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Popular Summary 

The amount of waste currently produced is increasing rapidly together with a 

growing population and rising living standard. More people are aware of the 

importance of sustainable development of our society, because of global 

warming, finite fossil fuel resources (i.e., coal, oil and natural gas), and the 

increasing price of these fuels. Therefore, an urgent need exists for the waste 

management and alternative energy sources. Is there an approach which can be 

applied for both waste treatment and energy generation, converting the waste to 

valuable resource? The answer is yes. 

Anaerobic digestion (AD) is such a process which can convert waste to 

renewable energy biogas (a gas mixture of consisting primarily of methane and 

carbon dioxide) in the absence of oxygen. The produced biogas/methane can be 

used as a vehicle fuel, for generation of electricity and heat. In addition, the 

residuals from this process are rich in nutrients and can be used as fertilizer. 

Different types of waste materials that can be used as feedstock to produce 

biogas via the AD process, but the percentage of biodegradable content (i.e., the 

biodegradability based on methane yield, BDCH4) and methane potential of each 

material can differ significantly. BDCH4 and methane potential are two important 

parameters for design, operation and economy of a full-scale AD process. 

Therefore, it is necessary to fully understand these two parameters of the 

feedstock prior to the AD process.  

A Biochemical Methane Potential (BMP) test is commonly performed to 

understand the BDCH4 and methane potential of the investigated material. 

However, the results from the BMP tests reported in different studies can vary 

and are difficult to compare due to the existence of different protocols, the tests 

might differ in terms of experimental setups, experimental conditions, and data 

analysis, among others. 

The goal of this study is to gain the knowledge on optimisation and 

standardisation of the BMP test, and thereby increase the reliability and 

comparability of the test results. Paper I studied the experimental setups used 

for the BMP test, Papers II-IV examined the influences of different 

experimental conditions on the BMP test and Paper V presented a case study of 

BMP applications.  
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The work presented throughout this thesis consists of steps towards 

standardisation of the BMP assay, which is an effort to convert waste to 

valuable resource. 
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Abstract 

Anaerobic digestion (AD) has gained increasing attention nowadays as an 

approach for both waste treatment and renewable energy generation. Currently, 

many different types of materials can be used as feedstock for biogas production 

via AD process, but their biodegradability (based on methane yield, BDCH4) and 

potential to produce biogas might vary significantly, and these properties are 

key parameters that should be taken into consideration for economy, design and 

operation of a full-scale biogas plant during the selection of potential feedstock. 

The BDCH4 and methane potential of a material are commonly determined using 

the Biochemical Methane Potential (BMP) test. However, a number of factors, 

e.g., temperature, pH, inoculum preparation, inoculum to substrate ratio (ISR), 

substrate concentration, mixing, etc. can affect the BMP test results. Moreover, 

the experimental setups, data analysis and presentation vary in different 

laboratories, and therefore, the results from different studies are difficult to 

compare. To improve the reliability and reproducibility of the BMP test and 

ensure that the results are more comparable, this PhD study evaluated the 

influences of various factors on the methane potential and degradation kinetics 

of a standard substrate (i.e., cellulose) and certain other types of materials. For 

example, mixing plays an important role in the BMP test because it aids in the 

distribution of microorganisms, substrates and nutrients; release of produced 

gases; and equalisation of the temperature in the digester, thereby enhancing the 

digestion process. In Paper IV, different mixing strategies were applied to 

evaluate the influences of mixing on the BMP test. The results showed that the 

methane potential of blank (inoculum only) was increased approximately 77% 

and 220% by automated continuous mixing at low intensity (10 rpm) and high 

intensity (160 rpm), respectively, compared with the methane production 

obtained from the manually shake system. For the most viscous substrate 

investigated, i.e., dewatered sludge (DWS), automated continuous mixing 

significantly improved the methane production even at low mixing intensity. 

However, for cellulose (fine-powdered and easily degraded) and much diluted 

substrate 8*DWS (i.e., DWS diluted by a factor of 8), mixing is not necessary 

or the manual shaking once per day is sufficient during the BMP test. 

Furthermore, certain other important factors, such as experimental setup, 
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inoculum preparation and substrate concentration, were also evaluated and 

displayed a significant impact on the BMP test. 

Finally, as an application of the BMP test, a case study was performed to 

evaluate the effects of different pre-treatments on lignocellulosic biomass 

(Miscanthus) for improved methane production. Miscanthus has been proven as 

one of the highest energy biomasses in recent years; however, its conversion to 

biogas/methane is limited due to its recalcitrant structure. The study showed that 

methane production of Miscanthus was significantly improved after size 

reduction, steam explosion (SE) and alkali pre-treatment. 
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1. Introduction 

Together with continued population growth and improvement in living 

standards, the amount of waste produced from industry, agriculture, 

stockbreeding and daily life is rapidly increasing. The population of the 

European Union (EU-28) was estimated at 508.2 million in January of 2015, 

and the total waste generated by all economic activities and households 

amounted to 2514 million tons (Eurostat, 2015a; Eurostat, 2015b). Therefore, 

one considerable challenge is to find an efficient approach for waste treatment. 

Furthermore, fossil fuels (i.e., coal, oil and natural gas) have made modern life 

possible since the industrial revolution. These sources of energy are used to 

generate steam, electricity and power transportation systems. The global energy 

demand is projected to increase by 37% by 2040, and 75% of the energy supply 

will be fossil fuels (IEA, 2014). However, fossil fuels are non-renewable 

resources because of the long period required for their formation, i.e., millions 

of years, and because the reserves are being consumed much faster than new 

ones are being formed. Moreover, the use of fossil fuels releases a notably large 

amount of carbon dioxide, which is a greenhouse gas that contributes to global 

warming. As a result, society is facing the grand challenge of finding alternative 

energy sources and reducing the dependency on fossil fuels. 

Anaerobic digestion (AD) is a complex process in which biodegradable 

materials (e.g., household waste, manure, crop straws, etc.) are broken down in 

the absence of oxygen and the renewable energy biogas is produced (Gunnerson 

et al., 1986). Biogas can be used as a vehicle fuel and for generation of 

electricity and heat. In the past few decades, AD has been considered as a 

popular approach that offers environmentally friendly solutions simultaneously 

address the two looming challenges mentioned above, i.e., waste handling and 

renewable energy generation. In addition to these two advantages, anaerobic 

digestate contains rich nutrients and can be used as fertilizer  (Alfa et al., 2014).  

