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ॐ असतो मा सɮगमय । 
तमसो मा Ïयोितगर्मय । 
म×ृयोमार् अमतृं गमय । 

ॐ शािÛतः शािÛतः शािÛतः ॥ 

 

Om Asato Maa Sad-Gamaya । 
Tamaso Maa Jyotir-Gamaya । 

Mrtyor-Maa Amrtam Gamaya । 
Om Shaantih Shaantih Shaantih ।। 

 

From ignorance lead me to truth 

From darkness lead me to light 

From death lead me to immortality 

May there be peace, peace, peace. 

-- Upanishad 
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Introduction 

Diabetes mellitus  

A great amount of work has been done by researchers worldwide in order to 
understand the metabolic disease diabetes. However, due to its heterogenetic 
nature a picture of this epidemic disease is not yet clear (World Health 
Organization, 2015, Wild et al., 2004). According to International Diabetes 
Federation in year 2013 diabetes caused 5.1 million deaths i.e. every six seconds 
one person dies from diabetes (International Diabetes Federation, 2013). Hence 
more aggressive efforts to understand this disease better are needed.  

Normal fasting blood glucose levels are 3.5-5.5 mmol/l, these levels are 
maintained within this narrow range by factors which control glucose production 
and glucose utilisation (Guemes et al., 2015). The key hormones responsible for 
glucose homoeostasis include insulin, glucagon, epinephrine, norepinephrine, 
cortisol, growth hormone and incretins (Guemes et al., 2015, Kim and Egan, 
2008). Insulin is the major glucose lowering hormone. It is secreted by pancreatic 
beta cells in response to nutrient stimuli (e.g. glucose), travels through the blood 
circulation, and   binds to receptors on insulin-responsive tissues like liver, skeletal 
muscle and adipose tissue, to stimulate uptake of glucose (Kalwat and Thurmond, 
2013).    

Diabetes is characterized by high blood glucose levels. World Health Organization 
(WHO) defines people with fasting plasma glucose level ≥7.0 mmol/l or plasma 
glucose ≥11.1 mmol/l two hours after oral glucose (75 g) tolerance test as diabetic 
(World Health Organization, 2006). Diabetes can also be diagnosed by measuring 
glycated hemoglobin (HbA1c) levels ≥6.5% (Diabetes Care, 2010).  However, 
HbA1c measurements have limitations and may not be valid in certain subgroups, 
such as in children,  in individuals with prediabetes or  gestational diabetes, and in 
persons infected with human immunodeficiency virus (Juarez et al., 2014).  
Primarily metformin, sulfonylureas and insulin are used for diabetes treatment. In 
recent years many new medications have been introduced such as dipeptidyl 
peptidase 4 (DPP-4) inhibitors, glucagon-like peptide-1 (GLP-1) receptor agonists 
and sodium-glucose co-transporter-2 (SGLT2) inhibitors (Tran et al., 2015a, Idris 
and Donnelly, 2009, Tran et al., 2015b). However, so far no treatment has 
succeeded to cure or to avoid the progression of the disease and its complications.  
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Traditionally diabetes has been categorized into two major types, type 1 diabetes 
(T1D) and type 2 diabetes (T2D) based on insulin dependency and age of onset of 
the disease (Pickup and Williams, 1991). But now with the advance experimental 
knowledge and large clinical studies like ANDIS (All New Diabetics in Scania) it 
is clear that there are many subtypes of diabetes (ANDIS, 2013). It is important to 
diagnose diabetes properly for more appropriate treatment.  

T1D is an autoimmune condition which leads to the destruction of insulin 
producing beta cells. It usually occurs in children and is associated with the 
presence of islet-cell antibodies. Latent autoimmune diabetes of adults (LADA) is 
a type 1 diabetic-like autoimmune condition but as the name indicates it manifests 
in adults (Groop et al., 1986, Stenstrom et al., 2005). LADA patients could get 
misdiagnosed as type 2 diabetic patients due to their age. Therefore, for proper 
diagnosis it is necessary to check for the presence of islet-cell antibodies in 
diabetic patients irrespective of their age. Type 1 diabetes is considered 
irreversible due to the beta cell destruction. However, in a recent study using 
pancreatic tissue from living human subjects extracted shortly after their T1D 
diagnosis glucose-induced insulin secretion could be measured. Interestingly, 
biphasic insulin secretion could be normalized after a few days in a 
nondiabetogenic environment in vitro (Krogvold et al., 2015). This indicates that 
even in T1D there is a potential for endogenous insulin production, and 
dysregulation of mechanisms controlling insulin secretion such as the exocytotic 
process could potentially be involved in the disease process (Ohara-Imaizumi et 
al., 2004a).    

