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Abstract. We describe a state recovery attack on the X-FCSR fam-
ily of stream ciphers. In this attack we analyse each block of output
keystream and try to solve for the state. The solver will succeed when
a number of state conditions are satisfied. For X-FCSR-256, our best
attack has a computational complexity of only 2*7 table lookups per
block of keystream, with an expected 2443 such blocks before the at-
tack is successful. The precomputational storage requirement is 233, For
X-FCSR-128, the computational complexity of our best attack is 2*%-3 ta-
ble lookups per block of keystream, where we expect 2°°2 output blocks

before the attack comes through. The precomputational storage require-
ment for X-FCSR-128 is 2°7.

Keywords: stream cipher, FCSR, X-FCSR, cryptanalysis, state recov-
ery

1 Introduction

A common building block in stream ciphers is the Linear Feedback Shift
Register (LFSR). The bit sequence produced by an LFSR has several
cryptographically interesting properties, such as long period, low auto-
correlation and balancedness. LESRs are inherently linear, so additional
building blocks are needed in order to introduce nonlinearity. A Feedback
with Carry Shift Register (FCSR) is an alternative construction, similar
to an LFSR, but with a distinguishing feature, namely that the update of
the register is in itself nonlinear. The idea of using FCSRs to generate se-
quences for cryptographic applications was initially proposed by Klapper
and Goresky in [11].

* The final publication is available at springerlink.com. This is the full version of the
paper An Efficient State Recovery Attack on X-FCSR [14], solicited by the Editors-
in-Chief as one of the best papers from FSE 2009, based on the recommendation of
the program committee.



Recently, we have seen several new constructions based on the concept
of FCSRs. The class of F-FCSRs, Filtered FCSRs, was proposed by Ar-
nault and Berger [1,12]. These constructions were cryptanalyzed in [10],
using a weakness in the initialization function. Also a time/memory trade-
off attack was demonstrated in the same paper.

Another similar construction targeting hardware environments is F-
FCSR-H, which was submitted to the eSTREAM project [6]. F-FCSR-H
was later updated to F-FCSR-H v2 because of a weakness demonstrated
in [9]. F-FCSR-H v2 was one of the four ciphers targeting hardware that
were selected for the final portfolio at the end of the eSTREAM project.
Inspired by the success, Arnault, Berger, Lauradoux and Minier presented
a new construction at Indocrypt 2007, now targeting software implemen-
tations. It is named X-FCSR [4]. The main idea was to use two FCSRs
instead of one, and to also include an additional nonlinear extraction
function inspired by the Rijndael round function. Adding this would al-
low more output bits per register update and thus increase throughput
significantly. Two versions, X-FCSR-256 and X-FCSR-128, were defined
producing 256 and 128 bits per register update, respectively. According
to the specification X-FCSR-256 runs at 6.5 cycles/byte and X-FCSR-128
runs at 8.2 cycles/byte. As this is comparable to the fastest known stream
ciphers, it makes them very interesting in software environments. For the
security of X-FCSR-256 and X-FCSR-128 we note that there have been
no published attacks faster than exhaustive key search.

In [7,8] a new property inside the FCSR was discovered, namely that
the update was sometimes temporarily linear for a number of clocks. This
resulted in a very efficient attack on F-FCSR-H v2 and led to its removal
from the eSTREAM portfolio.

In this paper we present a state recovery attack on the X-FCSR fam-
ily consisting of X-FCSR-128 and X-FCSR-256. We use the observation
in [7,8]. The fact that two registers are used, together with the extrac-
tion function, makes it impossible to immediately use this observation
to break the cipher. However, several additional non-trivial observations
will allow a successful cryptanalysis. The keystream is produced using
state variables 16 time instances apart. By considering consecutive out-
put blocks, and assuming that the update is linear, we are able to partly
remove the dependency of several state variables. A careful analysis of
the extraction function then allows us to treat parts of the state indepen-
dently and brute force these parts separately, leading to an efficient state
recovery attack. It is shown that the X-FCSR-256 state can be recovered

using 243 output keystream blocks and a computational complexity of



247 table lookups per output block on average. Note that table lookup
operations are much cheaper than testing a single key. The correspond-
ing figures for X-FCSR-128 are 2°%2 for the number of output keystream
blocks with a computational effort of 2163 per block.

The paper is organized as follows. In Section 2 we give an overview
of the FCSR construction in general and the X-FCSR-128 and X-FCSR-
256 stream ciphers in particular. In Section 3 we describe the different
parts of the attack. Each part of the attack is described in a separate
subsection and in order to simplify the description we will deliberately
base the attack on assumptions and methods that are not optimal for the
cryptanalyst. Then, additional observations and more efficient algorithms
are discussed in Section 4, leading to a more efficient attack. Finally, some
concluding remarks are given in Section 8.

2 Background

This section will review the necessary prerequisites for understanding the
details of the attack. FCSRs are presented separately as they are used
as core components of the X-FCSR-256 stream cipher. The X-FCSR-
256 stream cipher itself is outlined in sufficient detail for understanding
the presented attack. For remaining details, the reader is referred to the
specification [4].

2.1 Recalling the FCSR Automaton

An FCSR is a device that computes the binary expansion of a 2-adic
number p/q, where p and ¢ are some integers, with ¢ odd. For simplicity
one may assume that ¢ < 0 < p < |¢|. Following the notation from [2], the
size n of the FCSR is the bitlength of |¢| less one. In FCSR-based ciphers,
p usually depends on the secret key and the initialization vector (IV),
and ¢ is a public parameter. The choice of ¢ induces a number of FCSR
properties, the most important one being that it completely determines
the length of the period T' of the keystream.

