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Computationally Efficient Time-Recursive
IAA-Based Blood Velocity Estimation

A. Jakobsson∗, Senior Member, IEEE, G. O. Glentis†, Member, IEEE, and E. Gudmundson∗

Abstract— High-resolution spectral Doppler is an important and pow-
erful non-invasive tool for estimation of velocities in blood vessels using
medical ultrasound scanners. Such estimates are typically formed using
an averaged periodogram technique, resulting in well-known limitations
in the resulting spectral resolution. Recently, we have proposed tech-
niques to instead form high-resolution data-adaptive estimates exploiting
measurements along both depth and emission. The resulting estimates
gives noticeably superior velocity estimates as compared to the standard
technique, but suffers from a high computational complexity, making
it interesting to formulate computationally efficient implementations of
the estimators. In this work, by exploiting the rich structure of the
iterative adaptive approach (IAA) based estimator, we examine how these
estimates can be efficiently implemented in a time-recursive manner using
both exact and approximate formulations of the method. The resulting
algorithms are shown to reduce the necessary computational load with
several orders of magnitude without noticeable loss of performance.

Index Terms— Blood velocity estimation, medical ultrasound, irregular
sampling, spectral estimation, iterative adaptive approach (IAA), fast
algorithms.

I. INTRODUCTION

MEDICAL ultrasound is a powerful and frequently used tech-
nique for non-invasive estimation of velocities in blood ves-

sels, allowing the physician not only to get an image of the blood
vessel, but also of the flow dynamics in it, allowing, for instance, for
the diagnosing of carotid artery stenosis [1]. Typically, the velocity of
the moving blood is estimated using repeated transmissions focused at
a single location repeatedly, and then forming a signal that is sampled
once per emission after a time selected to allow the backscattered
signal to be received from the depth of interest. The resulting signal,
often termed a slow-time signal, will then have a frequency that is
proportional to the axial blood velocity, i.e., the velocity along the
direction of interrogation, such that for a single blood scatterer, the
measured frequency will be fp = 2vfc/c, where v is the blood
velocity along the ultrasound direction, c = 1540 m/s is the speed
of propagation, and fc the emitted ultrasound (center) frequency
(typically 3-10 MHz). The velocity is then found by estimating the
spectral content of the slow-time signal, which is generally being
done using a Welch’s periodogram estimate. The resulting estimate
suffers from the well known limitation of this technique, necessitating
that a large number of transmissions (about 100) are used to form
the estimate, thereby reducing the temporal resolution of the estimate,
making it difficult to see the details in the rapid acceleration phases
of the cardiac cycle. Interleaved with the velocity transmissions are
also transmissions used to form the B-mode image, allowing the
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physician to visualize and find the blood vessel, and to position
the velocity estimation at the point of interest. These emissions are
often interleaved so that every second transmission is a B-mode
acquisition, thereby reducing the velocity range by a factor of two
[2]. For vessels with high flow dynamics, one may instead choose
to use blocks of emissions to acquire the B-mode image, but this
will then result in holes in the blood velocity spectrogram [3]. To
address this problem, different parametric and data-adaptive non-
parametric spectral estimation techniques have been developed in the
literature (see, e.g. [4]–[11]). In [10], the authors introduced data-
adaptive Capon- and APES-based blood velocity spectral estimation
techniques exploiting the information along both emissions and depth.
These techniques were found to offer substantial improvements over
the traditionally used Welch’s method, results which have later
also been confirmed in thorough in vivo studies [12], [13]. To
allow for blocks of B-mode emissions, the technique was later also
extended to periodically gapped data in [14]. Exploiting recent work
in MIMO radar and RF spectroscopy [15]–[18], we presented an
Iterative Adaptive Approach (IAA) algorithm that was found to
improve on these results further still [19], although this gain was
achieved at a noticeably higher computational cost. In [20], we
presented a computationally efficient and exact block implementa-
tion of the so-called Blood Iterative Adaptive Approach (BIAA)
algorithm using suitable Gohberg-Semencul (GS) representations to
exploit the rich structure of the algorithm, dramatically reducing
the required computational burden of the algorithm. Regrettably,
although showing excellent performance, the overall complexity of
the BIAA algorithm is still relatively high. In this work, we are
therefore examining the possibility to formulate time-recursive exact
and approximate implementations of the algorithm. As the blood
velocity signal exhibits a periodically gapped structure, we exploit
the exact block BIAA algorithm discussed in [19], [20] in forming
the time-updating, thereby also generalizing the sample-based time-
recursive formulation of the general IAA algorithm presented in
[21] to a block form. Furthermore, generalizing the approximate
Quasi-Newton (block) algorithm introduced in [22], we propose an
approximate block-recursive updating algorithm which offers further
notable computational savings without more than a marginal loss
of performance. In the following section, we present an overview
of the data model and an approximate formulation of the BIAA
algorithm proposed in [19], formulating the problem of interest.
Then, in Section III, we review the resulting reformulation of the
exact fast BIAA (F-BIAA) implementation proposed in [20] and
introduce the notation and structure for the derivation of the block-
recursive exact and approximate algorithms proposed in Sections IV
and V. In Section VI, we examine the performance and computational
reductions offered by the discussed algorithms. Finally, Section VII
contains our conclusions.