Most types of organic waste can be degraded and used as feedstock to produce 

biogas via AD process. However, the feedstock can differ significantly in 

characteristics such as, methane potential, biodegradability (based on methane 

yield, BDCH4) and nutrient content, and all of these properties play significant 

role in the design, economy and management of full-scale implementation of 

AD (Møller et al., 2004). The methane potential and BDCH4 of a potential 
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feedstock are commonly analysed by the Biochemical Methane Potential (BMP) 

test (Fannin et al., 1980; Owen et al., 1979). To carry out a BMP test, the 

investigated material is mixed with an anaerobic inoculum, which is normally 

collected from an active biogas plant, then the mixture is incubated under 

mesophilic or thermophilic condition for a period of 30-60 days or even longer 

(Labatut et al., 2011; Owen et al., 1979). In recent years, studies that address the 

BMP test have been extensively published, and different procedures and 

instruments have been applied. Unfortunately, no qualified recommendation 

exists for the BMP assay. Consequently, it is difficult to evaluate and compare 

results from different studies due to possible differences in the experimental 

protocol as well as in data analysis and presentation (Raposo et al., 2011). To 

improve knowledge on BMP test and ensure the results more comparable, the 

influences of several important factors were evaluated in this PhD study. In 

Paper I, different experimental setups are used for the determination of the 

methane yield of a standard substrate (i.e., cellulose), and the differences among 

these setups are compared. Papers II and III evaluate the effects of inoculum 

preparation and substrate concentration on the BMP assays, respectively. Paper 

IV evaluates the impacts of mixing on the BMP test, and Paper V presents a 

case study that demonstrates one application of BMP assay. 

This thesis includes five sections. Section 1 presents an introduction to the 

research field and the aims of the study. Section 2 offers the general information 

on AD. Section 3 describes the factors that affecting the BMP test and the 

contributions of this thesis to optimisation and standardisation of the BMP test; 

Section 4 presents a case study of BMP application and Section 5 includes the 

conclusions of this study and future perspectives.  

1.1 Aims of the study 

This study aims to improve the knowledge of optimisation and standardisation 

of the BMP test and thereby increase the reliability and comparability of the 

results reported by different studies. The aims are accomplished by: i) 

optimisation of experimental conditions (i.e., experimental setup, inoculum 

preparation, substrate concentration and mixing) for the BMP test (Papers I-IV) 

and ii) reduction of errors induced during the test and normalisation of the data 

analysis and presentation (Paper I). 
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2. Anaerobic Digestion 

AD is a complex process in which organic material is broken down by several 

groups of microorganisms in the absence of oxygen and renewable energy 

biogas is generated (Chen et al., 2008). AD occurs spontaneously in anaerobic 

environments such as lake and oceanic basin sediments (Koyama, 1963; 

Pamatmat & Bhagwat, 1973). The biogas generated from the AD process is a 

renewable energy source consisting mostly of methane (CH4) and carbon 

dioxide (CO2), with a small amount of hydrogen (H2) and traces of hydrogen 

sulphide (H2S) and ammonia (NH3) (Abatzoglou & Boivin, 2009).   

AD is an attractive technique by which both waste treatment and renewable 

energy recovery can be achieved. In addition to these two benefits, AD also 

reduces the odour of waste material and the digestate is rich in nutrients that can 

be used as fertilizer (Pain et al., 1990; Welsh et al., 1977). 

2.1 Degradation pathway during anaerobic digestion 

AD is a sequential complex process that involves several groups of 

microorganisms (Amani et al., 2010). The degradation process can be simplified 

into four steps: hydrolysis, acidogenesis, acetogenesis and methanogenesis 

(Angelidaki et al., 1993; Gavala et al., 2003; Tiehm et al., 2001). A schematic 

overview of the degradation process is presented in Figure 1. The product of 

one step acts as a substrate for the subsequent step, and thus imbalance in any 

one of the steps might have a negative effect on the overall process (Gerardi, 

2003).  

2.1.1 Hydrolysis 

Hydrolysis is the first step in AD process. Complex feedstocks such as 

carbohydrates, proteins and lipids are all broken down by extracellular 

hydrolytic enzymes into small molecules (e.g., sugars, amino acids and fatty 

acids) prior to absorption and further degradation by acidogenic 

microorganisms. Hydrolysis has been considered as the rate-limiting step in a 
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number of cases, as many materials consist of complex structures and thus 

results in a degradable component that is less accessible to microorganisms due 

to the physical barrier and possible chemical bonds (Tong et al., 1990). 

Therefore, hydrolysis is viewed as one of the most important steps under certain 

conditions in the AD process and needs to be improved to achieve more 

efficient digestion.  

 

Figure 1. Schematic overview of the degradation pathway during anaerobic digestion of complex materials. 

For instance, lignocellulosic biomass has gained greater attention in recent years 

as a resource for biogas production. However, the conversion of this material to 

biogas is limited by hydrolysis because of the refractory structure. Therefore, 

this type of biomass needs to be pre-treated for an efficient biogas production 

prior to the AD process. In Paper V, physio-chemical pre-treatments of 

Miscanthus (commonly known as Elephant Grass) were performed for 

improved biogas production. Miscanthus is a lignocellulosic energy crop and 

has been proven as one of the highest energy biomasses (Clifton-brown et al., 

2004; Hastings et al., 2008; Sanchez et al., 2001) consisting mostly of cellulose 

and hemicellulose, but covered by a sheath of lignin (Nges et al., 2016; Shen et 

al., 2014). The effects of pre-treatments were evaluated using the BMP test. 

Hydrolysis

Acidogenesis

Acetogenesis

Methanogenesis

Complex material

Carbohydrates, proteins and lipids
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Sugars, amino acids and fatty acids

Volatile fatty acids, alcohols

Acetic 
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2.1.2 Acidogenesis 

Sugars, amino acids and fatty acids generated during the hydrolysis step are 

taken up by acidogenic microorganisms and converted to volatile fatty acids 

(VFAs), e.g., acetate, propionate, butyrate, etc., as well as alcohols, carbon 

dioxide and hydrogen. These products are the precursors for methane 

production. Acidogenesis is usually the quickest step in the AD process 

(Gerardi, 2003; Vavilin et al., 2008). 

2.1.3 Acetogenesis 

In the acetogenesis stage, conversion of VFAs and alcohols to substrates such as 

acetic acid, carbon dioxide and hydrogen is performed by acetogenic 

microorganisms. These microorganisms only thrive when the hydrogen partial 

pressure is very low, and therefore, they have a syntrophic relationship with 

hydrogen consuming methanogens (Schink, 1997). 

2.1.4 Methanogenesis 

Methane is produced in the final step by methanogens which belong to the 

Archaea domain and are obligate anaerobes. Methanogens are considered to be 

the most sensitive microorganisms in AD, and factors such as pH and high 

concentrations of ammonia (NH3) might significantly inhibit their activity and 

can be fatal to the entire process (Koster & Koomen, 1988). In a normal AD 

process, approximately 70% of the methane is produced via the aceticlastic 

pathway (degradation of acetate), and the remaining 30% is generated from the 

hydrogenotrophic pathway (reaction between carbon dioxide and hydrogen) 

(Jetten et al., 1992). The acetogenesis and methanogenesis processes take place 

at similar optimal conditions (Gerardi, 2003; Weiland, 2010). 

