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The gene expression landscape of breast cancer
is shaped by tumor protein p53 status and
epithelial-mesenchymal transition

Erik Fredlund', Johan Staaf', Juha K Rantala, Olli Kallioniemi®, Ake Borg' and Markus Ringnér'”

Abstract

Introduction: Gene expression data derived from clinical cancer specimens provide an opportunity to characterize
cancer-specific transcriptional programs. Here, we present an analysis delineating a correlation-based gene
expression landscape of breast cancer that identifies modules with strong associations to breast cancer-specific and
general tumor biology.

Methods: Modules of highly connected genes were extracted from a gene co-expression network that was
constructed based on Pearson correlation, and module activities were then calculated using a pathway activity
score. Functional annotations of modules were experimentally validated with an siRNA cell spot microarray system
using the KPL-4 breast cancer cell line, and by using gene expression data from functional studies. Modules were
derived using gene expression data representing 1,608 breast cancer samples and validated in data sets
representing 971 independent breast cancer samples as well as 1,231 samples from other cancer forms.

Results: The initial co-expression network analysis resulted in the characterization of eight tightly regulated gene
modules. Cell cycle genes were divided into two transcriptional programs, and experimental validation using an
SiRNA screen showed different functional roles for these programs during proliferation. The division of the two
programs was found to act as a marker for tumor protein p53 (TP53) gene status in luminal breast cancer, with the
two programs being separated only in luminal tumors with functional p53 (encoded by TP53). Moreover, a module
containing fibroblast and stroma-related genes was highly expressed in fibroblasts, but was also up-regulated by
overexpression of epithelial-mesenchymal transition factors such as transforming growth factor beta 1 (TGF-betal)
and Snail in immortalized human mammary epithelial cells. Strikingly, the stroma transcriptional program related to
less malignant tumors for luminal disease and aggressive lymph node positive disease among basal-like tumors.

Conclusions: We have derived a robust gene expression landscape of breast cancer that reflects known subtypes
as well as heterogeneity within these subtypes. By applying the modules to TP53-mutated samples we shed light
on the biological consequences of non-functional p53 in otherwise low-proliferating luminal breast cancer.
Furthermore, as in the case of the stroma module, we show that the biological and clinical interpretation of a set
of co-regulated genes is subtype-dependent.

Introduction

A large volume of breast cancer gene expression studies
ultimately focus on deriving prognostic and predictive
signatures, a few of which currently are considered for
clinical use [1,2]. However, despite the availability of
compilations of gene sets relating to specific cellular
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states or signaling pathways [3,4], the biological inter-
pretation of large-scale gene expression data often
comes in second place. Extracting cancer-specific signa-
tures with biological relevance from genome-wide
expression data could further our understanding of cen-
tral tumor biological processes, their controlling factors
and might help to delineate therapeutic considerations
for cancer care, as well as the development of novel tar-
geted therapies.

© 2012 Fredlund et al,; licensee BioMed Central Ltd This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.
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Gene expression profiling studies have substantiated
that breast cancer can be divided into distinct disorders;
and four main molecular subtypes have been identified:
basal-like, Human Epidermal Growth Factor Receptor 2
(HER2)-enriched, luminal A and luminal B. Several dif-
ferent classifiers for molecular classification of clinical
breast cancer specimens into these subtypes have been
developed [5-7]. Although these classifiers, when applied
to a group of patients, identify subtypes with similar sur-
vival there is considerable variation between classifiers in
subtype assignments of individual samples [8]. Partly this
variation reflects intra-subtype heterogeneity treated dif-
ferently by different classifiers. One example of classifica-
tion disagreement reflects differences in the separation
into luminal A and B tumors, which mainly depends on
proliferation-related genes with luminal B tumors dis-
playing higher expression of such genes. The gene
expression subtypes are reflected at the DNA copy num-
ber [9,10] and the DNA methylation levels [11,12]. How-
ever, some luminal A tumors have DNA copy number
and methylation patterns similar to luminal B tumors,
and patients with such luminal A tumors have worse out-
come [10,12]. The above observations suggest a subset of
luminal tumors that are clinically challenging despite a
relatively low proliferative rate. Possibly these tumors
share other features with the more aggressive luminal B
subtype, except for high proliferation. Although the
expression-based subtypes are related to different risks of
recurrence and to clinical subtypes defined by measures
of estrogen receptor (ER), HER2 and Ki-67 [5,7,13], it is
clear that the subtypes are heterogeneous in terms of
patient outcome. Consequently, we now begin to see a
second generation of profiling studies aimed at stratifying
molecular or clinical subtypes of breast cancer, based on
the hypothesis that different prognostic or predictive
markers will be needed for different subtypes [14]. Such
studies have, for example, identified immune response
signatures as having prognostic value in more challenging
breast cancer subgroups, such as ER-negative, basal-like,
HER2-positive or grade 3 tumors [15-17]. In addition,
studies refining the subtypes and identifying additional
subtypes are emerging [18,19].