The FCSR automaton as described in [2] efficiently implements the
generation of a 2-adic expansion sequence. It contains two registers, a
main register M and a carries register C'. The main register M contains n
cells. Let M = (mp—1,mp_2,...,m1,mp) and associate M to the integer
M=3""tm; 2

Let the binary representation of the positive integer d = (1 + |g¢|)/2
be given by d = Z?:_ol d; - 2°. The carries register contains [ active cells,



[ 4+ 1 being the number of nonzero binary digits d; in d. The active carry
cells are the ones in the interval 0 < ¢ < n — 2 for which d; = 1, and d,,_1
must always be set.

Write the carries register as C' = (¢,—2,Cp—3, - - ., 1, ¢o) and associate
it to the integer C = Z?;OZ c; - 2°. Note that [ of the bits in C' are active
and the remaining ones are set to zero.

Representing the integer p as Z?:_(]l p; - 2¢ where p; € {0,1}, the 2-
adic expansion of the number p/q is computed by the automaton given
in Fig. 1.
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Fig. 1. Automaton computing the 2-adic expansion of p/q.

The automaton is referred to as the Galois representation and it is
very similar to the Galois representation of an LFSR. For all defined
variables we also introduce a time index ¢, letting M (¢) and C(t) denote
the content of M and C' at time t, respectively.

The addition with carry operation, denoted H in Fig. 1, has a one
bit memory, the carry. It operates on three inputs in total, two external
inputs and the carry bit. It outputs the XOR of the external inputs and
sets the new carry value to one if and only if the integer sum of all three
inputs is two or three.

In Fig. 2 we specifically illustrate (following [2]) the case ¢ = —347,
which gives us d = 174 = (10101110)pinary-

The X-FCSR family of stream ciphers uses two FCSR, automatons at
the core of their construction. For the purposes of this paper it is sufficient
to recall the FCSR automaton as implemented in Fig. 1 and Fig. 2.

The FCSR automaton has n bits of memory in the main register and
[ bits in the carries register for a total of n+1 bits. If (M, C) is our state,
then many states are equivalent in the sense that starting in equivalent
states will produce the same output. As the period is |¢| — 1 ~ 2", the
number of states equivalent to a given state is in the order of 2.
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Fig. 2. Example of an FCSR.

2.2 Brief Summary of X-FCSR Prerequisites

X-FCSR-128 and X-FCSR-256 both admit a secret key of 128-bit length
and a public IV of bitlength ranging from 64 to 128 as input. The core
of the X-FCSR stream ciphers consists of two 256-bit FCSRs with main
registers Y and Z which are clocked in opposite directions.

Y(t) = (yt—2557 ey Yt—25,Yt—1, yt>7 ClOCked —
Z(t) = (244255, - - - » 2442, Zt+1, 2t), clocked —
At each discrete time instance t, Y and Z are used to form a 256-bit block
X (t) according to
Xt)=Y(t)® Z(t),

where @ denotes bitwise XOR, so that

X(0) = (y—255 ® 2255, - - -, Yy—2 B 22,Y—1 ® 21, Yo D 20),
X(1) = (y—254 ® 2256, - - -, Yy—1 D 23,40 D 22,y1 D 21),
X (2) = (y—253 D 2257, - - -, Yo D 24, y1 D 23, y2 @ 22),

X-FCSR-128 and X-FCSR-256 are identical up to this point, but they
differ in the extraction function. Let us concentrate on X-FCSR-256 for
a while. X (¢) is used as input to the extraction function. We define

W(t) = round256 (X(t)) = mix256(sr256(sl256 (X(t))), (1)
where slosg, Sross and mixrosg mimic the general structure of the AES
round function;

sl is an s-box function applied at byte level,

sr is a row-shifting function operating on bytes,

max is a column mixing function operating on bytes.



The X-FCSR-256 round function operates on a 256-bit input, as defined
in (1). The general idea behind the round function operations becomes
apparent if one considers how the functions operate on the 256-bit input
when it is viewed as a 4 x 8 matrix A at byte level. Let the byte entries
of A be denoted a;; with 0 <7 <3and 0 <5 <7.

The first transformation layer consists of an S-box function sl applied
at byte level. The chosen S-box has a number of attractive properties that
are described in [4].

The second operation shifts the rows of A, and sr is identical to the
row shifting operation of Rijndael. sr shifts (i.e., rotates) each row of A
to the left at byte level, shifting the first, second, third and fourth rows
0, 1, 3 and 4 bytes respectively.

The purpose of the third operation, miz, is to mix the columns of A.
This is also done at byte level according to

aop,j az,j @ ap,; D ay,;
mizesg | “0 | = | 0 D a1 Daz,
az,; ay,j @ az; D as,;
as,; az,j ©as,; ® aop,;

for every column j of A.
Note that sl, sr and mix are all both invertible and byte oriented.
Finally, the 256 bits of keystream that are output at time ¢ are given by

out(t) = X(t) & W(t — 16). (2)

This last equation introduces a time delay of 16 time units. The first
block of keystream is produced at ¢t = 0 and the key schedule takes care
of defining W (t) for ¢t < 0.

X-FCSR-128 has a very similar extraction function, but it operates on
a 128-bit block. If we by X (t) and Xr(t) denote the left and right parts
of X (t) according to X (t) = X (t)||Xr(t) where || denotes concatenation,

form X (t) = X1(t) ® Xgr(t) and similarly define
W (t) = roundyas(X (t)) = mizis(sri2s(slias(X (1)), (3)
and

out(t) = X(t) ® W(t — 16) (4)

for X-FCSR-128. Now view the 128-bit block as a 4 x 4 matrix at byte
level. sriag shifts the first, second, third and fourth rows by 0, 1, 2 and



3 bytes respectively, and the corresponding mix function uses the same
matrix as above, but now with only four columns.