2.2 Factors that influence the AD process 

The AD process is affected by several parameters that might slow or inhibit the 

process if they are not maintained within a certain range (Angelidaki et al., 

2003; Espinoza-Escalante et al., 2009). A few of the most important factors are 

briefly presented. 
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2.2.1 Temperature 

Temperature plays an important role in methane production in the AD process 

because it affects the activities of microorganisms and enzymes. The 

microorganisms are active at four different temperature ranges: psychrophilic 

(5-25℃), mesophilic (30-35℃), thermophilic (50-60℃) and hyperthermophilic 

(> 65℃). Variations in temperature affect all microorganisms in the AD 

process, especially the methane-forming microorganisms. Moreover, fluctuation 

in temperature will influence the activity of methane-forming microorganisms 

to a greater extent than the operating temperature, and therefore, fluctuation in 

temperature during the process should be minimised, i.e., < 1℃ per day for 

thermophilic digestion and 2-3℃ per day for mesophilic digestion (Gerardi, 

2003).  

AD is mainly taking place at either mesophilic or thermophilic conditions 

(Pfeffer, 1974), and most methanogens are active in these two temperature 

ranges. The ultimate methane yield from substrate is not significantly changed 

in the temperature interval of 30-60℃ (Hashimoto et al., 1981), but the activity 

of microorganisms is generally 25-50% higher under thermophilic temperatures 

leading to a higher digestion rate. In addition, thermophilic temperatures can 

improve solid settling and destruct pathogens more efficiently to satisfy 

regulations for disposal and reuse of the digestate (Hashimoto, 1983; 

Hashimoto, 1982; Varel et al., 1980). However, the free ammonia concentration 

increases with increased temperature, which has been considered to be an 

inhibitory compound and therefore has a negative effect on the process 

(Angelidaki & Ahring, 1994; Braun et al., 1981; Zeeman et al., 1985). 

Moreover, inhibition by volatile acids might occur if the temperature falls below 

32℃, since the formation of volatile acids continues at depressed temperatures, 

but the conversion of volatile acids to methane slows (Gerardi, 2003). 

2.2.2 pH 

pH is one of the most important factors that affect enzymatic activity or digester 

performance. The microbial groups involved in the AD process have various 

optimal pH ranges, and to ensure a well-functioning process, the pH should be 

maintained at a level that can accommodate all microbial groups. Methanogens 

are sensitive to pH and thrive at an optimal pH interval between 6.5 and 7.2, 

whereas, the acidogenic microorganisms are less sensitive and functions well in 

a wider range of 4-8.5 (Hwang et al., 2004; Turovskiy & Mathai, 2006). The 

optimal pH range required to obtain the maximal biogas yield is 6.5-7.5 (Liu et 

al., 2008). 
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2.2.3 Alkalinity 

Alkalinity reflects the buffering capacity and maintains the proper pH for the 

digester content. Alkalinity is presented primarily in the form of bicarbonates 

that exist in equilibrium with released carbon dioxide at a given pH. The 

released carbon dioxide results in production of carbonic acid, bicarbonate 

alkalinity and carbonate alkalinity (Equation 1). The produced ammonia results 

in the generation of ammonium ions (Equation 2) (Gerardi, 2003). 

𝐶𝑂2 + 𝐻2𝑂 ↔ 𝐻2𝐶𝑂3 ↔ 𝐻+ + 𝐻𝐶𝑂3
− ↔ 2𝐻+ + 𝐶𝑂3

2−         (1) 

𝑁𝐻3 + 𝐻+ ↔ 𝑁𝐻4
+                                                (2) 

The total alkalinity (TA) is usually determined by titration with acid to an 

endpoint of pH 4.3, whereas, titration down to pH 5.75 denotes the partial 

alkalinity (PA). The difference between TA and PA is the intermediate 

alkalinity (IA), which approximates the VFAs (Jenkins et al., 1983; Ripley et 

al., 1986). The AD process functions well in a wide range of alkalinity between 

2000 to 18000 mg CaCO3/L (Cuetos et al., 2008; Gelegenis et al., 2007; Murto 

et al., 2004). The ratio of IA to PA is used to monitor the process and should be 

maintained at less than 0.3 (Ripley et al., 1986). 

2.2.4 Mixing 

Mixing is an important aspect in the AD process, because it can influence heat 

and mass transfer as well as the release of gas bubbles trapped in the digester 

liquid (Chae et al., 2008; Lindmark et al., 2014b; Sanchez et al., 2001; Sung & 

Dague, 1995) and therefore affects the efficiency of the process. 

In an industrial AD process, different types of mixing are used, i.e., mechanical 

mixing, hydraulic mixing and pneumatic mixing (Dieter & Steinhauser, 2008). 

Mechanical mixing is most commonly used in Europe today. The influences of 

mixing in batch BMP tests are discussed in detail in Section 3.3.4. 

2.2.5 Inhibitory compounds 

The microorganisms in the anaerobic digester are quite sensitive to various 

compounds, especially acids- and methane-forming microorganisms. These 

compounds might originate from the substances or are intermediates generated 

during the degradation process. A substantial concentration of these compounds 

might upset the balance between the acids- and methane-forming 

microorganisms, and thereby inhibit or destroy the process (Demirel & 
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Yenigün, 2002; Pohland & Ghosh, 1971). Inhibition of the AD process is often 

indicated by a decrease in the steady-state rate of methane production and 

accumulation of volatile acids (Kroeker et al., 1979). 

2.2.5.1 Ammonia 

Ammonium ion (NH4
+
) and free ammonia (FA) are the two forms of inorganic 

ammonia nitrogen in the digester (Chen et al., 2008). FA has been suggested to 

play a major role in inhibition because it can freely pass through the membrane 

of the microorganisms and diffuse into the cell, leading to proton imbalance 

and/or potassium deficiency (Gallert et al., 1998; Sprott & Patel, 1986). 

Methanogens are most sensitive to ammonia (Kayhanian, 1994). Ammonia 

concentration of less than 200 mg/L is beneficial for the AD process (Liu & 

Sung, 2002). A decrease in pH and temperature within the appropriate range 

might increase the methane yield and reduce the ammonia inhibition 

(Angelidaki & Ahring, 1994; Zeeman et al., 1985). 

2.2.5.2 Volatile fatty acids 

Volatile fatty acids (VFAs) are important intermediate products in the AD 

process, and are the main substrates of methanogens used to produce methane. 

However, accumulation of VFAs is inhibitory to methanogens because it 

decreases the pH in the digester, which could lead to the loss of acid-sensitive 

glycolytic enzymes activity (Bouallagui et al., 2005; Misi & Forster, 2001). 

Moreover, unionized VFAs can penetrate the membranes of the 

microorganisms, and dissociate by releasing proton, thus leading to acidification 

of the cytoplasm (Cotter & Hill, 2003). 