In this study we have, using a computationally simple and
biologically intuitive method, created a breast cancer-
derived gene expression landscape with distinct modules
reflecting central tumor biological themes. Our aim was to
use a large set of tumors to define patterns of gene expres-
sion that can improve the understanding of heterogeneity
within the breast cancer subtypes. Our results show the
breast cancer landscape and its biological interpretation to
be dependent on sample molecular traits and that these
interpretations are conserved across multiple other cancer
forms.
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Materials and methods

Datasets

Gene expression modules were calculated from a dataset
compiled from 10 independent studies, in total repre-
senting 1,608 breast cancer samples hybridized to Affy-
metrix HG-U133A arrays (U133A set; Additional file 1).
The data were MAS5 normalized, mean centered across
assays and samples were classified into molecular sub-
types based on gene expression centroids from Hu et al.
[6] as described [17]. Cross-hybridizing probes, defined
as probes referring to more than one unique Entrez
Gene ID or marked as cross-hybridizing by Affymetrix
(x_at probes), were removed, and features were subse-
quently merged by calculating the mean expression of
probes relating to the same Entrez Gene ID resulting in
12,208 gene-representative transcripts. Distant metasta-
sis-free survival (DMFS) was not available for GSE34:94
and GSE1456 and for these datasets relapse-free survival
was used as a substitute for DMFS in survival analysis
(Additional file 1). Clinical co-variates for the U133A set
are described in Additional file 1. For validation of net-
work modules a second gene expression breast cancer
dataset representing 676 breast cancer samples was
compiled from 12 independent studies performed on
the Affymetrix HG-U133Plus2 platform (MAS5 normal-
ized; Additional file 1). In addition, the NKI breast can-
cer dataset of 295 samples, representing an independent
array technology, was used (Additional file 1). Addi-
tional datasets representing colon, ovarian, lung and
bladder cancer, melanoma, diffuse large B-cell lym-
phoma and acute myeloid lymphoma are described in
Additional file 2. For U133Plus2, data probes overlap-
ping with the U133A platform were selected and expres-
sion data were merged based on Entrez Gene ID. Probe
mapping between array platforms was done based on
Entrez Gene IDs.

Network construction and annotation

Prior to calculating correlations the data were filtered to
remove non-varying genes. A standard deviation above 1
as cut-off criteria left the 3,824 (approximately 30%) most
varying genes for further analyses. All pair-wise gene cor-
relations were calculated for the 3,824 genes using a leave-
one-out strategy: Pearson correlations between all possible
gene pairs were calculated while excluding one dataset at a
time; thus rendering a total of 10 correlation calculations.
Only positive correlations above a set cut-off level across
all these 10 calculations were used for further analyses;
thereby, confounding factors inherent to single datasets
were eliminated (Figure S1 in Additional file 3). Calcula-
tion of correlations between the 3,824 genes and a matrix
with permuted class labels, repeated 1,000 times, gave a
maximum random correlation of 0.14. Thus, a correlation
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above r = 0.14 could be considered significant (P = 0).
Expression networks were created by connecting genes
(nodes) by edges representing a minimum correlation
across the 10 leave-one-out calculations above a set cut-
off level, and then removing genes with less than 5 neigh-
bors. To generate a gene expression landscape, we
included genes from a network based on a correlation cut-
off of 0.3, and visualized the network in Cytoscape using
the pair-wise correlations as weights in a spring-embedded
layout [20]. Next, each gene was placed in x-y space
according to the r = 0.3 network layout and given a
z-value based on the highest correlation cut-off at which it
is in a network (using r = 0.3, 0.4, 0.5, 0.6 and 0.7 as cut-
offs). Finally, the transcriptional landscape was visualized
in R using the Krig, and Tps packages. Analysis using
Spearman’s rank correlation metric gave similar networks
(data not shown). Modules within the created networks
were mined for biological relevance using BINGO [21]
and further text mining based analyses were performed
using LitVan [22].

Module expression

Module co-expression was evaluated by calculating the
average pair-wise Pearson correlation between all genes
for a module in a specific dataset. Co-expression values
in validation data sets were compared to co-expression
of 1,000 random gene sets of the same size (data not
shown). In addition, the network average clustering co-
efficient (NACC) was used as defined [23], that is, the
fraction of the actual number of network connections
within a defined gene module at a certain correlation
cut-off level in relation to the maximum possible num-
ber of connections that could be obtained within that
module. Module expression across samples was analyzed
using a rank-based module activity score as previously
described [24]. Relationships between module activity
scores and sample annotations were analyzed using
t-tests or ANOVA. For all survival analyses, patients
were dichotomized on module expression above or
below the module average and survival analyses were
performed using the survival package in R. To control
for dataset bias in survival analysis in the U133A set,
robustness of results was evaluated in a leave-one-out
analysis excluding one dataset at the time (data not
shown). Correlations between network modules and
individual genes were assayed using Spearman’s rank
correlations. All calculations presented were performed
using PERL and R. All statistical tests were two-sided
unless otherwise stated.

