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Abstract—Completely analyzed and closed issue reports in
software development projects, particularly in the development
of safety-critical systems, often carry important information
about issue-related change locations. These locations may be
in the source code, as well as traces to test cases affected by the
issue, and related design and requirements documents. In order
to help developers analyze new issues, knowledge about issue
clones and duplicates, as well as other relations between the
new issue and existing issue reports would be useful. This paper
analyses, in an exploratory study, issue reports contained in two
Issue Management Systems (IMS) containing approximately
20.000 issue reports. The purpose of the analysis is to gain
a better understanding of relationships between issue reports
in IMSs. We found that link-mining explicit references can
reveal complex networks of issue reports. Furthermore, we
found that textual similarity analysis might have the potential
to complement the explicitly signaled links by recommending
additional relations. In line with work in other fields, links
between software artifacts have a potential to improve search
and navigation in large software engineering projects.

Keywords-issue reports; impact analysis; safety development;
link mining; information retrieval;

I. INTRODUCTION

In large projects, Issue Management Systems (IMS) con-
tain thousands of issue reports. Issue reports must be ana-
lyzed and are managed through different states, until finally
resolved and filed [12], [14]. Typically, issue reports contain
a Natural Language (NL) description of the experienced
issue, preferably instructions on how to repeat the problem,
and additional information such as product version, priority,
severity, and comments.

In development contexts where functional safety is impor-
tant, software organizations have to follow certain standards
(e.g., IEC 61511 [13]) requiring a thorough impact analysis
for each individual issue report. The types of impacts result
from questions such as: “What code needs to be modified?”
and “Which documents need to be updated to reflect the
changes?” The types of impacts can vary from context to
context but no matter what is required in a specific case,
developers in charge of analyzing issue reports must identify
the traces from the issue to many other kinds of artifacts
with as much accuracy as possible. This is a challenging
and costly task. How could this task be supported?

The first possibility (A) to provide support to the ana-
lyzing developers is to help them decide whether the issue
report at hand is a duplicate of another (open or closed)
issue report. If an issue is the duplicate of an already closed
issue, then the work is done. If an issue is the duplicate
of another, still open, issue, then the engineer knows that
only one of the reported issues needs to be resolved, the
issue reports should preferably be merged [4], and the impact
analysis effort must be invested only once. Previous work
suggest using text retrieval techniques to support duplicate
detection [17], [31], [25].

The second possibility (B) is to retrieve and exploit
impact information (traces) contained in similar or related
issue reports (cf. Figure 1). Closed issue reports, that have
been fully analyzed and where all the impacts (traces to
other artifacts) are known and documented, are particularly
valuable in this regard.

The third possibility (C) is to provide developers with
techniques and tools that help them identify traces to affected
artifacts directly (cf. Figure 1). While the third option is the
most appealing kind of support, it also is the most difficult
to establish. One proposed way to support impact analysis
is to recover trace links between software artifacts based on
textual similarities [1], [21], [9].

In this paper, we present research related to support
options A and B, i.e., helping to identify duplicate issue
reports, and helping to identify similar or related issue re-
ports and exploiting information contained in those reports.
We conducted a study on issue reports from a proprietary
safety-critical context (the Safety IMS) and, due to easy
accessibility of IMSs in open source software (OSS) de-
velopment projects, a deeper study using issue reports from
the Android project (the Android IMS).

Apart from issue descriptions, the ∼20.000 issue reports
in the Android IMS also contain comments that are added
over the life-time of an issue report. Issue comments in
the Android IMS consist primarily of natural language text,
but sometimes a developer, for some purpose, makes the
effort to explicitly point to another issue report using HTML
hyperlinks. In this paper we present an exploratory study
about the nature of such links, i.e., we are interested in
understanding what meaning they have, and if they represent



Figure 1. Impact analysis in the V-model. On the left, showing direct from
an issue report to impacted artifacts (possibility C). On the right, showing
traces to impacted artifacts via other issue reports (possibility B).

system knowledge that helps developers identify duplicates
(cf. possibility A described above) or related issue reports
(cf. possibility B described above).