Throughout this paper we will use X-FCSR-256 as our basic case to
show how the attack works in full detail. In Section 6 we show how to
adapt the attack to X-FCSR-128.

3 Describing the Attack

3.1 Idea of Attack

A conceptual basis for understanding the attack is obtained by dividing
it into the four parts listed below. Each part has been attributed its own
section.

LFSRization of FCSRs
Combining Output Blocks
Analytical Unwinding
Solving for the State

In Section 3.2 we describe a trick we call “LFSRization of FCSRs”. We
explain how an observation in [7, 8] can be used to allow treating FCSRs
as LFSRs. There is a price to pay for introducing this simplification, of
course, but the penalty is not as severe as one may expect.

We observe that we can combine a number of consecutive output
blocks to effectively remove most of the dependency on X (¢) introduced
in (2). The LFSRization process works in our favor here as it provides a
linear relationship between FCSR variables. Output block combination is
explored in Section 3.3.

Once a suitable combination @ of output blocks is defined, state re-
covery is the next step. This is done in two parts. In Section 3.4 we explain
how to work with @) analytically to transform its constituent parts into
something that will get us closer to the state representation. As it turns
out, we can do quite a bit here. Finally, we find that the state can be
divided into several almost independent parts that can be treated sepa-
rately. This is described in Section 3.5.

3.2 LFSRization of FCSRs

As mentioned above, an observation in [7, 8] provides a way of justifying
the validity in treating FCSRs as LFSRs, and does so at a very reasonable
cost. We call this process LFSRization of FCSRs, or simply LFSRization



when there is no confusion as to what is being treated as an LFSR. There
are two parts to the process, a flush phase and a linearity phase.

The observation is simply that a zero feedback bit in the Galois imple-
mentation of an FCSR, see Fig.2, causes the contents of the carry registers
to change in a very predictable way. Adopting a statistical view and as-
suming independent events is helpful here. Assuming a zero feedback bit,
carry registers containing zeros will not change, they will remain zero.
The carry registers containing ones are a different matter, though. A one
bit will change to a zero bit with probability % In essence this means
that one single zero feedback bit will cut the number of ones in the carry
registers roughly in half.

The natural continuation of this observation is that a sufficient amount
of consecutive zero feedback bits will eventually flush the carry registers
so that they contain only zeros. On average, roughly half of the carry
registers contain ones to start with, so an FCSR with N active carry
registers requires roughly lg % + 1 zero feedback bits to flush the ones
away with probability % By expected value we therefore require roughly
lg % + 2 zero feedback bits to flush a register completely. For the X-FCSR
family we have N = 210, indicating that we need no more than nine zero
feedback bits to flush a register.

After the flush phase, a register is ready to act as an LFSR. In order
to take advantage of this state we need to maintain a linearity phase in
which we keep having zero feedback bits fed for a sufficiently long dura-
tion of time. As we will see from upcoming arguments, we will in principle
require the linearity property for two separate sets of five consecutive zero
feedback bits, with the two sets being sixteen time units apart. We will
need the FCSRs to act as LFSRs during this time, so our base require-
ment consists of two smaller LFSRizations, each requiring roughly 9 + 5
bits for flush and linearity phase respectively. The probability of the two
smaller LFSRizations occurring in both registers Y and Z simultaneously
is 274(9+5) = 2-56 Ty other words, our particular LFSRization condition
appears once in about 2% output blocks.

A real-life deviation from the theoretical flush reasoning was noted
in [7, 8]. We cannot flush the carry register entirely as the last active carry
bit will tend to one instead of zero. As further noted in [7, 8], flushing all
but the last carry bit does not cause a problem in practice. Consider the
linearized FCSR in Fig. 3, it produces a maximal number of zero feedback
bits for an FCSR of its size.

In simulations and analytical work we must compensate for this effect,
of course, but the theoretical reasoning to follow remains valid as we



2
~
~
o
o
o
o
o
o
—
o

e
T
Y

—_

—_
o
P——

[y
o T——

Fig. 3. Maximally linearized FCSR outputting zero feedback bits.

allow ourselves to treat FCSRs as simple LFSRs. The interested reader
is referred to [7, 8] for details on this part.

Furthermore, assumptions of independence are not entirely realistic.
Although the theoretical reasoning above is included mainly for reasons
of completeness, simulations show that we are not far from the truth,
effectively providing some degree of validation for the theory. Our sim-
ulations show that we have about 2280 for the Y register and 2260 for
Z for a total of at most 2°4? expected output blocks for LFSRization in
X-FCSR in the basic setting made explicit below.

Our requirements for the basic attack are summarized as follows. At
some specific time instance we require the carry registers of Y and Z
to be completely flushed except for the last bit. Here we also require
the tails of the main registers to contain the bit sequence ...11100 as
in Fig. 3 to guarantee at least five consecutive zero feedback bits for the
five upcoming time instances. Sixteen time instances later we require this
set-up to appear once again. In each flush-set, the five upcoming zero
feedback bits ensure that the main registers remain linear.

R1 At time t — 16, the carry registers of Y are completely flushed
except for the last bit.

R2 At least 5 consecutive zero feedback bits are output starting
from time ¢t — 16.

R3 At time ¢, the carry registers of Y are completely flushed except
for the last bit.

R4 At least 5 consecutive zero feedback bits are output starting
from time ¢.

Fig. 4. Requirements for the Y register.



In Fig. 4 we explicitly list the requirements for the Y register, with
the requirements for the Z register defined correspondingly.