II. DATA MODEL AND THE BIAA METHOD

The ultrasound signal is measured by applying ultrasound pulses
in a series of emissions. These ultrasound pulses will reflect on
the various scatterers along the direction of interrogation, causing
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the backscattered signal to be a function of the scatterers at the
depths corresponding to the round-time of the propagation. The phase
difference resulting from reflections at a given depth for different
emissions will yield a signal with frequency that is related to the
velocity of the scatterer. The thus obtained noise-free slow-time
data acquired along emissions by the spectral Doppler at depth k,
corresponding to emission n, for blood scatterers with (axial) velocity
v, is commonly modeled as [2], [10]

x̃k(n) = α(k)
v ejφck+jψvn, (1)

where α(k)
v is the (complex-valued) amplitude of the sinusoidal signal

at frequency ψv , at depth k, which is directly related to the (axial)
blood velocity, v, as

ψv = − 2ωc
cfprf

v = −2v

c
ωcTprf , (2)

where ωc = 2πfc, fprf is the pulse repetition frequency, and Tprf =
f−1
prf is the time between pulse repetitions. Furthermore, φc is the

demodulating frequency, relating the samples along each emission
(the so-called fast-time), defined as φc = ωc/fs, where fs is the
sampling frequency. Combining the contributions from scatters for M
considered velocities, one may write the measured, noise corrupted,
signal as

xk(n) =

MX
m=1

α(k)
vm
ejφck+jψvmn + wk(n), (3)

where {vm}Mm=1 denotes the m:th (axial) velocity, and wk(n)
denotes a residual term consisting of all signals at velocities different
from the M considered velocities as well as additive noise. From (2)
and (3), it is clear that the spectral density of xk(n) with respect to
ψvz is equivalent to the blood velocity distribution at the examined
location. The problem of estimating the blood velocity distribution
can thus be seen to be equivalent to the estimation of |αv|2 for
all velocities of interest. Generally, the blood flow profile will be
rather smooth along depth, implying that α(k)

v , over the depths
k = k1, . . . , kK , will be almost constant as long as the fast-time
range is limited to be within the emitted pulse length. Here, we will
exploit this smoothness and average the measured signals for adjacent
depths, while compensated for the modulation along depth, and form

y(n) =
1

K

kKX
k=k1

e−jφckxk(n), (4)

thereby increasing the signal to noise ratio (SNR) of the processed
signal. Assuming uniform pulse emissions for either velocity esti-
mation or B-mode imaging, the slow-time measurements may be
viewed as exhibiting a reoccurring block structure, such that each
block consists of the pattern of velocity and B-mode transmissions,
typically having the form

yNg
(p) =

ˆ
y(pNs) · · · y(pNs +Ng − 1)