Section II describes the impact analysis work task in
the safety-critical context, and the typical content of issue
reports in both the Safety IMS and the Android IMS.
Section III presents how we conducted this study, and
Section IV shows our results. In Section VII, we discuss our
findings in light of the impact analysis work task and outline
how issue networks can be used to improve navigating
software engineering information spaces.

II. MOTIVATION AND DATA PROVENANCE

As specified in IEC 61511, the impact of proposed soft-
ware changes must be analyzed before implementation [13].
Issues in an IMS, i.e., defect reports and change requests, are
typically administered by a Change Control Board (CCB).
The board distributes issues to responsible engineers for
investigation. One way to formalize this activity is to use a
fixed template containing questions that must be answered.
Such templates have been reported to explicitly request trace
links from an issue report to artifacts of other types [20], [5].
Example questions from such a template include:

• What code files/modules are (directly/indirectly) af-
fected and have to be modified?

• What system functions are affected?
• Which documents are affected (requirements docu-

ments, design documents)?
• Which test cases are affected?
• Which user documents need to be modified?
• Which requirements and functions need to be re-tested?
We conducted our study on two IMSs. The Safety

IMS contains 26,120 issue reports (63% defect reports),
originating from embedded development in the domain of
industrial control systems. The software is certified to a
Safety Integrity Level (SIL) of 2 as defined by IEC 61508.
The number of involved developers is in the magnitude of
hundreds, distributed on sites in Europe, North America
and Asia. The typical project duration is 12-18 months, and
follows an iterative stage-gate project management model.

The issue reports, submitted between 2000 and 2012,
correspond to several different system versions of a product,
ranging from low priority issues to project stoppers. All
issue reports in the Safety IMS were submitted by company-
internal engineers, sometimes, however, as a consequence
of defect reports collected by a customer support line. The
content of the public Android IMS, 20,176 issue reports
(80% defect reports), was made available as part of the
MSR 2012 Mining Challenge [29]. In the Android project,
‘medium’ is by far the most commonly assigned issue
priority, comprising 99.4% of all issues. Even though the
Android open source project is led by Google, anyone with
a registered account can access the IMS.

Issue reports in the Safety IMS have unique identifiers,
titles, and a NL description. Moreover, there are 78 other
fields that can be edited for each issue report. The fields are,
for example, related to dates (for submission, disposition,
validation, closing), identity of engineers (e.g., submitter,
owner, validator, and closer), version information (e.g., build
versions of the system and its components and targeted
releases), and SIL level. For each issue report, there are
also several attached ‘notes’ including decisions from the
CCB, developer communication, clarifications from the re-
port author etc. Unfortunately, we did not have access to the
attached notes in this study.

An Android issue report contains a unique identifier, a
title, a NL description, three nominal variables (status, type,
and component), and an ordinal variable (priority). Also, an
issue report holds information about opening and closing
dates, the developer who reported it, the developer who
currently owns it, and its number of stars (used in the IMS to
let developers vote for issues and subscribe to email change
notifications.) Furthermore, it is possible for developers to
add comments to issues. Informal communication is favored
over formal documents in OS projects [28], such as enabled
by the comments. In general, communication in distributed
development projects is a major challenge [12]. The over
100,000 issue comments in the Android IMS suggest that
the comments constitute a significant channel of information
exchange, and enabled us to study how issues are related.

III. METHOD

To explore the possibility to support the impact analysis
using information in IMSs, we conducted a study combining
data mining and qualitative artifact analysis. The Research
Questions (RQ) below express the goals of this initial study.
The RQs target possible support for (A) duplicate detection
and (B) finding related issues, as introduced in Section I. As
previously explained, RQ2 and RQ3 (addressing semantics
of links) are limited to the Android IMS due to the avail-
ability of information.

RQ1 What sort of explicit issue networks can be discov-
ered through link mining in IMSs?



RQ2 What do explicit links between issue reports (i.e.,
explicit issue networks) represent in the Android
IMS?

RQ3 What kind of relations between issue reports does
textual similarity analysis detect in the Android
IMS?