The X-FCSR family members output a block of keystream at each
clocking, 128 and 256 bits for X-FCSR-128 and X-FCSR-256, respectively.
Let COSTyeystream denote the required number of such output blocks (or
clockings) for an attack to come through. To be fair and accurate we will
use the simulation values, which puts us at

COSTk’eystream < 254.0

for the basic attack scenario with requirements R1-R4. Later, in Sec-
tions 5.1 and 5.2, we will minimize keystream by relaxing requirements
R2 and R4 to only three consecutive zero feedback bits, and in Section 5.3
we use a symmetry observation for a reduced keystream complexity of

COSTkeystream < 244'3 .

3.3 Combining Output Blocks

The principal reason for combining consecutive output blocks is to obtain
a set of data that is easier to analyze and work with, ultimately leading
to a less complicated way to reconstruct the cipher state. Remember
that we now treat the two FCSRs as LFSRs with the properties given in
Section 3.2.

The main observation is that the modest and regular clocking of the
two main registers provides the following equality:

X))@ [X(t+1) <@ [X(t+1)>1]@X(t+2) = (%,0,0,...,0,%)
(5)

The shifting operations < and > on the left hand side denote shifting
of the corresponding 256-bit block left and right, respectively. From this
point onward we discard bits that fall over the edge of the 256 bit blocks,
and we do so without loss of generality or other such severe penalties.
The right hand side is then the zero vector!, with the possible exception
of the first and last bits which are undetermined (and denoted %). Define

OUT(t) = out(t) @ [out(t + 1) < 1] @ [out(t + 1) > 1] @ out(t +2) (6)

! Recall that we ignore the effects of the last carry bit being one instead of zero, as
explained in Section 3.2. The arguments below are valid as long as adjustments are
made accordingly.



in the corresponding way. We have

OUT(t) =
X Xt+) <@ [X(t+1)>1]dX(t+2)®
W(t—16)® [W(t—15) < 1)@ [W(t—15) > 1] ¢ W(t — 14)

(%,0,0,...,0,%) ®
W(t—16) @ [W(t—15) < 1] @ [W(t—15) > 1] e W(t — 14)

W(t—16) @ [W(t—15) < 1] @ [W(t—15) > 1] @& W(t — 14),
(7)

where =~ denotes bitwise equality except for the peripheral bits. This
expression allows us to relate keystream bits to bits inside the generator
that are just a few time instances apart. This will turn out to be very
useful when recovering the state of the FCSRs. In order to further unwind
Eq. (7) we need to take a closer look at the constituent parts of W, namely
the round function operations si, sr and miz.

3.4 Analytical Unwinding

Reviewing the round function operations from Section 2.2, recall that all
of the operations are invertible and byte oriented. We can also see that
the operations miz, sr and their inverses are linear over &, such that

miz(A® B) = miz(A) ® mix(B),
sr(A® B) = sr(A) @ sr(B).

Obviously, sl does not harbor the linear property. So, in order to
unwind (7) as much as possible, we would now ideally like to apply miz~—*
and sr~! in that order. Let us begin with focusing on the mix operation.

The linearity of mix over @ is the first ingredient we need as it allows
us to apply miz~! to each of the W terms separately. The shifting does,
however, cause us some problems since

miz ™ (W (t) < 1) # miz™ ! (W(t)) < 1.

Therefore miz~! cannot be applied directly in this way, but realizing

that miz ! is a byte-oriented operation, it is clear that the equality holds



if one restricts comparison to every bit position except the first and last
bit of every byte. This is easy to realize if one considers the origin and
destination byte of the six middlemost bits as miz~! is applied. One single
bit shift does not affect the destination byte of these bits. Furthermore, a
peripheral bit that is shifted out of its byte position is mapped to another
peripheral bit position. We therefore have

miz~ (OUT(t)) = sr (sl (X(t —16)))®
[sr(sl(X(t—15)))<1]a®
[sr(sl(X(t—15)))>1]a®
sr(sl(X(t—14))),

where = denotes equality with respect to the six middlemost bits of each
byte. The same arguments apply to sr~!, so we define

Q) =sr! (mix_l (OUT(t))) (8)
to obtain
Q)= sl(X(t—16))®
[sl(X(t—15) < 1] @
[sl(X(t—15)>1]®
sl(X(t—14)).

Loosely put, we can essentially bypass the effects of the mix and sr
operations by ignoring the peripheral bits of each byte.

We have combined consecutive keystream blocks out(t) into @ in hope
of @ being easier to analyze than out(t). As our expression for @) involves
only X and sl, let’s see how and at what cost we can brute-force () and
solve for Y and Z.

3.5 Solving for the State

In this section we outline the state recovery step. We proceed in a divide-
and-conquer fashion by dividing the state into several almost independent
parts and treat each part separately by solving a related equation system.

State solving can most easily be understood by focusing on one specific
byte position in Q(t). Given the, say, seventh byte in Q(¢), how can we
uniquely reconstruct the corresponding parts of Y and Z7 Let us first
figure out which bits one needs from Y (¢ — 16) and Z(¢ — 16) in order to



be able to calculate the given byte in Q(¢). Note that this step is possible
only because of the LFSRization described in Section 3.2.

Consider the first part of expression (8): sl (X (¢t — 16)). Since sl is an
S-box function that operates on bytes, we need to know the full corre-
sponding byte from X (¢ — 16). Those eight bits are derived from eight
bits in each of Y and Z, totaling 16 bits, as shown in the left column of

Fig. 5.
Y (t — 16) Y (t — 16) Y (t — 16)
Z(t — 16) Z(t — 16) Z(t — 16)
Y (t—15) Y (t—15)
Z(t — 15) Z(t —15)
Y (t—14)
Z(t — 14)
X(t — 16) X(t - 15) X(t - 14)
Q)

Fig. 5. Bit usage for one byte in Q(t).

