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Preface

In this thesis we study the problem of designing the controllers that are
robust with respect to the parametric uncertainty. The thesis is based upon
the four papers.

In Part I ”The Rank-One Problem” we consider the class of systems with
restriction that the structure of uncertainty is limited to a vector, i.e. ∆ is
in C

m. This part consists of three articles. In the first article ”Canonical
Parametrization of the Dual Problem in Robust Optimization: Non-Rational
Case” (European Control Conference, Kos, Greece, 2007) we extend the class
of the allowed systems. The main result is the canonical parametrization
of all destabilizing uncertainties. In the second article ”Regularization of
the Limiting Optimal Controller in Robust Stabilization” (17th IFAC World
Congress, July 6-11, 2008, Seoul, Korea) we present a method of obtaining
the suboptimal controller of lower order that provides the stability margin as
close to the optimal one as we wish. In the third article ”Robust Control via
Linear Programming” (to be published) we propose a numerical algorithm
for the optimal robust control synthesis. In the special case, when the un-
certainty parameter is real-valued, we show that the initial problem can be
considered as finite-dimensional in the space of variables (semi-infinite convex
programming). These articles are a joint work with Andrey Ghulchak.

Part II ”Convex Duality: Matrix Case” is based on the single article -
”Canonical Parametrization of the Dual Problem in Robust Optimization:
Matrix Case” (to be published). It generalizes the results to the systems
with matrix uncertainties.
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”Robust control refers to the control of unknown plants with unknown
dynamics subject to unknown disturbances” [17].

There are two sorts of problems in robust control [22]:

• Analysis : Given a controller decide if the controlled signals satisfy the
demanded properties for all disturbance, noises and model uncertain-
ties.

• Synthesis : Design a controller so that the controlled signals satisfy the
demanded properties for all disturbance, noises and model uncertain-
ties.

In the thesis we shall be concentrating on the problem of designing the
controllers that are robust with respect to the parametric uncertainty.

Most control designs are based on the use of a design model. Quality of
a model depends on how close it is to the real one.

A good model should be simple enough to facilitate design yet complex
enough to capture the important properties of the true plant.

Usually we will use models that are linear, time-invariant and finite di-
mensional. Then they are described mathematically as a set of linear ordinary
differential equations. But no physical system could possibly correspond to
such a model. Physical systems are essentially infinite dimensional, non-
linear and time-varying. One way to cover the gap between the design model
and the reality is to insert the uncertainties that reflect both our knowledge
of the physical mechanism of the plant and our ability to solve the control
problems with such representation of uncertainties.

In recent years much research effort has been put into robust control of
the uncertain models. However, the design problems appeared to be very
hard to solve. For design of controllers that are robust with respect to the
parametric uncertainties the different methods have been proposed. Among
them are the H∞ optimization, the µ synthesis and the Rank-one problem.

1.1 H∞ optimization

We consider the system described by the block diagram in Figure 1.1, where
the plant G and the controller K are assumed to be real rational and proper.
In this figure w, u, z and y are the vector valued signals: w is the input, u
is the control signal, z is the output to be controlled and y is the measured
output.
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Figure 1.1: The standard block diagram

Definition 1. A feedback system is said to be well-posed if all closed-loop
transfer matrices are well-defined and proper.

We introduce a partition G as

G =

(

G11 G12

G21 G22

)

.

Then Figure (1.1) stands for the algebraic equations

z = G11w +G12u

y = G21w +G22u

u = Ky.

We introduce two additional inputs v1 and v2 as in Figure 1.2. The
equation relating three inputs w, v1, v2 and three signals u, z, y is given by





I −G12 O

O I −K
O −G22 I









z
u
y



 =





G11 O O

O I O

G21 O I









w
v1

v2



 .

The proper rational matrix





I −G12 O

O I −K
O −G22 I



 has a proper real-rational

inverse for every proper real-rational K. Then the nine transfer matrices from
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Figure 1.2: Diagram for stability definition

w, v1, v2 to u, z, y are proper. If they are stable, then we say that K stabilizes
G. This is the usual notion of internal stability.

The standard H∞ problem is the following:
to find a real-rational proper K in order to minimize the H∞ norm of the

transfer matrix from w to z under the constraint that K stabilizes G. The
transfer matrix from w to z is a linear-fractional transformation of K:

z = [G11 +G12K(I −G22K)−1G21]w.

Denote Tzw = [G11 +G12K(I −G22K)−1G21].
One example of the standard problem is a robust stabilization problem.

We consider a system shown in Figure 1.3.
Assume P be strictly proper nominal plant and let R be a scalar valued

function in RH∞, where RH∞ is the set of all functions from H∞ that
are rational with reals coefficient. Define a family P of neighboring plants
which consists of all strictly proper real-rational matrices P + ∆ having the
same numbers of poles in the right-half plane (Re s ≥ 0) as P, where the

9



Figure 1.3: Feedback system with perturbed plant

perturbation ∆ satisfies the bound

‖∆(iω)‖ < |R(iω)| for all 0 ≤ ω ≤ ∞.

For a real-rational proper K the robust stability definition is that K
stabilizes all plants in P. How large can |R| be so that internal stability is
maintained? The robust stability is guaranteed by a small gain condition.

Consider the interconnected system shown in Figure 1.4 with M(s) a
stable transfer matrix.

Theorem 1. (Small Gain Theorem) Suppose M ∈ RH∞ and let γ > 0.
Then interconnected system is well-posed and internally stable for all ∆(s) ∈
RH∞ with

1. ‖∆‖∞ ≤ 1/γ if and only if ‖M(s)‖∞ < γ.

2. ‖∆‖∞ < 1/γ if and only if ‖M(s)‖∞ ≤ γ.
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Figure 1.4: M-∆ loop for stability analysis

According to a small gain condition a real-rational proper K stabilizes all
plants in P if and only if K stabilizes the nominal plant P and

‖RK(I − PK)−1‖∞ ≤ 1.

The H∞ control problem and the robust stability problem are equivalent
when ∆ is a single-block unstructured uncertainty through the application
of the small gain theorem.

Our purpose is to find a stabilizing controller u = Ky that minimizes the
H∞-norm of the closed-loop transfer function Tzw. The Youla parametriza-
tion of all admissible close-loop transfer functions (see [8])

Tzw = T1 + T2QT3,

where T1, T2 ∈ RH∞ are defined by the plant P and Q is a new function
from RH∞. With this parametrization the problem can be stated as follows:

min
Q∈RH∞

‖T1 + T2QT3‖∞.

11



For real-rational plants P we can solve the problem by using the well-
developed theory (see [8]). However, the problem becomes particularly com-
plicated in the case of non-rational plants. In [10] the weighted sensitivity
H∞-minimization problem has been investigated and it has been shown that
the problem is nontrivial even for the simplest delay systems. Furthermore,
the H∞ optimization is limited to the class of unstructured uncertainty. The
attempt to apply the technics to the case with structured uncertainties re-
sults in more conservative systems. Thus it is highly desirable to treat the
uncertainties as they are and where they are. The structured singular value
µ is defined for that purpose.

1.2 µ Synthesis

Consider the block diagonal matrix ∆ with two types of blocks: repeated
scalar and full blocks. Let S and F represent the number of repeated scalar
blocks and the number of full blocks, respectively. We define ∆ as

∆ = {diag[δ1Ir1, ..., δsIrs,∆1, ...,∆F ] : δi ∈ C, ∆j ∈ C
mj×mj}.

Definition 2. For matrix M ∈ Cn×n we define µ∆(M) as

µ∆(M) :=
1

min{σ(∆) : ∆ ∈ ∆, det(I −M∆) = 0} ,

unless no ∆ ∈ ∆ makes I −M∆ singular, in which case µ∆(M) := 0.

We call µ the structured singular value. The value µ is very useful as a
robustness analysis tool in the frequency domain. Suppose G(s) is a stable
real rational transfer function. Consider the perturbed system shown in
Figure 1.5.

Let M(∆) denote the set of all block diagonal and stable real rational
transfer functions that have block structures such as ∆.

M(∆) := {∆ ∈ RH∞ : ∆(s0) ∈ ∆ for all s0 ∈ C+}.

Theorem 2. Let β > 0. The loop shown in Figure 1.5 is well-posed and
internally stable for all ∆ ∈ M(∆) with ‖∆‖∞ < 1

β
if and only if

sup
ω∈R

µ∆(G(iω)) ≤ β.
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Figure 1.5: G-∆ loop for stability analysis

It means that the maximal value of µ determines the size of perturbations
such that the perturbed system is still stable.

Consider again the standard block diagram in Figure 1.6. Let M be a
transfer function from w to z,

M = Fl(G,K) = G11 +G12K(I −G22K)−1G21,

where Fl is the standard notation for the lower linear fractional transforma-
tion. We will solve the following synthesis problem:

min
K

sup
ω∈R

µ∆(Fl(iω)),

which is subject to the internal stability of the nominal plant. It appears to
be a quite hard task. The upper bound of the structured singular value µ
may be obtained by scaling and applying ‖ · ‖∞. Define class D as follows.

D = {D ∈ H∞ : D−1 ∈ H∞, D(s)∆(s) = ∆(s)D(s).}
Then we can try to solve the problem

min
K

inf
D∈D

‖DFl(G,K)D−1‖∞

13



Figure 1.6: The standard block diagram

iteratively with respect to K and D. This is so-called D-K iteration. For a
fixed scaling transfer matrix D we have that minK ‖DFl(G,K)D−1‖∞ is a
standard H∞ optimization problem. For a given stabilizing controller K
infD∈D ‖DFl(G,K)D−1‖∞ is a standard convex optimization problem and it
can be solved pointwise:

sup
ω

inf
Dω

σ[DωFl(G,K)(iω)D−1
ω ].

The D-K iteration proceeds by performing this two parameter minimizations
sequentially: first by minimizing over K with D fixed, then by minimizing
pointwise over D with K fixed, then again over K, and again over D, etc.

Though µ synthesis allows for a much more flexible uncertainty structure
than H∞ optimization does, the design procedures become very involved.
Furthermore the joint optimization of D and K is not convex.

The flexible uncertainty structure is also allowed in a rank-one uncer-
tainty model with restriction that the structure of uncertainty is limited to
a vector. For a rank-one problem we can apply the convex robust controller
parametrization.

14



1.3 Rank-one uncertainty model.

We consider the loop shown in Figure 1.7, where δ ∈ Rm is an uncertain
parameter vector.

Figure 1.7: Rank-one uncertainty model

According to the Youla parametrization of internal stabilizing controllers
we assume that the transfer function from w to z is given on the form

z = (T1 + T2Q)w,

where T1 ∈ RH∞
m×1 and T2 ∈ RH∞

m×n are fixed and parameter Q is any
transfer matrix in RH∞

n×1. The system becomes robustly stable if and only
if

[1 − δ⊤(T1 + T2Q)]−1 ∈ RH∞ for all |δ| ≤ ν,

here | · | is some norm on R
m.

The main problem is stated as follows

15



Given T1 ∈ RH∞
m×1, T2 ∈ RH∞

m×n, find a convex parametrization of all
Q ∈ RH∞

n×1 such that [1 − δ⊤(T1 + T2Q)]−1 ∈ RH∞ for all δ ∈ Rm with
|δ| ≤ ν.

The problem was solved in [5].

Theorem 3. Suppose T1 ∈ RH∞
m×1, T2 ∈ RH∞

m×n. Then the following two
conditions on the rational matrix Q are equivalent:

1. Q ∈ RH∞
n×1 and for all δ ∈ Rm with |δ| ≤ ν

[1 + δ⊤(T1 + T2Q)]−1 ∈ RH∞.

2. There exist α ∈ RH∞ and β ∈ RH∞ such that

Q = β/α and ∀ω ∈ R ∪ {∞},

|Re[T1α + T2β](iω)|d < ν−1Reα(iω).

Here | · |d is the dual norm defined by

|x|d = max{x⊤y : |y| ≤ 1}.

The convex parametrization of all controllers that stabilize the system
for all possible combinations of parameters makes it possible to use convex
optimization to find a robustly stabilizing controller.

Denote

F := ( 1 0 . . . 0 ) ∈ Rn+1,

G := ( T1 T2 ) ∈ RH∞,

h :=

(

α
β

)

∈ RH∞.

Let ∆ ∋ 0 be the uncertainty set. We assume that ∆ is a compact convex
set in Cm. We apply the conformal bilinear transformation of the right half
complex plane onto the unit disk z = (1−s)/(1+s). For our purpose it is more
convenient to deal with the compact unit disc than with the unbounded right
half plane. Due to Theorem 3 the problem of finding a controller is equivalent
to the following condition in terms of a function h ∈ RH∞ :

Re (F + δ⊤G(z))h(z) > 0, ∀z ∈ T, ∀δ ∈ ν∆. (1.1)

16



The problem of finding h ∈ RH∞ such that the condition (1.1) holds is
considered as a primal problem. We would like to solve it for ν as large as
possible, that is, for

νopt = sup{ν|∃h ∈ RH∞ : Re(F + δ⊤G)h > 0 ∀δ ∈ ν∆}. (1.2)

We can construct a finite-dimensional approximation by solving the prob-
lem on a finite-dimensional subspace of RH∞ and on a finite grid of points
z ∈ T. The solution gives us the lower bound on the optimal uncertainty
norm νopt. To obtain the upper bound on νopt, the dual problem was intro-
duced in [3] as follows:
.

Theorem 4. Let F ∈ A1×n, G ∈ Am×n and denote Φδ = F + δ⊤G. Then
the optimal value νopt takes the following form

νopt = min{νopt|c, νopt|s}

with the regular part

νopt|c = inf{ν|∃w ∈ L1(R+)\0, δ ∈ L∞(ν∆): Φδw ∈ H1
0} (1.3)

and the singular part

νopt|s = inf{ν|∃z ∈ T, δ ∈ ν∆ : Φδ(z) = 0}, (1.4)

here the disk algebra A(Y ) is by definition A = H∞ ∩ C, C is the set of
continuous functions.

As before we can construct a finite-dimensional approximation to the
dual problem and obtain the upper bound on νopt. In [4] it was shown that
there is no duality gap between the primal and the dual problems, and the
primal-dual method can be used to obtain a suboptimal solution with any
predefined level of optimality.

Some theoretical results obtained in [3] show that the convex duality con-
cepts provide us with a convenient method to calculate the optimal stability
margin and to design the optimal controller. Unfortunately the class of con-
sidered systems was restricted to the rational case. The problem was still of
rank one.

17



In the thesis we continue to study the rank-one problem in Part I. In
Chapter 2 we extend the class of allowed systems to the non-rational. The
main result is the canonical parametrization of all destabilizing uncertainties
in the dual problem. The corresponding result in the rational case was pre-
viously stated in terms of unstable zero-pole cancelations. For non-rational
systems the situation with common zeros is more complicated. The nominal
factors can contain a singular component and cannot be treated by unstable
cancelations. We have shown that in the general case the common zeros of
the plant factors are naturally replaced by a scalar function with the positive
winding number. To illustrate the duality principle, the result is applied to
a system with delay. The dual problem can be interpreted as the shortest
distance from the nominal plant to all non-stabilizable plants in some metric
that has a strong connection to the ν-gap metric.

By dual parametrization obtained in Chapter 2 we can easily calculate
the optimal uncertainty bound and the optimal controller. Since the optimal
controller is not robustly stabilizing in the strong sense,as it is only a limit of
suboptimal robustly stabilizing controllers, we have to regularize the limiting
controller. In Chapter 3 we present a method of obtaining the suboptimal
controller of lower order that provides the stability margin as close to the
optimal one as we wish. The method is illustrated with some scalar examples.

In Chapter 4 we propose the numerical algorithm for the optimal robust
control synthesis. The algorithm proposed is a sequence of the standard linear
programming problems of growing dimensions which approximate the initial
problem. In the special case, when the uncertainty parameter is real-valued,
it is shown that the initial problem can be considered as finite-dimensional
in the space of variables (semi-infinite convex programming).

In Part II we generalize the results from Chapter 2 in Part I to the system
with matrix uncertainties. We obtain a canonical factorization of a plant with
unstructured uncertainty in terms of an unitary matrix function with finite
winding number and an outer matrix function. We introduce a metric in the
space of factorization and discuss connection with ν−gap metric.

18



Part I

The Rank-One Problem
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We start by introducing some basic definitions needed in the forthcoming
chapters.

Basic definitions. By R (or C) we denote the field of real (or complex)
numbers. The unit circle and the open unit disc in C are denoted by T re-
spectively D

T = {z ∈ C | |z| = 1}, D = {z ∈ C | |z| < 1}.

Let Y ⊂ Cn be any measurable set and 1 ≤ p ≤ ∞. Denote by Lp(Y ) the
standard Lebesgue space of functions f : T → Y equipped with the norm

‖f‖p =

{

(
∫

T
|f(z)|pdm(z))

1

p , 1 ≤ p < +∞,
ess supz∈T

|f(z)|, p = +∞

where | · | denotes the usual 2-norm in Cn

|f | =
√

|f1|2 + |f2|2 + . . .+ |fn|2.

The Hardy class Hp(Y ) consists of functions analytic in D and such that

‖f‖p = sup
0<r<1

(

∫

T

|f(rz)|pdm(z))
1

p <∞.

The Hardy class H∞ is the space of bounded analytic functions in D with
norm

‖f‖∞ = sup
z∈D

|f(z)|.

A function θ analytic in D is called an inner function if θ ∈ H∞ and

|θ(z)| = 1 for almost all z ∈ T.

A function h analytic in D is called an outer function if there exists a real
function g ∈ L1 and a complex number c of modulus 1 such that

h(λ) = c exp

(
∫

T

z + λ

z − λ
g(z)dm(z)

)

, λ ∈ D

If f ∈ Hp, then f admits the representation f = θh, where θ is an inner
function and h is an outer function in Hp.

21



We define the Blaschke product as follows. For λ ∈ D we put

bλ(z) =
|λ|
λ

λ− z

1 − λz
, λ 6= 0, and b0(z) = z.

Let {λi}i≥0 be a sequence in D satisfying the Blaschke condition

∑

i≥0

(1 − |λi|) <∞.

Let c be a complex number of modulus 1. Then the product

B(z) = c
∏

i≥0

bλi
(z)

converges for all z ∈ D and is not identically equal to 0. Function B is called
a Blaschke product.

Let Hp
0(Y ) denote

Hp
0(Y ) = zHp(Y ) = {f ∈ Hp(Y )|f(0) = 0}.

The disk algebra A(Y ) is by definition the subspace of H∞ that consists of
analytic functions in D ⊂ Y that can be extended continuously to the closed
unit disk.

The set RH∞ is the set of all functions from H∞ that are rational with
reals coefficient.

The space C is the space of continuous functions on T.
Define the space H∞ + C as the set of functions ϕ ∈ L∞ such that ϕ

admits a representation ϕ = f + g, where f ∈ H∞ and g ∈ C.
The class of quasicontinuous functions is defined as

QC = (H∞ + C) ∩ (H∞ + C).

The brief notations A, H∞ etc. will be used if Y = Cn and the dimension
of the space is clear from context.

The Toeplitz operator Tφ and the Hankel operator Hφ with the symbol
φ ∈ L∞ are defined by

Tφf = P+φf, Hφf = P−φf, f ∈ H2,

where P+ is the ortogonal projection from L2(Y ) onto H2(Y ) and
P− = I − P+.

22



‖Hφ‖e = dist (φ,H∞ + C) is the essential norm of Hankel operator.
Two matrices F,G ∈ A are left-coprime if they have equal number of

rows and there exist X, Y ∈ A such that

( F G )

(

X
Y

)

= FX +GY = I,

i.e. the matrix function ( F G ) is right invertible in A.
Let G be a matrix function. We say that the factorization G = M−1N is

a left coprime factorization if N and M are left-coprime matrices.
The factorization G = M−1N is called a normalized left coprime factor-

ization if NN∗ +MM∗ = I.
The matrix function V is called co-outer if V ⊤ is outer.
The superscript ⊤ stands for transposition and † stands for pseudoinverse.