Our first analysis was based on link mining. It is an
approach commonly applied to support tasks such as object
ranking, link prediction and sub-graph discovery [11]. Our
approach was to extract explicit links among issue reports
in the IMSs. The link structures lead to directed graphs of
issue reports. We refer to a set of issue reports connected by
explicit links as an explicit issue network. We represented
issue networks in GraphML [6], expressing issue reports as
nodes and links as directed edges. We visualized the result
using the graph editor yEd 1. Finally, we used Gephi (v.
0.8.1 Beta) [2] and Social Networks Visualizer 2 to compute
structural statistics of the networks.

In the Safety IMS, extraction of explicit issue networks,
i.e. the sub-graph discovery, was straightforward. We ex-
tracted explicit links from a field in the IMS called “Related
cases”. In the Android IMS on the other hand, no such
field exists. Instead, we resorted to another link mining
strategy. As presented in Section I, issue comments in the
Android IMS contain references to other issue reports as part
of the developer communication. We extracted this type of
explicit links, expressed by HTML hyperlinks, using regular
expressions. For both IMSs multiple links between the same
pair of issues were treated as one link. Also, we stored self-
links, i.e., issue reports with explicit links to themselves.

Our second analysis was a qualitative investigation of a
sample of explicit issue networks extracted from the Android
IMS to understand their meaning. This included manual
study of issue reports and their related comments to evaluate
relationships and the semantics of explicit links. As we
were interested in linked structures rather than isolated issue
reports with few or no links, we limited our study to these
networks. The sample was selected to cover various network
patterns. Then, we categorized explicit links as one of the
four types:

1) Related links. Links created by developer to point out
related, or possibly related, issue reports. Examples
include expressions such as: “You might want to keep
an eye on this issue as well: <link>” and “Please take
a look also at this related discussion: <link>”.

2) Duplicate links. Links created by developers to pro-
pose or claim that another issue report addresses the
same issue.

3) Clone links. Links established by developers to high-
light that a report with identical textual content in title
and description exists. A clone link is a stronger type

1yEd v. 3.9.2 http://www.yworks.com/en/products yed about.html
2SocNetV v. 0.81, http://socnetv.sourceforge.net/

of duplicate link.
4) Miscellaneous link. Links created for other purposes,

e.g., showing examples or discussing release planning,
and links created by mistake. Examples include: “For
your information, release X resolved: <link>”, “a
fix for <link> was not included in release X”, and
“On my phone, I cannot browse Google Code issues
that contain a description longer than one page, for
example <link>”. Typical to the miscellaneous links
is that they do not express a relation from the issue
report the comment is attached to, but rather from the
topic of the specific comment itself.

Finally, we studied the output from the link mining in the
Android IMS compared to links established based on textual
similarities, in line with what has been suggested for trace
recovery based on Information Retrieval (IR) methods [9].
This analysis was conducted using standard techniques for
text mining. We analyzed the similarity of the NL content in
titles and descriptions using RapidMiner [22]. We calculated
textual similarities based on the classic vector space model
and cosine similarities [27]. Descriptions and titles of issue
reports were represented as TF-IDF weighted terms, after
removing stop words and applying Porter’s stemmer.

IV. RESULTS

A. Link mining (RQ1)

In both IMSs, we discovered large networks of issue
reports. The 26,120 issue reports in Safety IMS contain
18,046 explicit links. Figure 3 shows an overview of the
explicit networks extracted from the Safety IMS, limited to
networks containing five or more issue reports, and Figure 4
shows a close-up of the largest network. About half of the
issue reports are linked (48.0%), and 31.9% of the issue
reports are included in issue networks of at least size 5.
Further network measures are presented in Table I.

Thanks to the HTML structure of explicit links in com-
ments in the Android IMS, we were able to mine all explicit
links among issue reports using regular expressions. We
extracted 3,449 unique explicit links among the 20,176 issue
reports. A majority of the issue reports (16,655, 82.5%)
neither link to other reports nor are the targets. Instead links
tend to cluster, and 2,044 explicit links (59.7%) are present
in explicit defect networks containing five or more reports.
Figure 2 shows a visualization of the clusters containing
five or more issue reports, in total 1,382 issue reports. More
network measures are reported in Table I.