˜T
, (5)

where Ns = Ng+Nm and Ng and Nm denote the number of velocity
emissions (given samples) and the number of B-mode emissions, here
simply treated as missing samples, respectively. For the traditional
case with every second emission being B-mode acquisitions, Ng =
Nm = 1, but more general sampling patterns can also be used [3],
[19]. The measurements used for velocity estimation at time p is then
formed as the concatenation of the Nb most recent sub-blocks, i.e.,

zN (p) =
h

yTNg
(p−Nb + 1) · · · yTNg

(p)
iT
, (6)

with the last sub-block being the most current measurements, and
where N = NbNg denotes the total number of available mea-
surements in the observation window. Clearly, N will be limited

by the stationarity of the examined blood velocity signal, bounding
how many emissions that may be used to form the resulting blood
velocity spectral estimate. To improve the efficiency of the proposed
implementations, we will initially exploit this block structure in
measurements, and will then proceed to derive time-recursive for-
mulations that exploit the already computed blood velocity estimate
at time p to form the estimate at time p+ 1. Let

a`1,`2 =
ˆ

1 ejψvm `1 · · · ejψvm `1(`2−1)
˜T

(7)

and form the gapped block Fourier vector, taking into account the
missing samples, as

f̄ψvm
= aNs,Nb ⊗ a1,Ng , (8)

where ⊗ denotes the Kronecker product. The BIAA2 algorithm is
then formed, using the measurements up to time p, by iteratively
estimating

α̂p,vm =
f̄
H
ψvm

R−1
N (p)zN (p)

f̄
H
ψvm

R−1
N (p)f̄ψvm

, (9)

RN (p) =

MX
m=1

|α̂p,vm |
2 f̄ψvm

f̄
H
ψvm

, (10)

until practical convergence, with (·)H denoting the conjugate trans-
pose. It is worth noting that, different from to the original BIAA
algorithm in [19], we are here including the noise estimate in the
covariance matrix estimate RN (p). This change, just as the averaging
in (4), allows for an overall speed-up that only implies a marginal loss
of performance. To stress the difference between the here presented
approximate version and the original BIAA algorithm proposed
in [19], the former is here denoted BIAA2. The computational
complexity of the brute force implementation of the BIAA2 algorithm
is CBIAA2 = m

ˆ
2N2M +MN +N3

˜
, where m is the number of

iterations required for the convergence of the IAA algorithm, with
10 to 15 iterations typically being enough [15], [16]. For notational
simplicity, we will in the following omit the dependence of p when
this is clear from the context.

III. THE BLOCK-WISE FAST BIAA2 ALGORITHM

In [20], we proposed a computationally efficient implementation
of the BIAA algorithm, which we here, for completeness, and to
introduce the necessary notation and structure, briefly review and
generalize. The algorithm exploits that the covariance matrix in (10)
will have a Toeplitz-block-Toeplitz (TBT) structure of the form [20]

RN =

26664
R(0) RH(1) . . . RH(Nb − 1)
R(1) R(0) . . . RH(Nb − 2)

...
...

. . .
...

R(Nb − 1) R(Nb − 2) . . . R(0)

37775 (11)

where R(`) denote the Ng ×Ng (Toeplitz) covariance matrix of the
`:th sub-block. The matrix RN can be recovered from a circulant
matrix of higher dimensions as

CM = SM
»
RN ×
× ×

–
STM , (12)

where SM is a suitably chosen permutation matrix, × denotes
unspecified terms of no relevance, and

CM = WHdiag
ˆ
|αv1 |

2 . . . |αvM |2
˜
W , (13)

where W denotes the Discrete Fourier Transform (DFT) matrix of
size M ×M , and diag(x) denotes the diagonal matrix formed with
the vector x along the diagonal. The first column of the circulant
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matrix CK , denoted cK , can be computed using the Inverse DFT
(IDFT) as cM = WHαM , where

αM =
ˆ
|αv1 |

2 . . . |αvM |2
˜T
. (14)

Then, the lower (block) order partitions of (10) may be formed as

RN =

»
RN−Ng Rb

N−Ng,Ng

RbH
N−Ng,Ng

R(0)

–
(15)

=

"
R(0) RfH

N−Ng,Ng

Rf
N−Ng,Ng

RN−Ng,Ng

#
(16)

where RN−Ng is a TBT matrix of dimensions (N−Ng)×(N−Ng),
whereas Rf

N−Ng,Ng
and Rb

N−Ng,Ng
are the forward and backward

(block) matrices of size (N −Ng)×Ng . Define

AN,Ng =

»
INg

−R−1
N−Ng

Rf
N−Ng,Ng

–
(17)