The bar denotes the complex conjugate and ∗ denotes conjugate transpose.
The prefix B denotes the unit ball in the corresponding space, and S is the
unit sphere.
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Chapter 2

Canonical Parametrization of
the Dual Problem in Robust
Optimization: Non-Rational
Case
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2.1 Introduction

The duality principle in robust stabilization is a new paradigm that uses
convex duality concepts and brings a new insight into robust optimization.
Given a nominal plant P and an uncertainty set ∆ ∋ 0, the general robust
controller design problem is to find a controller K that robustly stabilizes the
whole family of perturbed plants

Pδ =
N + δ⊤G1

M + δ⊤G2
, δ ∈ ν∆

for ν as large as possible.
Denote by F = ( N M ) ∈ A1×n the left coprime factorization of the

plant P , by G = ( G1 G2 ) ∈ Am×n the weight matrix. The set ∆ is
a convex compact set in Cm. According to a convex parametrization of all
robustly stabilizing controllers constructed in [5] we define the primal problem
as the problem of finding a function h ∈ H∞ such that the condition

Re (F + δ⊤G(z))h(z) > 0, ∀z ∈ T, ∀δ ∈ ν∆, (2.1)

is satisfied. We would like to solve it for ν as large as possible, that is, for

νopt = sup{ν|∃h ∈ RH∞ : Re(F + δ⊤G)h > 0 ∀δ ∈ ν∆}.
In [3] it was shown that we can allow the large set H∞ and

νopt = sup{ν|∃h ∈ H∞ : Re(F + δ⊤G)h > 0 ∀δ ∈ ν∆}. (2.2)

The dual problem for systems with uncertainties of rank one was intro-
duced in [3] as follows.

Theorem 5 (Ghulchak, Rantzer). Let F ∈ A1×n, G ∈ Am×n and denote
Φδ = F + δ⊤G. Then the optimal value νopt takes the following form

νopt = min{νopt|c, νopt|s}
with the regular part

νopt|c = inf{ν|∃w ∈ L1(R+)\0, δ ∈ L∞(ν∆): Φδw ∈ H1
0} (2.3)

and the singular part

νopt|s = inf{ν|∃z ∈ T, δ ∈ ν∆ : Φδ(z) = 0}. (2.4)
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In [1] it was shown that the equations in the dual problem can be solved
explicitly for the rational systems. For this class of systems it was proposed
the dual parametrization of plant factors with destabilizing uncertainties.

In this chapter, we continue to study the duality principle in robust op-
timization problems of rank one. The result is extended to the class of
non-rational systems with continuous nominal factors, for which the dual
factorization of all plant factors with destabilizing uncertainties is obtained.
We introduce the class U of all unimodular functions with the well-defined
and finite winding numbers

U = {u ∈ L∞ : |u| ≡ 1, wnou > 0}.

The main theorem reads as follows.

Theorem 6. Let ∆ = BCm and νopt|c < νopt|s. Then the plant numerator
and denominator with the worst uncertainty Φδ = F + δ⊤G can be factorized
in the following way

Φδ = uψ,

where u ∈ U and ψ ∈ H∞ is outer.

The proof of Theorem 6 will be given in section 2.2.
As an example, a system with delay is considered in section 2.3. The

example is rather illustrative because the plant factors are essentially non-
rational, as they contain a singular component and cannot be simply treated
by unstable cancelations.

Finally, in section 2.4 the dual problem is interpreted as a minimization
of all destabilizing uncertainties in a certain metric that has interesting con-
nections to the well-known ν-gap metric.

2.2 The Main Result

As we discussed in Theorem 5, the calculation of the optimal ν consists of two
parts: singular (2.4) and regular (2.3). The singular part is quite simple: to
find the smallest uncertainty vector that brings a common zero to the plant
factors on the unit disc. The regular case involves three functional variables
and is relatively complicated. In this section, we will discuss the regular case
and obtain the canonical factorization of all factors for the perturbed non-
stabilizable plant that can be used later to find the solution of our problem.
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Let us assume that νopt|c < νopt|s, otherwise the problem can be solved by the
singular part.

The main goal of this section is to prove Theorem 6. This will be done
in section 2.2.2, but first, in section 2.2.1, we will go through the necessary
definitions and preliminary results.

2.2.1 Preliminaries

Recall that Φδ = F + δ⊤G. We know that F and G are from the disk algebra
A. We need supplementary information about δ.

Theorem 7. Let ∆ = BCm and νopt|c < νopt|s. Then the solution to the
regular case (2.3) of the dual problem satisfies δopt ∈ H∞.

In order to prove the theorem we need some preliminary results.
We begin with some remarks about solutions of our primal problem and

the H∞ optimization. The following proposition was proved in [3].

Proposition 1 (Ghulchak). Let F ∈ A1×n, G ∈ Am×n and ∆ = BCm.
Then the following statements are equivalent:

1. ∃h ∈ H∞(Cn×1) such that ∀z ∈ T and ∀δ ∈ ν∆

Re(F (z) + δ⊤(z)G(z))h(z) > 0.

2. ∃g ∈ H∞(Cn×1) such that Fg = 1 and

‖Gg‖∞ < ν−1.

The first problem is our primal problem. From the proposition follows
that g is a solution to the second problem if and only if h = g is a solution
to the primal problem with Fh = 1. Finding optimal ν in (2.2) is reduced
now to the following problem

ν−1
opt = inf

g∈H∞
{‖Gg‖∞|Fg = 1}.

All the solutions to the equation Fg = 1, F ∈ A, can be parameterized as

g = gpart +Mq,
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where gpart is the particular solution to the equation, M is the basis of the
null-space for F and q ∈ H∞. This parametrization is known in the control
theory as the Youla parametrization (see [21]).

Then
‖Gg‖∞ = ‖Ggpart +GMq‖∞ = ‖T1 − T2q‖∞,

ν−1
opt = inf

q∈H∞
‖T1 − T2q‖∞, (2.5)

where T1 = Ggpart and T2 = −GM. This problem is the well-known H∞

optimization problem. It means that in the particular case when ∆ = BCm

then our primal problem is equivalent to the H∞ optimization problem. It
turns out that if F ∈ A and G ∈ A then we can find solution g to Fg = 1
such that T1 and T2 in the H∞ optimization problem are from A as well.

Lemma 1. We have T1, T2 ∈ A.

Proof. Let gpart be a particular solution to Fg = 1, F ∈ A. It is known [20]
that we can find such a particular solution gpart to the equation Fg = 1 that
gpart ∈ A. Let us show now that we can similarly put M ∈ A.

The disk algebra A is the Hermite ring [16]. It means that if F ∈ A has
a right inverse then F can be complemented to a unimodular matrix U ∈ A

containing F as a submatrix, i.e. U =

(

F
B

)

.

Let us partition the matrix U−1 =
(

gpart M
)

and check that these
gpart and M ∈ A satisfy the necessary equations. Indeed

UU−1 =

(

F
B

)

(

gpart M
)

=

(

Fgpart FM
Bgpart BM

)

= I

and Fgpart = 1, Bgpart = O(n−1)×1, FM = O1×(n−1), BM = I(n−1)×(n−1).
Thus we have found M ∈ An×(n−1) such that FM = 0.

Now we will show that KerF = MH∞.
It is clear that MH∞ ⊂ Ker F. (∀q ∈ H∞ we have FMq = 0 ⇒ Mq ∈

Ker F.)
Now let ϕ ∈ H∞ be a function from the null-space ϕ ∈ Ker F. Then

Uϕ =

(

F
B

)

ϕ =

(

0
Bϕ

)

=

(

0
B

)

ϕ

and

ϕ = U−1

(

0
B

)

ϕ =
(

gpart M
)

(

0
B

)

ϕ = MBϕ = Mq.
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We get ∀ϕ ∈ Ker F ∃q ∈ H∞ such that ϕ = Mq. It means that Ker F ⊂
MH∞.

We have proved that Ker F = MH∞. It means that M is a basis of the
kernel of F and M ∈ A.

We have shown that M is from the disc algebra A and gpart ∈ A. Then
ν−1
opt is defined as in (2.5)

ν−1
opt = inf

q∈H∞
‖T1 − T2q‖∞,

but now both T1 = Ggpart and T2 = −GM are from the disk algebra A.
Let us now discuss how we can describe the distance between T1 and

T2H
∞ with the help of measures.

In [7] it was shown that

dist (T1, T2H
∞) = sup{|

∫

T⊤
1 dk| : k ∈ (T2H

∞)⊥, ‖k‖ ≤ 1}.

Recall that k ∈ (T2H
∞)⊥ means that |

∫

(T2g)
⊤ dk| = 0 for all g ∈ H∞.

We will show that dist (T1, T2H
∞) = dist (T1, T2A).

Lemma 2. We have

inf
h∈H∞

‖T1 − T2h‖∞ = inf
h∈A

‖T1 − T2h‖∞.

Proof. Since A is a subset of H∞ then we have

inf
h∈H∞

‖T1 − T2h‖∞ ≤ inf
h∈A

‖T1 − T2h‖∞.

In order to prove the opposite inequality, we take h ∈ H∞ as the optimal
function,which exists (see [7]), and by (T1 − T2h)r we denote
T1(rz) − T2(rz)h(rz), where r < 1 and z ∈ T. According to the maximum
modulus theorem (see [20]) we have

‖T1 − T2h‖∞ ≥ ‖(T1 − T2h)r‖∞ = ‖T1r − T2rhr‖∞.

Now we estimate ‖T1 − T2hr‖∞.

‖T1 − T2hr‖∞ = ‖T1 + T1r − T1r − T2hr + T2rhr − T2rhr‖∞ ≤
‖T1r − T2rhr‖∞ + ‖T1 − T1r‖∞ + ‖T2 − T2r‖∞‖hr‖∞.
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Since T1 and T2 are continuous functions, then we have
‖T1 −T1r‖∞ → 0 and ‖T2 −T2r‖∞ → 0 as r → 1. By the maximum modulus
theorem we have ‖hr‖∞ ≤ ‖h‖∞ and we get that

‖T1 − T2hr‖∞ ≤ ‖T1r − T2rhr‖∞ + ε

and
‖T1 − T2h‖∞ ≥ ‖T1r − T2rhr‖∞ ≥ ‖T1 − T2hr‖∞ − ε.

Since hr ∈ A then we have shown that

dist (T1, T2H
∞) = dist (T1, T2A).

Thus we have shown that dist (T1, T2H
∞) = sup |

∫

T
T⊤

1 dµ|, where
dµ ∈ (T2A)⊥ and ‖dµ‖ ≤ 1.

Since T is compact then there exists the optimal measure µopt such that

dist (T1, T2H
∞) = |

∫

T

T⊤
1 dµopt|.

Since |
∫

(T2g)
⊤ dµ| = |

∫

g⊤T⊤
2 dµ| = 0 for all g ∈ H∞, then we get

T⊤
2 dµ = f dm, where f ∈ H1

0.

If we decompose the measure dµopt into the singular and the absolutely
continues parts we get

T⊤
2 wdm+ T⊤

2 dµs = f dm.

Here we have two cases:

1. There exists a point z0 ∈ T such that T2 loses its column-rank at this
point. Then dµs = xδz0dm, where δz0 is Dirac’s function, and the vector
x is such that T⊤

2 (z0)x = O. We call this case the singular case.

2. There is no such a point as above. Then we can take dµs = 0. This is
the regular case.

32



Finally

|
∫

T

T⊤
1 dµopt| =

{

|T1(z0)|, dµopt = xδz0dm
|
∫

T
T⊤

1 w dm|, T⊤
2 w ∈ H1

0, ‖w‖1 = 1.

Again as in [2] we can divide our problem into two parts: singular and regular.
Consider now the regular case, i.e. detT ∗

2 T2(z) 6= 0, ∀z ∈ T. It is easy to
see that the regular case in the H∞ optimization problem is equivalent to the
regular case (2.3) of our dual problem. Indeed, in the singular case we know
that there exists z ∈ T such that Φδ(z) = 0, where Φδ(z) = F + δ⊤G. We
consider the unimodular matrix U =

(

gp M
)

, where gp is the particular
solution to the equation Fg = 1, and M is the kernel of F. Then

Φδ(gp M) = (F + δ⊤G)(gp M) = (1 + δ⊤T1 δ⊤T2)

and

Φδ(z) = 0 ⇔
{

1 + δ⊤T1(z) = 0
δ⊤T2(z) = 0.

We have the non-trivial solution of the second equation in the system
(|δopt| = ν). This is equivalent to the condition that T2 loses the rank, i.e.
detT ∗

2 T2(z) = 0. Furthermore recall that

ν−1
opt = inf

q∈H∞
‖T1 − T2q‖∞.

If T2 loses the rank in z0, then for all q ∈ H∞ it holds that

‖T1 − T2q‖∞ = sup
z∈T

|T1(z) − T2(z)q(z)|∞ ≥ |T1(z0)|

and
ν−1
opt = inf

q∈H∞
‖T1 − T2q‖∞ = |T1(z0)|.

This means that the condition that T2 loses the rank is equivalent to the
singular case of the dual problem. Furthermore if the solution of the singular
part of the dual problem is not trivial (νopt|s < ∞) then νopt = νopt|s. Since
we assume that νopt|c < νopt|s, i.e. the solution is obtained in the regular case,
then we can assume that T2 does not lose the rank. This corresponds to the
regular case of the H∞ optimization problem.

Now we will discuss some basic properties of the Toeplitz operators [18].
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Lemma 3 (Peller). Let ϕ ∈ H∞. Then the Toeplitz operator Tϕ is invertible
if and only if ϕ is invertible in H∞

Theorem 8 (Peller). Let ϕ, ψ ∈ L∞. Then

Tϕψ = TϕTψ

if and only if ϕ ∈ H∞ or ψ ∈ H∞.

Theorem 9 (Peller). Suppose that Φ is a matrix function in L∞(Mm,n)
such that HΦ has a maximizing vector. If min(m,n) = 1, then Φ has a
unique best approximation by bounded analytic matrix functions.

We also need the notion of the Fredholm operator.

Definition 3 (Fredholm operator). An operator T on a Hilbert space H
is called Fredholm if T is invertible modulo compact operators. The index of
a Fredholm operator T is defined by

indT = dimKerT − dimKerT ∗.

An operator T is Fredholm if it has closed range and dim KerT <∞ and
dim KerT ∗ <∞.

Theorem 10 (Peller). Let n be a positive integer and let U be a unitary-
valued matrix function in L∞(Mn). The operator TU is Fredholm if and only
if ‖HU‖e < 1 and ‖HU∗‖e < 1.

In [18] the following lemma was proved:

Lemma 4 (Peller). Let L be an invariant subspace of multiplication by z
on H2. Then L has finite codimension if and only if L = BH2 for a Blaschke
product B of finite degree.

In [19] a four block operator ΓΦ was defined as operator

ΓΦ : H2 ⊕ L2 → H2
− ⊕ L2

such that

ΓΦ

(

f1

f2

)

= P
−Φ

(

f1

f2

)

,
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where P− is the orthogonal projection from L2 ⊕ L2 onto H2
− ⊕ L2, Φ is a

block matrix function.
Let Φ be a block matrix function of the form

Φ =

(

Φ11 Φ12

Φ21 Φ22

)

, (2.6)

where Φ has size m×n, Φ11 has size m1 ×n1, and Φ22 has size m2 ×n2. The
four block problem is to minimize

∥

∥

∥

∥

(

Φ11 −Q Φ12

Φ21 Φ22

)∥

∥

∥

∥

∞

(2.7)

over bounded analytic functions Q of size m1 ×n1. A function Q is called an
optimal solution of the four block problem if it minimizes the norm (2.7).

We have the following lemma:

Lemma 5 (Peller, Treil). Let Φ be a block matrix function of the form
(2.6) such that ‖ΓΦ‖e < ‖ΓΦ‖. Let V be a unitary-valued matrix in the form

V =

(

v1 V c ⋆
v2 O ⋆

)

,

where Vc is an inner and co-outer matrix. Let W be a unitary-valued matrix
in the form

W⊤ =

(

w1 W c ⋆
w2 O ⋆

)

,

where Wc is an inner and co-outer matrix. Then there exists a unimodu-
lar function u0 such that any optimal solution Qo of the four block problem
satisfies

(

Φ11 −Qo Φ12

Φ21 Φ22

)

= W ∗





t0u0 O O

O Φ
(1)
11 Φ

(1)
12

O Φ
(1)
21 Φ

(1)
22



V ∗, (2.8)

where Φ
(1)
11 is a matrix function of sizem1−1×n1−1. The unimodular function

u0 admits a representation u0 = zbh/h, where h is an outer function in H2

and b is a finite Blaschke product. Moreover, the Toeplitz operator Tu0
is

Fredholm.
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Now we are ready to proof Theorem 7.
Proof of Theorem 7. We start with the primal problem

sup
h∈BH∞

inf
|δ|≤ν

Re(F + δ⊤G)h > 0.

Let hopt be the solution to the problem. Such hopt exists according to Propo-
sition 1. If Gh = 0 then the function simplifies to Re(Fh). Thus we assume
Gh 6= 0. Then the optimal δ has the following expression

δ = −ν (Ghopt)
∗

|Ghopt|
.

Our purpose is to show that |Ghopt| ≡ const.
Recall that if hopt is the solution to the primal problem then gopt = hopt

is the solution to the H∞ optimization problem.

‖Ggopt‖∞ = inf
q∈H∞

‖T1 − T2q‖∞.

As function T2 ∈ H∞, then T2 can be factorized into inner and outer
factors, i.e. T2 = T2iT2o.

Since
(

T ∗
2i

I − T2iT
∗
2i

)∗(
T ∗

2i

I − T2iT
∗
2i

)

=
(

T2i I − T2iT
∗
2i

)

(

T ∗
2i

I − T2iT
∗
2i

)

=

T2iT
∗
2i + I − T2iT

∗
2i − T2iT

∗
2i + T2iT

∗
2iT2iT

∗
2i = I − T2iT

∗
2i + T2iT

∗
2i = I,

then we have

inf
q∈H∞

‖T1 − T2q‖∞ = inf
q∈H∞

∥

∥

∥

∥

(

T ∗
2i

I − T2iT
∗
2i

)

(T1 − T2q)

∥

∥

∥

∥

∞

=

inf
q∈H∞

∥

∥

∥

∥

(

T ∗
2iT1 − T2oq

(I − T2iT
∗
2i)T1

)∥

∥

∥

∥

∞

.

We will show that any inner function in the disk algebra A is the finite
Blaschke product. Indeed, T2o is invertible in H∞, then by Lemma 3 and
Theorem 8 the Toeplitz operator TT2o

is invertible and TT2i
= TT2

T−1
T2o

. Since
T2i ∈ A = H∞ ∩ C, then we have that the essential norm of the Hankel
operators HT2i

and HT2i
are zeros. The function T2i is unimodular. According
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to Theorem 10 the Toeplitz operator TT2i
is Fredholm. Then T2iH

2 has
finite codimension (codimX = dim(X⊥)). Indeed, take ϕ such that ϕ ∈
H2⊖T2iH

2. It means that ϕ ⊥ T2if for all f ∈ H2 and
∫

f ∗T ∗
2iϕ dm = 0 and

T ∗
2iϕ ⊥ H2. Hence, P+T

∗
2iϕ = 0 and ϕ ∈ Ker T∗

T2i
. Since TT2i

is Fredholm,
then dimension of Ker T∗

T2i
is finite and codimension of T2iH

2 is finite.
By Lemma 4 function T2i is a Blaschke product of finite degree.

Let Φ =

(

T ∗
2iT1

(I − T2iT
∗
2i)T1

)

.

Since T1, T2 ∈ A, it follows that Φ ∈ H∞ + C. Recall that
‖ΓΦ‖e = dist (Φ,H∞ + C) is the essential norm of Hankel operator. As
Φ ∈ H∞ + C then we have that ‖ΓΦ‖e < ‖ΓΦ‖.

Recall that we consider the regular case of the dual problem. It is equiv-
alent to the condition that detT ∗

2 T2(z) 6= 0 ∀z ∈ T. Then T2o has a right
inverse in H∞ and

inf
q∈H∞

∥

∥

∥

∥

(

T ∗
2iT1 − T2oq

(I − T2iT
∗
2i)T1

)∥

∥

∥

∥

∞

= inf
q1∈H∞

∥

∥

∥

∥

(

T ∗
2iT1 − q1

(I − T2iT
∗
2i)T1

)∥

∥

∥

∥

∞

.

According to Lemma 5 and Theorem 9 we have that there exists the unique
optimal solution to this approximation problem and the solution can be pa-
rameterized as follows

(

T ∗
2iT1 − q1opt

(I − T2iT
∗
2i)T1

)

=
(

t0u0 0
) (

v Vc
)∗
,

where u0 = zbh/h, h is an outer function, b is a finite Blaschke product, V
is an unitary matrix V =

(

v Vc
)

, with an inner vector function v and a
co-outer matrix function Vc.