T2D is a condition of insulin resistance and defective insulin secretion with strong 
association to lifestyle and genetic components (Groop, 2000, Marshall and 
Bessesen, 2002). T2D can be divided in to two subtypes, monogenic T2D and 
polygenic T2D (Ashcroft and Rorsman, 2012). Monogenic T2D is a rare form of 
diabetes that results from a mutation in a single gene which leads to reduced 
insulin secretion. The severity of the condition depends on the gene involved and 
treatment must be decided accordingly. Examples of monogenic T2D are neonatal 
diabetes (ND) and maturity-onset diabetes of the young (MODY). Monogenic 
T2D can get misdiagnosed as T1D due to its onset at an early age (Murphy et al., 
2008). Polygenic T2D is the most common form of diabetes. For a long time it 
was considered mainly a problem of insulin resistance but now with novel 
discoveries during the recent years it is well accepted that beta cell dysfunction is 
actually a leading cause of T2D (Ashcroft and Rorsman, 2012). The possibility of 
using islets from T2D rodent models and human cadaver donors have to a great 
extent helped to understand beta cell dysfunction in diabetes.  

Though there is a strong link between obesity and T2D (Golay and Ybarra, 2005) 
not all insulin resistance or obese people get diabetes (Golay et al., 1988, Meigs et 
al., 2006). This suggests that only those individuals who cannot compensate for 
their extra need of insulin are prone to get diabetes (Polonsky, 2000). Reduced 
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insulin secretion from islets is mainly attributed to beta cell failure or fewer beta 
cells (Pajvani and Accili, 2015).  

There are studies indicating that reduced beta cell mass could be a major factor in 
T2D (Butler et al., 2003, Rahier et al., 2008) but it is unknown if this reduced 
mass is a cause or a consequence of diabetes (Pipeleers et al., 2008). However the 
fact that beta cell mass increase to overcome insulin resistance in conditions like 
obesity (Saisho et al., 2013) and pregnancy (Rieck and Kaestner, 2010, Sorenson 
and Brelje, 1997) indicates that beta cell mass turnover plays an important role in 
maintaining normoglycemia. Dedifferentiation of beta cells has also been 
proposed as a main cause of beta cell failure (Pajvani and Accili, 2015). On the 
other hand, it has been suggested that 40% of the original beta cell mass would be 
enough for normal functioning (Ashcroft and Rorsman, 2012) and the fact that 
removal of half of the pancreas has relatively small effect on blood glucose 
tolerance (Menge et al., 2008). This indicates that decreased beta cell mass is 
probably a less important etiological factor in T2D.   

Interestingly people who undergo bariatric surgery get cured of T2D even before 
any considerable weight loss (Karra et al., 2010) and only 1 week of severe dietary 
energy restriction (600 kcal/day) was able to reverse T2D (Lim et al., 2011). This 
suggests that people with T2D independent of their beta cell mass have enough 
beta cell capacity to overcome disease condition and beta cell dysfunction is the 
main cause of the disease.  

Understanding the central mechanisms involved in the control of beta cell function 
is essential to understand potential sites and cause of beta cell dysfunction. This 
knowledge is necessary to recognize possible targets for therapeutic intervention 
and treatment.  

Pancreatic islets of Langerhans  

In 1869, Paul Langerhans in his doctoral thesis reported a microscopic appearance 
of scattered cell clusters in the pancreas of the rabbit. Later these cell clusters were 
named ‘islets of Langerhans’. The islets of Langerhans, or islets for short, are 
mini-organs important in maintaining blood glucose levels (Arrojo et al., 2015) 
(Fig.1). Islets of Langerhans are scattered throughout the pancreas. They constitute 
only about 1-2% of the total pancreas but they receive 5-10% of the total 
pancreatic blood flow (Lifson et al., 1985). This highly vascularized nature of 
islets enables efficient sensing of blood glucose, other nutrients (e.g free fatty 
acids) and secreted hormones (e.g. incretins) (Arrojo et al., 2015). 

Pancreatic islets contains five different endocrine cell types insulin producing beta 
cells, glucagon producing alpha cells, somatostatin producing delta cells, 
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pancreatic polypeptide producing PP cells and a few ghrelin producing epsilon 
cells (Seino and Bell, 2008). There are some structural differences between rodent 
islets and human islets. Rodent islets have a beta cell core and non-beta cells in the 
mantle whereas beta cells of human islets are intermingled with other endocrine 
cell types. Moreover, the proportion of beta cells is lower in human as compared 
to rodent islets and the number of alpha cells is higher. In rodents the beta cells 
constitute ~80% and alpha cells ~15% of the total islet cells, whereas human islets 
contain ~65% beta cells and ~30% alpha cells (Brissova et al., 2005, Cabrera et 
al., 2006, Arrojo et al., 2015). Islet cells can influence each other by autocrine and 
paracrine effects or gap junctions and they are extensively innervated by 
cholinergic, adrenergic and peptidergic nerve endings (Ashcroft and Rorsman, 
1989, Arrojo et al., 2015). 

 

 

Figure 1. Electron microscopy image of pancreatic islets of Langerhans. 