The next parts of (8) involves sl(X(t — 15)). The same reasoning
applies here, we need to know the full corresponding byte of X (¢ —15) in
order to be able to calculate this S-box value. But, since the main registers
act like LFSRs, most of the bits we need from Y and Z for X (¢t — 15)

have already been employed for X (¢t — 16) previously. Since the two main



registers are clocked only one step at each time instance, only two more
bits are needed, one from Y and one from Z. This is illustrated by the
middle column of Fig. 5. We count 18 bits in Y and Z so far.

In the same vein, two more bits are needed from Y and Z to calculate
sl(X (t — 14)), illustrated in the remaining part of Fig. 5. This brings the
total up to 20 bits. All in all, for one byte position in Q(t) we have total
bit usage as shown in Fig. 6.

Y (t — 16)
Z(t — 16)
Q(1)

Fig. 6. Bit usage in Q(t).

So, 10 bits in Y (¢ — 16) and 10 bits in Z(t — 16) is what we require
to be able to calculate one specific byte position in Q(t). By restricting
our attention to the six middlemost bits of each byte in (Q we accomplish
two objectives; we effectively reduce the number of unknown bits we are
dealing with in Y and Z, and we simplify the expression for calculating
the byte in @) by safely reducing the effects of the shifting operation.
Specifically, shifting one bit left or right does not bring neighboring bytes
into play.

Focusing on one single byte position gives us six equations, one for
each of the six middlemost bits, and 20 unsolved variables, one for each bit
position in Y and Z. This amounts to an underdetermined system, but we
can easily add more equations by having a look at the same byte position
in Q(t+1). The six middle bits of that byte give us six new equations at
the cost of introducing a few new variables. To see how many, we must
perform the analysis for Q(¢ + 1) corresponding to Fig. 5. The total bit
usage for one byte position in Q(¢ + 1) in terms of bits in Y'(¢ — 16) and
Z(t —16) is given in Fig. 7.

From this we see that the six new equations have the downside of
introducing two new variables. In total we therefore have 12 equations
and 22 variables after including Q(¢ + 1), and 18 equations and 24 vari-



Y (t — 16)
Z(t — 16)
Qt+1)

Fig. 7. Bit usage in Q(¢ + 1).

ables after including Q(¢ + 2). The corresponding bit usage for our three
consecutive @’s in terms of bits in Y (¢ — 16) and Z(¢ — 16) is illustrated
in Fig. 8.

Y (t— 16)
Z(t — 16)
Q(i)

Fig. 8. Total bit usage for Q(i), t < <t +2.

When solving one byte position in @ we essentially recover 24 bits. If
we scan () from left to right, solving the corresponding system for each
byte, we can reuse quite many of these bits. Instead of solving for 24, we
need only solve for 16 as the remaining 8 have already been determined.
Thus, we actually have an overdetermined system with 18 equations and
16 variables. This is illustrated in Fig. 9.

Reusing bits in this way works fine for all byte positions except the
first one. For the first byte position we don’t have any prior solution to
lean back on, so at first glance it seems that this system is larger and thus
more expensive to solve. In Section 4 we will explain what the first and
last byte position systems look like in more detail, and we will see how
to use the LFSRization assumption to reduce the system complexity in
these cases.



Y (t — 16)
Z(t — 16)
Q(t)

Fig. 9. Reusing bits when solving for Q(t).

As it turns out, the middle byte systems are largest in terms of un-
solved bits, which will dominate the worst-case cost of the equation solv-
ing part. Let COSTgoper denote the required number of variable assign-
ments that must be tested for an attack to come through. Employing bit
reuse, the worst-case cost for the solving part becomes

COSTspper < 32 x 216 = 221,

This concludes the principles of the basic attack, in which we have
assumed availability of four separate sets of five consecutive zero feedback
bits as described in Section 3.2. The only thing that remains is to calculate
the solving complexity more rigorously. Using precomputed lookup tables
and considering the expected-case complexity, we can significantly lower
the cost for equation solving. This is what we will do in the following
sections.

4 The Anatomy of Equation Solving

In our attack scenario we wait for the first opportunity in which our
keystream fulfills the requirements given in Fig. 4. For every block of
keystream that is output, we try to solve for the state. Most times we
fail, but our solver will find a solution when the requirements R1-R4
have been met for registers Y and Z. Therefore, the average cost is more
interesting from a practical perspective, so this is what we will compute
next.

In Section 4.1 we warm up by finding the cost when precomputation
is disallowed. In Section 4.2 we analyze the precomputation case, which
concludes the basic attack on X-FCSR-256. We start by taking a closer
look at the equation systems at different byte positions.



4.1 Equation Solving

Restating Eq. (9), one may view the equation solving game as solving for
the state at time ¢ — 16 given output at time ¢.

OUT(t) =
XHoXt+) <o [X(t+1)> 1] X(t+2)
W(it—16) @ [W(t—15) < 1| @ [W(t—15) > 1] ¢ W(t — 14)

(%,0,0,...,0,%) ®
W(t—16)@ [W(t—-15) < 1@ [W(t—15) > 1] W(t — 14)
(9)

When solving for the state without precomputation, what we do in prac-
tice is to run through all unknown bits in Y (¢ — 16) and Z(t — 16) to see
if we can find a configuration that produces the expected output. We do
this byte by byte from left to right in the Y and Z registers for efficiency.
Three byte position cases need to be considered; first, middle and last.
The simplest case, the middle byte position case, is depicted in Fig. 10.

Y (t— 16)

Z(t — 16)

Fig. 10. Equation system at middle byte position.