Analysis of RNAi-based cell spot microarray data

KPL-4 breast cancer cells were seeded and grown on an
array-based siRNA screening platform, and each siRNA
was assayed for effects on Ki-67 immunohistochemistry
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staining intensity as previously described [25]. KPL-4
was a kind gift from Dr Junichi Kurebayashi, Depart-
ment of Breast and Thyroid Surgery, Kawasaki Medical
School, Japan [26]. The data from the siRNA screen are
available in Additional file 4. Log-transformed raw
intensities were used as Ki-67 staining intensities in all
analyses. Group-wise effects on Ki-67 staining intensity
for genes in the two proliferation modules were ana-
lyzed per module by comparing the mean module Ki-67
intensity to a random intensity distribution based on
10,000 sampled gene groups of the same size as the
assayed module. Mean module intensities were for
visualization purposes centered to the mean of the
respective random intensity distribution. As a compari-
son, the same calculation was performed for the five
siRNA controls present on the array platform.

Results

A breast cancer-specific transcriptional network

Many gene expression based studies of cancer have been
hampered by small sample sets, but combining data from
independent studies can potentially increase the power of
such investigations [17,27-29]. We hypothesized that with
a large number of samples, correlation in expression
between genes becomes a powerful measure to identify
core cancer-specific transcriptional programs. Therefore,
we utilized a breast cancer gene expression dataset repre-
senting 1,608 samples combined from multiple sources
(U133A set; Additional file 1) [17,30]. For this large sample
size, even a very low correlation between genes was signifi-
cant (Pearson’s r > 0.14, P = 0, 1,000 permutations). How-
ever, when constructing gene expression networks by
connecting correlated genes we observed that, even though
the connections are statistically significant, extraction of
distinct modules leading to biological interpretation of the
network is difficult (Figure 1a). To address this issue, we
generated a gene expression landscape by visualizing the
network as a heat map to identify regions with higher cor-
relations (Figure 1b). A common concern with high
throughput data is batch effects [31]. Importantly, we
found that the influence of data source on results
decreased with increasing correlations and became negligi-
ble at r > 0.6 (Figure S1 in Additional file 3). A network
derived from correlations larger than 0.6 contained 187
genes with 1,272 connections distributed in eight visually
distinct modules (Figure 1c, Additional file 5). We vali-
dated the co-expression of the modules in two indepen-
dent breast cancer datasets representing 676 and 295
samples, respectively (Figure 1d, Additional file 1). Surpris-
ingly, when testing in excess of 5,000 functionally anno-
tated sets [4] none reached the level of co-expression
observed for our modules (Figure S2 in Additional file 3),
supporting the value of identifying cancer-specific tran-
scriptional programs.



Fredlund et al. Breast Cancer Research 2012, 14:R113
http://breast-cancer-research.com/content/14/4/R113

Page 4 of 13

Q
o®

# Samples

Steroid response module

Basal O
N ‘{‘ Lipid
A +, Early
i SR\ ** response
o P Y
-

*

Immune ihr \a“ Stroma

response n, o3
.-l; '

% Q 03.3 Steroid
4 ‘ * response
Mitotic

Mitotic progression

checkpoint

Basal module

1,608 NI v13aAset

—
]

———— ]

676 [N NI I v133Pius2 set

==

205 [l I HEEE

T LR >R

F TS LFF o

O}@QQ §§Q7q’a\\$®
&

Module actvity
5 A b o
1 1 1 1

J— —

o-.-+|l
,___D]_I

|
IS
1

T
o
x
oy
o

=

Avg. correlation ER-
0.3-0.4
W o04-05

N 05-1

8

T -75!
=5x10

1 p=3X °

T

Figure 1 A breast cancer gene expression network. (a) Genes (represented as blue squares) with pair-wise gene expression correlations
above 0.3 in a dataset representing 1,608 breast cancer samples were connected by edges and visualized using network graphics. Genes with
less than five connecting edges were removed to extract a highly interconnected network. The network is complex and hard to interpret, even
though all connections are statistically significant. (b) Although the network is dominated by regions of lower correlations (blue), there are
regions in which genes are connected by higher correlations (red). (c) By restricting the analysis to genes with correlations above 0.6, a network
of eight visually distinct modules reflecting the high correlation areas in (b) was extracted. In this way, the complex network in (a) could be
reduced to a network with gene modules related to tumour biological themes. (d) Correlation-based modules were verified by assaying co-
expression in independent breast cancer gene expression datasets. All pair-wise Pearson correlations between genes within modules were
calculated across all samples for two additional breast cancer datasets representing 676 and 295 samples, respectively. The mean correlation for
each module, as depicted by colored boxes, was used as a measure of module co-expression reproducibility. M-Pr, mitotic progression; M-Cp,
mitotic checkpoint. (e, f) Module expression acts as surrogate markers for breast cancer molecular characteristics. (e) SR activity is high in ER-
positive, but also in some ER-negative tumors. (f) Basal module activity is high in basal-like and normal-like tumors.
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Based on published associations to breast cancer-specific
tumor biology, a steroid response module (SR), a basal
breast cancer module (basal), and a module containing
genes (for example, FOS and EGR1) [32] related to early
response to growth factor or serum stimulation (early
response) were identified (Figure 1c, Additional file 5).
Furthermore, one module (lipid) was representative of adi-
pocytes, containing markers of terminal differentiation
along that lineage (for example, ADIPOQ, PLIN) [33].
Additional mapping of module genes to known pathways
and ontology terms suggested the remaining four modules
to be associated with the cell cycle (mitotic checkpoint
and mitotic progression), immune response (IR) and extra-
cellular matrix-related processes (stroma) (Figure 1lc,
Additional files 5 and 6). Hence, gene expression land-
scape analysis is an intuitive approach for identifying bio-
logically relevant transcriptional programs.