For q1opt we have T ∗
2iT1 − q1opt = t0u0v

∗.
Recall that |Ggopt| = |T1 − T2qopt|. Thus

|Ggopt| = |t0u0v
∗| ≡ const,

where gopt is the solution to H∞ optimization. Then |Ghopt| ≡ const, where
hopt is the solution to the primal problem.
Since

δ = −ν (Ghopt)
∗

|Ghopt|
, |Ghopt| ≡ const

then δ ∈ H∞.
The proof of Theorem 7 is finished.
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We need some more definitions and theoretical results from [18]. First we
define the winding number for a continuous function.

Definition 4 (wno for a continuous function). Let ϕ be a function on
C(T) that does not vanish on T. The winding number wnoϕ with respect to
the origin is defined in the following way. Consider a continuous branch of
the argument argϕ of the function t→ ϕ(eit), t ∈ [0, 2π],

argϕ ∈ C([0, 2π]),
ϕ(eit)

|ϕ(eit)| = exp(i argϕ), t ∈ [0, 2π].

Then

wnoϕ =
1

2π
(argϕ(2π) − argϕ(0)).

The winding number for the functions invertible in H∞ + C is defined as
follows.

Definition 5 (wno for a H∞+C function). Let ϕ be an invertible function
in H∞ + C. Given r < 1, let ϕr(z) := ϕ(rz), z ∈ T. Let r0 be a number in
(0, 1) such that

inf{|ϕ(z)| : |z| > r0} > 0.

Then wnoϕ is by definition wnoϕr, where r is an arbitrary number in (r0, 1).

Now we give the definition of a badly approximable function and a the-
matic function.

Definition 6 (badly approximable function). Consider the matrix func-
tion Φ ∈ L∞ such that HΦ has a maximazing vector. Φ is called a badly

approximable matrix function if

‖Φ‖∞ = dist L∞(Φ,H∞).

Definition 7 (thematic function). Let n be a positive integer. Suppose
that Υ is an n×1 inner and co-outer matrix function and Θ is an n×(n−1)
inner and co-outer matrix function. If the matrix function

Ω =
(

Υ Θ
)

is unitary-valued, then it is called the thematic matrix function.
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Theorem 11 (Peller). Suppose that Φ ∈ L∞(Mm,n) and HΦ 6= O. The
following statements are equivalent

• Φ is badly approximable and HΦ has a maximazing vector;

• Φ admits a factorization of the form

Φ = W ∗

(

tu O

O Ψ

)

V ∗, (2.9)

where t > 0, V and W⊤ are thematic matrix functions, ‖Ψ‖∞ ≤ t, and

u is a scalar unimodular function of the form u = zθh
h

for an inner
function θ and an outer function h ∈ H2.

Recall that QC is the class of quasicontinuous functions defined as

QC = (H∞ + C) ∩ (H∞ + C).

Theorem 12 (Peller). Let Φ ∈ H∞ + C(Mm,n) and HΦ 6= O. If F is a best
approximation of Φ by bounded analytic matrix functions and

Φ − F = W ∗

(

tu O

O Ψ

)

V ∗,

then u ∈ QC.

2.2.2 The main theorem

We are now ready to prove the main result. Recall that in the regular case,
i.e. νopt|c < νopt|s, we need to find the functions wopt ∈ L1(R+)\0 and δopt ∈
L∞(ν∆) such that Φδw ∈ H1

0. The last condition means that there exists a
vector function p ∈ H1 such that

Φδ(z)w(z) = zp(z).

Note that in the regular case we have |Φδ| ≥ ε, which implies, in particular,
that log(w) ∈ L1.A real positive function with this property can be factorized
as w = f ∗f , where f is a scalar outer function. Then Φδ can be written as

Φδ = z
p

f ∗f
= z

f

f ∗

p

f 2
.
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Furthermore, the function p can be factorized into inner and outer factors
p = pip0, where pi is scalar, and the function Φδ may be written as

Φδ = zpi
f

f ∗

po
f 2

= uψ, (2.10)

where u = zpi
f
f∗

is a scalar function and ψ ∈ H∞ is an outer (row-)function.
In the rational case, the rational function u collects all common zeros of the
plant factors and gives a factorization of the dual problem via unstable zero-
pole cancelations. In our case, the situation with the common zeros is more
complicated.

We show that in the case when the uncertainty set is the ball ∆ = BCm,
the winding number for the function u is well-defined. It plays the same role
as the unstable cancelations in the rational case.

We introduce the class U of all unimodular functions with the well-defined
and finite winding numbers

U = {u ∈ L∞ : |u| ≡ 1, wnou > 0}.

Theorem 13 (Main result). Let ∆ = BCm and νopt|c < νopt|s. Then the
plant numerator and denominator with the worst uncertainty Φδ = F + δ⊤G
can be factorized in the following way

Φδ = uψ, (2.11)

where u ∈ U and ψ ∈ H∞ is outer.

Proof. Recall that we can parameterize Φδ such that

Φδ = uψ,

where u = zpi
f
f∗
, f is a scalar outer function, pi is a scalar inner function

and ψ ∈ H∞ is an outer vector function. We have to show that u ∈ U .
Let φ be a scalar outer function such that |ψ| = |φ|. We can write Φδ in

the following way:
Φδ

φ
=
uφ

φ

ψ

φ
.

Now we show that Φδ

φ
is a badly approximable function.
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Introduce the following notation:

u1 :=
uφ

φ
and V ∗ :=

(

ψ

φ

Θ⊤

)

,

where Θ is n× (n− 1) inner and co-outer matrix function. Let t0 = 1. Then

we can factorize Φδ

φ
in the following way:

Φδ

φ
=
(

t0u1 0
)

V ∗.

We will show that V =
(

ψ
φ

⊤
Θ
)

is a thematic function.

We have that (ψ
φ
)⊤ is an inner and co-outer column vector. The scalar

outer function φ is invertible in H∞. Then (ψ
φ
)⊤ ∈ H∞. Since

(
ψ

φ

⊤

)∗
ψ

φ

⊤

=
|ψ|2
|φ|2 = 1,

we get that (ψ
φ
)⊤ is an inner function. Furthermore ((ψ

φ
)⊤)⊤ = ψ

φ
, ψ is outer

and 1
φ
∈ H∞, φ is outer and |φ| > 0. Thus we have that (ψ

φ
)⊤ is a co-outer

function.
In [18] it was shown that any inner and co-outer n × 1 matrix function

can be completed to a thematic matrix function. According to this result
there is Θ such that Θ is n× (n− 1) inner and co-outer matrix function and

V =
(

ψ
ϕ

⊤
Θ
)

is unitary-valued. It means exactly that V is a thematic

function.
We get that

Φδ

φ
=
(

t0u1 0
)

V ∗,

where t0 = 1, u1 = zpifφ
fφ

and V is a thematic function. We obtain the same

factorization as in (2.9) with W identically equal to 1 and with submatrix Ψ

of size 0. Then Φδ

φ
is badly approximable.

Finally we know that F ∈ A and G ∈ A. From Lemma 7 we get that
δ ∈ H∞. Therefore

Φδ = F + δ⊤G ∈ H∞ + C.
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As Φδ

φ
is badly approximable, then using Theorem 12 we get that

u1 ∈ QC.
Recall that u1 = zpifφ

fφ
. Since the outer function φ is invertible in H∞,

then the Toeplitz operator Tφ
φ

can be written as

Tφ
φ

= TφT 1

φ
= T∗

φT 1

φ
.

Since both T∗
φ and T 1

φ
are invertible, then Tφ

φ

is invertible too and Tφ
φ

is

Fredholm. From [18] we know that the Toeplitz operator Tϕ is invertible if
and only if it is Fredholm and ind Tϕ = 0. Thus

indTφ
φ

= 0.

Since u1 ∈ QC, we have Tu1
is Fredholm and

wno u1 = −ind Tu1
> −∞.

As u1 ∈ L∞, then from [18] we have that either KerTu1
= O or Ker T∗

u1
= O.

Since u1 = zpifφ
fφ

, it is clear that fφ ∈ KerTu1
. Therefore Ker T∗

u1
= O and

ind Tu1
> 0 which means that wno u1 < 0.

Thus we have

−∞ < wno z
f

f
pi
φ

φ
= wno z

f

f
pi + wno

φ

φ
= wno u < 0.

Then we get the factorization of Φδ,

Φδ = uψ,

where u is from the class U ,

U = {u ∈ L∞ : |u| ≡ 1, wno u > 0}

and ψ ∈ H∞ is outer.

According to this theorem the plant with the worst uncertainty becomes

N(z) + δ(z)⊤G1(z)

M(z) + δ(z)⊤G2(z)
=
u(z)ψ1(z)

u(z)ψ2(z)
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and by Cauchy’s argument principle the condition wno u > 0 means pre-
cisely that, as in the rational case, the numerator and denominator of the
plant with the worst uncertainty have more common unstable zeros than all
unstable poles, but now the number of zeros may be infinite or even it may
be limiting zeros coming from a singular function. The last kind of zeros is
the most difficult to treat. Nevertheless, using this parametrization we can
obtain the expression for δopt and calculate νopt by taking infimum over all
such u and ψ. We will show how this works for a system with delay.

2.3 Example: A System with Delay.

In this section, we will show how the problem to optimize the stability margin
and to find a controller, that robustly stabilizes the whole family of perturbed
plants can be solved for the system with delay using the dual parametrization.
Several simple examples for the rational case were solved in [2]. Now we will
extend the class of systems that can be solved using the duality principle.

In [10] the authors have considered the H∞-sensitivity minimization prob-
lem for a linear time-invariant delay system. The corresponding robust sta-
bilization problem for the uncertain plant

P∆ =
e−hs

1 + ∆
as+1

(2.12)

can be obtained by the small gain theorem. It turned out that the sensitivity
minimization problem even for the simplest delay system is nontrivial. We
will consider a similar problem and solve it using the factorization obtained.

Consider the uncertain plant

Pδ =
e−τs

s+a0

1 + δ
s+a0

. (2.13)

The minor modification of the numerator is necessary to formally satisfy the
continuity assumption, however, it occurs to be irrelevant in this case, and
the solution to both problems will be (almost) the same.

Comparing to the rational transfer functions we have here the singular
function e−τs with a limiting zero at ∞ (essential singularity). It makes the
problem much more difficult. It is no longer possible to talk about numbers
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of zeros and poles. One has to use the factorization (2.11) and to work with
the winding number instead.

It is easy to see that the singular part has no solution. Indeed, we have to
find z ∈ T such that Φδ(z) = 0. The numerator e−τs

s+a0
is zero only at infinity,

but we cannot get zero at infinity in the denominator since δ is bounded. It
means that it is enough to consider the regular case only.

We will find functions u and ψ such that u ∈ U , ψ ∈ H∞ is outer and
Φδ = uψ. In our example, it means the following

{

e−τs

s+a0
= uψ1

1 + δ
s+a0

= uψ2.
(2.14)

Let us make several simple observations:
1) The factor (s+a0) can be absorbed into ψ1 with the equivalent system

being
{

e−τs = uψ1

1 + δ
s+a0

= uψ2,
(2.15)

where the condition ψ1 ∈ H∞ is still valid. The last system is precisely the
same as we would get from (2.12), so the dual solution for both plants (2.12)
and (2.13) after this little change is the same.

2) The condition |u| ≡ 1 does not affect the winding number, so we can
first find u with |u| > 0 and the required winding number, and then normalize
it later.

3) ψ1 can be taken as an entire function. As due to ψ1 ∈ H∞, ψ1 has no
unstable poles. Moreover, if ψ1 has some stable poles, they can be canceled
with stable zeros of u. This operation does not affect the winding number
either.

Now we get

δ = (s+ a0)(uψ2 − 1) = (s+ a0)(
e−τs

ψ1

ψ2 − 1) ∈ L∞,

u =
e−τs

ψ1
, wno u > 0.

Thus it follows the two conditions on ψ1 and ψ2

{

e−τs

ψ1
ψ2 → 1 as ω → ∞,

0 < wno e−τs

ψ1
<∞.
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As ω → ∞, that e−τs turns around zero infinitely many times. Using that
wno e−τs

ψ1
< ∞, we search for the entire function ψ1 of exponential type −τ ,

i.e. in the following form
ψ1 = e−τsf + c,

where f is a rational function. We get

δ = (s+a0)
e−τs(ψ2−f)−c
e−τsf + c

=
s+ a0

−s + a0

e−τs(ψ2−f)−c
e−τsf
−s+a0

+ c
−s+a0

=
s+ a0

−s + a0

eτs
e−τs(ψ2 − f) − c

f
−s+a0

+ ceτs

−s+a0

. (2.16)

It is known (see [8]) that in the regular case the solution is all-pass, i.e.
|δ(ıω)| = ν for a constant ν. Hence, from the representation (2.16) we get
the following system

{

ψ2 − f = ν c
s+a0

c = −ν f
s+a0

.

As

c = −ν f

−s + a0
⇒ ψ2 − f = −ν2 f

a2
0 − s2

we get

ψ2 =
(a2

0 − s2 − ν2)f

a2
0 − s2

.

To satisfy the condition ψ2 ∈ H∞ we have to cancel the unstable pole. It
means that f has the factor a0 − s, so f can be factorized as f = (a0 − s)f1,
where f1 is a rational function. Thus

ψ2 =
(a2

0 − s2 − ν2)f1

a0 + s
.

The function

ψ1 = e−τs(a0 − s)f1 + c = e−τs(a0 − s)f1 − νf1

is entire. It means that if f1 has a pole, it has to be canceled with a zero of
e−τs(a0 − s)f1 − νf1.

From the expression for ψ2

ψ2 =
(a2

0 − s2 − ν2)f1

a0 + s
,
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it is clear that f1 can have only two unstable poles on the boundary, namely
zeros of a2

0 − s2 − ν2, and no more.
Suppose f1 has some stable poles sk. Then they are zeros of

e−τs(a0 − s)f1 − νf1

and

e−τs(a0 − s)f1 = νf1, when s = sk.

If f1 has stable poles then f1 has unstable poles. It is impossible because
e−τs(a0−s)f1 has no unstable poles. So f1 can only have poles that are zeros
of a2

0 − s2 − ν2.
Take ϕ = (a2

0 − s2 − ν2)f1. Then ϕ does not have any poles, so ϕ is just
a polynomial. The expression for ψ2 is ψ2 = ϕ

s+a0
and ψ2 has to be bounded,

so degϕ ≤ 1.
Now substitution ψ1 and ψ2 into the expression for u yields

u =
e−τs(a2

0 − s2 − ν2)

eτs(−s+ a0)ϕ− νϕ
.

We will find such u that wnou > 0 ⇒

wno
e−τsϕ(a2

0 − s2 − ν2)

e−τs(−s+ a0)
ϕ
ϕ
− ν

> 0.

Both e−τsϕ and e−τs(−s + a0)
ϕ
ϕ

have infinitely many encirclements of the
origin when s follows the standard contour, indented into the right half plane,
but the function in the denominator is moved by the constant ν such that
the overall denominator e−τs(−s+a0)

ϕ
ϕ
−ν has less encirclement than e−τsϕ.

The length of this movement ν should be minimized according to the dual
problem (4.7). It is clear that for this purpose the denominator of u will have
exactly one encirclement less than the numerator, i.e. wno u = 1. Hence,
ν should be chosen as the shortest distance from the Nyquist curve to the
origin along the real axis, that is, as

ν = νopt = |e−τıω0(−ıω0 + a0)
ϕ

ϕ
| =

√

ω2
0 + a2

0,

where ω0 is the first positive frequency such that

e−τıω0(−ıω0 + a0)
ϕ

ϕ
∈ R.

46



The last condition implies

−τω0 − arctan
ω0

a0
+ 2 argϕ = πk. (2.17)

Recall that degϕ ≤ 1. Moreover, ϕ is a stable polynomial because an un-
stable zero would increase the number of encirclements of the origin, so we
would have to increase ν also in order to move e−τs(−s + a0) further. As
ω0 > 0, then argϕ > 0 and the minimization of ν and, hence, ω0 in (2.17)
implies that argϕ = 0, i.e. ϕ is a constant. Moreover we get that ω0 > 0
satisfies

tan τω0 = −ω0

a0

, where
π

2
< τω0 < π.

The optimal stability margin is νopt =
√

a2
0 + ω2

0.
Moreover, a necessary factorization of the dual problem is

(

e−τs

s+a0

1 + δ
s+a0

)

=
e−τs(s2 + ω2

0)

e−τs(s− a0) −
√

a2
0 + ω2

0

(

e−τs(s−a0)−
√
a2
0
+ω2

0

(s2+ω2
0
)(s+a0)
1

s+a0

)

=

e−τs(s2+ω2
0
)

s+a0

e−τs(s− a0) −
√

a2
0 + ω2

0

(

e−τs(s−a0)−
√
a2
0
+ω2

0

(s2+ω2
0
)

1

)

.

In order to obtain the canonical parametrization, the function u should be
normalized to unimodular.

The above example shows that, even in such a “bad” situation, when we
have singular zeros in the plant, the function u ∈ L∞ is still “nice”, in fact,
continuous and wnou = 1.
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The optimal controller can be also obtained by the dual factorization as

K =
s2 + ω2

0

e−τs(s− a0) −
√

a2
0 + ω2

0

.

Recall that the optimization problem in [10] corresponds to robust stabi-
lizability of the plant (2.12). The result of [10] is identical to our example
modulo the small gain theorem. Indeed, in [10]

‖∆‖ =

√

1 +
a2y2

ah

h2
,

where yah is a unique root of the equation

tan y +
ay

h
= 0

lying between π/2 and π.
For τ = h, ω0τ = y, a0 = 1/a, δ = ∆/a the plant (2.12) give us the

same system as (2.15) and we get the same result for the stability margin as
in our case.

2.4 The classes of equivalences and the dis-

tance between the classes

Consider the dual parametrization

F +Gδ = ψu, u ∈ U , ψ ∈ H∞.
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In this section, we will use the transposed plant factors compared to the
previous sections and denote them by the same F and G.

Recall that for the optimal δ we have wno u > 0, i.e. on the boundary of
the stability region, we have a non-stabilizable plant, the plant that has an
unstable pole/zero cancelation. This gives an idea how to define the classes
of equivalence in the factor space. Then we can introduce a distance between
them.

Let U0 be the class of all unimodular functions with well-defined winding
numbers given by

U0 = {u ∈ L∞ : |u| ≡ 1, wno u = 0}.

Suppose that we have two plants P1 and P2. Let F1 =

[

N1

M1

]

be a coprime

factorization of P1 and F2 =

[

N2

M2

]

be a coprime factorization of P2. We

will call two factorizations equivalent, F1 ∼ F2, if we can find Q such that
Q ∈ U0 and F2 = F1Q.

We define the distance between equivalent classes as follows:

δ(F1, F2) = inf{‖δ‖∞ : F1 +Gδ ∈ class (F2)}.

Lemma 6. δ is a metric on the factor space of the plant factorizations.

Proof. Function δ(·, ·) is a metric on the space of factorizations if, for all
factorizations F1,F2 and F3, we have

1. δ(F1, F2) ≥ 0, with δ(F1, F2) = 0 if and only if F1 ∼ F2;

2. δ(F1, F2) = δ(F2, F1);

3. δ(F1, F2) ≤ δ(F1, F3) + δ(F3, F2).

1. It is clear that δ(F1, F2) = inf ‖δ‖∞ ≥ 0. Next, if F1 ∼ F2 then
F1 ∈ class (F2) and δ(F1, F2) = 0.

If now δ(F1, F2) = 0 then we can find Q ∈ U0 satisfying F1 +Gδ = F2Q,
where δ satisfies inf ‖δ‖∞ = 0. It means that F1 ∈ class (F2) and F1 ∼ F2.

To prove 2 we take δ such that F1 +Gδ = F2Q. Then by multiplying the
both sides with Q∗ and we get
(F1 +Gδ)Q∗ = F2QQ

∗ = F2 and

F2 −GδQ∗ = F1Q
∗ ⇒ F2 −GδQ∗ ∈ class (F1),
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since wno Q∗ = −wno Q = 0. Finally we get

δ(F1, F2) = inf ‖δ‖∞ = inf ‖δQ∗‖∞ = δ(F2, F1).