We saw this system in Fig. 9 before. The grayed bits are the ones
we can reuse from solving the equation system from the preceding byte
position, leaving 16 bits unsolved. Feedback bits do not affect the equation
systems at middle byte position.

The equation system for the first byte position is shown in Fig. 11.

As before, we have 24 variables and 18 equations. One difference is
that 4 of the variables are new, having just entered the Z register. Another
difference is that we cannot reuse variables from a prior solution. On the
other hand we can use assumption R2. The last 5 bits of Y are known
(00111), and the 4 bits entering Z are all zero.



Y (t — 16) 00111

Z(t —16) [0000

Fig. 11. Equation system at first byte position.

Thus, for the first byte position system, 9 of the 24 bits are predeter-
mined, leaving 15 bits unsolved.

The equation system at the last byte position mirrors that of the first,
except that the bits from the previous byte position system are also given.

(_
Y (t — 16) REeE
Z(t — 16) 111100

—

Fig. 12. Equation system at last byte position.

Thus, for the last byte position system, 17 of the 24 bits are prede-
termined, leaving only 7 bits unsolved (Fig.12).

The amortized cost for attempting to solve for the entire state is then
given by considering the relative frequencies of solving attempts per byte
position. We process the byte positions from left to right in the natural
way.

Using verification of Eq. (9) as unit, the expected® cost for recovering
the state is given by

15 1 16 216 10 216 27 15.5
COSTso1per =2 +§ +T+472+...+479+E < 2707,

2 Tt is also possible to reduce the size of the first equation system even further by using
the zero feedback bits from the flush phase. That approach does produce a significant
saving to, for example, COSTsorver < 28 for eight flush-bits. As the number of bits
needed to flush the carry register is unknown, this assumption may be false, leading
to more keystream before the state can be recovered.



The factor % is derived from the fact that we have 15 variables and 18
equations for the first byte position system. For the middle byte position
systems we have 16 variables and 18 equations, producing the factor %

above.

4.2 Equation Solving With Precomputation

The amortized cost for attempting to solve for the entire state using
precomputation is, similarly, given by considering the relative frequencies
of lookups per byte position. Instead of solving an equation system at
each step, we look the answer up in a table. Letting COSTyyer denote
the average number of required table lookups for a keystream block to be
fully analyzed, we have

1 11 | 0
COSTsolver:1+8(1+4+42+---+430><2 .

Total computational complexity, i.e., the total number of table lookups,
is given by
COST = COSTkeystream X COSTsol’Uer‘

To see how the corresponding tables are constructed, consider Eq. (8)
once more. We have 24 Y and Z variables that are combined into 18 @
values. As a conceptual starting point, make an auxiliary table A contain-
ing the corresponding @ values for all 224 variable configurations. That
is, table A has 224 entries, each containing an 18-bit value.

The equation system for the first byte position has only 15 of the 24 Y
and Z variables undetermined. Filtering out the corresponding 2'° entries
from table A and making a reverse lookup hash table will do the trick.
The hash table will be indexed on, at most, 2'° 18-bit Q values, and the
entries will be the corresponding variable assignment (15 bits) for Y and
Z.

For the middle byte position systems we correspondingly populate a
hash table indexed on the 18-bit @) values and the eight known and reused
variables. This table will contain 224 entries, as we will use all of table A.
Each entry will state the corresponding variable assignment (16 bits) for
Y and Z.

Although it seems to be possible to use the table for the first byte
position system for the last byte position by mirroring, this opportunity
is destroyed by our upcoming minimizations of keystream requirements.
Therefore, for the last byte position systems we construct a hash table



indexed on the 18-bit ) values and the eight known and reused vari-
ables. This table will contain 2'® entries, where each entry represents the
corresponding variable assignment (7 bits) for Y and Z.

In total, no more than 2%° table entries are needed, and each table
entry fits well within a 32-bit word. The above numbers are possible to
obtain in practice by employing, for example, cuckoo hashing (see [13]),
which offers practical O(1) lookups and amortized O(1) insertions with
O(n) storage (all constants small).

This concludes the basic attack on X-FCSR-256 for which we have

COSTkeystream < 254.0

and
COSTsoiper < 23

with 225 precomputational storage. These numbers assume 5 feedback
bits as described by the requirements stated in Fig. 4.

In the next section, our aim is to reduce the amount of required
keystream.

5 Reducing Keystream

We go on to reduce the keystream requirements by increasing the amount
of equation solving. This is done in two steps. In Section 5.1 we see how the
zero vector compensation from Eq. (7) can be modified to allow for a faster
state recovery. The corresponding effort is then applied to the equation
solving part, which will reduce the required keystream even further. This
is examined in Section 5.2.

5.1 Zero Vector Compensation

We will now take a closer look at requirements R3 and R4 from Fig. 4.
Referring to Eq. (9) once more, one can see that the purpose of R3 and
R4 is to make way for the X’s to cancel out properly according to Eq. (5).
Requirement R4 for the Y register dictates the behavior at one end of the
vector, and that of the Z register controls the other.

If we relax R4 from at least five consecutive zero feedback bits to pre-
cisely four, that fifth one feedback bit prohibits the X’s from canceling
out entirely. We can cope with this anomaly by compensating for such a
non-null aggregate of the X’s in Eq. (9). The important issue is that we
are in control of the resulting changes. As noted in Section 3.2, at least



five consecutive zero feedback bits forces the tails of the main registers
to contain the bit sequence ...11100 as in Fig. 3. To handle the case
with precisely four consecutive zero feedback bits, one must compute the
corresponding zero vector® for the five-bit tail ...01100 and compensate
accordingly. Solving for the state in the case with precisely four consecu-
tive zero feedback bits amounts to solving a very similar equation system
for the first and last byte position.