Modules are markers for tumor subtype-specific
processes

In order to relate module gene expression to clinical
parameters and breast cancer subgroups, a rank-based
module activity score [24] was calculated for each of the
eight modules in each breast cancer sample (Figure S3 in
Additional file 3). The SR module contained known ER-
status-related genes, such as GATA3, CAI2, XBPI and
FOXAI [34-37], and by correlation to module activity
scores the expression of ER-alpha (ESRI) and the proges-
terone receptor (PGR) were strongly associated to this
module (Spearman’s rho = 0.65 and 0.50, respectively).
The activity scores for the SR module showed a distinct
bimodal distribution with a high activity in ER-positive as
compared to ER-negative cases (P = 5%1077°, t-test)
(Figure le). Intuitively, one would expect the SR module
to be specific for ER-positive tumors; however, some
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ER-negative cases also showed high SR activity (Figure
le). A comparatively high expression of the androgen
receptor (AR) within this subgroup of ER-negative sam-
ples (P = 4*10™*, t-test; Figure S4 in Additional file 3)
suggested these cases to be of the apocrine breast cancer
subtype [38]. Thus, high activity of the SR module can
act as a functional indicator for a general steroid
response.

The basal module, containing known basal cell keratins
KRTS5, KRT14 and KRT17 [39], showed a subtype-specific
bimodal activity score distribution with high module
activity in the basal-like and normal-like subtypes (P =
6*10'**, ANOVA) (Figure 1f). The IR module showed
the highest activity in the basal-like and HER2-enriched
subtypes (Figure S5 in Additional file 3), and within
those subtypes high IR module activity was significantly
associated with more favorable prognosis (P = 0.005 and
P = 0.003, respectively, log-rank tests) as previously
reported [17,27].

Cell cycle genes are separated into two modules
dependent on TP53 status

Our gene expression landscape showed two distinct mod-
ules (mitotic checkpoint and mitotic progression) that
both contained genes related to central mitotic processes
(Figure 1c). These two cell cycle modules were difficult to
differentiate with respect to function. Genes in both mod-
ules were in general annotated to similar gene ontology
terms and, in particular, the majority of genes in both
modules were annotated to the term M-phase (Additional
file 6). However, when focusing on the differences between
the two modules, we observed that in the mitotic check-
point module there were four genes annotated to spindle
checkpoint (MAD2L1, TTK, BIRCS5, CENPE) and six genes
annotated to regulation of cell cycle (CKS2, MAD2LI,
TTK, BIRCS, CENPE, DLGAPS), whereas no genes were
annotated to these terms in the other module. However,
in the mitotic progression module, six genes were anno-
tated to the microtubule cellular compartment (KIF4A,
KIF15, KIF18A, KIF18B, KIF20, NUSAPI, and PRCI, of
which five were annotated to microtubule-based move-
ment), and six genes were annotated to DNA binding
(E2F8, HJURP, EXO1, ERCC6L, KIF15, KIF4A, NUSAPI),
whereas no genes in the mitotic checkpoint module were
annotated to these categories. These differences indicated
that one module is more related to regulation of the M-
phase and the mitotic checkpoint, while the other module
seemed more related to carrying out the M-phase. Litera-
ture mining [22] corroborated these differences (Figure S6
in Additional file 3).

To experimentally investigate the functional differences
of the two mitotic modules suggested by our computa-
tional analyses, we utilized a high-throughput RNAi-
based cell spot microarray screening method [25]. KPL-4
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breast cancer cells were reverse transfected with a library
of siRNAs targeting 5,760 genes and Ki-67 intensity was
assayed as a marker for cellular proliferation [25]. By
combining Ki-67 intensity data for genes in the mitotic
checkpoint and progression modules separately, we could
investigate module level effects on proliferation. As
expected, knockdown of the mitotic progression module
genes resulted in significantly lowered Ki-67 staining
(Figure 2a, left) as compared to a group of unspecific
control siRNAs (Figure 2a, right), suggesting that the
mitotic progression genes are pivotal for progression
through the cell cycle. However, knockdown of the mito-
tic checkpoint module genes did not result in lowered
Ki-67 intensity (Figure 2a, middle), suggesting that
knockdown of the mitotic checkpoint genes does not
hinder mitotic progression. These results support our
annotation of the modules to separate cell cycle processes
and to denote them mitotic progression and mitotic
checkpoint, respectively.