To prove 3 we take δ13 such that we can find Q1 which yields F1 + Gδ13 =
F3Q1. Take δ23 such that we can find Q2 and F3 + Gδ23 = F2Q2. Then by
straightforward calculations we get

F1 +Gδ13 = F2Q2Q1 −Gδ23Q1

F1 +G(δ13 + δ23Q1) = F2Q2Q1,

where wno Q2Q1 = wno Q2 + wno Q1 = 0. It means that F1 ∈ class (F2).
Then δ(F1, F2) ≤ ‖δ13 + δ23Q‖∞ ≤ ‖δ13‖∞ +‖δ23Q‖∞ = ‖δ13‖∞ +‖δ23‖∞.

By calculating infimum over δ13 and δ23 we get δ(F1, F2) ≤ δ(F1, F3) +
δ(F3, F2).

Now we can get an expression for our metric δ(F1, F2). By the definition
of δ(F1, F2) we are looking for such a δ that F1 +Gδ ∈ class (F2). It means
that there exists Q ∈ U0 such that F1 + Gδ = F2Q. We have to take an
infimum over all such Q in order to find the optimal δ, i.e. the distance
between equivalent classes. Then we get

δ(F1, F2) = inf
Q∈U0

‖G†F1 −G†F2Q‖∞,

where G† is a pseudoinverse of G.
In [13] the ν-gap metric between two plants P1 and P2 was introduced as

δν(P1, P2) = inf
Q,Q−1 ∈ L∞

wno det(Q) = 0

‖G1 −G2Q‖∞,

where G1 and G2 are the normalized coprime factorizations of P1 respectively
P2.

In particular, if G = I and F1 is the normalized coprime factorization of
the nominal plant P1, it is straightforward to see that δ ≥ δν . Furthermore,
the distance from P1 to the set of all non-stabilizable plants is the same νopt in
both metrics. In all other cases, the ν-gap metric does not generally provide
the optimal stability margin, whereas the δ-metric does. In this sense, the δ-
metric is more appropriate to robust stabilization of parametrically uncertain
plants.
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2.5 Conclusion

In this chapter we studied the duality principle in the robust optimization
problem of rank one. We extended the class of systems that can be con-
sidered. We discussed how the dual estimate of the stability margin can be
computed using the canonical factorization. We illustrated the technique on
the system with a pure delay.

We introduced a metric in the factor space of factorizations of the plant
as a distance between the equivalent classes. It has been shown that this
metric has close connection with the ν-gap metric.
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Chapter 3

Regularization of the Limiting
Optimal Controller in Robust
Stabilization
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3.1 Introduction

The convex duality principle has brought a new insight into robust stabiliza-
tion. The dual problem for systems with uncertainties of rank one has been
introduced in [3]. Several examples have been solved in [2] to illustrate the
power and simplicity of the principle. A method based on unstable cancela-
tions has been presented to calculate optimal stability margin and to design
optimal controller. The great advantage of this method is the low order
of the optimal controller. However the optimal controller is a limit of sub-
optimal robustly stabilizing controllers, which is never robustly stabilizing
itself. Different ad hoc ideas have been used in [2] to obtain the subopti-
mal controller, for example by analyzing Bode/Nyquist plot, but it would
be of great interest to derive a method that would work in general. In this
chapter we give the method to design the suboptimal controller that provides
the stability margin arbitrary close to the optimal one and still is of low order.

This chapter is organized as follows. In section 3.2 we describe the pri-
mal/dual problem and present some preliminary results. In section 3.3 we
propose the algorithm to find the suboptimal controller. In order to illustrate
how this algorithm works we solve two examples in sections 3.4 and 3.5.

3.2 Preliminaries

Let P be a nominal plant and let ∆ ∋ 0 be an uncertainty set. Recall that
the general robust controller design problem is to find a controller K that
robustly stabilizes the whole family of perturbed plants

Pδ =
N + δ⊤G1

M + δ⊤G2
, δ ∈ ν∆

for ν as large as possible. The problem of finding a controller is equivalent
to the following condition in terms of a function h ∈ H∞ :

Re (F + δ⊤G(z))h(z) > 0, ∀z ∈ T, ∀δ ∈ ν∆. (3.1)

Here F =
(

N M
)

∈ A1×n is the coprime factorization of the plant P , the
weight matrix G =

(

G1 G2

)

∈ Am×n and the set ∆ is a convex compact
set in C

m. The problem of finding h ∈ H∞ such that condition (3.1) holds
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is considered as a primal problem. We would like to solve it for ν as large as
possible, i.e., for

νopt = sup{ν|∃h ∈ H∞ : Re (F + δ⊤G)h > 0 ∀δ ∈ ν∆}.

In [3] the dual problem was introduced in the following theorem.

Theorem 14 (Ghulchak, Rantzer). Let F ∈ A1×n, G ∈ Am×n and denote
Φδ = F + δ⊤G. Then the optimal value νopt takes the following form

νopt = min{νopt|c, νopt|s},

with the regular part

νopt|c = inf{ν|∃w ∈ L1(R+)\0, δ ∈ L∞(ν∆): Φδw ∈ H1
0} (3.2)

and the singular part

νopt|s = inf{ν|∃z ∈ T, δ ∈ ν∆ : Φδ(z) = 0}. (3.3)

Suppose we solved the primal/dual problem, i.e. we found the maximal
stability margin νopt. We know that we can determine the optimal controller
using the alignment principle for convex optimization. According to the
alignment principle (see [12]) we get

(N + δ⊤optG1)h1 − (M + δ⊤optG2)h2 ≡ 0,

and the optimal controller

hopt =
h1

h2
=
M + δ⊤optG2

N + δ⊤optG1

. (3.4)

It means that the optimal controller is equal to the inverted plant with the
worst uncertainty.

In Chapter 2 it was proposed the dual parametrization of the plant factors
with destabilizing uncertainties. According to this parametrization the nu-
merator and denominator of the plant with the worst uncertainty have more
common unstable zeros than all unstable poles. Recall that the plant with
the worst uncertainty becomes

N(z) + δ(z)⊤G1(z)

M(z) + δ(z)⊤G2(z)
=
u(z)ψ1(z)

u(z)ψ2(z)
. (3.5)
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The occurrence of common unstable zeros leads to a zero/pole cancelation
when the optimal controller will be designed according to (3.4). All common
unstable zeros will be canceled in the ratio (3.4) and the optimal controller
will have a low order. But the optimal controller will not be robustly stabi-
lizing.

Now our task will be to find a suboptimal controller hε such that

Re (F + δ⊤G(z))hε(z) > 0

and hε provides robust stability for νopt−ε. Preserving the low order property
of the optimal controller we will construct a suboptimal controller that will
be robustly stabilizing.

3.3 The main result

We begin by increasing the stability area.
Consider F,G ∈ A on the unit ball B. Suppose that F and G ∈ A on

the bigger area Bε. By changing the variable z to w = (1 − ε)z we get new
Fε and Gε. We will solve the primal/dual problem for Fε + δ⊤Gε and obtain
the maximal stability margin νε and optimal controller hε. As we use the
duality principle and we use the dual parametrization of the plant factors
with destabilizing uncertainties, then we get the suboptimal controller of low
order. To show that the suboptimal controller provides the stability margin
close to the optimal one it is enough to show that νε → νopt if ε → 0. We
have the following theorem.

Theorem 15. νε → νopt if ε→ 0. Moreover hε stabilizes the system F+δ⊤G.

Proof. Denote H+
∞ = H∞(Bε) and let T+ denote the boundary of Bε. Using

the change of the variable as before: w = (1 − ε)z, and the assumption that
F and G are analytic functions in bigger area Bε, then the solution to the
primal problem with Fε and Gε for h ∈ H∞ and z ∈ T is the same as the
solution to the primal problem with F and G for h ∈ H+

∞ and z ∈ T+, i.e.

sup
h∈H

+
∞

inf
δ∈∆ν

inf
z∈T+

Re (F + δ⊤G)h = sup
h∈H∞

inf
δ∈∆ν

inf
z∈T

Re (Fε + δ⊤Gε)h.

According to the mean value theorem for harmonic functions we get

inf
z∈T

Re (F + δ⊤G)h ≥ inf
z∈T+

Re (F + δ⊤G)h.
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As H+
∞ ⊂ H∞, we get

sup
h∈H∞

inf
δ∈∆ν

inf
z∈T

Re (F + δ⊤G)h ≥ sup
h∈H

+
∞

inf
δ∈∆ν

inf
z∈T+

Re (F + δ⊤G)h

and

sup
h∈H∞

inf
δ∈∆ν

inf
z∈T

Re (F + δ⊤G)h ≥ sup
h∈H∞

inf
δ∈∆ν

inf
z∈T

Re (Fε + δ⊤Gε)h. (3.6)

We call the problem

sup
h∈H∞

inf
δ∈∆ν

inf
z∈T

Re (F + δ⊤G)h > 0 (3.7)

the first problem and the problem

sup
h∈H∞

inf
δ∈∆ν

inf
z∈T

Re (Fε + δ⊤Gε)h > 0 (3.8)

the second problem.
In order to show the first part of the theorem we choose ν such that the

second problem (3.8) has a solution. By νε we denote the optimal stability
margin in the second problem, i.e.

Re (Fε + δ⊤optGε)hopt = 0,

where |δopt| = νε. It’s clear that νε > ν. But if the second problem has a
solution for ν, then according to the inequality (3.6) , the first problem (3.7)
has a solution too and νopt > ν. We get that

νε > ν ⇒ νopt > ν

and it means that νopt ≥ νε.
Now we will show that there is εν such that νε ≥ νopt − εν .

Re (Fε + δ⊤Gε)h = Re (Fε − F + F + δ⊤(Gε −G+G))h =

Re (F + δ⊤G)h+ Re (Fε − F + δ⊤(Gε −G))h.

Using the properties of sup and inf we get that

inf
z∈T

Re (Fε + δ⊤Gε)h ≥ inf
z∈T

Re (F + δ⊤G)h− sup
z∈T

|Re (Fε − F + δ⊤(Gε −G))h| ≥

inf
z∈T

Re (F + δ⊤G)h− sup
z∈T

|Re (Fε − F )h| − sup
z∈T

|Re (δ⊤(Gε −G))h| ≥

inf
z∈T

Re (F + δ⊤G)h− ‖Fε − F‖∞‖h‖∞ − |δ|‖Gε −G‖∞‖h‖∞
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and

sup
h∈H∞

inf
δ∈∆ν

inf
z∈T

Re (Fε + δ⊤Gε)h ≥

sup
h∈H∞

( inf
δ∈∆ν

inf
z∈T

Re (F + δ⊤G)h− ‖Fε − F‖∞‖h‖∞ − sup
δ∈∆ν

|δ|‖Gε −G‖∞‖h‖∞).

Since F and G are continuous then ‖Fε − F‖∞ → 0 and ‖Gε −G‖∞ → 0 as
ε→ 0. Then supδ∈∆ν

|δ| is bounded. It means that

sup
h∈H∞

inf
δ∈∆ν

inf
z∈T

Re (Fε + δ⊤Gε)h ≥ sup
h∈H∞

inf
δ∈∆ν

inf
z∈T

Re (F + δ⊤G)h− ε1.

We take ν such that the first problem (3.7) has a solution. Then there exists
ε2 such that

sup
h∈H∞

inf
δ∈∆ν

inf
z∈T

Re (F + δ⊤G)h− ε2 > 0,

i.e. the second problem (3.8) has a solution too if ε is sufficiently close to 0.
It means that ∃ε such that νε > ν.

We take now ν close to νopt, i.e. ν = νopt − εν and repeat the above
argumentation. We get

∀εν > 0 ∃ε : νε > ν = νopt − εν .

We have shown that there exists ε such that νopt − εν < νε ≤ νopt. It means
that if εν → 0, then νε → νopt. It is clear that ε has to be sufficiently small.

Now we will show that hε stabilizes the system F + δ⊤G.
Recall the inequality (3.6),

sup
h∈H∞

inf
δ∈∆ν

inf
z∈T

Re (F + δ⊤G)h ≥ sup
h∈H∞

inf
δ∈∆ν

inf
z∈T

Re (Fε + δ⊤Gε)h.

It is clear that if h stabilizes the second system for a fix δ, then the same h
will stabilize the first system for the same δ. It means that if we have found
the optimal controller hopt,ε that stabilizes the second system for all δ such
that |δ| ≤ νε, then the same controller will stabilize the first system for the
same δ. We have

Re (Fε(w) + δ⊤Gε(w))hopt,ε(w) = Re (F (
w

1 − ε
) + δ⊤G(

w

1 − ε
))hopt,ε(w).

Now we change the variable back z = w
1−ε

and we get

Re (F (
w

1 − ε
) + δ⊤G(

w

1 − ε
))hopt,ε(w) = Re (F (z) + δ⊤G(z))hε(z),
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where hε = hopt,ε((1 − ε)z) is the suboptimal controller that stabilizes the
system F + δ⊤G with the stability margin νε > νopt − εν , i.e. arbitrary close
to the optimal one.

According to the method we have described above we can now propose an
algorithm to find the suboptimal controller. Usually the system we consider
is defined in the right half plane and we will begin with the conformal bilinear
transformation of the right half complex plane onto the unit disk.

1. Transform the right half plane onto unit disk by changing the variable
z = 1−s

1+s
.

2. Increase the stability area to Bε by changing the variable
w = (1 − ε)z.

3. Transform the stability area Bε onto the right half plane by changing
the variable snew = 1−w

1+w
.

4. Solve the primal/dual problem for Fε + δ⊤Gε and obtain the maximal
stability margin νε and the optimal controller h.

5. Change back to the original stability area by changing the variable
s = ((2−ε)snew+ε)

(2−ε+εsnew)
and obtain the suboptimal controller hε.

To illustrate how this algorithm works we will solve two examples: the
first one is the robust stabilizability of the plant Pδ = s−δ

(s−1)2
and the second

one is the gain margin optimization for the plant Pδ = δ s−1
(s+1)(s−2)

.

3.4 Design of suboptimal controller to Pδ =

s−δ
(s−1)2

.

The robust stabilizability of Pδ = s−δ
(s−1)2

on the uncertainty set |δ| ≤ ν

was solved in [2]. The stability margin νopt was calculated and the optimal
controller that achieves the optimal level of stability was designed. However
the controller was not proper. Now we will show how we can design a robustly
stabilizing low order suboptimal controller that provides the stability margin
as close to the optimal one as we wish. We will consider the case of complex
δ.
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According to the proposed algorithm we start with three changes of vari-
ables and obtain the following system:

Gδ,ε =

(2−ε)s−ε
2−ε−εs

− δ
4(s−1)2

(2−ε−εs)2

=
((2 − ε)s− ε)(2 − ε− εs) − δ(2 − ε− εs)2

4(s− 1)2
.

We will solve the problem to calculate the maximal stability margin νopt and
to design the optimal controller for Gδ,ε. We use the duality principle. Recall
that according to this principle the numerator and the denominator of the
plant with the worst uncertainty have more common unstable zeros than all
unstable poles.

The denominator of Gδ,ε has double zero at s = 1. It means that the
number of possible common unstable zeros cannot exceed two, and the nu-
merator and the denominator can have at most one unstable pole which must
be a pole of δ. Apart from this unstable pole, δ can have a double pole at
s = 2−ε

ε
. Summarizing the duality principle we get νopt = inf ‖δ‖∞ over all δ

that have three unstable poles (two of them are known) and we provide the
plant with two unstable cancelations.

We can choose

δ(s) =
γs3 + bs2 + cs+ d

(2 − ε− εs)2(s− a)
, a > 0. (3.9)

We have to choose δ proper, otherwise ‖δ‖∞ will be unbounded. By a we
denote the unstable pole that the plant Gε,δ can have. Recall that it has to
be the only one unstable pole. We put δ in the plants equation and we get
the numerator

s3(−ε(2 − ε) − γ) + s2(aε(2 − ε) + (2 − ε)2 + ε2 − b)

(2 − ε− εs)2(s− a)
+

s(−a(2 − ε)2 − aε2 − ε(2 − ε) − c) + (aε(2 − ε) − d)

(2 − ε− εs)2(s− a)
=

(s− 1)2(βs+ k)

(2 − ε− εs)2(s− a)
,

where the last equality comes from the necessity to have double zero at 1.
Then

Gδ,ε =
(βs+ k)

4(s− a)
.
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The suboptimal controller will have the order one.
In order to design the controller we have to find 8 variables. We have

4 equations due to the unstable cancelation condition (3.5). Another four
equations we get using the property of δ. We know (see [8]), that in the
complex case, δopt will be an all-pass function with |δ(jω)| = νopt. Now we
are able to find δopt.

Since calculations are quite ”heavy”, we will skip them here and we only
present the results for different ε.

For ε = 0.1 we get a = 2.606 and
νopt = 0.361. The suboptimal controller is

hε =
(s− 2.959)

0.005s+ 1.124
.

Now take ε = 0.01. For this ε we found a = 2.431 and νopt = 0.409. The
suboptimal controller is

hε =
(s− 2.728)

0.048s+ 5.033
.

The last value we will take is ε = 0.001. Then we get
a = 2.416 and νopt = 0.4137. The suboptimal controller will be

hε =
(s− 2.707)

0.023s+ 4.569
.

Note that all suboptimal controllers are robustly stabilizing and have the
order one.

In [2] it was calculated the maximal stability margin and found the opti-
mal controller that achieves this level of stability. The unstable pole in the
numerator is a = 1 +

√
2, the stability margin is νopt =

√
2 − 1 ≈ 0.414 and

the optimal controller is Kopt = s − a. If we compare our results with the
optimal one we see that in case ε = 0.1 the suboptimal controller provides
robust stability for |δ| ≤ 0.361 ≈ νopt−0.053, if ε = 0.01 then the suboptimal
controller achieves robust stability for
|δ| ≤ 0.409 ≈ νopt − 0.005 and, finally if
ε = 0.001 then the suboptimal controller provides robust stability for |δ| ≤
0.4137 ≈ νopt−0.0003. Thus we can find the first order suboptimal controller
that provides the stability margin arbitrary close to the optimal one.
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3.5 The gain margin optimization.

In this section we consider the gain margin problem for the plant

Gδ(s) = δG(s) = δ
s− 1

(s+ 1)(s− 2)
. (3.10)

In [2] it was calculated the best possible gain k (kopt = 4) such that the
uncertain plant (3.10) is robustly stabilizable on the uncertainty set
1 ≤ δ ≤ k and it was found the second order optimal controller that provides
the gain margin. It was also proposed the suboptimal controller which pro-
vides robust stability of all gains δ ∈ [1, 3.9]. Now we will show how we can
design the suboptimal controller for all suboptimal levels k ≤ ksubopt with
ksubopt arbitrary close to kopt.

As before we start with the three changes of variables and obtain the
following system:

Gδ,ε = δ
(s− 1)(2 − ε− εs)

(1 − ε)(s+ 1)((2 + ε)s− 4 + ε)
. (3.11)

The denominator of (3.11) has one unstable zero at s = 4−ε
2+ε

. It means that
the numerator can not have any unstable poles at all and δ(s−1)(2−ε−εs)
is be an analytical function with zero at s = 4−ε

2+ε
. It implies that function δ

must contain the unstable factors s − 1 and 2 − ε − εs in the denominator
and the factor (2 + ε)s− (4 − ε) in the numerator. Moreover δ must be real
on the imaginary axis and proper. We have only one possibility for δ :

δ(s) = γ
((2 + ε)2s2 − (4 − ε)2)(b2 − s2)

(s2 − 1)((2 − ε)2 − ε2s2)

for some constant γ. Then

Gδ,ε = δG = γ
((2 + ε)s+ (4 − ε))(b2 − s2)

(s+ 1)2(1 − ε)((2 − ε) + εs)
.

The suboptimal controller is of the third order.
On the imaginary axis the values of the function should lie in the interval

[1, k],

δ(jω) = γ
((2 + ε)2ω2 + (4 − ε)2)(b2 + ω2)

(ω2 + 1)((2 − ε)2 − ε2ω2)
∈ [1, k].
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We solve the problem for different small ε > 0.
We take first ε = 0.1. The optimal kε is 2.7375 (≈ kopt − 1.26) which

corresponds to γ = 0.00621. The suboptimal controller is

hε =
1.2685(0.105s+ 1)(s+ 1)2

(0.1496s+ 1)(s+ 1.74)(1 − 0.045s)
.

For ε = 0.01 we get that kε = 3.8272 (≈ kopt − 0.17) which corresponds
to γ = 0.000095. The suboptimal controller is

hε =
1.0297(0.01005s+ 1)(s+ 1)2

(0.015s+ 1)(s+ 1.970)(1 − 0.005s)
.