As further discussed in Sections VI and VII, network
analysis has been successfully applied to object ranking [11].
Thus, we also evaluated whether it could be used to suggest
issue priorities. However, we found no correlation between
the number of links (neither in-links nor out-links) and the
priority/severity assigned to an issue, neither in the Safety
IMS nor in the Android IMS. On the contrary, we discovered



Figure 2. Explicit issue networks in the Android IMS. The figure shows all networks containing five or more issue reports, in total 1,382 reports and
2,060 links. A to F are the sample link clusters we analyzed qualitatively.

Measure Safety IMS Android IMS
Nodes 26,120 20,176
Edges 18,046 3,449
Components 15,583 17,720
Density 2.6 x 10−5 8.5 x 10−6

Out-linked nodes 10,664 2,238
In-linked nodes 8,861 2,221
Reciprocal-linked nodes 4,646 701
Diameter 48 12
Avg. clustering coefficient 0.044 0.007
Average degree 0.691 0.171
Average path length 13.874 3.251

Table I
STRUCTURAL STATISTICS OF THE NETWORKS

both several highly prioritized issue reports with few explicit
links, as well as non-prioritized issues with many explicit
links. Figure 4 depicts a magnified region of the issue
network, with one dominating issue report to the right, i.e.,
an issue report with a high number of inlinks.

B. Qualitative analysis (RQ2)

Since link mining only shows the presence of links, it
must be combined with manual analysis to determine their

semantics. Addressing RQ2, we present the results from
a qualitative analysis of a sample of issue reports in the
Android IMS. The sample, containing 111 reports and 225
links in 6 clusters (A-F), is shown in Figure 5. We refer
to issue X as BX (short for BugX, with X representing the
issue number). A close-up of an issue network is shown in
Figure 3, and a summary of our findings is presented in
Table I.

Network A (7 reports, 9 links) is dominated by duplicated
reports. B3956 reports a presentation problem when brows-
ing Google code issues using the Android web browser, and
the author linked to B1725 just as an example. B3956 has
then three cloned reports (B3957-B3959) and one duplicate
(B4083). Eventually, in a B3956 comment, a Google engi-
neer created links to all duplicates that were merged into
this issue report.

Network B (6 reports, 8 links) contains issue reports
related to volume issues with headphones. The network
contains bidirectional connections between nodes, created
when the same developer pointed out possible duplicates in
the comments of B6708, B6709, and B8279. Apart from
links to duplicates, we found one link to a “possibly related



Figure 3. Explicit issue networks in the Safety IMS. The figure shows all networks containing five or more issue reports, in total 8,340 reports and 14,596
links.

Figure 4. Close-up of the largest explicit issue network) in the Safety IMS, showing 5,414 reports and 10,403 links. The nodes with the highest degree
centralities are represented by larger squares. A magnified region is shown to the right.



Figure 5. Explicit issue network B.

defect”.
Most issue reports in Network C (24 reports, 28 links)

address scrolling issues in the web-browser. Again, dupli-
cates are the most common cause of links. However, we
also identified referrals to other reports containing more
information, possibly related issues, a link created to wrong
issues (later corrected), and a link used in a replication
step. Bidirectional connections were created in comments
discussing possibly related issues.

Network D (43 reports, 108 links) has a central critical
issue with 20 in-links and 14 out-links, reporting that SMSes
intermittently are sent to the wrong contacts. This severe
bug generated multiple defect reports, connected links ex-
pressing possible duplicates, related issue reports, and finally
merged issues. Developers also created links in attempts to
escalate issues. Moreover, two developers created dense sub-
networks by copy-paste posting comments including links to
possible duplicates in several issue reports.

Network E (23 reports, 22 links) only consists of 22 out-
links from B12060, reporting that Google Talk does not
display the correct name. This defect report has 22 clones,
B12038-12059, merged into B12060 by a Google engineer.

Network F (8 reports, 51 links) has a dense link structure
and includes 7 self-links. The issues all deal with synching
of contacts. The dense link structure, and the self-links, were
created when a developer posted the comment “Do we have
one ground for many problems?” followed by links to 7
reports. This comment was copy-pasted to all seven reports.