Elevated expression of mitotic checkpoint genes has
been associated with chromosomal instability in breast
cancer cells [40,41], and the mitotic checkpoint module
genes showed a considerable overlap with a signature for
chromosome instability in tumors [42]. Moreover, high
expression of TTK (MPSI) in our mitotic checkpoint
module has been reported to promote aneuploidy in
breast cancer [43]. Since the mitotic checkpoint and pro-
gression genes have been shown to be co-expressed in
normal tissue [44], we suspected that they were separated
in breast cancer because a subgroup of tumors challenged
by chromosomal instability contained cells with a halted
progression through the cell cycle [45]. To identify such
tumors we investigated correlation between the mitotic
checkpoint and progression modules within subgroups of
breast cancer [23]. While the modules remained distinct
in ER-positive samples as well as the luminal A and B sub-
types, they were more interconnected in ER-negative sam-
ples and the basal-like subtype (Figure 2b, Figure S7a in
Additional file 3).

Cells with a stressed mitotic checkpoint accumulate
genomic aberrations [40,41], but are subject to the p53-
dependent G; post-mitotic checkpoint, which acts as an
additional barrier against proliferation of aberrant cells
[46]. Furthermore, proliferation of aneuploid daughter
cells is strongly linked to p53 status [47]. Therefore, we
investigated whether the separation of proliferation genes
into two distinct modules in luminal tumors was related
to p53 functional status. To this aim, we calculated the
network average clustering co-efficient (NACC) between
the mitotic checkpoint and progression modules in lumi-
nal samples with known TP53 status [48]. Indeed, we
observed that while the mitotic checkpoint and progres-
sion modules were separated in TP53-wildtype samples
they were connected in TP53-mutated samples (P < 0.05)
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Figure 2 Separation of cell cycle genes into two modules is dependent on TP53 status. (a) Module genes were assayed for effects on
proliferation in the KPL-4 breast cancer cell line using an RNAi-based cell spot microarray system. Knockdown of genes in the mitotic
progression module significantly inhibited cell proliferation as assayed using Ki-67 staining intensity (P = 0.003, left panel), whereas knockdown of
genes in the mitotic checkpoint module did not show any significant effects (P = 0.85, center panel). A group of non-specific control siRNAs
showed that the majority of genes in the assayed siRNA library abrogate cellular proliferation (right panel). Module effects on KPL-4 proliferation
was estimated by comparing the observed mean Ki-67 intensity for the module genes (black arrows) and compared to background Ki-67
distributions (density curves) based on 10,000 random groups of the same size as the assayed module. P-values are one-sided. (b) The mitotic
progression and checkpoint modules are separated in ER-positive breast cancer, but interconnected as a single module in ER-negative breast
cancer. (¢, d) The separation of the mitotic progression and checkpoint modules relate to sample TP53 mutation status. Interconnection
between the mitotic progression and checkpoint modules were assayed using the NACC at increasing cut-off correlation levels in luminal A and
luminal B samples. NACC was calculated in luminal samples with known TP53 mutation status from the (c) GSE3494 and (d) GSE22358 breast
cancer datasets. TP53 wildtype (WT) samples showed a clear separation between the mitotic progression and checkpoint modules at increasing
correlation cut-off levels (green lines). However, in TP53-mutated samples modules remained interconnected at higher levels of correlation (red
lines). The NACC for TP53-mutated samples was compared to 10,000 random selections of the same number of TP53 WT samples (black dashed
lines) and stars denote permutation-based p-values below 0.05. Error bars represent standard deviations. (e) Luminal samples from the U133A set
were divided into quartile groups based on TP53 expression and NACC between mitotic progression and checkpoint modules were calculated
within these groups. Decreasing TP53 expression correlated to higher level of interconnection between the mitotic progression and checkpoint
modules with the highest TP53 expression quartile samples showing a distinctly higher module interconnection than the lowest quartile
samples. As reference the NACC for all luminal samples is shown (black dotted line). (f) Dichotomizing breast cancer patients of either luminal A
(LumA) or luminal B (LumB) subtype on mitotic progression module activity did not add prognostic information (P = 0.6 and P = 0.09, log-rank
tests) using DMFS as endpoint, (g) while an above mean activity of the mitotic checkpoint module identified groups within both luminal A and
luminal B tumors with worse prognosis (luminal A P = 3*10°°, luminal B P = 001, log-rank tests).

(Figure 2c). Importantly, this finding was validated in an

independent dataset (Figure 2d) [49]. In addition, low
levels of TP53 gene expression correlated to increased
interconnectivity between the two mitotic modules in

luminal samples (Figure 2e), and TP53-mutated luminal
samples showed elevated activity of the mitotic checkpoint
and progression modules (P = 5*10™* and P = 9*107%,
t-tests). Furthermore, the vast majority of basal-like



Fredlund et al. Breast Cancer Research 2012, 14:R113
http://breast-cancer-research.com/content/14/4/R113

tumors has dysfunctional p53 and displays high chromo-
somal instability, and the two mitotic modules were not
separated in these tumors (Figure S7a in Additional file 3).
Together, these analyses suggest a subgroup of genomi-
cally unstable luminal tumors with proliferation hindered
by functional p53.