It is the tail of the Y register that determines the left end of the zero
vector. The tail of the Z register determines the right end. It seems at first
that we need to quadruple the computation to solve for all four variants.
Taking the relative frequencies into account, the last byte position system
is very cheap to solve. In fact, it comes almost for free. The modified cost
for the case when we relax R4 to at least four consecutive zero feedback
bits is

C’OSTsolveT:2<1+é <1+i+412+...+4§9+4§0>> < 2!,
To support our new solver we also need two new tables. These are the
same size as the previous ones for the first and last byte position. The total
space requirement therefore remains at at most 22° table entries, since the
storage requirement for the middle byte position systems dominates.

We take the procedure one step further and relax R4 to only three
consecutive zero feedback bits. This time we run into a complication. The
bad news is that we get a one feedback bit for the last of the five output
blocks. This triggers an additional summation at all carry cell positions,
effectively pushing several ones into the carry vector. The problem with
this is that the LFSRization effect is ruined, so we cannot hope to push
the process even further to relax R4 to only two consecutive zero feed-
back bits. For the three-case, however, we can still calculate a zero vector
compensation and proceed as above.

Another positive note is that we do not need to consider both tail
cases when we consider three consecutive feedback bits. We have cov-
ered the four-or-more case above with five-bit tails, and it remains to
treat the precisely-three case. The tails of the registers must contain the
bit sequence ...00100 or ...10100, when compared to Fig. 3. Both tail
sequences lead to the exact same zero vector compensation, so we only
need to consider the 4-bit tail ...0100. In terms of equation solving, this
means that we have one less known variable for the first and last byte

3 The term zero vector may seem a little out of place as the vector is not all-zeros,
but we appeal to the readers’ idealizingly Platoesque nature.



position systems. But the storage requirements are, as before, dominated
by the middle byte position systems, so we may disregard the sizes of
the first and last byte position systems. We cannot, however, disregard
the equation system differences at the different middle byte positions, the
differences imposed by the last feedback bit setting the many carries. The
sizes of the systems remain the same, but we now have 30 different middle
byte position systems, which increases memory usage for precomputation
by a factor 2°.

To summarize, we can recover the state also when R4 is relaxed to
three or more consecutive zero feedback bits. The three different tails and
the possibility of the one feedback bit setting the many carries together
generate six different equation systems for the first and last byte position.
For the middle bytes there are four different systems. It is possible to
recover the entire state with an expected

1 1 1 1 6 2.9
COST501U6T<6<1+8<1+4+42+...+429+430)> <2

table lookups into a precomputational storage of at most 239 table entries.

The interested reader is referred to [7,8], in which a similar situation is
discussed.

Table lookups for the first byte position are most expensive as they
occur most frequently. We may optimize the solver by merging all first
byte position system tables. The cost of recovering the entire state is then
reduced to

6 1 1 1
COSTsolW<1+8<1+4+42+...++><21'1

without increasing the storage requirements.

5.2 A Second Requirement Relaxation

Having relaxed requirement R4 to three consecutive zero feedback bits, we
now turn the attention to requirement R2. Can we use the corresponding
technique to relax R2 to at least three consecutive zero feedback bits?
This question is answered in the affirmative, and the corresponding cost
of recovering the entire state is then

62 11 1 62 29
COSTsolW<1+§ 1+Z+?+”'+479+@ < 2%,

when both R2 and R4 are simultaneously relaxed. As before, the possible
Z register tails at last byte position are solved for at virtually no cost.



The formula above indicates that we can treat the possible endings in
each register as a separate system and create a separate table for each.
For the middle byte position there are, as before, four different systems.
The size of the systems at middle byte position dominates the storage
requirements. We double our previous storage estimate to at most 23!
table entries.

5.3 Feedback Ones - A Symmetry Case

It is also possible to shorten the keystream requirement further by consid-
ering the symmetry case of several consecutive one feedback bits. Analo-
gously to Fig. 3, a maximally linear FCSR outputting one feedback bits
is given in Fig. 13.

cit) o 0 1 0 1 1 0 0
M(t) T 00 Q 0 >0 Q 0 Q 0 JéL 1 1 .
d 1 0 1 0 1 1 1 0

Fig. 13. Maximally linearized FCSR outputting 'one’ feedback bits.

In the original case with zero feedbacks, we wait for the carries to
be flushed in order for the FCSR to act linearly. In the conjugate case
with one feedbacks, the same linear behavior appears when we have ac-
cumulated ones in the carries. Reviewing the entire methodology for the
zero feedback case, one can see that the corresponding arguments and
techniques hold when we are facing one feedback bits as well. The only
practical difference is that we alter the constants in the equation systems
we are solving.

Instead of requiring simultaneous LFSRization with zero feedbacks
in both Y and Z registers, we can relax our requirement to simultaneous
LFSRization with zero or one feedbacks in each of Y and Z. Thus, by qua-
drupling the precomputational storage requirements and increasing the
computational effort, we may reduce the amount of required keystream
to one quarter using this additional observation.



To summarize again, with requirements R2 and R4 relaxed to at least
three zero feedback bits and exploiting the symmetry ones-case, we obtain

COSTkeystream < 244.3

with

462 11 1 4.62 e
COSTsoiper <1+ 3 <1+4+42+...+429+ 430><2

using precomputational storage of size 233.

This is our best result, both for minimizing the keystream requirement
of the attack and for minimizing the total number of table lookups for
recovering the state. The various costs are shown in Table 1.

Table 1. Costs for the X-FCSR-256 attack.