Finally for ε = 0.001 we will come very close to kopt which is 4. Now we
calculate kε = 3.9821
(≈ kopt − 0.018) which corresponds to γ = 0.99452 · 10−6. The suboptimal
controller is

hε =
1.003(0.0010s+ 1)(s+ 1)2

(0.0015s+ 1)(s+ 1.997)(1 − 0.0005s)
.

Note that we have designed the low-order suboptimal controller. We can
obtain kε very close to the optimal k and still have the controller of low order.

3.6 Conclusion

In this chapter we have proposed the algorithm to construct the suboptimal
controller that robustly stabilizes the system with rank one uncertainty. We
have shown that the suboptimal controller provides the stability margin ar-
bitrary close to the optimal one, whereas the low order of the controller is
preserved.
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Chapter 4

Robust Control via Linear
Programming
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4.1 Introduction

Large number of analysis and synthesis problems in robust control were
stated in terms of convex optimization. In particular, in [5] it was shown
that the robust stabilization problem under the parametric uncertainties has
convex formulation if the characteristic polynomial depends linearly on the
uncertainty parameters.

Consider the uncertainty as an artificial feedback loop

Gδ =







(

y
z

)

= G

(

w
u

)

w = νδ⊤z,
,

where G is the nominal plant, w is the scalar input and δ is the uncertain
vector. The objective is to robustly stabilize the plant for all δ satisfying the
norm bound |δ|pr ≤ 1, where | · |pr stands for a vector norm in Rm (pr for
primary ).

All closed-loop transfer functions from w to z are of the form
Tzw = T1 + T2Q, where Q is stable and T1, T2 are determined by G. The
condition for robust stability becomes

[1 + νδ⊤(T1 + T2Q)]−1 ∈ RH∞, ∀δ : |δ|pr ≤ 1.

A convex parametrization of all robustly stabilizing controllers was con-
structed in [5]. We slightly modify the result and state the theorem as follows.

Theorem 16. Suppose T1 ∈ RH∞
m×1, T2 ∈ RH∞

m×n. Then the following two
conditions on the rational matrix Q are equivalent:

1. Q ∈ RH∞
n×1 and for all δ ∈ Rm with |δ|pr ≤ 1

[1 + νδ⊤(T1 + T2Q)]−1 ∈ RH∞.

2. There exist α ∈ RH∞ and β ∈ RH∞ such that

Q = β/α and ∀ω ∈ R ∪ {∞}

|Re[T1α + T2β](jω)|du < ν−1Reα(jω).

Here the dual norm | · |du defined as |x|du = sup{δ⊤x : |δ|pr ≤ 1.} (du for
dual)
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In [3] it was shown that we can allow the large set H∞, i.e. α, β ∈ H∞.
Due to Theorem 16 and the result from [3] the problem of finding a controller
is equivalent to the following condition in terms of a function h ∈ H∞,

Re (F + νδ⊤G(z))h(z) > 0, ∀z ∈ T, ∀δ ∈ ∆. (4.1)

In [4] it has been developed the algorithm that solves the problem (4.1)
for the maximal possible ν. The algorithm is the combination of two finite-
dimensional approximations of the primal and dual infinite-dimensional prob-
lems. In this chapter we improve the algorithm. We propose how to choose
the next step in the optimization of the uncertainty bound. We discuss the
case when the uncertainty is real-valued and we obtain the finite dimensional
solution of the problem (4.1).

The chapter is organized as follows. The dual form of the problem is
presented in section 4.2. In section 4.3 we describe the primal convex pro-
gramming algorithm in case when the uncertainty norm bound ν is given.
In section 4.4 we discuss the special case, when the uncertainty vector is
real-valued. The numerical example is considered in section 4.5.

4.2 Preliminaries

The problem of finding h ∈ H∞ such that condition (4.1) holds is considered
as a primal problem. We would like to solve the problem for ν as large as
possible.

Denote

γopt(ν) = sup
h∈BH∞

ess inf
z∈T

inf
δ∈∆

Re (F (z) + νδ⊤G(z))h(z).

We choose the unit ball in H∞ as an optimization set since the function

Re (F (z) + νδ⊤G(z))h(z)

depends linearly on h and then any bounded set containing the origin as an
interior point can be chosen. However, the unit ball has an easier interpre-
tation from the classical results and is more appropriate for our task.

Note that

inf
δ∈∆

Re (F (z) + νδ⊤G(z))h(z) = ReF (z)h(z) − ν sup
δ∈−∆

Re δ⊤G(z)h(z).
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In [1] it was shown that for a convex compact ∆
supδ∈∆ Re δ⊤G(z)h(z) ≥ 0 for all z. It means that instead of the condition
|h| ≤ 1 we can demand that |Fh| ≤ 1.

As ReFh > 0, then F has a right inverse. The disk algebra A is the
Hermite ring [16]. It means that if F has a right inverse then F can be
complemented to a unimodular matrix U ∈ A containing F as a submatrix

U =

(

F
B

)

.

We denote
(

α
β

)

=

(

F
B

)

h.

Then h = U−1

(

α
β

)

and Gh = GU−1

(

α
β

)

. We partition the matrix

GU−1 =
(

G1 G2

)

. Then Gh =
(

G1 G2

)

(

α
β

)

= G1α +G2β and

γopt(ν) = sup
α∈BH∞,β∈H∞

ess inf
z∈T

inf
δ∈∆

Re (α(z) + νδ⊤(G1(z)α(z) +G2(z)β(z))).

Now we present the main result on duality.

Theorem 17. We have

γopt(ν) = inf
w ∈ SL1(R+)
δ ∈ L∞(∆)
δ⊤G2w ∈ H1

0

inf
p∈H1

0

‖(1 + νδ⊤G1)w − p‖1.

Proof. In [3] it was shown that

ess inf
z∈T

inf
δ∈∆

ϕδ(z) = inf
w∈SL1(R+)

inf
δ∈L∞(∆)

∫

T

ϕδ(z)wdm,

where ϕδ(z) = Re (α(z) + νδ⊤(G1(z)α(z) +G2(z)β(z))). Thus

sup
α∈BH∞,β∈H∞

ess inf
z∈T

inf
δ∈∆

Re (α(z) + νδ⊤(G1(z)α(z) +G2(z)β(z))) =

sup
α∈BH∞,β∈H∞

inf
w∈SL1(R+)

inf
δ∈∆

Re

∫

T

(α+ νδ⊤(G1α +G2β))wdm.
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As ∆ is compact, then infδ∈∆ is achieved on ∆ and we can assume that δ is
a bounded function, i.e. δ ∈ L∞(∆). Thus

inf
δ∈∆

∫

T

(α(z) + νδ⊤(G1(z)α(z) +G2(z)β(z)))w(z)dm =

inf
δ∈L∞(∆)

∫

T

(α(z) + νδ⊤(z)(G1(z)α(z) +G2(z)β(z)))w(z)dm.

Now we introduce two measures µ and ξ defined as follows:

µ(E) =

∫

E

wdm

ξ(E) = ∆µ(E) =

∫

E

δ⊤wdm =

∫

E

δ⊤dµ.

Then

sup
α∈BH∞,β∈H∞

inf
w∈SL1(R+)

inf
δ∈L∞(∆)

Re

∫

T

(α + νδ⊤(G1α +G2β))wdm =

sup
α∈BH∞,β∈H∞

inf




µ
ξ



∈M

Re

∫

T

(αdµ+ νdξ(G1α+G2β)),

where M is the space of measures.
The set (BH∞,H∞) is convex.

The set

(

µ
ξ

)

is convex and weakly compact since ∆ is a convex compact

set and the set

µ(A) =

∫

A

w(z)dm(z)

is weakly compact.

The function Re
∫

T
(αdµ + νdξ(G1α + G2β)) is concave on h =

(

α
β

)

,

convex and continuous on

(

µ
ξ

)

.

By the Ky Fan’s min-max theorem (see [9]), the order of sup and inf can
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be interchanged.

sup
α∈BH∞,β∈H∞

inf




µ
ξ



∈M

Re

∫

T

(αdµ+ νdξ(G1α +G2β)) =

inf




µ
ξ



∈M

sup
α∈BH∞,β∈H∞

Re

∫

T

(αdµ+ νdξ(G1α +G2β)).

We denote df1(µ, ξ, ν) = dµ+ νdξG1 = (1 + νδ⊤G1)wdm and
df2(ξ) = dξG2 = δ⊤G2wdm. Then

inf




µ
ξ



∈M

sup
α∈BH∞,β∈H∞

Re

∫

T

(αdµ+ νdξ(G1α+G2β)) =

inf




µ
ξ



∈M

( sup
α∈BH∞

Re

∫

T

df1(µ, ξ, ν)α+ ν sup
β∈H∞

Re

∫

T

df2(ξ)β).

Note that

sup
α∈BH∞

Re

∫

T

df1(µ, ξ, ν)α = |
∫

T

df1(µ, ξ, ν)α| and

sup
β∈H∞

Re

∫

T

df2(ξ)β = |
∫

T

df2(ξ)β|.

Indeed,

|
∫

T

fh dm| =

∫

T

fhu dm = Re

∫

T

fhu dm,

where u = exp(−i arg(
∫

T
fh dm)). If h ∈ H∞ then hu ∈ H∞ and we have

sup
h∈H∞

|
∫

T

fh dm| = sup
h∈H∞

Re

∫

T

fh dm.
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Thus

inf




µ
ξ



∈M

( sup
α∈BH∞

Re

∫

T

df1(µ, ξ, ν)α+ ν sup
β∈H∞

Re

∫

T

df2(ξ)β) =

inf




µ
ξ



∈M

( sup
α∈BH∞

|
∫

T

df1(µ, ξ, ν)α| + ν sup
β∈H∞

|
∫

T

df2(ξ)β|).

Recall that df2 = δ⊤G2wdm. Note that δ⊤G2w ∈ H1
0, as otherwise, by

choosing appropriate β we can get infinity in the second term. Therefore
|
∫

T
df2(ξ)β| = 0. We denote by M1 the space of measures defined as follows:

M1 =

{(

µ
ξ

)

:
µ(E) =

∫

E
wdm, w ∈ SL1(R+)

ξ(E) =
∫

E
δ⊤wdm, δ ∈ L∞(∆), δ⊤G2w ∈ H1

0

}

.

Then we get

inf




µ
ξ



∈M

( sup
α∈BH∞

|
∫

T

df1(µ, ξ, ν)α|+ ν sup
β∈H∞

|
∫

T

df2(ξ)β|) =

inf




µ
ξ



∈M1

sup
α∈BH∞

|
∫

T

df1(µ, ξ, ν)α| = inf




µ
ξ



∈M1

inf
p∈H1

0

‖f1 − p‖1 =

inf
w ∈ SL1(R+)
δ ∈ L∞(∆ν)
δ⊤G2w ∈ H1

0

inf
p∈H1

0

‖(1 + νδ⊤G1)w − p‖1 = γopt(ν).

Using Theorem 17 we state the dual problem as follows.
Dual problem. Given F = ( 1 0 ), G = ( G1 G2 ) and a convex com-

pact set ∆, find a sequence of functions {(wi, δi, pi)} such that wi ∈ SL1(R+),
δi ∈ L∞(∆), δ⊤i G2wi ∈ H1

0, pi ∈ H1
0, and

‖(1 + νδ⊤i G1)wi − pi‖ → 0, as i→ ∞.

In the same way as in [3] the dual problem can be split into two parts:
one regular and one singular.
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Theorem 18. Let F ∈ A1×n, G ∈ Am×n and denote Φδ = F + νδ⊤G. Then
the optimal value νopt takes the following form

νopt = min{νopt|c, νopt|s}

with the regular part

νopt|c = inf{ν|∃w ∈ SL1(R+)\0, δ ∈ L∞(∆): Φδw ∈ H1
0} (4.2)

and the singular part

νopt|s = inf{ν|∃z ∈ T, δ ∈ ∆ : Φδ(z) = 0}. (4.3)

4.3 Linear programming algorithm for a given

uncertainty bound

Note that the primal problem is infinite dimensional. In [4] it was proposed
a numerical method to solve the problem by successive finite-dimensional
approximation. In this session we will slightly modify this algorithm. We
show how we should choose the next step in optimization of the uncertainty
bound in order to guarantee the existence of solution.

Theorem 19. The function γopt(ν) satisfies the following inequality:

0 ≤ γopt(ν) ≤ 1 − ν

νopt
.

Proof. It is obvious that γ(ν) ≥ 0.
Now we show that γopt(ν) ≤ 1 − ν

νopt
.

From the proof of Theorem 17 we have that

γopt(ν) = inf
δ ∈ L∞(∆)
w ∈ SL1(R+)

sup
α∈BH∞

Re

∫

T

(w + νδ⊤wG1)αdm.

For particular wopt and (δ⊤w)opt we have

γopt(ν) ≤ sup
α∈BH∞

Re

∫

T

(wopt + ν(δ⊤w)optG1)αdm =

sup
α∈BH∞

Re (

∫

T

woptαdm+ ν

∫

T

(δ⊤w)optG1αdm.
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For the optimal stability margin νopt, the optimal w and δ⊤w we know that
wopt + νopt(δ

⊤w)optG1 ∈ H1
0. It means that there exists p ∈ H1 such that

wopt + νopt(δ
⊤w)optG1 = zp.

We multiply the equation by α and get

(wopt + νopt(δ
⊤w)optG1)α = zpα.

The function zpα is analytic. Then

∫

T

(wopt + νopt(δ
⊤w)optG1)α = 0,

∫

T

woptα+ νopt

∫

T

(δ⊤w)optG1α = 0,
∫

T

(δ⊤w)optG1α = − 1

νopt

∫

T

woptα,

and

γopt(ν) ≤ sup
α∈BH∞

Re (

∫

T

woptαdm− ν

νopt

∫

T

woptαdm)

=(1 − ν

νopt
) sup
α∈BH∞

Re

∫

T

woptαdm

=(1 − ν

νopt
) sup
α∈BH∞

|
∫

T

woptαdm|

≤(1 − ν

νopt
) sup
α∈BH∞

∫

T

wopt|α|dm

≤(1 − ν

νopt
)

∫

T

woptdm = 1 − ν

νopt
.

Let hopt be the optimal solution to the primal problem and recall that
Φδ(z) = F (z) + νδ⊤G(z).

Theorem 20. In the regular case the function infδ∈∆ ReΦδ(z)hopt(z) is
constant.
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Proof. Note first that the function infδ∈∆ Re Φδ(z)hopt(z) > 0. According to
the definition of the optimal γ we have

γopt = inf
z∈T

inf
δ∈∆

Re Φδ(z)hopt(z)

= inf
w∈SL1(R+)

∫

T

inf
δ∈∆

ReΦδ(z)hopt(z)w(z)dm

≤ inf
w∈SL1(R+)

inf
δ∈∆

Re

∫

T

Φδw(z)hopt(z)dm

= inf
w∈SL1(R+)

inf
δ∈∆

Re

∫

T

(Φδw(z) − popt(z))hopt(z)dm

≤ inf
δ∈∆

∫

T

|Φδwopt(z) − popt(z)|dm = γopt,

and all inequalities become equalities. Therefore
∫

T

inf
z∈T

inf
δ∈∆

ReΦδ(z)hopt(z)wopt(z)dm =

∫

T

inf
δ∈∆

Re Φδ(z)hopt(z)wopt(z)dm,
∫

T

( inf
δ∈∆

Re Φδ(z)hopt(z) − inf
z∈T

inf
δ∈∆

Re Φδ(z)hopt(z))wopt(z)dm = 0 ⇒

( inf
δ∈∆

ReΦδ(z)hopt(z) − inf
z∈T

inf
δ∈∆

ReΦδ(z)hopt(z))wopt(z) = 0.

As we consider the regular case and wopt 6= 0, then we have that

inf
δ∈∆

ReΦδ(z)hopt(z) − inf
z∈T

inf
δ∈∆

ReΦδ(z)hopt(z) = 0

and the function infδ∈∆ ReΦδ(z)hopt(z) is constant.

Now we are able to present the algorithm for searching the solution of the
primal problem. Recall that we have formulated the robust controller design
problem for a given uncertainty bound ν as follows.

Primal problem: Given ν > 0 find a function h ∈ BH∞ such that ∀z ∈ T

Re (Fh(z) + νδ(G(z)h(z))) > 0, (4.4)

where

F = ( 1 0 . . . 0 ) ∈ R
n+1

G = ( G1 G2 ) ∈ RH∞

h =

(

α
β

)

.
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We want to find the optimal uncertainty bound and the optimal regulator.
For this purpose we try to find the optimal h for every given uncertainty
bound ν, i.e. we are looking for a function h0 ∈ BH∞ such that the condition
(4.4) holds and

γν(z) = sup
h∈BH∞

Re (Fh(z) + νδ(G(z)h(z))) = Re (Fh0(z) + νδ(G(z)h0(z))).

(4.5)
According to Theorem 20, the function γν should be constant.

If we have the solution, then the bound ν is a lower bound for the optimal
ν.

As in [4] we construct a finite-dimensional approximation by solving the
problem on a finite-dimensional subspace of RH∞ and on finite grid of points
z ∈ T.

We consider a basis {ϕi}∞i=0, such that ϕi = zi. Then the span of functions,
{ϕi}N−1

i=0

HN = {h|h(z) =

N−1
∑

i=0

hiϕi(z), hi ∈ R
n+1},

forms an N(n+1)-th dimensional subspace of RH∞. The optimal bound for
this subspace is

νN = sup{ν|∃h ∈ HN : γν(z) > 0, ∀z ∈ T}.

We consider a finite grid of points ZK = {zk}Kk=1 of the upper half of the
unit circle. The condition (4.5) for a function h ∈ HN over the grid ZK takes
the form

γ({hi}N−1
i=0 , zk) > 0, ∀zk ∈ Zk. (4.6)

We propose the following algorithm:

1. Take N = 1, K ≥ 2 and {0, π} ⊂ Zk.

2. For given N,K, find a solution h to (4.6). If the problem is infeasible
increase N by 1 and repeat.

3. Check the condition (4.5) for all z in the upper half of T. If it does not
hold, increase K by adding some of ”bad” points to the set Zk and go
to Step 2.

4. Check that max γν − min γν ≤ tolerance. If it is not satisfied, increase
N by 1 and go to Step 2, otherwise STOP.
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In Step 3 we use the idea presented in [4]. We check that the function γν
does not vary very fast by looking at its derivative. Then as ”bad” points to
add to set Zk we choose the local negative minima of γν .

If the given ν is a lower bound for νopt then the algorithm finds a feasible
solution. Suppose that we have solved the problem for some given ν. We
choose next value of ν according to the result in Theorem 19. As

γν ≤ 1 − ν

νopt

hence we choose the next ν as follows:

νnew =
ν

1 − γν
, νnew ≤ νopt.

Therefore there is a feasible solution of the primal problem for νnew.

4.4 Optimization of the uncertainty bound

via dual problem for a real-valued uncer-

tainty.

As we have mentioned above, a feasible solution of the primal problem gives
a lower bound ν to the optimal value νopt. However, the algorithm is unable
to indicate if there is no solution for a given ν since at each step we solve a
finite-dimensional approximation. In order to obtain the upper bound to the
optimal value νopt we use the duality result. Recall that the duality result
stands as follows.

Theorem 21. Let F ∈ A1×n, G ∈ Am×n and denote Φδ = F + νδ⊤G. Then
the optimal value νopt takes the following form

νopt = min{νopt|c, νopt|s},

with the regular part

νopt|c = inf{ν|∃w ∈ SL1(R+)\0, δ ∈ L∞(∆): Φδw ∈ H1
0} (4.7)

and the singular part

νopt|s = inf{ν|∃z ∈ T, δ ∈ ∆ : Φδ(z) = 0}. (4.8)
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Calculation of an upper bound for νopt|s can be organized as a finite-
dimensional convex programming at each z. But for νopt|c it becomes infinite-
dimensional. In [4] it was proposed the dual algorithm to estimate νopt|c. In
this section we discuss the solution of the dual problem for the real-valued
uncertainty. It turns out that in this case the dual problem becomes a finite-
dimensional in the space of variables (semi-infinite convex programming).

Let us start with a slight modification of the considered optimization set.
Recall that

γopt(ν) = sup
α∈BH∞,β∈H∞

ess inf
z∈T

inf
δ∈∆

Re (α(z) + νδ⊤(G1(z)α(z) +G2(z)β(z))).