BN,Ng =

»
−R−1

N−Ng
Rb
N−Ng,Ng

INg

–
(18)

and

afNg
= R(0)−RfH

N−Ng,Ng
R−1
N−Ng

Rf
N−Ng,Ng

(19)

abNg
= R(0)−RbH

N−Ng,Ng
R−1
N−Ng

Rb
N−Ng,Ng

. (20)

The forward and backward predictors defined in (17) and (18), as
well as the associated prediction error powers, as defined in (19)
and (20), can efficiently be computed using the celebrated Levinson-
Whittle-Wiggins-Robinson (LWWR) algorithm [23] (see also, e.g.,
[24], [25]). For completeness and for use in the following, the basic
steps of the LWWR algorithm are tabulated in Table I. With these
steps, the variable DN , defined as

RNDN , zN , (21)

that appears in (9), may be estimated using the LWWR algorithm as
detailed in Table II. The computational complexity for the estimation
of (17)-(20), as well as (21) using the LWWR algorithm described
in Tables I and II, is CLWWR = 1.5N2

bN
3
g + 2NbN

3
g + N2

bN
2
g ,

where the last term accounts for the complexity for solving (21)
using the order recursive scheme of Table II. Furthermore, using the
GS factorization of R−1

N and the block structure of the frequency
vector, one may efficiently form the coefficients of the trigonometric
polynomial that appear in the denominator of (9) using the FFT
(see [20] for further details). The computational complexity of the
resulting F-BIAA2 algorithm is given by CF−BIAA2 = m[(1.5Ng+
1)N2+3φ(M)+5Ngφ(2Nb, 2Ng)], where φ(2Nb, 2Ns) and φ(M)
denote the cost of computing a 2-D FFT of size 2Nb × 2Ng as well
as a 1-D FFT of size M , respectively.

IV. THE QUASI-NEWTON F-BIAA2 ALGORITHM

Extending the results formulated in [22], we now proceed to
propose an approximate block-wise F-BIAA2 algorithm, where the
covariance matrix RN (p) is substituted by an approximate esti-
mate, which results in a substantially more efficient implementation,
without having more than a marginal effect in the accuracy of the
estimated parameters. The proposed method is motivated by the
Quasi-Newton (QN) algorithm formulated in [26], and approximate
the resulting Toeplitz covariance matrix as being formed from a
low-order autoregressive (AR) process. The method, which has
subsequently been applied to both adaptive acoustic echo cancellation
and channel equalization [27]–[30], provides an efficient and low
complexity implementation scheme of approximate recursive least
squares algorithms by imposing a low order AR approximation on the
input signal of the adaptive algorithm. Let 0 ≤ q ≤ Nb be the order

TABLE I
THE LWWR ALGORITHM AT STEP m WHERE N = (m + 1)Ng AND

m = 1, 2 . . . Nb − 1

βββNg
= BHmNg,Ng

Rf
mNg,Ng

kfNg
= a−fNg

βββNg

kbNg
= a−bNg

βββHNg

A(m+1)Ng,Ng
=

»
AmNg,Ng

0Ng

–
+

»
0Ng

BmNg,Ng

–
kfNg

B(m+1)Ng,Ng
=

»
0Ng

BmNg,Ng

–
+

»
AmNg,Ng

0Ng

–
kbNg

afNg
= afNg

+ βββNg
kbNg

abNg
= abNg

+ βββHNg
kfNg

TABLE II
ESTIMATION OF DN USING THE LWWR ALGORITHM

βββdNg
= BHmNg,Ng

z(m+1)Ng

kdNg
= a−bNg

βββdNg

D(m+1)Ng
=

»
DmNg

0Ng×1

–
+ BmNg,NgkdKg

of the QN approximation. Clearly, when q = Nb, the QN approach
will produce the same results as the ordinary method. Consider the
covariance matrix of order q, i.e.,

RNq , RqNg (22)

where RNq is TBT matrix of size Nq ×Nq and where Nq , qNg .
Suppose that the inverse R−1