2.2.5.3 Long chain fatty acids 

Long chain fatty acids (LCFAs) are generated by hydrolysis of lipids in 

anaerobic digestion. LCFAs are inhibitory to microorganisms by attachment to 

the membrane and disturb the transport or protective function (Rinzema et al., 

1994). It has been reported that LCFAs exert a bactericidal effect and thereby 

result in irreversible inhibition (Angelidaki & Ahring, 1992). 

2.3 Feedstock analysis 

Most types of organic materials can be degraded under anaerobic conditions and 

can be used as feedstock to produce biogas in the AD process. The organic 

fraction of municipal solid waste (e.g., food waste), animal manure (in 

particular dairy and swine manure), energy crops, lipid-rich waste and sewage 
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sludge generated from municipal wastewater treatment plants is the most 

commonly used feedstock.  

However, organic materials might significantly differ in their degradation rate 

and methane potential and also might lack certain essential nutrients. All of 

these parameters play an important role in the economy, design and 

management of a biogas plant (Møller et al., 2004). For example, if one material 

lacks essential nutrients and others contain an excess of the same nutrients, then 

mixing of two or more such materials can balance the nutrients and will be 

beneficial to improve the methane yield. This approach is known as co-

digestion, which is an important approach to improve the waste treatment and 

biogas production as well as to reduce the risk of inhibition (Álvarez et al., 

2010). The main goal of co-digestion process is to balance several factors for an 

optimal co-substrate mixture, e.g., macro- and micro- nutrients, pH, 

inhibitors/toxic compounds, C/N ratio, biodegradable organic and dry matter 

(Hartmann et al., 2002). An optimal value of approximately 20 for the C/N ratio 

has been suggested to ensure the stability of the process (Burton & Turner, 

2003; Chen et al., 2008). Among the above mentioned feedstock, animal 

manure contains high content of nitrogen, and therefore has been considered as 

a good co-substrate for many feedstock types with lower amounts of this 

nutrient, e.g., energy crops (Mata-Alvarez et al., 2014). Energy crops are slowly 

degraded, due to limited nutrient content and their complex structure. For such 

slowly degraded feedstock, longer retention times and/or large digester volume 

are required to generate the appropriate biogas yield, and this leads to an 

inefficient process and lower economic benefits (Carrère et al., 2010). Pre-

treatment of such feedstock prior to AD might increase the degradation rate 

and/or BDCH4, and has been suggested as an important approach to improve the 

efficiency and economic margins of the process (Carlsson et al., 2012). 

Therefore, feedstock analysis is of great importance with respect to know the 

methane potential, degradation rate and nutrient content. The BMP test is a 

batch trial used to analyses the BDCH4 and methane potential of organic material 

and is discussed in detail in Chapter 3. 
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3. Biochemical Methane Potential 

Test 

The characteristics of the feedstock are important in the design, economy and 

management of the AD process. BDCH4 and methane potential are two of the 

most important characteristics and commonly analysed by the BMP test (Owen 

et al., 1979). Assuming the organic material (e.g., 𝐶𝑛𝐻𝑎𝑂𝑏) is completely 

converted to methane and carbon dioxide, the theoretical methane yield can be 

calculated according to the Buswell equation (Equation 3) (Symons & Buswell, 

1933). The anaerobic BDCH4 of an organic material is defined as the ratio 

between the experimental methane yield (𝐵𝑀𝑃𝑒𝑥𝑝) and theoretical methane 

potential (𝐵𝑀𝑃𝑡ℎ) values (Equation 4). 
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) 𝐶𝐻4     (3) 

𝐵𝐷𝐶𝐻4(%) =
𝐵𝑀𝑃𝑒𝑥𝑝

𝐵𝑀𝑃𝑡ℎ
∙ 100                                          (4) 

In the BMP test, the investigated material is mixed with active anaerobic 

inoculum collected from a full-scale digester. The mixture is incubated under 

either thermophilic or mesophilic conditions and well mixed for optimal mass 

and heat transfer.  

The test continues to run until the material is considered fully degraded or the 

daily gas production is less than 1% of the accumulated gas production as 

recommended by German standard VDI 4630 (2006), which depends on the 

physical and chemical properties of the material and the activity of the 

inoculum. During the test, the volume of produced gas is measured using either 

manometric or volumetric methods. At the end of the process, the BMP is 

calculated and adjusted to standard temperature and pressure under dry 

conditions (STP: 0°C, 101.325 kPa, zero moisture content) and plotted in the 

form of accumulated methane potential curves, as shown in Figure 2. The BMP 

is expressed as the volume of methane per gram of organic material added, 

which is often based on volatile solids (VS) or chemical oxygen demand (COD) 
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(Strömberg et al., 2014). However, the data analysis and presentation of 

methane yields in different studies are varying, and therefore might lead to 

incorrect and incomparable results.  

 

Figure 2. Overview of the Biochemical Methane Potential test. 

3.1 Factors that influence the BMP test 

A large number of factors can affect the BMP test and lead to incorrect and 

incomparable results from different studies. A number of guidelines and 

standards are available on how to determine the BDCH4 of organic material, e.g., 

standards of the International Organisation of Standardisation (ISO-11734, 

1995; ISO-14853, 2005), American Society for Testing and Materials (ASTM-

D5210, 2007; ASTM-E2710, 2008), or German standard (VDI 4630, 2006), etc. 

Currently, the protocols used for the BMP test are derived from these guidelines 

and standards, but the protocols are quite different in terms of experimental 

conditions, experimental setups, data analysis and presentation. All of these 

aspects can impact the BMP test and lead to varying results. Moreover, even if 

the same instructions for experimental conditions are followed, the results might 

still differ. For example, one inter-laboratory study shows that the methane 

production of cellulose ranged from 175 ± 6 mL CH4/g VS to 412 ± 8 mL 

CH4/g VS (Raposo et al., 2011). Therefore, standardisation of the BMP test with 

respect to procedure, experimental setups, data analysis and presentation is 

required to obtain reliable and comparable results. 

3.1.1 Experimental conditions 

The results of BMP tests are dependent on the experimental conditions, e.g., 

environmental conditions (i.e., ambient pressure and temperature), inoculum, 
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inoculum to substrate ratio (ISR), substrate concentration, the composition of 

flush gas, mixing etc. For instance, the ISR reflects the relationship between the 

microbial biomass and substrate. A high ISR commonly leads to more rapid and 

more stable degradation but less conclusive results, i.e., the risk of less gas 

produced from the substrate compared with that of the inoculum. In contrast, a 

low ISR will generate distinct data but might result in inhibition due to the 

accumulated intermediate products (Maya-Altamira et al., 2008). It has been 

reported that a higher ISR leads to a higher methane yield in an ISR range of 

0.1-3 (Maya-Altamira et al., 2008; Raposo et al., 2009; Raposo et al., 2008). 