We optimize over the unit ball in H∞. Now we will consider a set which is
more appropriate for our task. We denote by H∞

1 the subclass of H∞ which
contains the analytical functions h such that h(0) = 1, i.e.

H∞
1 = {h : h ∈ H∞, h(0) = 1}.

Now we use the class H∞
1 as an optimization set. It is clear that the optimal

value νopt is the same if we optimize either over BH∞ or over H∞
1 .

Denote by

γ1
opt(ν) := inf

w ∈ L1(R+)
δ ∈ SL∞(∆ν)
δ⊤G2w ∈ H1

0

sup
α∈H∞

1

Re

∫

T

(1 + νδ⊤G1)αwdm.

Note that γ1
opt(νopt) = γopt(νopt). Recall that γopt(ν) ≥ 0 for all ν. However

γ1
opt(ν) can assume positive values as well as negative. This property of γ1

opt(ν)
is more convenient for our purpose to find the optimal value νopt.

As α ∈ H∞
1 , we can decompose α in the power series, i.e.

α = 1 +

∞
∑

k=1

αkz
k
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and we get

γ1
opt(ν) = inf

w ∈ SL1(R+)
δ ∈ L∞(∆ν)
δ⊤G2w ∈ H1

0

sup
α∈H∞

1

Re (

∫

T

(1 + νδ⊤G1)wdm+

∞
∑

k=1

∫

T

(1 + νδ⊤G1)wαkz
kdm)

It is clear that (1+νδ⊤G1)w ∈ H1, as otherwise, by choosing an appropriate
α, we can get infinity. Therefore, we find p(z) ∈ H1 such that
(1 + νδ⊤G1)w = p and we get

γ1
opt(ν) = inf

p∈H1
Re p(0).

According to the discussion above we have the following conditions on
the functions δ and w

(1 + νδ⊤G1)w = p1

δ⊤G2w = zp2,
(4.9)

where p1, p2 ∈ H1.
Now we consider the case when δ is a real-valued vector. We show that in

this case the dual problem becomes finite dimensional in space of variables
(semi-definite convex programming).

As G2 ∈ A, hence we can factorize G2 as G2 = G2i
G2o

, where G2i
is an

inner factor and G2o
is an outer factor. Then

δ⊤wG2i
G2o

= zp2.

As G2o
is right-invertible in H∞, then we get

δ⊤wG2i
= zp2G

−1
2o
,

δ⊤wG2i
= zp′2 := zp2,

δ⊤wG2i
G∗

2i
= zp2G

∗
2i
.

As function G2 is from the disk algebra A, then the inner function G2i
is a

Blashke-Potapov product. It means that G2i
can be written in the following

way
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G2i
= U

k
∏

j=1







Irj O O

O
λj−z

1−λjz
Iqj O

O O Isj
,






,

where rj + qj + sj = n and U is an unitary function. Then

zp2G
∗
2i

= zp2

k
∏

j=1







Irj O O

O − λj−z

1−λjz
Iqj O

O O Isj
,






U∗

= zp2

k
∏

j=1







Irj O O

O −z−1(1−λjz)
2

|z−λj|2
Iqj O

O O Isj
,






U∗.

Let pj2 =
p̂j
2

(1−λjz)2
, where p̂j2 is a polynomial. Then we have

δ⊤wG2i
G∗

2i
=zp2

k
∏

j=1







Irj O O

O −z−1(1−λjz)
2

|z−λj |2
Iqj O

O O Isj
,






U∗

=
zz−k

∏k
j=1 |z − λj|2

( q1 . . . qn )U∗,

where

qi = zki

k
∏

j=1

(|z − λj|2)si p̂i2.

As δ and w are real-valued, then every p̂j2 has to be such that the following
equality is satisfied

z1−k

∏k
j=1 |z − λj|2

(zk1
k
∏

j=1

(|z − λj|2)s1 p̂1
2 . . . z

kn

k
∏

j=1

(|z − λj|2)sn p̂n2 )U∗ =

zk−1

∏k
j=1 |z − λj|2

(z−k1
k
∏

j=1

(|z − λj|2)s1 p̂1
2 . . . z

−kn

k
∏

j=1

(|z − λj|2)sn p̂2
n
)U⊤.

(4.10)
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It means that every p̂j2 is a polynomial of degree ≤ 2(k − 1). Now put the
expression of the δ⊤w into the first equation in (4.9).

w = p1 − νδ⊤wG1

= p1 − ν
z1−k

∏k
j=1 |z − λj|2

( q1 . . . qn )U∗(G2i
G∗

2i
)−1G1

=
z−kp̂1

∏

(z − λj) − νz1−k( q1 . . . qn )U∗(G2i
G∗

2i
)−1G1

∏k
j=1 |z − λj|2

,

where p1 = p̂1
∏k

j=1(1−λjz)
and p̂1 is a polynomial. As w is real-valued, then p̂1

has to be such that the following equality is satisfied

z−kp̂1

∏

(z − λj) − νz1−k( q1 . . . qn )U∗G1 =

zmp̂1

∏

(z − λj) − νz1−k( q1 . . . qn )U⊤G1.
(4.11)

Therefore p̂1 is a polynomial of degree ≤ max(k,max(degG1j
) + k − 1).

As
∫

T
wdm = 1, then we have one more condition on p1 and p2:

∫

T

p1 − νδwG1dm =

∫

T

p1 − νzp2U
−1(G2i

G∗
2i

)−1T1dm = 1 (4.12)

According to the discussion above we formulate the main result as follows.
Main result: Let the uncertainties vector δ be real-valued. Given the

uncertainty bound ν, solve the following problem

min Re p1(0).

Here p1 = p̂1
∏k

j=1
(1−λjz)

is such that p̂1 is a polynomial,

deg p̂1 ≤ max(k,max(degG1j
) + k − 1), and satisfies equation (4.11),

k is a number of zeros λj of function detB2, where B2 is such that G2i
= UB2

p̂2 is a polynomial, deg p̂2 ≤ 2(k − 1), satisfying the equation (4.10),
the functions p1 = p̂1

∏k
j=1

(1−λjz)
and

p2 = z−k

∏k
j=1

|z−λj |2
(zk1

∏k
j=1(|z−λj |2)s1 p̂1

2 . . . z
kn
∏k

j=1(|z−λj |2)sn p̂n2 ) satisfy the

equation (4.12).
We will show how we solve that problem using a numerical example.
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4.5 Numerical example: Robust stabilization,

real-valued uncertainty.

In this section we solve the robust stabilization problem for the system with
real-valued uncertainty by the primal-dual method. The problem is formu-
lated as follows.

Given uncertain plant P
(

y
z

)

= P

(

w
u

)

,

w = νδ⊤z,

where δ ∈ ∆ for some convex compact ∆ ∋ 0, the problem is to find a
controller u = Ky that robustly stabilizes the plant for ν as a large as
possible. In case when w is a scalar input, the Youla parametrization leads to
the following equivalent problem: find a function Q ∈ RH∞ that maximizes
ν such that

1 + νδ⊤(T1(z) + T2(z)Q(z)) 6= 0 ∀z ∈ T, ∀δ ∈ ∆.

By Theorem 16 the problem can be reduced to the form (4.1). In our case
we take ∆ = [−1, 1], i.e. the uncertainty vector δ is real-valued.

Let T1 = z2 + 1.5z + 0.7 and T2 = z2 + 1
2
. As T1/T2 is not in H∞, then

the solution to the optimization problem is not trivial.
First we will solve the primal problem. We are searching for a function h
such that

γν(z) = Re (Fh(z) + νδ(G(z)h(z))) > 0,

where F =
(

1 0
)

and G =
(

T1 T2

)

.
We demand that function γν is almost constant. We start at ν = 0.3,

find the solution, and increase the value of ν by Theorem 19. In Figure (4.1)
we plot the function γ for different values of ν . We stop at ν = 2.55. We
could continue to approximate νopt but the degree of the function h would
increase and it would be hard for the linear solver to find an approximation.
We have γ = 2.093e− 005 and the optimal controller

Qopt =
βopt
αopt

=
k(z2 + 1.566z + 1.322)(z2 − 1.195z + 2.648)(z2 + 1.125z + 2.644)

(z2 + 0.1202z + 1.026)(z2 + 1.183z + 2.595)(z2 − 1.183z + 2.6)
,

where k = −1.0052.
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Figure 4.1: The function γ for different ν

Denote R =
∏m

j=1(z − λj), where {λj} is the set of all zeros of T2. In our

case R = z2 + 1
2
. Using the main result (see section 4.4) we have

δwR = zp2,

δwRR∗ = zp2R
∗,

ϕ(z) := δw|R|2 = zp2R
∗ = zp2z

−2(1 +
1

2
z2) = z−1p̂2,

where p2 = p̂2
1+ 1

2
z2
.

The function ϕ(z) = z−1p̂2 has to be real, i.e. z−1p̂2 = zp̂2. It means that
ϕ(z) is a quasi-polynomial of degree 1 with symmetrical coefficients, i.e.

ϕ(z) = c0z
−1 + c1 + c0z

and

δw =
c0z

−1 + c1 + c0z

|R|2 .

Now

w = p1 − νδwT1 =
p1|R|2 − νϕT1

|R|2 =
p̂1z

−2R− νϕT1

|R|2 =
ψ

|R|2 ,

where p1 = p̂1
1+ 1

2
z2
. The function ψ = p̂1z

−2R − νϕT1 is real. Therefore ψ(z)

is a quasi-polynomial of degree 2 with symmetrical coefficients, i.e.

ψ(z) = d0z
−2 + d1z

−1 + d2 + d1z + d0z
2.

83



Now our task is to minimize Re p1(0). Using the calculations above we
obtain that

p1(z) =
p̂1(z)

1 + 1
2
z2

=
(ψ + νϕT1)z

2

R(1 + 1
2
z2)

and
p1(0) = 2d0.

The functions ϕ and ψ have to satisfy the following conditions

1) |ϕ| ≤ ψ

2)

∫

T

ψ

|R|2dm = 1

3) ψ(
−i√

2
) + νϕT1((

−i√
2
)) = 0

4) ψ(
i√
2
) + νϕT1((

i√
2
)) = 0 (4.13)

The first two conditions in (4.13) are due to the conditions on δ and w,
i.e. |δw| ≤ w and

∫

T
wdm = 1. The last two conditions came from the fact

that p1 has to be an analytic function, i.e. all unstable poles need to be
canceled.

As the problem is still infinite-dimensional on z, then we must consider
a finite grid of points on T. We get the finite-dimensional linear program

min
X

fX subject to

A12X ≤ 0

A22X = 1

A32X = 0,

where vector X = ( c0 c1 d0 d1 d2 ) absorbs the coefficients of the func-
tions ϕ and ψ and f = ( 0 0 1 0 0 ).

We run the algorithm in the linear programming form for different values
of ν. We stop the optimization at ν = 2.5812 when γ1(ν) = 6.907e−006. We
calculate the optimal uncertainty

δopt =
46341.8z(z2 + 0.1181z + 1)

(z + 2702)(z + 34.27)(z + 0.02918)(z + 0.0003701)
.
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Using the principle formulated in [2]: the optimal controller is equal to the
inverted plant with the optimal uncertainty strategy, we get the following
optimal controller

Qopt =
z2 + 1.618z + 1.354

z2 + 0.1181z + 1
.

Note that the controller is of lower order.
The plot of the closed-loop pole trajectories is shown in Figure (4.2).
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Figure 4.2: The closed-loop pole trajectories

Now we will consider a more complicated T1, i.e. T1 = z5+3∗z4+2∗z3+4∗z2+5∗z+3
z3−z2−4∗z+12

and solve the same robust stabilization problem. Here we stop the primal al-
gorithm at ν = 10 when γ = 4.0828e−005. The order of optimization reached
is 19 × 88 and the optimal controller is of order 19. However, the dual algo-
rithm gives us the optimal bound ν = 10.1784 when γ1 = 1.7776e− 006 and
the optimal controller has a lower order

Qopt =
−(z + 2.601)(z2 + 1.553z + 1.229)(z2 − 0.976z + 1.811)

(z + 2.506)(z2 + 0.178z + 1)(z2 − 3.506z + 4.788)
.

The plot of the closed-loop pole trajectories is shown in Figure (4.3).

4.6 Conclusions and future works.

In this chapter we presented the Linear Programming algorithm which solves
the problem of robustly stabilizing controller design when the uncertainty pa-
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Figure 4.3: The closed-loop pole trajectories

rameter appears linearly in the closed-loop characteristic polynomial (rank-
one problem). The initial problem is infinite-dimensional. The algorithm
was derived as finite-dimensional approximation of the initial problem. We
discussed the special case when an uncertainty vector is real-valued. In this
case we showed that estimating of the uncertainty bound ν became the opti-
mization problem on a finite-dimensional parameter. It should be interesting
to develop the algorithm for a matrix uncertainty.
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Part II

Convex Duality: Matrix Case
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Chapter 5

Canonical Parametrization of
the Dual Problem in Robust
Optimization: Matrix Case
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5.1 Introduction

Large research efforts have been devoted to robustness questions for lin-
ear control systems with parametric uncertainty. It was proposed different
methods for design of controllers that are robust with respect to parametric
uncertainty (for example ”D-K iteration”). H∞ optimization gives a very ef-
ficient tool for synthesis of robust controller, but became complicated in the
case of nonrational plants. The problem to find a controller that provides the
maximal stability margin to a rational system under rank-one uncertainties
was studied in [1]. The name “rank one” problem comes from the fact that
δ, an uncertain parameter, is a vector. The uncertainty set is an arbitrary
convex compact set in the finite-dimensional vector space. It was formulated
the primal/dual problem and shown that the dual problem can be stated as
minimization of the ”length” of uncertainties that destabilize the plant. The
result was stated in terms of unstable zero-pole cancelation: the numerator
and denominator of the plant with the worst uncertainty have more common
unstable zeros than all unstable poles. In Chapter 2 the result was extended
to the class of non-rational systems with continuous nominal factors. It
was obtained the canonical parametrization of all destabilizing unstructured
uncertainties in the dual problem. The duality principle provides an easy
method to calculate the optimal stability margin and to design the optimal
controllers. However the result was limited to the rank-one systems. In this
chapter we will extend the result to the matrix case.

This chapter is organized as follows. In section 5.3 the dual/primal prob-
lems for the matrix case are described. Section 5.4 compares the primal
problem with H∞ optimization. Here we also present the important result
that there is no duality gap between the primal and the dual problems in
case of unstructured uncertainties. The main result, which is the canonical
parametrization of the dual problem, is presented in section 5.5. Finally, in
section 5.6, we introduce the δ−metric and show that the δ−metric has close
connection to the ν−gap metric.

We begin by introducing the basic definitions needed in this chapter sim-
ilar to the definitions given in Part I.
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5.2 Basic Definitions

By R (or C) we denote the field of real (or complex) numbers. The unit circle
and the open unit disc in C are denoted by T respectively D :

T = {z ∈ C | |z| = 1}, D = {z ∈ C | |z| < 1}.

For any measurable Y ⊂ Cm×n, the notation Lp(Y ) stands for the standard
Lebesgue space of matrix-valued functions F : T → Y equipped with the
norm

‖F‖p =

{

(
∫

T

∑n
i=1 σ

p
i (F )dm)1/p, 1 ≤ p < +∞,

ess supz∈T
σ(F (z)), p = +∞,

where by σi we denote the singular values and σ stands for the maximum
singular value.

Hp(Y ), 1 ≤ p < +∞ denotes Hardy space of matrix-valued functions
F (z) analytic in D and such that

‖F‖p = sup
0<r<1

(

∫

T

n
∑

i=1

σpi (F (rz))dm)1/p <∞.

The Hardy class H∞ is the space of bounded matrix-valued functions
F (z) which are analytic in D with norm

‖F‖∞ = sup
z∈D

σ(F (z)).

A matrix-valued function is analytic in D if every element of the matrix is
analytic in D.

Hp
0(Y ) denote

Hp
0(Y ) = zHp(Y ) = {F ∈ Hp(Y )|F (0) = 0}.

The space C is the space of continuous functions on T.
The space H∞ + C is the set of functions Φ ∈ L∞ such that Φ admits a
representation Φ = F +G, where F ∈ H∞ and G ∈ C.
The class of quasicontinuous functions is defined by

QC = (H∞ + C) ∩ (H∞ + C).

Let f be a function in L1 on the unit circle and let I be a subarc of T.
Put

fI =
1

m(I)

∫

I

f dm,
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the mean value of f over I. The space BMO of functions of bounded mean
oscillation consists of functions f ∈ L1 such that

sup
I

1

m(I)

∫

I

|f − fI | dm <∞.

The space VMO of functions of vanishing mean oscillation consists of
functions f ∈ BMO for which

lim
m(I)→0

1

m(I)

∫

I

|f − fI | dm = 0.

The disk algebra A(Y ) is the subspace of H∞ that consists of analytic
functions in D ⊂ Y that can be extended continuously to the closed unit
disk.

The set RH∞ is the set of all functions from H∞ that are rational with
reals coefficient.

The brief notations A, H∞ etc. will be used if Y = Cm×n and the
dimension of the space is clear from the context.

The Toeplitz operator TΦ and the Hankel operator HΦ with the symbol
Φ ∈ L∞ are defined by

TΦf = P+Φf, HΦf = P−Φf, f ∈ H2,

where P+ is the ortogonal projection from L2(Y ) onto H2(Y ) and
P− = I − P+.

We denote ‖HΦ‖e = dist (Φ,H∞ + C) the essential norm of Hankel oper-
ator.

An operator V from a Hilbert space H to a Hilbert space K is called
a partial isometry if the restriction of V to (KerV )⊥ maps isometrically
(KerV )⊥ onto Range V.

A function Θ is called inner if Θ∗(ζ)Θ(ζ) = I for almost all ζ ∈ T.
A function Φ ∈ H2 is called outer if the functions of the form Φq, where

q ranges over the analytic polynomial, are dense in H2.
Two matrices F,G ∈ A are left-coprime if they have equal number of

rows and there exist X, Y ∈ A such that

( F G )

(

X
Y

)

= FX +GY = I,

i.e. the matrix function ( F G ) is right invertible in A.
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Let G be a matrix function. We say that the factorization G = M−1N is
a left coprime factorization if N and M are left-coprime matrices.

The factorization G = M−1N is called a normalized left coprime factor-
ization if NN∗ +MM∗ = I.

The matrix function V is called co-outer if V ⊤ is outer.
The superscript ⊤ stands for transposition and † for pseudoinverse. A

bar denotes the complex conjugate and ∗ denotes conjugate transpose. The
prefix B denotes the unit ball in the corresponding space, and S is the unit
sphere.

5.3 Primal/dual problem

Given a nominal plant P and an uncertainty set ∆ ∋ 0, the general robust
controller design problem is to find a controller K that robustly stabilizes the
whole family of perturbed plants

Pδ = (M + δ⊤G2)
−1(N + δ⊤G1), δ ∈ ν∆ (5.1)

for ν as large as possible. Here F = ( N M ) ∈ Am×n is the left coprime
factorization of the plant P , the weight matrix G = ( G1 G2 ) ∈ Am×n and
the set ∆ is a convex compact set in C

m×m.

In the Rank-one model the problem of finding a controller is equivalent
to the condition in terms of a function h ∈ H∞ (see [5], [3]):
Let F ∈ A1×n, G ∈ Am×n, and let ∆ν ⊂ Cm be a convex compact set. Denote
Φδ = F + δ⊤G. Find a function h ∈ H∞(Cn×1) such that

Re Φδ(z)h(z) > 0 ∀z ∈ T, ∀δ ∈ ∆ν . (5.2)

The problem of finding h ∈ H∞ such that the condition (5.2) holds is
considered as a primal problem. We would like to solve it for ν as large as
possible, that is, for

νopt|p = sup{ν|∃h ∈ H∞ : Re(F + δ⊤G)h > 0 ∀δ ∈ ν∆}. (5.3)

In the matrix case we can formulate the primal problem in the similar
way but since F, G and h are matrix-valued and ∆ν ⊂ Cm×m, the positivity
of Re Φδh ∈ Cm×m means that x∗ReΦδhx > 0 for all nonzero vectors x ∈ Cm.
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A solution to the primal problem gives the lower bound νopt|p to the optimal
value νopt in the problem of robust stabilization (5.1). Note that νopt|p will
be the upper bound to the structured singular value µ.

