2 66

τ US1 167 167 18 1 140

τ CO 2 100 82 10 4 38

τ US2 100 100 18 3 56

τ CO 3 71 53 10 6 10

τ US3 71 71 18 5 28

We set DCO i := RCO i, assign new deadline-
monotonic priorities, and repeat the calculations:

T D C P R

τ CO 1 167 66 10 4 30

τ US1 167 167 18 1 140

τ CO 2 100 38 10 5 20

τ US2 100 100 18 2 66

τ CO 3 71 10 10 6 10

τ US3 71 71 18 3 48

Repeating the procedure once more, we get no fur-
ther improvements of the response times:

T D C P R

τ CO 1 167 30 10 4 30

τ US1 167 167 18 1 140

τ CO 2 100 20 10 5 20

τ US2 100 100 18 2 66

τ CO 3 71 10 10 6 10

τ US3 71 71 18 3 48

The suggested choices of deadlines are thus DCO 1 =
30, DCO 2 = 20, and DCO 3 = 10. Those deadlines
actually minimize the criterion in Eq. (8), so we
should be quite happy about the result. Running a
new simulation reveals a significant improvement in
performance for the lower-priority controllers:

Ref. Impl. 1 Impl. 2 Impl. 3

J1 2.40 4.90 4.16 2.74

J2 1.35 4.27 1.96 1.71

J3 1.16 1.28 1.45 1.28

The improvement is also clearly visible in the close-
up of the behavior of Controller 1 in Fig. 5.



0 0.5 1 1.5 2 2.5 3
−1

0

1

2
x 10

−3

0 0.5 1 1.5 2 2.5 3
−0.05

0

0.05

Process output y1

Control signal u1

Sample

Figure 5 Close-up behavior of Controller 1 when im-
proved scheduling is used (Implementation 3). Notice
that the jitter is much smaller than in Fig. 4.

5.7 Implementation 4—Improved scheduling
and fixed-delay compensation

Our last improvement consists of redesigning the
controllers to compensate for the remaining compu-
tational delays. Again, we assume that the computa-
tion times remain the same. A final simulation shows
that the performance has been improved even fur-
ther:

Ref. Impl. 1 Impl. 2 Impl. 3 Impl. 4

J1 2.40 4.90 4.16 2.74 2.66

J2 1.35 4.27 1.96 1.71 1.46

J3 1.16 1.28 1.45 1.28 1.21

It can be noted that with improved scheduling and
fixed-delay compensation, the performance of the
three controllers all come quite close to the reference
performance.

6. Conclusions
It has been shown that it is possible to improve
the performance of digital controllers by using more
detailed timing analysis. By treating the main parts
of a control algorithm as two subtasks, and by
scheduling them appropriately, it is often possible
to reduce the computational delay significantly. The
remaining delay could be fixated, allowing for fixed-
delay compensation to be used.

The results tell us that digital controllers should be
designed with the implementation as periodic tasks
in mind. The selection of task timing attributes,
such as periods and deadlines, affect both control
performance and schedulability. It is also necessary
to have good estimates of the worst-case execution

times of the different parts of the algorithm. It would
be useful to have a design tool for digital controllers
that took all of these considerations into question.

The need for more elaborate simulation tools for
real-time control systems is also evident. In order
to capture the true behavior of the such systems,
the simulation software must include models of the
physical processes, the controllers, and the real-time
kernel.

Acknowledgments
This work has been performed as a part of the
ARTES project “Integrated Control and Scheduling”.

References
Åström, K. J. and B. Wittenmark (1997): Computer-

Controlled Systems, third edition. Prentice Hall.

Audsley, N., K. Tindell, and A. Burns (1993): “The
end of the line for static cyclic scheduling?” In
Proceedings of the 5th Euromicro Workshop on
Real-Time Systems, pp. 36–41.

Burns, A., K. Tindell, and A. J. Wellings (1994):
“Fixed priority scheduling with deadlines prior to
completion.” In Proceedings of the 6th Euromicro
Workshop on Real-Time Systems, pp. 138–142.

Gerber, R. and S. Hong (1993): “Semantics-based
compiler transformations for enhanced schedu-
lability.” In Proceedings of the 14th IEEE Real-
Time Systems Symposium, pp. 232–242.

Gerber, R. and S. Hong (1997): “Slicing real-time pro-
grams for enhanced schedulabilty.” ACM Trans-
actions on Programming Languages and Sys-
tems, 19:3, pp. 525–555.

Gonzalez Härbour, M., M. H. Klein, and J. P.
Lehoczky (1994): “Timing analysis for fixed-
priority scheduling of hard real-time systems.”
IEEE Transactions on Software Engineering,
20:1, pp. 13–28.

Gustafsson, K. and P. Hagander (1991): “Discrete-
time LQG with cross-terms in the loss function
and the noise description.” Report TFRT-7475.

Joseph, M. and P. Pandya (1986): “Finding response
times in a real-time system.” The Computer
Journal, 29:5, pp. 390–395.

Kao, B. and H. Garcia-Molina (1993): “Deadline as-
signment in a distributed soft real-time system.”
In Proceedings of the 13th International Confer-
ence on Distributed Computing Systems.

Kim, B. K. (1998): “Task scheduling with feedback
latency for real-time control systems.” In Pro-
ceedings of the 5th International Conference on



Real-Time Computing Systems and Applications,
pp. 37–41.

Leung, J. Y. T. and J. Whitehead (1982): “On the
complexity of fixed-priority scheduling of periodic,
real-time tasks.” Performance Evaluation, 2:4,
pp. 237–250.

Liu, C. L. and J. W. Layland (1973): “Scheduling
algorithms for multiprogramming in a hard real-
time environment.” Journal of the ACM, 20:1,
pp. 40–61.

Nilsson, J., B. Bernhardsson, and B. Wittenmark
(1996): “Stochastic analysis and control of real-
time systems with random time delays.” In
IFAC’96, Preprints 13th World Congress of IFAC.
San Francisco, California.

Seto, D., J. P. Lehoczky, L. Sha, and K. G. Shin
(1996): “On task schedulability in real-time con-
trol systems.” In Proceedings of the 17th IEEE
Real-Time Systems Symposium, pp. 13–21.