However, no general rule applies with respect to the setting of ISR, although a 

ratio ≥ 2 is recommended by the German standard (VDI 4630, 2006) for a stable 

digestion process. Additional experimental factors are discussed in Section 3.3. 

3.1.2 Experimental setups and potential errors induced 

Various experimental setups are used to perform the BMP test in different 

laboratories. Each setup might differ in terms of incubation unit, total and active 

volume of reactors/digesters, gas sampling, gas collection, mixing regimes, gas 

measuring techniques, etc. 

For instance, the produced gas volume can be measured using both manometric 

and volumetric methods. Measuring the gas volume by the manometric method 

requires a good gas-tight system (e.g., reactor and all the connections), a 

manometer, and gas chromatography (GC) for determination of gas 

composition. However, underestimation of the gas volume might occur because 

of gas leakage, and due to the solubility of gases in liquid under overpressure, 

the dissolved gases could influence the pH in the reactor and further inhibit the 

process (Rozzi & Remigi, 2004). Moreover, when taking the samples manually 

for gas component measurements, random errors can be induced because the 

injected gas volume might affect the gas composition determined by GC. Due to 

the pressure built up by the produced biogas, the gas in the reactor should be 

released and analysed regularly, which is highly time consuming and labour 

intensive and requires personal analysis skills. Gas volume measurements by 

volumetric methods are either based on the water displacement principle or 

collection of produced gas in a gas-tight bag. Afterwards, the gas volume is 

determined by measuring the amount of displaced liquid or measured with the 

aid of a graduated syringe by sucking the gas collected in gas bag (Liu et al., 

2004; Wang et al., 2014). However, different sources of errors are induced 

when the gas volume measurement follows the water displacement principle, 

e.g., the adsorption and diffusion of gas components into the barrier solution, 

and carbon dioxide loss occurs more easily. It is therefore recommended to 
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remove the carbon dioxide before measuring the produced gas (Walker et al., 

2009).  

Whether manometric or volumetric methods are used, both random and human 

errors can’t be avoided and result in unsatisfactory results. In addition to 

methane yield, the degradation kinetics of potential feedstock is also important. 

To well know the degradation profile of the feedstock, gas production should be 

monitored in real-time instead of by periodic measurement. Therefore, a robust 

experimental setup is required for the BMP test and should be automated to 

minimise human errors and workload. An automatic system can record the real-

time gas volume, pressure and temperature to describe the entire degradation 

profile of the feedstock and includes the function of data normalisation (Paper 

I).  

3.1.3 Data analysis and presentation 

Environmental conditions need to be taken into consideration when calculating 

the data obtained from BMP test, e.g., ambient temperature and pressure, 

because the gases are compressible, and the volume is highly dependent on 

these two parameters. However, the data analyses are poorly reported in 

scientific papers and could potentially induce errors. A literature study, found 

that only one of 24 papers addressing BMP test of dairy manure reported the 

data analysis and correction for temperature, pressure and water vapour content, 

and eleven of these studies didn’t report information on whether these 

parameters were considered (Strömberg et al., 2014). Therefore, the data 

obtained from the BMP test should be calculated and presented in a normalised 

manner to ensure correct and comparable results.  

It is generally suggested that the BMP of substrate should be normalised and 

expressed in terms of NmL CH4/g VS or NmL CH4/g COD at STP conditions 

(0℃, 101.325 kPa, zero moisture content) using the ideal gas law as presented 

in Equation 5 (Nasr et al., 2012; Strömberg et al., 2014).  

𝑉𝑆𝑇𝑃 =
𝑝𝑔𝑎𝑠

𝑝𝑆𝑇𝑃
∙

𝑇𝑆𝑇𝑃

𝑇𝑔𝑎𝑠
∙ 𝑉𝑔𝑎𝑠                                              (5) 

In Equation 5, 𝑉𝑆𝑇𝑃 is the volume adjusted to STP conditions, 𝑝𝑔𝑎𝑠 is the 

pressure of the measured gas, 𝑝𝑆𝑇𝑃 is the standard pressure, 𝑇𝑆𝑇𝑃 is the standard 

temperature in Kelvin (K), 𝑇𝑔𝑎𝑠 is the temperature of measured gas in K, and 

𝑉𝑔𝑎𝑠 is the measured gas volume. 

However, several different STP conditions are currently used, e.g., STP of 0℃ 

and 101.325 kPa defined by the former International Union of Pure and Applied 
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Chemistry and STP of 25℃, 100 kPa defined by the National Bureau of 

Standards. Calculation of the gas volume under these two different STP 

conditions results in a volume difference of more than 10% for the same mass 

of gas  (Walker et al., 2009). Therefore, the STP conditions should be clearly 

stated when reporting the results. 

In addition to the data adjustment to STP, the water vapour content is also 

necessary to consider (VDI 4630, 2006; Walker et al., 2009). For volumetric gas 

measurement, it is worth noting that the ambient pressure and temperature 

should be recorded at each gas volume measurement point and used for the 

analysis, not the values in the reactor. Strömberg et al. (2014) reported that 

water vapour induced an overestimation of 2-8% for gas volume in the normal 

ambient temperature range (10-40℃). Moreover, the overestimation induced by 

flush gas characteristics should be eliminated if only the volume of methane is 

measured. Strömberg et al. (2014) demonstrated that the overestimation 

increased greatly with low methane content in the flush gas, and when a small 

amount of gas was produced relative to the headspace volume. Up to 50% or 

even greater error might be induced. 

Therefore, standardisation of the BMP test is required to ensure that the results 

from different laboratories are reliable and comparable. 

3.2 Degradation kinetics 

The BMP test analyses the BDCH4 and methane potential of the investigated 

material, and also collects information on the degradation kinetics (Jensen et al., 

2011). All of these parameters offer key information on substrate selection and 

AD process optimisation. The degradation kinetics of the substrate is sensitive 

to experimental conditions, such as the pre-incubation/storage conditions of 

inoculum (Paper II), substrate concentration (Paper III), mixing (Paper IV), etc. 

As an example, size reduction has been shown to increase the degradation rate 

of the substrate (Vavilin et al., 2008), which is validated in Paper V. 

Mathematical models are commonly used to better understand the degradation 

kinetics of the investigated substrate. The degradation kinetics provides 

valuable information on how rapidly the material is degraded for selection of a 

potential substrate and/or evaluation of the effects of different pre-treatment 

methods. The hydrolysis of substrate has been generally assumed to follow the 

first-order model (Equation 6), and therefore it is the model most commonly 

used to evaluate the degradation kinetics of a BMP test (Myint & 

Nirmalakhandan, 2006; Shahriari et al., 2012; Vavilin et al., 2008).  
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𝐵 (𝑡) = 𝐵0 ∙ (1 − 𝑒𝑥𝑝(−𝑘 ∙ (𝑡 − 𝜃)))                             (6) 

In Equation 6, 𝐵(𝑡) is the methane yield (NmL CH4/g VS) at a given time 𝑡 

(day), 𝐵0 is the value of the ultimate methane yield (NmL CH4/g VS) or 

maximum value at infinite digestion time, 𝑘 is the rate or hydrolysis constant 

(day
-1

) and 𝜃 is the lag time constant (day).  