As in the scalar case we introduce the dual problem.

Theorem 22. The following duality inequality is valid:
sup

h∈BH∞

inf
δ∈∆ν

ess inf
z∈T

min
x∈Cm

x∗Re Φδ(z)h(z)x ≤ inf
δ∈L∞(∆ν)

inf
W∈SL1(R+)

inf
P∈H1

0

‖WΦδ − P‖1.

Proof. According to the trace properties

x∗ReΦδ(z)h(z)x = TrReΦδ(z)h(z)xx
∗.

As in the scalar case we have

ess inf
z∈T

min
x∈Cm

Tr ReΦδ(z)h(z)xx
∗ = min

x∈Cm
inf

w∈SL1(R+)

∫

T

Tr ReΦδ(z)h(z)xx
∗wdm =

inf
W∈SL1(R+)

∫

T

TrRe Φδ(z)h(z)Wdm,

where W = xx∗w.
We get

sup
h∈BH∞

inf
δ∈∆ν

ess inf
z∈T

min
x∈Cm

x∗Re Φδ(z)h(z)x =

sup
h∈BH∞

inf
W∈SL1(R+)

inf
δ∈∆ν

∫

T

Tr ReΦδhWdm.

Since ∆ν is a compact set, inf is attained on ∆ν . Then we can take infimum
over all bounded functions from L∞ with valuers in ∆ν and

inf
δ∈∆ν

∫

T

Tr ReΦδhWdm = inf
δ∈L∞(∆ν)

∫

T

Tr ReΦδhWdm.

According to the property of the trace we have Tr ReΦδhW = ReTr ΦδhW
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and then

sup
h∈BH∞

inf
δ ∈ L∞(∆ν),
W ∈ SL1(R+)

∫

T

TrReΦδhWdm =

sup
h∈BH∞

inf
δ ∈ L∞(∆ν),
W ∈ SL1(R+)

Re

∫

T

TrWΦδhdm ≤

inf
δ ∈ L∞(∆ν),
W ∈ SL1(R+)

sup
h∈BH∞

Re

∫

T

TrWΦδhdm =

inf
δ ∈ L∞(∆ν),
W ∈ SL1(R+)

sup
h∈BH∞

|
∫

T

TrWΦδhdm| = inf
δ ∈ L∞(∆ν),
W ∈ SL1(R+)

inf
P∈H1

0

‖Φ⊤
δ W − P‖1.

The last equality follows from the Banach duality relation [7].

Using Theorem 22 we formulate the dual problem as follows.
Given F, G ∈ A and a convex compact set ∆ν , find a sequence of functions

{(Wi, δi, Pi)}+∞
i=0 such that Wi ∈ SL1(R+), δi ∈ L∞(∆ν), Pi ∈ H1

0, and

‖(F + δ⊤i G)⊤Wi − Pi‖1 → 0, as i→ +∞.

The dual problem can be naturally decomposed into two parts: one reg-
ular and one singular.

Theorem 23. The optimal dual value νopt has the representation

νopt = min{νopt|s, νopt|c},
where

νopt|s = inf{ν| ∃z ∈ T, ∃δ ∈ ∆ν : Φδ(z) loses the column rank},
νopt|c = inf{ν| ∃W ∈ SL1(R+), ∃δ ∈ L∞(∆ν) : Φ⊤

δ W ∈ H1
0}.

Proof. The proof of the theorem is a slight modification of the proof for the
scalar case [3]. Indeed, we can decompose W on a regular and singular part
such that

‖Φ⊤
δ W − P‖1 = ‖Φ⊤

δ Wc − P‖1 +

∫

E

Tr |Φ⊤
δ Ws|dm,
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where Wc is a regular function in L1(R+) and Ws is a generalized function
which is equal to zero on T\E and m(E) = 0. By | · | we denote |F | =

√
F ∗F

for matrix-valued function F. Wopt can be chosen in such way that either the
regular part Wc or the singular part Ws is zero. Then

inf
P∈H1

0

inf
W

‖Φ⊤
δ W − P‖1 = min

{

inf
P∈H1

0

‖Φ⊤
δ Wc − P‖1,

∫

E

Tr |Φ⊤
δ |dµs

}

.

For the optimal δ we have either infP∈H1
0
‖Φ⊤

δopt
Wc−P‖1 = 0 or

∫

E
|Φ⊤

δopt
|dµs =

0. According to the Banach duality relation [7] there exists the optimal func-
tion Popt such that

inf
P∈H1

0

‖Φ⊤
δopt

Wc − P‖1 = ‖Φ⊤
δopt
Wc − Popt‖1.

Then if infP∈H1
0
‖Φ⊤

δopt
Wc − P‖1 = 0 we have

νopt|c = inf{ν| ∃W ∈ L1(R+), ∃δ ∈ L∞(∆ν) : Φ⊤
δ W ∈ H1

0}.

Consider the case
∫

E
Tr |Φ⊤

δopt
|dµs = 0. If Φδopt

does not lose the rank then

Tr |Φ⊤
δopt
Ws| > ǫ and

∫

E
Tr |Φ⊤

δopt
|dµs 6= 0. In order to fulfill the condition,

Φδopt
has to lose the column rank and we can choose dµs as dµs = xx∗δz0dm,

where δz0 is the Dirac’s function and the vector x is such that Φ⊤
δopt

(z0)x = O.
In this case we get

νopt|s = inf{ν| ∃z ∈ T, ∃δ ∈ ∆ν : Φδ(z) loses the column rank}

and

νopt = min{νopt|s, νopt|c}.

5.4 Primal problem versus H∞ optimization

In this section we consider the case of unstructured uncertainty when the set
of uncertainties is the ball, ∆ = BC

m×m. Under this construction our primal
problem is equivalent to the H∞ optimization problem. Furthermore we
prove that there is no duality gap between the primal and the dual problems.
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Theorem 24. Let F ∈ Am×n, G ∈ Am×n and ∆ = BCm×m. Then the
following statements are equivalent:
1) ∃h ∈ H∞(Cn×m) such that for ∀z ∈ T and for ∀δ ∈ ∆ν ,

Re(F (z) + δ⊤G(z))h(z) > 0.

2) ∃g ∈ H∞(Cn×m) such that Fg = I and ‖Gg‖∞ < ν−1.

Proof. We start by showing that 1) ⇒ 2).
Let h be a solution of the first problem. Then Re(F (z)+δ⊤G(z))h(z) > 0.

We will show that ((F + δ⊤G)h)−1 ∈ H∞. It’s enough to show that

det(F (s) + δ⊤G(s))h(s) 6= 0 for ∀s ∈ D.

As (F (s)+ δ⊤G(s))h(s) is an analytic function, then Re(F (s)+ δ⊤G(s))h(s)
is a harmonic function and by the mean value theorem [20]
Re(F (s) + δ⊤G(s))h(s) > 0.
By the Ostrowski-Taussky inequality [6] for the matrices with positive defi-
nite real parts, detRe(F + δ⊤G)h ≤ | det(F + δ⊤G)h|. Then
| det(F + δ⊤G)h| > 0 and ((F + δ⊤G)h)−1 ∈ H∞.
Taking δ as zero matrix we get that (Fh)−1 ∈ H∞. We will show that
g = h(Fh)−1 ∈ H∞ is solution of the second problem.

Indeed, Fg = Fh(Fh)−1 = I. Then

(I + δ⊤Gg)−1 = (Fh)(Fh+ δ⊤Gh)−1 ∈ H∞, ∀δ ∈ ∆ν .

For each z we can take

δ⊤ = −α (G(z)g(z))∗

‖G(z)g(z)‖2

.

Here ‖ · ‖2 is the norm that is defined for a constant matrix A as follows:
‖A‖2 =

√

λmax(A∗A), where λmax is the maximal eigenvalue of matrix A∗A.
As δ ∈ ∆ν , then we have ‖δ‖2 ≤ ν and α ∈ [0, ν]. As I + δ⊤Gg does not
lose the rang, then 1 − α‖G(z)g(z)‖2 > 0, ‖G(z)g(z)‖2 <

1
α

for all z and
‖Gg‖∞ < ν−1.

Now we show the implication 2) ⇒ 1).
Let g be a solution of the second problem. We will show that h = g is a
solution of the first problem. We have

Re(Fh+ δ⊤Gh) = Re(I + δ⊤Gh) = I + Re(δ⊤Gh).
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We will show that I +Re(δ⊤Gh) > 0. It is enough to show that
λ(I + Re(δ⊤Gh)) > 0, where λ(I + Re(δ⊤Gh)) is the minimal eigenvalue of
matrix I +Re(δ⊤Gh). We have

λ(I +Re(δ⊤Gh)) = 1 − λ(Re(δ⊤Gh)) = 1 − σ(Re(δ⊤Gh)) ≥

1 − σ
(δ⊤Gh)

2
− σ

(Gh)∗(δ⊤)∗

2
≥ 1 − σ(δ⊤)σ(Gh)

2
− σ((Gh)∗)σ((δ⊤)∗)

2
>

1 − νν−1

2
− ν−1ν

2
= 0,

since ‖δ‖2 ≤ ν, ‖Gg‖∞ < ν−1.

Now the problem of finding the optimal primal ν is reduced to the fol-
lowing problem

ν−1
opt = inf

g∈H∞
{‖Gg‖∞|Fg = I}.

All the solutions of the equation Fg = I, F ∈ A, can be parameterized as
g = gpart +MQ, where gpart is a particular solution of the equation, M is a
basis of the null-space for F and Q ∈ H∞.

Then

‖Gg‖∞ = ‖Ggpart +GMQ‖∞ = ‖T1 − T2Q‖∞,
ν−1
opt = inf

Q∈H∞
‖T1 − T2Q‖∞,

where T1 = Ggpart and T2 = −GM. This problem is the well-known H∞ op-
timization problem. It means that in the particular case when ∆ = BCm×m

our primal problem is equivalent to the H∞ optimization problem. In Chap-
ter 2 was shown that, if F ∈ A and G ∈ A, then we can find a solution g to
Fg = I, such that T1 and T2 in the H∞ optimization problem are from A as
well.

Using the result from [7] we get that

dist (T1, T2H
∞) = sup{|〈T1, k〉| : k ∈ (T2H

∞)⊥, ‖k‖ ≤ 1},

where 〈T1, k〉 =
∫

TrT⊤
1 dk. Recall that k ∈ (T2H

∞)⊥ means that
〈T2f, k〉 = 0 for all f ∈ H∞.

In the same way as in the scalar case it can be shown that dist (T1, T2H
∞) =

dist (T1, T2A), i.e.

inf
h∈H∞

‖T1 − T2h‖∞ = inf
h∈A

‖T1 − T2h‖∞.
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Hence dist (T1, T2H
∞) = sup

∫

T
TrT⊤

1 dϕ, where ‖dϕ‖ ≤ 1 and
dϕ ∈ (T2A)⊥.

Here the norm is the induced norm described as follows.

‖dϕ‖ = sup
F∈C,‖F‖∞≤1

∣

∣

∣

∣

∫

TrF⊤dϕ

∣

∣

∣

∣

.

Now we are able to show that there is no duality gap between the primal
and the dual problems in case of unstructured uncertainties.

Theorem 25. Let F ∈ Am×n, G ∈ Am×n and ∆ = BCm. Then there is no
duality gap between the primal and the dual problem.

Proof. Recall that the optimal dual ν can be calculated as

νopt|d = inf{‖δ‖∞ : Φ⊤
δ dµ = P1dm, P1 ∈ H1

0, ‖dµ‖1 = 1}. (5.4)

The optimal primal ν is equal to the optimal margin ν in the H∞ optimization
problem and

νopt|p = inf{ 1

|
∫

T
TrT⊤

1 dϕ|
, ‖dϕ‖ ≤ 1, T⊤

2 dϕ = P2dm, P2 ∈ H1
0}. (5.5)

We will show that νopt|d = νopt|p.
We start by showing that νopt|p ≤ νopt|d.

Assume that we have found the optimal dµ in (5.4). Now we construct the
measure dϕ in (5.5) with the demanded property. We multiply Φδ = F+δ⊤G
by the unimodular matrix U =

(

gp M
)

, where gp is the particular solution
to the equation Fg = I, and M is the kernel of F. The existence of such
matrix U was discussed in Chapter 2, section 2.2.1. Then

Φδ(gp M) = (F + δG)(gp M) = (I + δ⊤T1 δ⊤T2)

and

(gp M)⊤Φδ
⊤dµopt =

{

(I + T⊤
1 δ)dµopt = P 1

1 dm
T⊤

2 δdµopt = P 2
1 dm,

where

(

P 1
1

P 2
1

)

= P1 ∈ H1
0
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Then, as dϕ we can put dϕ = −δdµopt‖δ‖∞
. We claim that dϕ has the

demanded properties.
Suppose first that dµopt is the regular measure. Then

‖dϕ‖ = sup
F∈C,‖F‖∞≤1

∣

∣

∣

∣

∫

TrF⊤dϕ

∣

∣

∣

∣

= sup
F∈C,‖F‖∞≤1

∣

∣

∣

∣

∫

TrF⊤ δdµopt
‖δ‖∞

∣

∣

∣

∣

≤ sup
F∈C,‖F‖∞≤1

∫ m
∑

i=1

|λi(F⊤ δdµopt
‖δ‖∞

)|,

here λi denotes the eigenvalue. Since
∑m

i=1 |λi| ≤
∑m

i=1 σi (see [11]), where
σi are the singular values, then we have that

sup
F∈C,‖F‖∞≤1

∫ m
∑

i=1

|λi(F⊤ δdµopt
‖δ‖∞

)| ≤

sup
F∈C,‖F‖∞≤1

∫ m
∑

i=1

σi(F
⊤ δdµopt
‖δ‖∞

) ≤
∫ m
∑

i=1

σi(
δdµopt
‖δ‖∞

) =

∫

Tr

√

(dµopt)∗δ∗δdµopt
‖δ‖2

∞

≤
∫

Tr
√

(dµopt)∗dµopt = 1.

By
√

dµ∗
optdµopt we mean, as in [15], the unique nonnegative hermitian matrix

H such that H2 = M∗M, where M such that dµopt = Mdm.
If dµopt is the singular, i.e. dµopt = dµs = xx∗δz0dm, where δz0 is the

Dirac’s function and the vector x is such that Φ⊤
δopt

(z0)x = O, then

‖dϕ‖ = sup
F∈C,‖F‖∞≤1

∣

∣

∣

∣

∫

TrF⊤dϕ

∣

∣

∣

∣

= sup
F∈C,‖F‖∞≤1

∣

∣

∣

∣

∫

TrF⊤xx∗δz0dm

∣

∣

∣

∣

≤ 1.

We get that ‖dϕ‖ ≤ 1.
The second property id obvious,

T⊤
2 dϕ =

T⊤
2 δdµopt
‖δ‖∞

=
P 2

1 dm

‖δ‖∞
= P2dm.

For this measure dϕ we have
∣

∣

∣

∣

∫

TrT⊤
1 dϕ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

TrT⊤
1

(−δ)dµopt
‖δ‖∞

∣

∣

∣

∣

=
1

‖δ‖∞

∣

∣

∣

∣

∫

Tr (−T⊤
1 δ)dµopt

∣

∣

∣

∣

=

∣

∣

∣

∣

1

‖δ‖∞

∫

Tr dµopt

∣

∣

∣

∣

=
1

‖δ‖∞
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and
1

∣

∣

∫

TrT⊤
1 dϕ

∣

∣

= ‖δ‖∞. It means that νopt|p ≤ νopt|d.

Now we will show that νopt|d ≤ νopt|p. We decompose our problem into
two problems - regular and singular. Suppose that we have found the op-
timal measure dϕ such that dϕ = Φdm is regular. Recall that ‖dϕ‖ ≤ 1
and T⊤

2 Φ = P2, P2 ∈ H1
0. We will find the measure (dµ, dx) satisfying the

following system:
{

dµ+ T⊤
1 dx = P 1

1 dm,
T⊤

2 dx = P 2
1 dm.

We choose dµ such that dµ = (Φ∗Φ)
1

2dm and dx = −νopt|pdϕ.
Let Q ∈ H∞ be the optimal function, i.e. dist (T1, T2H

∞) = ‖T1−T2Q‖∞.
Such Q exists (see [7]). According to the alignment principle [12]

‖T1 − T2Q‖∞ = |
∫

TrT⊤
1 Φdm| = |

∫

Tr (T1 − T2Q)⊤Φdm| =

‖T1 − T2Q‖∞|
∫

Tr
(T1 − T2Q)⊤

‖T1 − T2Q‖∞
Φdm| ≤ ‖T1 − T2Q‖∞

∫

Tr
√

Φ∗Φdm =

‖T1 − T2Q‖∞‖Φ‖1 ≤ ‖T1 − T2Q‖∞.

It means that ‖Φ‖1 = 1 and
(T1 − T2Q)

‖T1 − T2Q‖∞
= Φ(Φ⊤Φ)

†
2 = Φ((Φ∗Φ)⊤)

†
2 . We

define pseudoinverse (Φ∗Φ)† on the range of Φ∗Φ as the inverse and the
zero on the kernel of Φ∗Φ. Now we have to check that dµ and dx have the
demanded properties:

1) ‖dµ‖1 = 1,

2) dµ+ T⊤
1 dx = P 1

1 dm, P
1
1 ∈ H1

0,

3) T⊤
2 dx = P 2

1 dm, P
2
1 ∈ H1

0.

Indeed, 1) ‖dµ‖1 =
∫

Tr
√

(Φ∗Φ)dm = ‖Φ‖1 = 1. The first property is
satisfied.

2) As
(T1 − T2Q)

‖T1 − T2Q‖∞
= Φ(Φ⊤Φ)

†
2 , then we have

(T1 − T2Q)⊤Φ

‖T1 − T2Q‖∞
=
√

(Φ∗Φ)

and

dµ+ T⊤
1 dx = (

√

(Φ∗Φ) − νopt|pT
⊤
1 Φ)dm =

(

(T1 − T2Q)⊤Φ

ν−1
opt|p

− νopt|pT
⊤
1 Φ

)

dm =

− νopt|p(T2Q)⊤Φdm = P 1
1 dm.
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The second property is satisfied.
3) Now we have

T⊤
2 dx = −νopt|pT⊤

2 dϕ = −νopt|pP2dm = P 2
1 dm.

We have checked that all properties are satisfied.
Define δ as the density δdµ = dx. Then δ

√

(Φ∗Φ) = −νopt|pΦ and

δ = −νopt|pΦ(Φ∗Φ)
†
2 .

Now we calculate the infinity norm of δ. We have

δ∗δ = ν2
opt|p(Φ

∗Φ)
†
2 Φ∗Φ(Φ∗Φ)

†
2 = ν2

opt|pI

and ‖δ‖∞ = νopt|p. It means that νopt|d ≤ νopt|p.

Suppose now that our measure dϕs is singular, i.e. dϕs = yy∗δz0dm, where
δz0 is the Dirac function and y is such that T⊤

2 (z0)y = O. Then dµs = dϕs
and dxs = −νopt|pdϕs. Again we have to check all the properties:

1) ‖dµs‖1 = 1,

2) dµs + T⊤
1 dxs = O,

3) T⊤
2 dxs = O.

Note that

‖T1 − T2Q‖∞
∣

∣

∣

∣

∫

Tr
(T1 − T2Q)⊤

‖T1 − T2Q‖∞
dµs

∣

∣

∣

∣

= ‖T1 − T2Q‖∞
∣

∣

∣

∣

∫

Tr
T⊤

1

‖T1 − T2Q‖∞
dµs

∣

∣

∣

∣

≤

‖T1 − T2Q‖∞‖dµs‖.

Therefore ‖dµs‖1 = 1 and

dµs =
T⊤

1 dµs
‖T1 − T2Q‖∞

= νopt|pT
⊤
1 dµs.

Then

dµs + T⊤
1 dxs = νopt|pT

⊤
1 dµs − νopt|pT

⊤
1 dϕs = νopt|pT

⊤
1 dϕs − νopt|pT

⊤
1 dϕs = O.

The third property is obvious:

T⊤
2 dxs = −νopt|pT⊤

2 (z0)y = O.
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Again we define δ as the density δdµs = dxs. Then δyy∗δz0dm = −νopt|pyy∗δz0dm
and δ can be choosen as δ = −νopt|pI. Then ‖δ‖∞ = νopt|p. We have shown
that also in the singular case νopt|d ≤ νopt|p.