C. Textual similarity analysis (RQ3)

We explored RQ3, also targeting the Android IMS, by first
conducting a textual similarity analysis and then comparing
the results from the textual similarity analysis with both
the results from the link mining and from the qualitative
analysis.

Again, we took the issue reports in networks A to F as
our sample, containing 111 reports and 226 explicit links.
111 issue reports can have a maximum of 111∗110 = 6105
pairwise relations. Figure 6 shows the distribution of relative
similarities for all 6,105 possible relations between issues.
These relations we refer to as textually retrieved links, or
just retrieved links (to distinguish them from the explicit
links contained in the networks A to F).

Treating the explicit issue networks in the sample as
undirected, we analyzed how many of the retrieved links, of

Figure 6. Distribution of cosine similarities between issue reports in the
sample.

each type, were also explicit links. 267 of the retrieved links
had similarity = 1, i.e., representing relations between issue
reports of type ‘clone’. By manual inspection, we found that
all of the 226 explicit links of type ‘clone’ were included
among the 267 retrieved links of the same type. The 41
retrieved links of type ‘clone’ not contained in the set of
explicit links of the same type were redundant links, i.e.,
links that could be retrieved from the set of explicit links by
applying the law of transitivity. For example, if there were
explicit links of type ‘clone’ between issue reports A and B
(indicating that B is a clone of A) and issue reports A and C
(indicating that C is a clone of A), then it is clear that there
must be also a relationship of type ‘clone’ between issue
reports B and C, even if no explicit lank has been inserted
by a developer. Thus, after adding all redundant links of type
‘clone’ in the networks of explicit links the total number of
explicit and derived redundant links of type ‘clone’ equaled
267.

To further explore the nature of the retrieved links, we
analyzed the first 74 non-clone links in the set of retrieved
links, and compared them with the links in the set of explicit
and redundant links. We chose 74 because it is a manageable
number, and also it represents links in the set of retrieved
links with reasonable cosine similarities, below 1 and above
0.35. A cosine similarity threshold of 0.35 corresponds to
half the similarity proposed in previous work in linking
software artifacts [21], [8], and is thus more inclusive.
Table II presents our findings. A visualization of the findings
is presented in Figure 7.

In Table III, we use the following abbreviations:
‘Sim’ means ‘cosine similarity’, ‘T Link’ means ‘textu-
ally retrieved link’, ‘E Clone’ means ‘explicit clone link’,
‘E Dupl’ means ‘explicit duplicate link’, ‘E Rel’ means ‘ex-
plicit related link’, ‘E Misc’ means ‘explicit miscellaneous
link’, ‘T Mean’ means ‘textually retrieved link that was not
explicit but still carries a meaning’, and ‘T False’ means
‘textually retrieved link that neither is explicit nor mean-
ingful’. Retrieved links of type ‘T Mean’ carry meanings
corresponding to the kind of meanings that explicit links



Distribution of link types
Nodes Links Clone Dupl. Rel. Misc. Network Character Main cause of network

A 7 9 3 2 0 4 Midsize network, mixed link struc-
ture.

Cloned and duplicated reports.

B 6 8 0 6 1 1 Midsize network, some bidirec-
tional connections.

Duplicated issue reports, reported
in both ends.

C 24 28 0 15 10 3 Larger network, some bidirectional
connections.

Duplicated and related reports.

D 43 108 5 55 36 12 Larger network, central critical is-
sue with many in/outlinks.

Severe issue, duplicated reports.
Copy/paste comments.

E 23 22 22 0 0 0 Larger network, central issue with
many outlinks.

Cloned reports.

F 8 51 0 0 50 1 Midsize network, dense link struc-
ture, many self-links.

Copy/paste comments.

Sum 111 226 30 78 97 21

Table II
SUMMARY OF THE EXPLICIT ISSUE NETWORK SAMPLE.

Figure 7. Meaning of the first 74 retrieved non-clone links. The X-axis
shows cosine similarities between 0.35 and 0.95. The colors of the bars have
the following meanings: black=explicit, gray=meaningful but not explicit,
white=false positive.

of types ‘E Dupl’ and ‘E Rel’ have. The meanings of the
various types of explicit links were described in Section III.