Nq
has been computed using, for example,

the LWWR algorithm of Table I. Let RNq+Ng be the increased order
covariance matrix. Then, using (16) and the matrix inversion lemma
for partitioned matrices [31], one obtains

R−1
Nq+Ng

=

»
0 0T

0 R−1
Nq

–
+ ANq+Ng,Ng a−1

Ng
AH
Nq+Ng,Ng

(23)

which, using (18) and (20), yields

ANq+Ng,Ng =

»
INg

−R−1
Nq

Rf
Nq,Ng

–
(24)

afNg
= R(0)−RfH

Nq,Ng
R−1
Nq

Rf
Nq,Ng

. (25)

Recall that ANq+Ng,Ng can be recursively updated using the LWWR
algorithm of Table I as

βββNg
= BH

Nq,Ng
Rf
Nq,Ng

(26)

kfNg
= a−fNg

βββNg
(27)

ANq+Ng,Ng =

»
ANq,Ng

0Ng

–
+

»
0Ng

BNq,Ng

–
kfKg

. (28)

Adopting the methodology presented in [26]–[28], the matrix RNq

of dimensions Nq ×Nq is extrapolated to an increased order matrix
QNq+Ng of dimensions (Nq + Ng) × (Nq + Ng), imposing the
condition that

ANq+Ng,Ng =

»
ANq,Ng

0Ng

–
(29)
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Fig. 1. (a) Reference spectrogram, created using Welch’s method with all
130 emissions, as well as (b) the Welch’s estimate and (c) the F-BIAA2

spectrogram for data consisting of 13 blocks with emission pattern [1 1 1 1
1 1 0 0 0 0], with 33 samples along depth.

or, equivalently, by setting βββNg
= 0. Iterating this procedure up to

Nb, one obtains the QN approximation of RN as

Q−1
N =

»
0 0T

0 R−1
Nq

–
+ AQ

N,N−NgNq
AQH
N,N−NgNq

(30)

where

AQ
N,N−NgNq

,

26666666666664

ANq,Ng 0 . . . 0

0 ANq,Ng

. . .
...

... 0
. . .

...
...

...
. . . 0

...
...

. . . ANq,Ng

0 0
. . . 0

37777777777775
(31)

is a N×(N−NgNq) block Toeplitz matrix with matrix entries of size
Ng × Ng . Thus, (31) results from an incomplete LWWR algorithm
where, by construction, the forward and backward matrix valued
reflection coefficient are set equal to zero, for ` = q+1, q+2, . . . , Nb.
Using the results presented above, an approximate F-BIAA2 algo-
rithm can be derived by the direct use of the matrix QN (p), as defined
in (30), in place of RN (p) that appears in (9). Since the inverse
Q−1
N is already available, no further computations are required for

this purpose. Thus, the resulting approximate algorithm, termed the
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Fig. 2. (a) The BR-F-BIAA2 and (b) BR-QN-F-BIAA2 spectrograms, for
data consisting of 13 blocks with emission pattern [1 1 1 1 1 1 0 0 0 0], with
33 samples along depth.

QN-F-BIAA2 algorithm, is formed by iterating

α̂p,vm =
f̄
H
ψvm

Q−1
N (p)zN (p)

f̄
H
ψvm

Q−1
N (p)f̄ψvm

(32)

RNq (p) =

MX
m=1

|α̂p,vm |
2 f̄ψvm

f̄Hψvm
(33)

Q−1
N (p) =

»
0 0T

0 R−1
Nq

(p)

–
+ AQ

N,N−Nq
AQH
N,N−Nq

. (34)

The computational complexity of the resulting algorithm is given
approximately by CQN−F−BIAA2 = m[(1.5q2 + q)N3

g +3φ(M)+
5Ngφ(2q, 2Ng)].