3.3 Own contributions to optimise and standardise the 

BMP test 

This PhD study focuses on evaluation of the influences of various factors on the 

BMP test, and the specific contributions are presented below. 

3.3.1 Experimental setups for the BMP test 

The experimental setups used to perform the BMP test vary among laboratories 

and each experimental setup has advantages and disadvantages.   

Traditionally, BMP tests have been performed with in-house developed lab 

setups, e.g., pressure-based gas measurement system aided by manometer 

(Ferrer et al., 2008), water-column-based gas measurement system (Mallik et 

al., 1990), gas-bag-based measurement system (Mshandete et al., 2006), etc. 

These systems are manually operated and therefore have a high risk of inducing 

random and human errors. Due to the large number of vials commonly 

employed and the long period required (30-60 days or even longer) (Owen et 

al., 1979), use of traditional systems for BMP test is highly time-consuming and 

labour-intensive. Therefore, the need exists for a robust system for the BMP 

test, which could reduce workload, minimize human errors, and collect high 

quality data, among other improvements. 

One such lab system is the Automatic Methane Potential Test System (AMPTS) 

II (Bioprocess Control, Sweden AB), which contains three components (Figure 

3). Unit A consists of a temperature controlled water bath and 15 reactors of 

500 mL volume, and each reactor is equipped with a mixer to ensure good mass 

and heat transfer, and aid in gas release. Unit B is CO2-fixing unit with an 

alkaline solution. Unit C is a gas volume measuring device with 15 flow cell 

arrangements, where the normalised (STP: 0℃, 101.325 kPa, dry conditions) 

gas volume is measured according to the principle of liquid displacement and 

buoyancy. The real-time normalised gas volume, temperature and pressure are 

registered at each measurement point. A report is generated in Excel format 
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with normalised accumulated and daily methane volume. This system can 

significantly reduce workload and human errors. 

 

Figure 3. Schematic overview of the Automatic Methane Potential Test System (AMPTS) II. 

In Paper I, the methane yield of a standard substrate (i.e., cellulose) was 

determined using three in-house developed experimental setups (i.e., 

manometer-, water-column- and gas-bag-based systems) and AMPTS II. The 

results (Table 1) show that the methane yield of cellulose obtained from the 

pressure-based system is slightly lower compared with the other systems, 

perhaps due to the increasing amount of gases in the liquid phase due to the 

high pressure built up by the produced biogas. In contrast, the methane yield of 

cellulose obtained from AMPTS II shows the lowest standard deviation (SD), 

thus  representing a higher precision and less random errors. 
 

Tabel 1. Methane yields obtained and workload demanded of different experimental setups. 

Experimental setups  Methane yields (Nml CH4/g VS) Workload (min/sample) 

Manometer 340 ± 18 540 

Water-column 354 ± 13 220 

Gas-bag 345 ± 15 220 

AMPTS II 366 ± 5 40 

Workload includes inoculum and substrate addition, gas volume measurement and gas composition analysis as well as the 

data management and analysis. Reproduced from Paper I. 

In summary, the methane yields obtained from all systems are comparable, but 

the workloads differ significantly. The AMPTS II was used hereafter to perform 

all studies in this thesis because it has been demonstrated as a time- and labour-

saving system, and more importantly, it delivers reliability with high precision 

and reproducibility. 
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3.3.2 Inoculum preparation 

Inoculum plays a vital role in the BMP test and is the most complex factor that 

affects the results of the test, and is also the most difficult for standardisation 

due to the diversities of microorganisms included and their metabolic activities. 

Different approaches exist for inoculum preparation or storage prior to the BMP 

test, e.g., pre-incubate the inoculum at 35 ± 2℃ for up to 7 days to reduce 

background gas production and decrease the influence of the blanks (ISO-

11734, 1995), filtrate the inoculum with a 2 mm sieve to remove large particles 

or grit (Browne & Murphy, 2013), and store the inoculum at 4℃ (Cabbai et al., 

2013), etc. The inoculum storage conditions and preparation (i.e., pre-

incubation, filtration) influence the metabolic activities of the microorganisms, 

secretion of the extracellular enzymes, and consequently, hydrolysis of the 

substrate (Sambusiti et al., 2014). However, to date, no qualified 

recommendation exists for inoculum preparation prior to a BMP test. 

Inoculum pre-incubation (37℃, 5 days), filtration (2 mm mesh) and storage 

(4℃, 5 days) were performed prior to the tests to evaluate the influences of 

inoculum preparation on the BMP test, also to examine the effects of enzyme 

activities (Carboxymethyl Cellulase Activity, CMCaseA) of the inoculum on 

methane production and kinetic degradation of the substrates (cellulose and 

wheat straw). The enzyme activity can be used to assess the hydrolytic potential 

of inocula.  

The results show that the CMCaseA in the inoculum decreased slightly after 

filtration (Figure 4: A), this is probably caused by the loss of microorganisms 

bound to the removed particles (Vavilin et al., 2008). Moreover, the CMCaseA 

had a positive correlation with the methane yields of the substrates (Figure 4: 

B). With respect to the kinetic degradation of the substrate, fresh inocula led to 

considerably shorter lag time 𝜃, which corresponds well to higher CMCaseA, as 

presented in Figure 4: A. This result implies that fresh inoculum has a higher 

hydrolytic activity from the start. Therefore, fresh inoculum is recommended for 

the BMP test because it has demonstrated the highest enzyme activity and 

methane yield, whereas, filtration of inoculum should be avoided unless large 

particles are contained. Additional details can be found in Paper II. 
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Figure 4. Enzyme activity (CMAaseA) of inocula (A) and the correlation between CMCaseA and methane yields of 

substrates (B). F-I: Fresh inoculum; F-SI: sieved fresh inoculum; 4℃-I: inoculum stored at 4℃; 4°C-SI: sieved inoculum 

stored at 4℃;  37℃-I: inoculum pre-incubated at 37℃; 37℃-SI: sieved inoculum pre-incubated at 37℃. Reproduced from 

Paper II. 