Our results show that the 74 first retrieved non-clone links
add more useful information than is available in only the
explicit links. Of the analyzed retrieved links 57 links were
also explicit (shown in black color in Figure 7), either of type
‘duplicate’ (36 links) or ‘related’ (21 links). The remaining
17 retrieved links did not match any of the explicit links
(or redundant links). Of these 17 retrieved links we found
that 11 (65%, shown in gray color in Figure 7) provide
meaningful information and could just as well have been
explicit, either as links of the duplicate or related type. On
the other hand, 6 retrieved links (shown in white color in
Figure 7) were false positives, i.e., links that do not add
meaningful information and thus should be considered noise.

V. THREATS TO VALIDITY

This section discusses limitations of this initial study, as
well as related threats to validity. Regarding the link mining,
our sample of >25,000 safety issue reports and >20,000
Android issue reports can be considered large. However,
since an important part of this study was conducted using
qualitative analysis, we also selected a smaller sample of 111
issue reports from the Android IMS for thorough manual
analysis. We discuss threats to internal validity, reliability

Sim T Link E Clone E Dupl E Rel E Misc T Mean T False
0.35 26 0 13 7 0 4 2
0.4 16 0 7 6 0 3 0
0.45 9 0 3 4 0 1 1
0.5 11 0 5 3 0 3 0
0.55 8 0 4 1 0 0 3
0.6 0 0 0 0 0 0 0
0.65 2 0 2 0 0 0 0
0.7 0 0 0 0 0 0 0
0.75 2 0 2 0 0 0 0
0.8 0 0 0 0 0 0 0
0.85 0 0 0 0 0 0 0
0.9 0 0 0 0 0 0 0
0.95 0 0 0 0 0 0 0

1 267 267 0 0 0 0 0

Table III
NUMBER OF RETRIEVED LINKS WITH SIMILARITY 0.35 TO 1.

and external validity [26] regarding the analyses conducted
on the qualitative sample of 111 issue reports.

Internal validity concerns confounding factors that can
affect the causal relationship between the treatment and the
outcome. In this study, the selection bias is a threat. As
we did no quantitative analysis, the issue networks were
not randomly selected, but instead selected intentionally as
suggested in the literature [26]. In qualitative research the
units of analysis should be selected to be ‘typical’, ‘critical’,
‘revelatory’ or ‘unique’ in some respect [3]. In our study,
we first identified all networks of explicitly linked issue
reports in the total set of issue reports. Then we selected
six networks (link clusters), labeled A to F, with specific
properties (cf. Table I). Thus, our selection criterion was
the uniqueness of the assumed root cause for the observed
structure within a network (link cluster).

Reliability is concerned with whether other researchers
would come to the same conclusions given the same data.
The interpretation of data is the core of qualitative re-
search [10]. To prepare for this threat we presented the clas-
sification scheme we used for explicit links, complemented
by several examples from the Android comments in Sec-



tion III. However, we did not test whether other researchers
agree with our classification. Interpretation was also required
to classify non-explicit retrieved links as meaningful or not,
and again we describe how we classified retrieved links but
we did not test whether other researchers agree with our
classification decisions.

Threats to external validity are of concern when gen-
eralizing findings. External validity is a major threat in
this study, as it is unclear whether IMSs in other software
engineering projects contain similar types of explicit and
derived links and similar structures in networks of explicit
links, as we detected in the the Safety IMS and the Android
IMS. All we know at this point is that other IMSs, of
both OSS and proprietary software development, typically
contain explicit links between issue reports. For example,
in IMSs of commercial systems such as Merant Tracker
and Microsoft Team Foundation Server there are dedicated
fields in issue reports for developers to signal relations to
other issues. However, regarding the nature of both link-
structures and the types of links (both explicit and retrieved)
in networks of issue reports, more research is required. Also,
in order to understand better to what extent findings derived
from research on easier accessible OOS-related IMSs can
be transferred to IMSs of company-proprietary development
projects, a comparison between these two classes of IMSs
needs to be conducted, similar to what has been done in
research within source code repositories [24].