V. THE BLOCK RECURSIVE F-BIAA2 ALGORITHM

Both the F-BIAA2 and the QN-F-BIAA2 algorithms may be
computed in a block-recursive (BR) manner as new measurements
become available. The algorithm may be simplified further by allow-
ing for an approximate solution, noting that, upon convergence, the
covariance matrix estimated at time p, i.e., RN (p), can be used for
the initialization of the covariance matrix at the successive time p+1,
i.e., RN (p+1), indicating that an approximate solution can be found
by setting m = 1. Instead of iteratively solving (9) and (10) each
time a new data block is available, a time varying updating scheme
is applied as

α̂p,vm =
f̄
H
ψvm

R−1
N (p)zN (p)

f̄
H
ψvm

R−1
N (p)f̄ψvm

(35)

RN (p+ 1) =

MX
m=1

|α̂p,vm |
2 f̄ψvm

f̄
H
ψvm

, (36)

where the iterative updating of the spectral estimate sought and the
time updating of the covariance matrix are both interleaved in a
simplified two steps procedure. The resulting approximation does not
induce any substantial loss in performance. Similar arguments apply
to the block recursive implementation of the QN-F-BIAA2 algorithm.
We term the resulting approximate estimates the BR-F-BIAA2 and
BR-QN-F-BIAA2 algorithms, respectively, noting that their compu-
tational complexity will be m times lower compared to the corre-
sponding batch processing algorithms, where m denotes the number
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TABLE III
COMPUTATIONAL COMPLEXITY

Method Batch Block recursive
BIAA [19] 8.2 · 107 -
F-BIAA [20] 4.3 · 106 -
BIAA2 6.7 · 107 -
F-BIAA2 9 · 105 9 · 104

QN-F-BIAA2 2 · 105 2 · 104

of iterations required for the convergence of the original scheme,
i.e., (9) and (10). The computational gain offered by the proposed
methods is illustrated in Table III, where the approximate number
of complex valued computations required by various algorithms (for
130 emissions and for the spectral estimate updating period equal to
10 emissions) is presented for the batch as well as for the block time
recursive case, using the parameters described in detail in Section VI.
Here, the number of the IAA iterations that is used in the batch
methods is m = 10.

VI. NUMERICAL RESULTS

In order to evaluate the performance of the proposed algorithms,
we examine both simulated data generated using the Field II toolbox
[32], [33], mimicking the blood flow through a femoral artery, and
in vivo data from the carotid artery of a healthy volunteer. Each
spectrogram was generated using 500 equally spaced grid points in
the interval ψvz ∈ [−0.5, 0.5), with emission scheme [1 1 1 1 1 1
0 0 0 0], using 13 blocks for each spectrum. Here, the ’1’ denotes
an emission aimed at estimating the blood velocity, whereas a ’0’
denotes an emission aimed at forming a B-mode image. This yields
130 emissions, of which 6 × 13 = 78 emission were considered
available for blood velocity estimation. Each emission thus yields a
vector measurement along depth. We initially examine the simulated
flow data, emulating femoral artery flow data using the Womersley
model [34] for pulsating flow. The specific parameters for the flow
simulation can be found in [3]. For signals taken in regions close
to the vessel wall, the stationary part of the backscattered signal
can be very strong, and would, if not removed, easily obstruct the
blood velocity signal. As customary, we here do so using mean
subtraction. In Figure 1, the Welch and the F-BIAA2 spectrogram1

using only 60% of the emission data (thereby allowing for 40% of the
emissions to be used for B-mode imaging) is plotted together with a
reference spectrogram, created using all 130 emissions with Welch’s
method. As is clear from the figure, the Welch estimate will fail
to produce a meaningful estimate for the reduced data set, whereas
the BIAA estimate is quite close to the reference estimate obtained
using Welch’s method for the full data set2. As is clear from the
figure, the F-BIAA2 algorithm allows for a highly accurate blood flow
spectrogram even when using significantly fewer emissions than the
reference method. Figure 2 shows the block-recursive BR-F-BIAA2

and BR-QN-F-BIAA2 spectrograms for the same settings as for the
F-BIAA2 spectrogram in Figure 1(b), where the value of q = 4
has been adopted in the BR-QN-F-BIAA2 algorithm (recall that
q ≤ Nb). As discussed above, these algorithms exploit the block
structure of the signal when computing the consecutive spectrograms,
yielding a computational load of only 2% and 0.5%, respectively, as
compared to that of the F-BIAA algorithm for the examined example,
without introducing more than a marginal degradation of the resulting
spectrograms. These spectrograms were produced using K = 33

1For this data set, the BIAA and F-BIAA2 spectrogram estimates are
visually indistinguishable.