3.3.3 Substrate concentration 

Substrate concentration has been considered as an important parameter that 

influences the efficiency of the AD process. At low substrate concentration, the 

microorganisms might exhibit low metabolic activity due to the low availability 

of substrate. The substrate concentration couldn’t be too high also, as the 

overload situation might occur leading to inhibition caused by the accumulation 

of intermediate products (Tanimu et al., 2014; Zhang et al., 2014). With respect 

to methane yield, certain results in the literatures show that a higher substrate 

concentration leads to a higher methane yield (Maamri & Amrani, 2014; 

Tanimu et al., 2014), whereas, other studies present the opposite results (Zhang 

et al., 2014). Moreover, it is quite common to dilute the substrate to ensure that 

the methane potential of the substrate is not underestimated due to overload or 

possible inhibition (Angelidaki et al., 2009). The types of dilution media used to 

adjust substrate concentration are numerous, such as a medium consisting of  

nutrients, trace elements and vitamins (Angelidaki & Sanders, 2004; Raposo et 

al., 2012) or only water (Angelidaki et al., 2009). However, only few studies 

have investigated a fixed ISR for both diluted and undiluted substrate and it is 

therefore difficult to determine whether the methane yield is affected by the 

substrate concentration or ISR. 

Thus far, the results in the literatures are inconclusive and lack of 

recommendations for a substrate concentration that should be used in a BMP 

test. The German standard VDI 4630 (2006) suggests to use an inoculum with a 

VS of 1.5-2.0% and an ISR ≥ 2, which translates to a substrate concentration of 

≤10 g VS/L.  
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In Paper III, five different substrate concentrations of cellulose were evaluated 

at a fixed ISR of 2 with or without dilutions by nutrient buffer solution (NBS) 

or distilled water (DW) to evaluate whether the substrate concentration has 

effect on methane potential and the degradation kinetics. The results show that 

the methane potential increases with higher substrate concentration for the two 

dilution series (Figure 5). To verify the results, additional BMP tests were 

performed. In these experiments, the substrate concentration was adjusted by 

dilution at a fixed ISR and by varying the ISR instead of dilution. These results 

offer additional evidence that substrate concentration influence the methane 

potential and a higher substrate concentration leads to a higher methane 

potential. Furthermore, these results show that this trend also occurs when the 

substrate concentration is adjusted by varying the ISR instead of dilution. 

However, these results are too limited to draw firm conclusions, and additional 

studies are needed to verify these observations on a wide-scale with more types 

of substrates, inocula and experimental conditions. 

 

Figure 5. Methane potential of cellulose under different concentrations at ISR of 2. Reproduced from Paper III.   

3.3.4 Mixing strategies 

In a batch BMP test, different mixing types are applied, e.g., mixing by 

manually shake (Kafle & Kim, 2013) or with the aid of a magnetic bar (Raposo 

et al., 2011), shakers (Guendouz et al., 2010) and stirrers driven by geared 

motors (Raposo et al., 2006). The BMP test has also been reported under static 

conditions (Raposo et al., 2011). In addition to mixing types, the mixing mode 

(i.e., continuous or intermittent) and intensity at different frequencies and 

speeds can further influence the test. However, the results related to mixing are 

conflicting. One inter-laboratory study showed that methane yields are 

comparable independent of mixing, but the biogas production rate are 
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inconsistent (Raposo et al., 2011), whereas, other study showed that a lower 

mixing intensity leads to both higher biogas production rate and higher total 

biogas production (Lindmark et al., 2014a). 

 

Figure 6. Methane potentials of substrates under different mixing strategies. NM: no mixing; SKWB: shaking in water bath; 

SKM:shake manually once per day; UDM: unidirectional mixng; BDM: bidirectional mixing; DWS: dewatered sludge. Paper 

IV. 

Moreover, evaluation of mixing is complicated by differences in waste 

characteristics, organic loading, mixing system, active volume, etc. (Ganidi et 

al., 2009). For instance, higher gas production of palm oil mill effluents is 

obtained from a continuous mixing digester compared with an unmixed digester 

(Ho & Tan, 1985), but changing from continuous mixing to intermittent mixing 

leads to significantly higher gas production from a liquid municipal waste 

stream (Dague et al., 1970). Nevertheless, the influences with respect to high 

mixing intensity are in agreement, showing that high mixing intensity leads to 

increased shear stress, which has a negative effect on flock formation and gas 
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production (Kim et al., 2002; McMahon et al., 2001; Stroot et al., 2001; 

Whitmore et al., 1987). 

In Paper IV, the influences of mixing strategies, i.e., no mixing (NM), shaking 

in water bath (SKWB), shake manually once per day (SKM), automated 

unidirectional and bidirectional mixing (UDM and BDM) with respect to 

mixing types, modes (continuous unidirectional and bidirectional mixing) and 

intensities on methane production from the BMP test are evaluated. As 

expected, the effects of mixing strategies are prominent for the most viscous 

substrate, i.e., DWS, both the highest methane potential (Figure 6: B) and 

highest maximal daily specific methane production were obtained at the highest 

mixing intensity. However, the organic removal efficiencies among all test 

samples are not affected by mixing, which could offer evidence that mixing aids 

in the release of gas bubbles trapped in the viscous liquid. Mixing is required 

for an efficient process when the digester content is viscous. However, mixing 

is not necessary or the shake manually once per day might be sufficient during 

the BMP test if the digester content is quite dilute or the substrate is easily 

degraded (Figure 6: D). 
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4. Application of the BMP Test: A 

Case Study 

The degradation of a large number of organic materials used as substrates to 

produce biogas is difficult and slow because of their recalcitrant structures. In a 

full-scale biogas plant, such substrate often leads to an inefficient process with 

low economic benefits. Therefore, the biodegradability of such material needs 

to be improved by pre-treatment, and the performance of pre-treatment can be 

evaluated using the BMP test. Many different pre-treatment technologies have 

been suggested during the last few decades and can be classified into four types, 

i.e., biological, physical, chemical and physio-chemical pre-treatments (Alvira 

et al., 2010).  

Lignocellulosic biomass has attracted much interest in recent years as a resource 

for biogas production because the raw material is abundant, cheap and with no 

conflict with food (Chandra et al., 2007; Mosier et al., 2005; Taherzadeh & 

Karimi, 2008). Miscanthus is a high yielding lignocellulosic biomass that is 

cultivable in various climate zones, soils and regions, and has been proven as 

one of the highest energy biomass sources (Clifton-brown et al., 2004; Hastings 

et al., 2008; Heaton et al., 2008). However, its conversion to biogas is limited 

by hydrolysis because the digestible contents are covered by a sheath of 

recalcitrant lignin (Eliana et al., 2014). Several pre-treatment methods were 

applied in Paper V for improved methane production of Miscanthus and the 

effects of these pre-treatments were evaluated by BMP tests. 

4.1 Physical pre-treatment: size reduction 

Size reduction is one of the physical pre-treatment, and it can improve the 

enzymatic hydrolysis or biodegradability of lignocellulosic biomass by 

increasing the accessible surface area and reducing the crystallinity and degrees 

of polymerization (Taherzadeh & Karimi, 2008). In Paper V, four different sizes 

were evaluated, i.e., 0.5, 5, 10 and 20 mm. The results presented in Figure 7: A 

showed that the particle sizes from 10 mm down to 0.5 mm didn’t lead to a 
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significant difference in methane yield, whereas the methane yield at particle 

size of 20 mm was significantly lower compared to the rest. In addition, size 

reduction improved the methane production rate as evidenced by the increased 

hydrolysis constant (k). 