VI. RELATED WORK

As many datasets today contain linked collections of
interrelated data, link mining has become a popular data
mining approach, combining research on link analysis, hy-
pertext mining and graph mining [11]. A primary focus of
the link analysis has been link-based object ranking, i.e.,
exploiting the link structure of a graph to order or prioritize
elements within the graph. Link-based object ranking has
been made particularly visible in web-retrieval, where the
PageRank [23] and HITS [19] algorithms have proven
successful. In software engineering, Kagdi et al. proposed
using mining to recover traceability links between artifacts
in a software repository [15]. However, their approach is
different from ours as they mine the version history for co-
changing artifacts, while we mine explicit hyperlinks.

Several researchers have proposed to recover trace links
between software artifacts by applying IR techniques. The
conjecture is that if two artifacts have a high textual similar-
ity, they are likely to refer to the same concepts [9]. Antoniol
et al. did pioneering work when they recovered traceability
links between source code and related documentation, both
using the Vector Space Model (VSM) and probabilistic re-
trieval techniques [1]. Later, Marcus and Maletic introduced
Latent Semantic Indexing (LSI), another IR technique, to
recover the same type of links [21]. They showed that they

could get at least as good result using LSI as VSM, but
without the need for stemming.

A specific type of relation between software artifacts is
occurrence of duplicates, known to be a problem in large
IMSs. Several researchers have addressed the challenge of
detecting duplicated issue reports. Runeson et al. proposed
using VSM to detect duplicates in an IMS at Sony Erics-
son [25]. They demonstrated that about 2/3 of the duplicates
could be found using textual similarity analysis based on
VSM. Targeting the same challenge, Kaushik and Tahvildari
compared different IR techniques [17]. They conducted their
evaluations on IMSs from the OSS Eclipse and Firefox, and
reported that 60% respectively 58% of the duplicated issue
reports were found. Tian et al. instead expressed the issue
duplicate detection as a classification problem [31] (i.e.,
duplicate/not duplicate). They used machine learning, and
combined textual similarity with categorical features, e.g.,
component, priority and version. Based on an evaluation
on issue reports from the Mozilla IMS, another OSS, they
presented promising results, further confirming that textual
similarity may indicate relationship between issues.

VII. DISCUSSION AND FUTURE WORK

In both the Safety IMS and the Android IMS, link mining
discovered networked structures containing between 2 and
5,414 issue reports (RQ1). The results show that mining
the explicit links created by engineers in IMSs is a feasible
approach to extract relations among issue reports. We also
found that there are larger explicit issue networks hidden in
the Safety IMS, a database with a separate field for ‘related
issues’, than in the Android IMS. Moreover, the Safety IMS
contains a total issue network that is bigger, denser, and
more connected with regard to the clustering coefficient.

The presence of networks in IMSs opens for further
research on navigation of issues reports. In line with research
on hyperlinked information in general [19], and web search
in particular [23], networks of software artifacts have pre-
viously been used to significantly improve searching based
on textual similarity in software engineering. Karabatis et
al. [16] showed how semantic networks of software artifacts
could be used to find additional related artifacts during
search, i.e., improving recall. Also, they report on how it
could be combined with contextual information about the
searching engineer to filter the search results, i.e., improving
precision. Furthermore, networks of software artifacts could
be used as input to visualization techniques supporting
engineers’ information seeking, as proposed by Cleland-
Huang and Habrat [7]. Visualization of large amounts of
data can enable humans to conduct visual data mining [18],
combining the computational power of computers with hu-
man knowledge and creativity.

While our link mining approach has the potential to dis-
cover initial networks of software artifacts, more is required
to establish semantic networks [30]. RQ2 addressed the



semantics of explicit links between issue reports created
in comments in the Android IMS. Our qualitative analysis
indicates that explicit links, in networks of at least five
issue reports, repeatedly are created to signal duplicated or
related reports. Moreover, we found that developers signal
duplicates with various degrees of certainty, from the weakly
stated “possibly duplicated issues”, to probable duplicates
and definite clones. We also found that Android developers
created several links of type ‘duplicate’ in batches when
merging several issue reports into a single issue report.