Corollary 1. The singular and the regular cases of the dual problem is equiv-
alent to the singular and the regular cases of the H∞ optimization problem.

Proof. From the proof of Theorem 25 we have the following connection be-
tween the optimal measure dµ in the dual problem and the optimal measure
dϕ in the H∞ optimization problem

dϕ = − δdµ

‖δ‖∞
.

It means that if the optimal measure in the dual problem is regular then the
optimal measure in the H∞ optimization problem will be the regular as well,
and vice versa. The same is valid in the singular case.

5.5 The main result

The purpose of this section is to obtain the canonical parametrization of the
dual problem. We begin with a useful lemma

Lemma 7. Let ∆ = BCm×m and νopt|c < νopt|s. Then the solution to the
regular part of the dual problem satisfies δopt ∈ H∞.

Proof. Consider the primal problem

sup
h∈BH∞

inf
‖δ‖≤ν

Re(F + δ⊤G)h > 0

and let Gh 6= 0. Let hopt be the solution of the problem. Then the optimal δ
has the following expression

δ⊤ = −ν (Ghopt)
∗

σ(Ghopt)
.

We will show that σ(Ghopt) ≡ const.
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Recall that if hopt is such that Fhopt = I is the solution of the primal
problem then gopt = hopt is the solution of H∞ optimization problem. Then

‖Ggopt‖∞ = inf
Q∈H∞

‖T1 − T2Q‖∞ = inf
Q∈H∞

∥

∥

∥

∥

(

T ∗
2i

I − T2iT
∗
2i

)

(T1 − T2Q)

∥

∥

∥

∥

∞

inf
Q∈H∞

∥

∥

∥

∥

(

T ∗
2iT1 − T2oQ

(I − T2iT
∗
2i)T1

)∥

∥

∥

∥

∞

.

It was shown in Chapter 2 that inner functions in the disk algebra A are
finite Blashke products. It implies that T ∗

2i ∈ C.
Let Φ =

(

T ∗
2iT1

(I − T2iT
∗
2i)T1

)

. In [19] a four block operator ΓΦ was defined

as operator
ΓΦ : H2 ⊕ L2 → H2

− ⊕ L2

such that

ΓΦ

(

f1

f2

)

= P
−Φ

(

f1

f2

)

,

where P− is the ortogonal projection from L2⊕L2 onto H2
−⊕L2, Φ is a block

matrix function.
The function Φ ∈ H∞ + C. Therefore the essential norm of operator ΓΦ

is zero and ‖ΓΦ‖e < ‖ΓΦ‖.
Since we consider the regular case of the dual problem and it is equivalent

to the condition that detT ∗
2 T2(z) 6= 0 ∀z ∈ T, then T2o has an inverse in H∞

and

inf
Q∈H∞

∥

∥

∥

∥

(

T ∗
2iT1 − T2oQ

(I − T2iT
∗
2i)T1

)∥

∥

∥

∥

∞

= inf
Q1∈H∞

∥

∥

∥

∥

(

T ∗
2iT1 −Q1

(I − T2iT
∗
2i)T1

)∥

∥

∥

∥

∞

.

In [19] it has been shown that if Q1opt is an optimal solution to this approx-

imation problem then the matrix function

(

T ∗
2iT1 −Q1opt

(I − T2iT
∗
2i)T1

)

admits the

following representation

(

T ∗
2iT1 −Q1opt

(I − T2iT
∗
2i)T1

)

= W ∗





t0u0 O O

O Φ
(1)
11 −Q2 Φ

(1)
12

O Φ
(1)
21 Φ

(1)
22



V ∗,

where u0 = zbh/h, h is a scalar outer function, b is a finite Blashke product,

V,W are unitary matricies V =
(

v Vc ⋆
)

, W⊤ =

(

w1 Wc ⋆
w2 O ⋆

)

, with
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inner vector functions v, w1, w2, co-outer matrix functions Vc,Wc and

Q2 ∈ H∞ such that

∥

∥

∥

∥

∥

Φ
(1)
11 −Q2 Φ

(1)
12

Φ
(1)
21 Φ

(1)
22

∥

∥

∥

∥

∥

∞

≤ t0.

For Q1opt we have

σ(T ∗
2iT1−Q1opt) = σ





(

w Wc ⋆
)





t0u0 O O

O Φ
(1)
11 −Q2 Φ

(1)
12

O Φ
(1)
21 Φ

(1)
22









v∗

V ⊤
c

⋆







⇒

σ(Ggopt(z)) = σ(T ∗
2iT1 −Q1opt) = σ(wt0u0v

∗(z)) ≡ const,

where gopt(z) is the solution to H∞ optimization. Then σ(Ghopt(z)) ≡ const,
where hopt is the solution to the primal problem.
Since

δ⊤ = −ν (Ghopt)
∗

σ(Ghopt(z))
,

σ(Ghopt(z)) ≡ const, then δ ∈ H∞.

Introduce the class U of all unitar matrix functions with well-defined and
finite winding numbers,

U = {U ∈ L∞ : U∗U = I, wno detU > 0}.

We prove now the main theorem.

Theorem 26 (Main result). Let ∆ = BCm×m and νopt|c < νopt|s. Then the
plant numerator and the denominator with the worst uncertainty
Φδ = F + δ⊤G can be factorized in the following way

Φδ = UΨ, (5.6)

where U ∈ U and Ψ ∈ H∞ is outer.

Proof. We will proof the theorem in several steps.
1) We will get expression for Φδ. Recall that in the regular case we

have WΦδ = zP, where W is a positive semi-definite matrix function with
summable entries. Let W have rank r. Note that in the regular case Φδ does
not lose the rank which implies that log Det W ∈ L1, where Det W is the
determinant of W as a transformation on its range. Since P is an analytic
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function, the range R of W is an analytic function. According to Theorem
13 in [14] W can be factorized as W = (V B)(V B)∗, where V is a co-outer
partial isometry mapping a fixed space of r dimensions onto the range R of
W, and B is an outer function of full rank r. We get

V BB∗V ∗Φδ = zP.

We can find P1 ∈ H1 such that P = V P1. Then

V ∗Φδ = (BB∗)−1zP1

and

Φδ = V ((BB∗)−1zP1)) + V⊥Υ = ( V V⊥ )

(

(BB∗)−1zP1

Υ

)

,

where V⊥ is the complement of V to the unitary matrix. We choose V⊥ with
some special properties, namely (V⊥)∗ ∈ H∞ is co-inner and outer. According
to Theorem 14.1.1 [18] we can always find such V⊥ with demanded properties
if V is inner and co-outer. The matrix function Ξ = ( V V⊥ ) is called an
r−balanced matrix function. In [18] was shown that if Ξ is a balanced matrix
function then det Ξ is the constant function.

2) Let Φ̃δ = (BB∗)−1zP1. We will show that Φ̃δ can be factorized in the
following way

Φ̃δ = ŨΨ̃,

where Ũ ∈ U and Ψ̃ ∈ H∞ is outer.
Take outer function C such that B∗B = CC∗ and get

Φ̃δ = (BB∗)−1zP1 = B−∗zCC−1B−1P1 = B−∗zCP2,

where P2 ∈ H∞. We can factorize P2 as P2 = P2iP2o, where P2i is inner
(square) function and P2o is outer function. Recall that δ ∈ H∞, and F,G
are from the disk-algebra A. Then Φ̃∗

δ ∈ H∞ + C and

Φ̃∗
δ = P ∗

2oP
∗
2iC

∗z̄B−1.

Take outer function T such that P2oP
∗
2o = TT ∗ such that T is invertible in

H∞, and we get
Φ̃∗
δ = P ∗

2oT
−∗T ∗P ∗

2iC
∗z̄B−1.

Such T exists according to Theorem 13 in [14].
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Since T−1P2oP
∗
2oT

−∗ = T−1TT ∗T−∗ = I, then P ∗
2oT

−∗ is an unitar func-
tion and

T−1P2oΦ̃
∗
δ = T ∗P ∗

2iC
∗z̄B−1 = (CP2iT )∗z̄B−1

and
T−1P2oΦ̃

∗
δB = (CP2iT )∗z̄.

Now we will normalize the rows of CP2iT ∈ H∞. In every row j let θj be the
greatest common inner divisor of the entries, i.e. θj is a scalar inner function
such that all entries of the row are divisible by θj and any other common
inner divisor of all entries of the row is also a divisor of θj . Let fj be a scalar
outer function such that

(CP2iT )∗j(CP2iT )j = f ∗
j fj .

Then we can factorize CP2iT as follows

CP2iT =







θ1f1 0
. . .

0 θrfr







˜CP2iT .

Every row of ˜CP2iT is normalized, i.e. ˜CP2iT ( ˜CP2iT )∗ =







1 ⋆
. . .

⋆ 1






. Mul-

tiply T−1P2oΦ̃
∗
δB by S−1, where S =







f1 0
. . .

0 fr






.

Then

T−1P2oΦ̃
∗
δBS

−1 = ( ˜CP2iT )∗













f̄1z̄θ̄1
f1

0

. . .

0
f̄rz̄θ̄r
f1













.

Let uj =
f̄j z̄θ̄j
fj

. Now we will show that uj is a quasicontinuous function.

Since ˜CP2iT ∈ H∞, T−1P2o ∈ H∞, Φ̃∗
δ ∈ H∞ + C and BS−1 ∈ H∞, then







u1 ⋆
. . .

⋆ ur






= ( ˜CP2iT )T−1P2oΦ̃

∗
δBS

−1 ∈ H∞ + C.
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Every uj ∈ H∞+C. By Theorem 1.5.8 in [18] we have P−uj ∈ VMO and
ujfj = f̄j z̄θ̄j ∈ H2

−. It means that fj ∈ KerTuj
and KerT∗

uj
= {0}. It follows

that the Toeplitz operator Tuj
has dense range in H2. Indeed, suppose that

f⊥Tuj
H2 and f 6= 0. Then 0 = (f, ujg) = (ujf, g) for any g ∈ H2 and

f ∈ Ker T∗
uj
, which is impossible since KerT∗

uj
= {0}.

By Theorem 7.1.3 in [18] P+uj ∈ VMO and uj ∈ VMO, it means that
uj is a quasicontinuous function.

As uj ∈ QC, then the Toeplitz operator Tuj
is Fredholm by Theorem

3.3.2 in [18]. Therefore dim KerTuj
<∞ and dim Ker T∗

uj
<∞. Recall that

KerT∗
uj

= {0}. It means that ind Tuj
= dim KerTuj

− dim Ker T∗
uj
> 0 and

we get that −∞ < wnouj < 0 since wno uj = −ind Tuj
.

We have
(CP2iT )∗z̄S−1B−1 = ( ˜CP2iT )∗U∗

1B
−1,

where U1 is an unitar matrix function such that r < wnoU1 <∞.
Finally,

wno det(CP2iT )∗z̄S−1B−1 = wno detT ∗ + wno detS−1 + wno detP ∗
2iC

∗z̄B−1 =

wno det( ˜CP2iT )∗ + wno detU∗
1 + wno detB−1.

Since wno detT ∗+wno detS−1 = 0 and wno det( ˜CP2iT )∗+wno detB−1 = 0,
we have wno detP ∗

2iC
∗z̄B−1 = wno detU∗

1 and

Φ̃δ = ŨΨ̃,

where Ũ = B−∗zCP2i is an unitar matrix function such that
r < wno det Ũ <∞ and Ψ̃ = P2o is an outer function.

3) We will show that Υ ∈ H∞. Recall that ( V V⊥ ) is a square unitary

matrix. It means that ( V V⊥ )∗( V V⊥ ) =

(

I 0
0 I

)

and

( V V⊥ )( V V⊥ )∗ = V V ∗ + V⊥V
∗
⊥ = I.

As F + δ⊤G = V ((BB∗)−1zP1)) + V⊥Υ, then we get

δ⊤ =

(

( V V⊥ )

(

ŨΨ̃
Υ

)

− F

)

G† =

(

( V V⊥ )

(

ŨΨ̃
Υ

)

− ( V V⊥ )

(

V ∗

V ∗
⊥

)

F

)

G† =

( V V⊥ )

(

ŨΨ̃ − V ∗F
Υ − V ∗

⊥F

)

G†.
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As ( V V⊥ ) is an unitary matrix, then we get

‖δopt‖∞ = inf
V,V⊥,Ũ ,Ψ̃,Υ

∥

∥

∥

∥

( V V⊥ )

(

ŨΨ̃ − V ∗F
Υ − V ∗

⊥F

)

G†

∥

∥

∥

∥

∞

=

inf
V,V⊥,Ũ ,Ψ̃,Υ

∥

∥

∥

∥

(

ŨΨ̃ − V ∗F
Υ − V ∗

⊥F

)

G†

∥

∥

∥

∥

∞

= inf
V,Ũ ,Ψ̃

∥

∥

∥

∥

(

ŨΨ̃ − V ∗F
0

)

G†

∥

∥

∥

∥

∞

and Υopt = V ∗
⊥optF. Since V ∗

⊥ ∈ H∞ and F ∈ H∞, we have that Υ ∈ H∞ as
well.

4) Now we will get the parametrization Φδ = UΨ, where U ∈ U and
Ψ ∈ H∞ is outer.

We have

Φδ = ( V V⊥ )

(

ŨΨ̃
Υ

)

= ( V V⊥ )

(

Ũ 0
0 Υi

)(

Ψ̃
Υo

)

,

where Υi,Υo inner and outer functions such that Υ = ΥiΥo. Denote

U = ( V V⊥ )

(

Ũ 0
0 Υi

)

and Ψ =

(

Ψ̃
Υo

)

.

Recall that det( V V⊥ ) is a constant function. Then

wno detU = wno det( V V⊥ ) + wno det

(

Ũ 0
0 Υi

)

=

0 + wno det Ũ + wno det Υi > 0.

It remains to show that wno det Υi <∞. Since δ ∈ H∞, F,G ∈ A, then
Φ∗
δ ∈ H∞ + C and (V⊥Υ)∗ = Υ∗V ∗

⊥ ∈ H∞ + C. But Υ ∈ H∞ and V ∗
⊥ ∈ H∞,

then Υ have to be in a disk-algebra A. Since Υ is continuous, Υi is a finite
Blashke product and wno det Υi <∞.

It’s clear that U is unitar matrix. We have shown that the winding
number of U is finite and wno detU > 0. Then U ∈ U and Ψ ∈ H∞ is outer.
We get the parametrization Φδ = UΨ.

5.6 The classes of equivalences and the dis-

tance between the classes.

In the scalar case we have introduced the class of equivalence and distance
δ between them. It was shown that δ−metric has a close connection with
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the ν−gap metric. In this section we will generalize the result to the matrix
case.

Consider the dual parametrization

F + δ⊤G = UΨ, U ∈ U ,Ψ ∈ H∞.

We have seen that for the optimal δ we have wno detU > 0, i.e. on
the boundary of the stability region, we have a non-stabilizable plant. This
gives an idea to define the classes of equivalence in the factor space and to
introduce a distance between them.

Let U0 be the class of all unitar matrix functions with well-defined winding
numbers such that

U0 = {U ∈ L∞ : U∗U = I, wno detU = 0}.

Suppose that we have two plants P1 and P2. Let F1 =
[

−M1 N1

]

be a
left coprime factorization of P1 and F2 =

[

−M2 N2

]

be a left coprime
factorization of P2. We will call two factorizations equivalent F1 ∼ F2 if we
can find Q such that Q ∈ U0 and F2 = QF1.

Define the distance between equivalent classes as follows

δ(F1, F2) = inf{‖δ‖∞ : F1 + δ⊤G ∈ class (F2)}.

Lemma 8. δ is a metric on the factor space of the plant factorizations.

Proof. A function δ(·, ·) is a metric on the space of factorization if, for all
factorizations F1,F2 and F3

1) δ(F1, F2) ≥ 0, with δ(F1, F2) = 0 if and only if F1 ∼ F2

2) δ(F1, F2) = δ(F2, F1)
3) δ(F1, F2) ≤ δ(F1, F3) + δ(F3, F2).

1) It’s clear that δ(F1, F2) = inf ‖δ‖∞ ≥ 0. Next if F1 ∼ F2 then
F1 ∈ class (F2) so δ(F1, F2) = 0.

If now δ(F1, F2) = 0 so we can find Q with the property from above
so F1 + δ⊤G = QF2, where δ is such that inf ‖δ‖∞ = 0. It means that
F1 ∈ class (F2) and F1 ∼ F2.
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To prove 2) take δ1 such that F1 + δ⊤1 G = Q1F2 and δ2 such that
F2 + δ⊤2 G = Q2F1. We will show that inf ‖δ1‖∞ = inf ‖δ2‖∞. Multiplying the
first equation by Q2 we get

Q2F1 +Q2δ
⊤
1 G = F2 + δ⊤2 G+Q2δ

⊤
1 G = F2 + (δ⊤2 +Q2δ

⊤
1 )G = Q2Q1F2.

It means that inf ‖δ⊤2 +Q2δ
⊤
1 ‖∞ = 0. Then

0 = ‖δ⊤2 +Q2δ
⊤
1 ‖∞ ≥ ‖δ2‖∞ − ‖Q2δ

⊤
1 ‖∞

and ‖δ2‖∞ ≤ ‖Q2δ
⊤
1 ‖∞ = ‖δ1‖∞. Therefore inf ‖δ2‖∞ ≤ inf ‖δ1‖∞ and

δ(F2, F1) ≤ δ(F1, F2). By multiplying the second equation by Q1 we can
show in the same way as above that δ(F1, F2) ≤ δ(F2, F1). Then δ(F2, F1) =
δ(F1, F2).

To prove 3) take δ13 such that we can find Q1 and
F1 + δ⊤13G = Q1F3. Take δ23 such that we can find Q2 and F3 + δ⊤23G = Q2F2.
Then by the straightforward calculations we get

F1 + δ⊤13G = Q1Q2F2 −Q1δ
⊤
23G,

F1 + (δ⊤13 +Q1δ
⊤
23)G = Q1Q2F2,

where wno det Q1Q2 = wno det Q1 + wno det Q2 = 0. It means that
F1 ∈ class (F2).

Then δ(F1, F2) ≤ ‖δ⊤13 + Qδ⊤23‖∞ ≤ (‖δ13‖∞ + ‖Qδ⊤23‖∞) = (‖δ13‖∞ +
‖δ23‖∞). By calculating the infimum over δ13 and δ23 we get δ(F1, F2) ≤
δ(F1, F3) + δ(F3, F2).

Now we can get an expression for our metric δ(F1, F2). By the definition
of δ(F1, F2) we are looking for a δ (we apologize for the abuse of notation)
such that F1 + δ⊤G ∈ class (F2). It means that there exists Q ∈ U0 such
that F1 + δ⊤G = QF2. We have to take infimum over all such Q to find the
optimal δ, i.e. the distance between equivalent classes, so we get that

δ(F1, F2) = inf
Q∈U0

‖F1G
† −QF2G

†‖∞

In [13] the ν-gap metric between two plants P1 and P2 was introduced as

δν(P1, P2) = inf
Q,Q−1 ∈ L∞

wno det(Q) = 0

‖G1 −G2Q‖∞,
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where G1 and G2 are the normalized right coprime factorizations of P1 re-
spectively P2.

In particular, if G = I and F1 is the normalized coprime factorization of
the nominal plant P1, it is clear that δ ≥ δν . Furthermore, the distance from
P1 to the set of all non-stabilizable plants is the same νopt in both metrics.
In all other cases, the ν-gap metric does not generally provide the optimal
stability margin, whereas the δ-metric does. In this sense, the δ-metric is
more appropriate to robust stabilization of parametrically uncertain plants.

5.7 Conclusion

In this chapter we discuss the problem of finding the optimal stability margin
for the system with matrix uncertainty. We introduce the dual problem. In
the general case there is a gap between the solutions of the primal and dual
problems. Therefore we cannot say that for every ν either the primal or
the dual problem has a solution. But we show that, under the unstructured
uncertainty condition, there is no duality gap between these two problems.

Our main result is to find a parametrization of the plant with the worst
uncertainty. The regular part of the dual problem is complicated because
it is stated in terms of sequences of functions. Our parametrization may
help to deduce a simpler algorithm for calculation of the low bound of the
optimal stability margin and for constructing of the suboptimal controller.
The parametrization is not restricted to the class of rational functions but
can be used for a large class of systems. We demand only that F and G are
in the disk-algebra A.

We also introduce a metric in the space of factorizations and show that
this metric has close connection to ν-gap metric.
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