 

Figure 7. Methane yields of M.lutarioriparius after the various treatments. (A) shows the methane yields of the different 

particle sizes. (B) shows the methane yields of control and steam explosion pre-treated samples. (C) shows the methane yields 

of different particle sizes after acid and alkaline pre-treatments while (D) shows the methane yields of sample 20 mm after 

pre-treatment with increasing concentration of alkaline and acid. SE stands for steam explosion. Reproduced from Paper V. 

4.2 Steam explosion 

Steam explosion (SE) is the most commonly used physio-chemical pre-

treatment for conversion of lignocellulosic biomass to biogas. During SE, the 

biomass is exposed to a pressurised steam and high temperature (typically 

between 160-260℃) for a period ranging from seconds to few minutes, and is 

subsequently subjected to a suddenly reduced pressure (Alvira et al., 2010; Sun 

et al., 2004; Varga et al., 2004). During this pre-treatment, the acetyl groups in 

hemicellulose are hydrolysed at high temperature and generate acetic acid and it 

is therefore a physio-chemical pre-treatment. In addition to partial hydrolysis of 

hemicellulose and solubilisation, the lignin is redistributed and removed in 
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certain ways (Pan et al., 2005). The methane yield was improved by SE as 

shown in Figure 7: A-B, and this result could be explained by better 

accessibility of cellulose for enzymatic hydrolysis caused by the defibrillation 

of cellulose bundles when the pressure was suddenly released (Menardo et al., 

2013). 

4.3 Alkali pre-treatment 

The accessibility of enzymes to cellulose can be efficiently improved by alkali 

pre-treatment using sodium, potassium, calcium and ammonium hydroxide 

solutions, because lignin and a portion of hemicellulose can be removed during 

this pre-treatment (Taherzadeh & Karimi, 2008). Sodium hydroxide (NaOH) 

solution was applied for alkali pre-treatment of Miscanthus in Paper V. The 

results showed that the methane yields of different particle sizes pre-treated by 

0.1 M NaOH were significantly increased, and pre-treatment of 20 mm particle 

by increasing NaOH concentrations higher than 0.05 M also lead to significant 

improvement of the methane yield as shown in Figure 7: A, C and D. Higher 

methane yields were achieved after alkali pre-treatment compared with that of 

acid pre-treatment (Figure 7: C-D). It is possible that the alkali solution is more 

effective in breaking the ester bonds among lignin, hemicellulose and cellulose, 

thereby exposing cellulose and hemicellulose for enzyme attack (Gáspár et al., 

2007; He et al., 2008). 

4.4 Acid pre-treatment 

Almost all of the hemicellulose can be removed and the lignin disrupted by acid 

pre-treatment, and thus the susceptibility of cellulose to enzyme hydrolysis is 

increased (Yang & Wyman, 2004). However, in Paper V, the results showed 

that acid pre-treatment (0.1 M HCl) of different particle sizes resulted in 

significantly lower methane yields (Figure 7: A and C). Moreover, pre-

treatment of 20 mm particles by increasing the concentration of acid led to 

decreased methane yield, and a significantly lower methane yield was obtained 

when the highest acid concentration was applied (Figure 7: A and D). This 

result is likely due to the formation of inhibitors, such as furfural, 

hydroxymethylfurfural, carboxylic acids, etc. at lower pH (Taherzadeh, 1999; 

Taherzadeh & Karimi, 2007). These inhibitors affect the metabolism of 

microorganisms and thereby decrease the methane yield (Saha et al., 2005). 
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5. Concluding Remarks and Future 

Perspectives 

As an attractive technology for both waste treatment and renewable energy 

recovery, AD plays an important role in the sustainable development of society. 

Most organic materials can be degraded under anaerobic conditions to produce 

biogas. However, these materials can significantly differ in their degradation 

rates and methane potentials also might be lack of certain nutrients. All of these 

factors are key parameters for the economy, design and management of a biogas 

plant. Therefore, prior to the AD process, the materials should be fully analysed. 

The BMP test is commonly used to analyse the biodegradability and methane 

potential of organic materials. However, a number of factors can affect the BMP 

test and lead to unreliable and incomparable results. Therefore, better 

knowledge of the optimisation of the experimental conditions is required for 

comparable results from different studies related to the BMP test. 

This PhD study focused on the evaluation of different aspects related to 

standardisation of the BMP test. As an application, the effects of different pre-

treatments for lignocellulosic biomass were evaluated by the BMP test. The 

major findings from this study are summarised below. 

 Manually operated/in-house developed experimental setups are low cost 

and easy to operate, but they are time- and labour-intensive, with a high 

risk of inducing random and human errors. During the BMP test, the 

real-time temperature and pressure at each gas volume measurement 

need to be recorded for data normalisation, and the gas volume should 

be measured continuously to better understand the degradation profile 

of the investigated substrate (Paper I). 

 Inoculum preparation, such as pre-incubation, filtration and storage 

conditions affect the enzyme activity of the inoculum, and thereby 

influence the methane production and degradation kinetics of the 

investigated material. Filtration of inoculum should be avoided to 

prevent the loss of microorganisms. Fresh inoculum is recommended to 

use in BMP test as it shows the highest enzyme activity and methane 

production (Paper II). 
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 Substrate concentration is a key parameter which can influence the 

BMP test results. For the investigated substrate concentrations (2.5-15 g 

VS/L), the methane yield increases with the increasing substrate 

concentration. The dilution liquid used to adjust the substrate 

concentration influences the degradation rate of the substrate (Paper 

III).  

 Mixing has strong effects on BMP test and is required for an efficient 

process if the digester content is viscous. However, mixing is not 

necessary or shake manually once per day might be sufficient during 

the BMP test if the digester content is quite diluted or the substrate is 

easily degraded (Paper IV). 

 Size reduction improves both the methane yield and the degradation 

rate of the investigated lignocellulosic biomass Miscanthus. Acid pre-

treatments lead to lower methane yields, whereas, alkali pre-treatment 

significantly improves the methane yield, and the higher alkaline 

concentration the higher methane yields (Paper V). The effects of pre-

treatment might be varying for different types of feedstock. 

In addition to these findings, many aspects still require further study to optimise 

the conditions for the BMP test. In particular, the influence of the inoculum 

needs to be studied in more depth, and additional research is needed to evaluate 

the influence of substrate concentration on a wider-scale with more types of 

substrates, inocula and experimental conditions. 

In summary, these outcomes should be considered before performing a BMP 

test to ensure reliable and comparable results. 
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