On the other hand, we noticed that not all explicit links
express meaningful relations between issue reports. For
example, we found invalid links, i.e., links that clearly were
not representing what the developer who introduced the link
claimed, and links created during internal communication
(e.g., moderating), e.g., links that are intended to escalate
issues (similar to thread ‘bumping’ in WWW fora), and links
that contain complaints from developers about some Android
functionality. Still, a majority of the explicit links seems to
represent valuable information about relations between issue
reports provided by developers.

While explicit issue networks in the Android IMS nor-
mally appear to grow to sizes above five issue reports due
to input from several developers working collaboratively, we
also identified issue networks created by single developers.
Single developers can generate large networks of explicit
links by copy-pasting links in comments on multiple issues,
or by submitting several identical reports, i.e., clones of issue
reports. Consequently, developers can single-handedly cause
relatively large networks.

Regarding RQ3, we found that the relations detected by
textual similarity analysis seem to efficiently identify all
available issue report clones. Moreover, our results confirm
that a high textual similarity could be used as a duplicate
warning, in line with previous findings [12], [15], [25].
Furthermore, the results from the textual similarity analysis
also discovered meaningful relations between issue reports
which were not contained in the set of explicit links.

Unfortunately, however, if compared to the occurrence
frequency of invalid links in explicit link networks, textual
similarity analysis seems to indicate more often relations
between issue reports that turn out to be meaningless. This
indicates that explicit links are generally of higher quality
than retrieved links. Also, relations between issue reports
expressed by explicit links are easier to extract than implicit
relations discovered from mining sparse NL descriptions
through textual similarity analysis.

We now discuss the answers to the three RQs in relation
to the support provided for the impact analysis work task
(i.e., possibilities A and B), as described in Section I. Based
on our results of the comparison between retrieved links
and explicit links in the selected set of 111 issue reports
contained in network clusters A to F, it seems that the An-
droid developers have a good knowledge about the existence

of clones among issue reports, as textual similarity analysis
did not detect relationships of the type ‘clone’ between issue
reports that were not already contained in the set of explicit
(and redundant) links. This seems to suggest that Android
developers don’t need automated textual similarity analysis
in order to detect clones of issue reports.

Our analysis of both explicit links and retrieved links
(not related to clones) in the Android IMS did not provide
conclusive results with regards to helping developers finding
traces to other development artifacts via the detection of
relations between issue reports of the types ‘duplicate’ and
‘related’. Since Android issue reports do not have any ex-
plicit links to other development artifacts, we focused in our
analyses on the number of explicit and retrieved links that
pointed to duplicated or related issue reports. In addition, we
investigated whether automated textual similarity analysis
has the potential to find duplicated and related issue reports
not yet represented by explicit links.

Overall, we found that the total number of explicit links
of type ‘clone’ is small compared to the total number of
explicit links of types duplicate’ and ‘related’. We do not
know whether this is typical for OSS development projects
or for software development projects in general. In any case,
our results seem to support that automated textual analysis
has the potential to complement the knowledge of developers
about duplicated and related issue reports. At least this was
the case for the Android IMS. One problem associated with
automated textual similarity analysis, well studied in the
context of IR-based trace recovery [9], is that the degree of
similarity between issue reports (below 1) does not seem to
be a good predictor for meaningful relations between issue
reports. 6 out of the 74 retrieved links with similarity degrees
below 1 and above 0.35 (i.e., 8%), were false positives, i.e.,
were not meaningful.

Finally, in order to tackle our long-term goal of helping
developers to find traces to artifacts other than issue reports,
we plan to conduct further analyses within safety-critical
development. While this paper is a first step toward extract-
ing semantic networks of software artifacts, our next goal
is to merge information from additional sources. Currently,
we are working on adding links mined from a database of
impact analysis reports, containing rich information about
issue-related change locations in source code and impact
on other artifacts such as test cases, design documents,
and requirements documents. The resulting network, repre-
senting relations of different types among various artifacts,
could be used both to improve IR in a software engineering
context and constitute an initial knowledge representation in
recommendation systems for software evolution.
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