To investigate whether elevated activity of the mitotic
checkpoint and progression transcriptional programs
translated into disease aggressiveness, we performed sur-
vival analyses within the luminal A and B subtypes sepa-
rately. The mitotic progression module only showed
marginal prognostic capability within these subtypes
(Figure 2f). However, high activity of the mitotic check-
point module correlated significantly to unfavorable
prognosis in both luminal subgroups (luminal A P =
3*107°, luminal B P = 0.01, log-rank tests) (Figure 2g).
Thus, genes in the mitotic checkpoint module relate to
a more aggressive disease phenotype within the other-
wise low proliferating luminal A tumors, but also within
the more highly proliferating luminal B tumors. Corre-
spondingly, the mitotic checkpoint module was predic-
tive for distant metastasis free survival (DMFS) within
both grade 1 and grade 2 tumors (P = 0.007 and P =
1*107, respectively, log-rank tests), whereas the mitotic
progression module only was predictive for grade 2
tumors (P = 0.001, log-rank test) (Figure S7b in Addi-
tional file 3).

The stroma module is related to epithelial-mesenchymal
transition

Cell lines have previously been shown to emulate mole-
cular breast cancer subtypes, especially with regard to
basal-like and luminal disease [50]. We calculated activity
scores for the eight modules in gene expression data
representing 51 breast cancer cell lines [50]. Hierarchical
clustering of the module activity scores clearly separated
the cell lines into luminal and basal groups (Figure 3a).
The luminal cell lines showed exclusively high activity of
the SR module, whereas the basal A and B cell lines
showed comparatively higher activity of the proliferation-
related modules (Figure 3a). Furthermore, low activity of
the basal module together with high activity of the
stroma module gave a cluster highly enriched for the
basal B classified cell lines and cell lines recently defined
as claudin-low (Figure 3a), suggesting that high activity
of the stroma module relates to a more mesenchymal cell
phenotype [51]. The stroma module was enriched for
genes related to matrix remodeling processes (for exam-
ple, VCAN, FBN1, DCN, MMP2; Additional file 5) and
literature mining suggested an association to TGF-beta
signaling (Figure S8 in Additional file 3), a pathway
known to be involved in epithelial-mesenchymal transi-
tion (EMT) [52]. In order to further investigate a rela-
tionship between the stroma module and EMT, we used
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microarray data derived from induced expression of
known EMT-inducing factors SNAI1, TWIST, GSC or
TGEF-betal in an immortalized human mammary epithe-
lial cell system [53]. All of the four EMT-inducing factors
clearly up-regulated genes from the stroma module,
while, interestingly, genes in the basal module showed
reduced expression (Figure 3b). In the clinical breast can-
cer data we observed a similar expression pattern of the
stroma module as for a previously reported EMT-signa-
ture [53], that is, higher expression in luminal A as com-
pared to basal-like tumors (Figure S3 in Additional file
3). However, for luminal A tumors high stroma module
activity correlated to more favorable prognosis (P = 0.04,
log-rank test) (Figure 3c), whereas the opposite trend was
observed for basal-like tumors (P = 0.07, log-rank test)
(Figure 3d). Furthermore, stroma module activity was
higher in node positive as compared to node negative
patients of the basal-like subtype (basal-like P = 0.007,
luminal A P = 0.7, t-tests) (Figure 3e). In contrast, for
luminal A samples high stroma module activity reflected
small tumor size (P = 8#107%, basal-like P = 1, ANOVA)
(Figure 3f), indicative of less aggressive disease. While a
majority of the genes in the stroma module were regu-
lated by EMT-inducing factors, many of the stroma
genes are also well known fibroblast markers. Therefore,
we investigated the expression of the stroma module
genes in data representing primary breast fibroblasts [54].
Indeed, several of the stroma genes were also highly
expressed in primary breast fibroblasts (Figure 3g). In
conclusion, due to the heterogeneity of breast cancer, a
transcriptional program may reflect different processes
and have opposite biological effects in different breast
cancer subtypes. Thus, the interpretation of a gene
expression signature is highly dependent on subtypes,
and both intra- and intertumoral heterogeneity should be
considered.