2We note that the BIAA estimate will be almost indistinguishable from the
spectrogram estimate if applied to the full data set [19].
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Fig. 3. (a) Reference spectrogram, created using Welch’s method with all
130 emissions, and (b) BR-QN-F-BIAA2 spectrogram, for data consisting of
13 blocks with emission pattern [1 1 1 1 1 1 0 0 0 0], with 40 samples along
depth.

regularly spaced measurements along depths (fast-time samples) and
using a dynamic range of 40 dB. To emphasize the performance
of the BIAA algorithms, we also examine in vivo data, acquired
using the experimental scanner RASMUS [35] and a B-K Medical
8804 7 MHz linear array transducer. This data set was previously
used in [13], wherein further details on the setup may be found.
As above, the stationary part of the signal was removed using mean
subtraction. Here, all spectrograms were produced using K = 40
regularly spaced measurements along depths and using a dynamic
range of 50 dB. Figure 3 shows the reference spectrogram created
with Welch’s method, using all 130 emissions per spectrum, and the
BR-QN-F-BIAA2 spectrogram using only 60% of the measurements.
Again, we note that the proposed methods produce a clear spectro-
gram with significantly fewer emissions, allowing for interleaving the
velocity measurements with B-mode image transmissions. The gaps
in the spectrograms represent transmissions used for the necessary
B-mode images during the data acquisition3. The BR-QN-F-BIAA2

algorithm here requires just 0.5% of the computations required
as compared to the F-BIAA algorithm. Finally, we examine the
performance of the proposed implementation as compared to the
exact method as well as the reference spectrogram. Table IV show
the full width at half maximum (FWHM), given in 10−3 m/s, and
the contrast (the ratio of the main lobe and the median of the side
lobes), given in dB, for the in vivo data, at 0.91 s, which corresponds
to end-diastole. The FWHM is a measure of spectral resolution and
should be low, whereas the contrast should be high. As is clear from
the table, the FWHM is notably lower and the contrast higher for
the BIAA methods as compared to the reference Welch’s spectrum,
even though the reference used all 130 emissions whereas the BIAA
methods only used 78 emissions. The contrast is about the same for
the BIAA methods, whereas the FWHM is somewhat smaller for F-
BIAA2 as compared to the others. As noted above, Welch’s method
will fail to produce a meaningful estimate on the reduced data set.

3The gaps occur as the data set was obtained to evaluate the BAPES esti-
mator [10] which requires regular emissions; thus, the B-mode transmissions
for this data set differ from the ones assumed in the here examined example.
We remark that if the B-mode emissions are done according to the assumed
sampling pattern over emissions, no gaps would occur.
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TABLE IV
COMPARISON OF FWHM AND CONTRAST FOR THE in vivo DATA

Method FWHM (10−3 m/s) Contrast (dB)
Reference spectrum 10.8 36
BIAA 5.1 40
F-BIAA2 4.6 41
BR-F-BIAA2 5.1 41
BR-QN-F-BIAA2 5.2 42

VII. CONCLUSIONS

In this paper, we have presented an approximate reformulation of
the recent BIAA algorithm, termed the BIAA2 algorithm, allowing
for a high-resolution data-adaptive blood velocity estimate that ex-
ploits measurements along both depth and emission. The algorithm
allows for an arbitrary sampling along emissions, giving the operator
freedom to vary the number of B-mode emissions as well as to, po-
tentially, focus the velocity estimation to two separate locations in the
blood vessel. A computationally efficient block implementation of the
BIAA2 algorithm has been proposed, exploiting the inherently low
displacement rank of the involved matrices, as well as an approximate
formulation allowing for notably lower computational complexity
without more than a marginal loss of performance. Block-recursive
formulations of these estimators have also been introduced, further
substantially lowering the necessary computational complexity. The
resulting techniques are found to reduce the necessary computational
load with several orders of magnitude, while still allowing for the
same high quality blood velocity estimates.
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