‘ Keystream‘ Solver‘ Storage

Basic attack w/o tables 2710 2155
Basic attack w/ tables 2540 203 | 2%
Reduced keystream attack Sections 5.1-5.3 9443 247 233

6 X-FCSR-128

The LFSRization process is identical for both variants of X-FCSR, as is
the analytical unwinding, leaving only the equation solving parts to be
considered. In Eq.(3) we can see that the 256-bit entity X (¢) is “folded”
to produce a 128-bit result for X-FCSR-128. In effect, more state bits
are condensed into one byte position of ) as analyzed in Section 3.5.
This affects cost in a negative way, actually making the attack more
expensive for X-FCSR-128. We are forced to solve larger equation systems
to recover the state, so we therefore need more @Js to increase the number
of equations. The equation system for the first byte position is illustrated
in Fig. 14 for the case when six Qs are used.

This system is the largest with its 45 unknown variables. As before,
the time complexity of state recovery is largely determined by the size of
the middle byte position system. Regardless of how many Qs we use, this
system has 32 unknown variables as depicted in Fig. 15.



Y (t — 16) 0011112}t

Z(t—16) 000000

— L

Y (t — 16)

Z(t — 16)

Fig. 15. Equation system at middle byte position (6 Qs).

Note that the six Qs induce 36 equations, leaving the first byte posi-
tion system underdetermined by a factor 22, and the middle byte position
systems overdetermined by a factor 16. The corresponding third byte po-
sition system is not illustrated, but it has 17 unsolved variables. Solving
for the state without precomputation (compare to Eq. (4.1)) therefore
costs

45 9 (32, 2% 5 2% 7 45.1
COSTSOlver:2 +2 <2 +16+162++1613+1614><2 -,
where the factors 2° and 1—16 are derived from the over- and underdeter-
minedness of the respective systems.
The time complexity of recovering the state using six (s with precom-
putation is given by

OOSTsolver:1+29 <1+116+1162++16113+16114> <29.1
in the basic setting with no relaxation of requirements R2 and R4. The
precomputational storage is now 20, again dominated by the middle byte
position system.

We minimize COSTjeystream by using six @s. With requirements R2
and R4 relaxed to at least three zero feedback bits and exploiting the



symmetry ones-case, we obtain

COSTkeystr@am < 255.2

with

1 1 1 462
_ 2 9 16.3
COSTsotper = 1+4-6%-2 (1+16+162+...+1613+1614> <2

267

using precomputational storage of size 2°’. The corresponding cost table

for X-FCSR-128 is given in Table 2.

Table 2. Costs for the X-FCSR-128 attack.

|Keystream|Solver|Storage

Basic attack w/o tables 2640 2751
Basic attack w/ tables 2640 291 200
Reduced keystream attack Sections 5.1-5.3 255-2 2163 267

7 Summing Up the Attack

The results have been verified with simulations. Specifically, for X-FCSR-
256 we have successfully recovered the entire state for all variations on
the requirement set {R1,R2,R3,R4} discussed above.

The total cost for state recovery in terms of table lookups is given by

COST = COSTkeystream X COSTsopver-

To summarize, we have COST < 244:3+47 = 2490 for X_.FCSR-256 using
at most 233 table entries of precomputational storage. This attack variant
minimizes both keystream and total complexity. The corresponding cost
for X-FCSR-128 is COST < 25521163 — 2715 yysing at most 257 storage.

A high-level description of the algorithm may be specified as follows.
Recall Q(t) from to Eq.(8). The on-line part of the attack begins by
calculating k consecutive such Q-values, Q(i),t—k+1 < i < t, collectively
denoted Q(-) below. For X-FCSR-256 and X-FCSR-128 we have k =
3 and 6, respectively. Q(-) is then analyzed byte by byte from left to
right. A lookup table set T3 is queried for plausible state configurations
corresponding to the first byte position of Q(-). If solutions exist, we go on



and query table set T» for matching state configurations corresponding
to the second byte position of Q(-), and so on. Two neighboring state
configurations are said to be matching if they have identical variable
assignments for their common variables.

Precomputation:

Create lookup table sets T;, one for each byte position i =
1,2,...,n of Q(-). Each table set T; contains lookup tables for
all the different requirement variations for registers Y and Z dis-
cussed in Sections 4.2 and 5. The tables for the first byte position,
i = 1, may be merged for efficiency.

The algorithm is easily described in terms of depth-first search, if
one views the plausible state configurations as vertices in a tree in which
two vertices are adjacent if and only if they represent matching solutions
at neighboring byte positions. Q(-) corresponds to a forest, the solution
space, in which each solution to the first byte position system generates a
separate tree. A path of length n — 1 in this tree represents a permissible
configuration for the entire state.

State recovery at time t:

1. Compute Q(-) according to Eq.(8).

2. Using the precomputed lookup table sets T; above, perform a
Depth-First Search into the solution space of Q(-).
The state can be recovered if and only if a vertex at depth n
is reached.

8 Concluding Remarks

It is clear that the design of the X-FCSR stream cipher family is not
sufficiently secure. Depending on one’s inclination, it is possible to at-
tribute this insufficiency to the modest clocking of the two FCSRs, the
size or number of FCSRs, how they are combined, the complexity of the
round function or some other issue. All of these factors are parts of the
whole, but the key insight, however, is that it is important not to rely
on the non-linear property of FCSRs too heavily. The LFSRization pro-
cess shows that it is relatively cheap to linearize FCSRs, the cost being
roughly logarithmic in the size of active carry registers.

The attack presented here is not directly applicable to the newer ring-
FCSRs presented in [3]. The desired LFSRization effect is much less likely



to appear in ring-FCSRs since these allow multiple simultaneous feed-
backs. After the publication of [14], new ring-FCSR versions of the F-
FCSR family and X-FCSR-128 were presented in [3] and [5], respectively.
All of these new proposals are unbroken at the time of writing.
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