Breast cancer modules are co-expressed in other cancer
forms

Since several of the identified gene expression modules
represented processes of broader influence on tumor
progression, we assayed module co-expression in seven
different cancer forms, including four carcinomas (colon,
non-small cell lung carcinoma (NSCLC), ovarian and
bladder), stage IV malignant melanoma, diffuse large B-
cell lymphoma (DLBCL) and acute myeloid leukemia
(AML) (Additional file 2). As expected, the proliferation-
related modules were co-expressed across all assayed
cancer forms (Figure 4a) and, in line with this, activity
scores for the two mitotic modules showed a significant
correlation to increasing tumor grade in ovarian carci-
noma (P = 2*10'* and 5*107'°, respectively. ANOVA)
(Figure 4b). However, some modules were co-expressed
only in certain cancer forms. For instance, the SR module
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Figure 3 The stroma module represents mesenchymal cell characteristics. (a) Hierarchical clustering of module activity scores, calculated in
data representing 51 breast cancer cell lines, showed separation into the main cell line types: luminal, basal A and basal B [50]. Black arrows
denote cell lines characterized as representing a claudin-low phenotype [51]. M-Pr, mitotic progression; M-Cp, mitotic checkpoint. (b) Expression
of EMT-inducing factors increases expression of genes from the stroma module. Data for the 187 module genes from a dataset representing
overexpression of TGF-betal, Twist, Gsc or Snail in immortalized breast fibroblasts were visualized using heatmaps. Data are shown as fold
changes in relation to mock transfection control. (c) A high stroma module activity score correlates to a more favorable prognosis in patients of
the luminal A subtype (P = 0.04, log-rank test), whereas (d) an opposite trend was observed for patients with tumors of the basal-like subtype (P
= 0.07, log-rank test). Patients were dichotomized based on a stroma module activity score above or below mean within each subtype. (e)
Within the basal-like classified patients a high stroma module activity score correlated to node-positive disease (P = 0.007, t-test). (f) Within the
luminal A classified patients a higher stroma module activity score, quantized into four groups, correlated to a smaller tumor size (P = 8*10
ANOVA). (g) Hierarchical clustering of primary breast fibroblasts, fibroblast-like (claudin-low) breast cancer cell lines, and breast cancer cell lines,
based on expression of genes in the stroma module. Data from GSE13915 [54].
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Figure 4 The breast cancer-derived gene expression modules are preserved across several cancer forms. (a) The breast cancer gene
expression modules were assayed for co-expression in data representing seven other cancer forms by calculating the average pair-wise Pearson
correlation for genes within each module separately. All observed correlations were significant as compared to a random average pair-wise
correlations based on 1,000 permutations (data not shown) M-Pr, mitotic progression; M-Cp, mitotic checkpoint. (b) A high activity score of the
mitotic progression module correlated to increasing grade in an ovarian carcinoma dataset (n = 285, P = 2 x 10", ANOVA). (c) An above mean
expression of genes in the stroma module correlates to decreased disease-specific survival (DSS) in a colon carcinoma dataset. (n = 177, P =
0.003, log-rank test). (d) A high immune response (IR) module activity correlated to favorable overall survival (OS) in a dataset representing 57
stage IV melanomas (P = 0.02, log-rank test). (e) Calculation of pair-wise Pearson correlations in an NSCLC dataset for genes in the breast cancer
basal module (blue network) revealed that only a subset of these genes were correlated in NSCLC (red network). A core basal gene expression
module (n = 5) was derived from genes with conserved correlations in both breast and lung cancer data (red network). (f) A high expression
sum for the core basal module acted as a marker for squamous cell lung carcinoma (SCC) compared to the other NSCLC morphological types
adenocarcinoma (ADC) and large cell carcinoma (LCC) (P = 5%102% ANOVA).

was found only in breast and bladder cancer. Interest-
ingly, it has been reported that a subgroup of bladder
cancer have high AR expression [55], suggesting a gene
expression scenario similar to AR-positive apocrine
breast cancer. The breast cancer-derived stroma module
was co-regulated in several of the assayed tumor datasets,
including colon carcinoma (Figure 4a). As EMT is known
to be involved in the canonical colorectal adenoma-
carcinoma sequence [52], we tested whether activity of
this module related to colon carcinoma patient outcome.
Indeed, patients with high activity of the stroma module
showed poorer disease-specific survival than patients with

low stroma activity (P = 0.003, log-rank test; Figure 4c).
Moreover, stroma module activity was independent of
tumor stage or grade in this dataset (P = 7*10*, HR 3.0,
95% CI 1.6 to 5.6, Cox regression). A previous report has
shown that a gene expression signature relating to tumor
infiltrating lymphocytes is prognostic in advanced mela-
noma [56]. Correspondingly, the high activity of our IR
module, mainly containing genes related to activated cyto-
toxic T-lymphocytes (Additional files 5 and 6), correlated
to more favorable prognosis in patients with stage IV mel-
anoma (Figure 4d). These analyses show that not only are
certain gene expression modules conserved across several
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cancer forms, but also suggest that the biology reflected by
these transcriptional programs is generally descriptive for
tumor biology and clinical outcome.

Despite overlap with known markers for squamous cell
morphology (for example, KRT5, KRT14, KRT17) [39,57],
the breast cancer basal module did not show strong co-
expression in any of the other cancer forms. To investigate
this, we created a gene expression network originating
from the genes in the breast cancer-specific basal module
using data representing 91 NSCLC [58]. We observed that
while a core set of genes from the breast cancer module
retained their high correlations, a large proportion of the
gene-gene correlations were not present in the NSCLC
data (Figure 4e). Using this core basal module (Figure 4e),
we calculated expression sums for these genes in the
NSCLC data and compared to tumor morphological type.
Squamous cell lung carcinomas showed a strikingly higher
expression of genes in the core basal module as compared
to both adenocarcinomas and large cell carcinomas (P =
5*10%%, ANOVA) (Figure 4f). Moreover, the core basal
module showed higher co-expression in colon, ovarian
and bladder cancer, as well as in DLBCL, suggesting this
gene expression motif is highly conserved in cancers
encompassing subtypes with basal or squamous morphol-
ogy (Figure S9 in Additional file 3). These results show
that a transcriptional program that is common to several
cancer types contain a core set of genes that are correlated
to additional genes in a cancer-specific manner. This may
reflect that conserved cancer processes are regulated by
distinct spectra of aberrations in different cancer forms.

Discussion

In this study we uncovered a breast cancer gene expres-
sion landscape with eight gene modules reflecting biologi-
cally relevant transcriptional programs conserved in other
cancer forms. At least three of these likely relate to infiltra-
tion or presence of stromal or immune cells in the macro-
dissected tissue used for the microarray experiments.
However, transcriptional programs can reflect different
processes and have different association with disease
aggressiveness depending on context. In concordance with
previous reports, we find that high steroid response can
reflect signaling by either ER or AR [38], and that high
expression of genes relating to an immune response corre-
late to favorable outcome in ER-negative or HER2-
enriched disease only [17,27,28]. We now report a gene
expression module containing stroma-related genes that
were highly expressed in normal fibroblasts. For luminal A
tumors, high activity of this stroma module more likely
reflected infiltrating fibroblasts or the presence of normal
tissue, which in our data corresponded to small tumor size
and favorable patient outcome. Among basal tumors we
could see the opposite trend, probably related to EMT of
the cancer cells as a strong up-regulation of the stroma

Page 10 of 13

module genes could be seen when inducing EMT in
immortalized epithelial cells [53]. However, no EMT mas-
ter regulator genes were present in this gene expression
module. EMT has previously been associated with basal-
like breast cancers [59] and we extend these results by
showing that our EMT-induced stroma module correlates
to disseminated and aggressive disease specifically within
this subtype. Interestingly, this phenotype also corresponds
to the claudin-low subtype [51] with high expression of
EMT markers and low expression of basal markers,
although our analyses did not extract a claudin-low mod-
ule. Together, these results suggest that two sources of
major heterogeneity within basal-like tumors are related to
immune-response and EMT-related processes. By basing
our modules on such a large number of tumors, a possibi-
lity is to evaluate them as robust biomarkers; not only as
prognostic markers for breast cancer and other cancer
forms as shown here, but also as predictive markers of
treatment response. Indeed, a recent study has shown that
expression of certain EMT-associated genes is more pro-
nounced in post-treatment breast cancer samples [60].

Defective cell cycle checkpoints affect cell cycle phase
lengths and the fraction of cells arrested in different
phases, which can be reflected in gene expression profiles
[45]. Our observation of separate cell cycle modules in
luminal breast cancers dependent on 7P53 status suggests
that luminal tumors can be further stratified indepen-
dently of proliferation, and supports a picture in which
defective cell cycle checkpoints do not always correspond
to high proliferative rates in breast cancers [10]. Corre-
spondingly, the mitotic checkpoint module stratifies histo-
logical grade 1 and luminal A tumors as well as
histological grade 2 and luminal B tumors into groups
with differential prognosis (Figure S7 in Additional file 3),
which may also translate into differential response to che-
motherapy. Hence, these results add information beyond
proliferation-associated signatures, such as the Genomic
Grade Index [61], but also beyond published TP53 muta-
tion and chromosomal instability signatures so far mainly
focused on basal-like tumors as these characteristics are
significantly more frequent in ER-negative tumors [48,62].
Coutant et al. have recently identified distinct p53 gene
signatures in ER-positive and ER-negative breast cancers
and, interestingly, the ER-positive p53 gene signature was
predictive of response to both adjuvant chemotherapy and
tamoxifen [63]. Our findings suggest that a detailed analy-
sis of cell cycle genes may provide a better understanding
of the inconsistencies between proliferation-based classi-
fiers of luminal breast cancer [8] and open the door for
improved stratification of these patients.

Our study exemplifies that for large sample sets corre-
lation in expression is a powerful measure to identify
core gene modules that can be more easily associated
with specific biological and genetic traits. Furthermore,
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we show that gene expression modules can act as robust
biomarkers not only for genetic traits [64], but also for
differential composition of the tumor microenviron-
ment. As the number of available tumor expression pro-
files increases, the broad view presented here should be
extended by identifying additional transcriptional pro-
grams relevant only within specific patient cohorts.

Conclusions

The presented results highlight that the biological and
clinical interpretations of gene expression based transcrip-
tional programs are subtype-dependent, and that both
intra- and intertumoral heterogeneity should be consid-
ered for realizing the full potential of omics-type tumor
data. Moreover, using a novel approach we show that dif-
ferences in correlation between functional gene modules
can be used as gene expression-based signatures for
genetic aberrations.
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