Role of Beta cells 

In response to a glucose challenge beta cells in healthy subjects display a typical 
biphasic mode of insulin secretion with a rapid 1st phase which lasts for a few 
minutes followed by slow sustained 2nd phase (Curry et al., 1968).  In T2D 
subjects there is complete loss of the 1st phase and strong reduction in 2nd phase of 
insulin secretion (Hosker et al., 1989). Hence, it is essential to study the molecular 
regulation of insulin secretion from the pancreatic beta cells. 
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Insulin biosynthesis 

Frederick Banting and J.J.R. Macleod got the Nobel Prize in 1923 for the 
extraction of pure insulin (Nobelprize.org, 1923). Insulin was the first protein 
whose primary structure was elucidated; Frederick Sanger got the Nobel Prize for 
this in 1958 (Nobelprize.org, 1958). 

Insulin is synthesized and stored exclusively in beta cells via a series of precursor 
proteins including preproinsulin and proinsulin. Preproinsulin is a single chain 
(110 amino acid) molecule. It contains an N-terminal 24 residue signal peptide 
which is cleaved off in the rough endoplasmic reticulum (RER) to form proinsulin. 
Proinsulin then undergoes folding and forms three disulfide bonds to get its native 
structure. It is then transported to the golgi apparatus for further processing and 
packaging (Halban, 1991, Huang and Arvan, 1995, Seino and Bell, 2008, Fu et al., 
2013). In the golgi apparatus proinsulin is cleaved to yield insulin and C-peptide. 
Insulin and C-peptide are stored together in secretory granules along with small 
amounts of intact proinsulin and intermediate products. Mature secretory granules 
contain a central dense core of insulin molecules in their crystalline form (Zn2-
Insulin6) (Fu et al., 2013). Contained in the secretory vesicles are also ~50 
polypeptides e.g. islet amyloid polypeptide (IAPP) as well as compounds such as 
ATP and GABA (Eliasson et al., 2008, Seino and Bell, 2008). 

 

 

Figure 2. Electron microscopy image of beta cell showing docked granules (g) by arrow, cell 
membrane (CM), mitochondria (m) and nucleus (n).  
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There are about one million islets in a human pancreas and an average human islet 
is estimated to have ∼180 beta cells (Rorsman and Braun, 2013). Every beta cell 
has ~10000 insulin granules of which approximately ~5% are docked (Fig. 2) 
(Eliasson et al., 2008, Olofsson et al., 2002, Rorsman and Braun, 2013) each 
containing ~1.7 amol of insulin  (Rorsman and Renstrom, 2003). 

Glucose sensing  

Insulin is the central hormone to lower blood glucose and hence the beta cells 
must sense and respond aptly to increased blood glucose. Failure to do so may 
lead to pathophysiological condition like diabetes. Diffusion of blood glucose into 
the beta cells is facilitated via high capacity low affinity glucose transporter 2 
(GLUT2) in rodents (Newgard and McGarry, 1995) and GLUT1 in humans (De 
Vos et al., 1995). Glucose is phosphorylated to glucose-6-phospate by high KM 
glucokinase (the glucose sensor of the beta cell) followed by glycolysis to yield 
pyruvate. Pyruvate is then metabolized in the mitochondria through the citric acid 
cycle which leads to the formation of many intermediate products and ATP 
(MacDonald et al., 2005). Generation of ATP at the expense of ADP is important 
to stimulate electrical activity in the beta cells.  

Stimulus-secretion coupling 

Electrical activity in beta cells plays a central role in coupling increased blood 
glucose concentration to insulin secretion. The concerted action of a large number 
of different types of ion channels, transporters and pumps leads to the generation 
of burst of action potentials and release of insulin (Fig. 3). 

Generation of electrical activity 

Identification of ATP-sensitive potassium channels (KATP channels) in beta cells 
was a major breakthrough to understand their electrical activity (Ashcroft et al., 
1984, Cook and Hales, 1984, Rorsman and Trube, 1985). KATP channels consist of 
two different subunits Kir6.2 (inward rectifier K+ channel) and SUR (sulfonylurea 
receptor), that together form a functional hetero-octameric complex (Inagaki et al., 
1997, Zerangue et al., 1999, Inagaki et al., 1995). ATP binds to the Kir6.2 to close 
the channel (Tucker et al., 1997), and the SUR subunit is the target for drugs 
which can inhibit (e.g. sulfonylurea) or stimulate (e.g. diazoxide) the opening of 
KATP channel (Tucker et al., 1997, Gribble and Reimann, 2003). The resting 
membrane potential of the beta cell is ~ -60 to -100mV (Gopel et al., 1999, Speier 
and Rupnik, 2003). Increased ATP and reduced ADP as a result of increased 
glucose metabolism leads to closure of KATP channels, causing an inhibition of K+ 
efflux and membrane depolarization (Ashcroft et al., 1984, Cook and Hales, 1984, 
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Rorsman and Trube, 1985).  In rodent beta cells the depolarization activates 
opening of high-voltage activated (HVA) Ca2+ channels (Ammala et al., 1993b). 
Interestingly, in human beta cells the opening of the HVA Ca2+ channels are 
preceded by  activation of  low-voltage activated (LVA) T-type Ca2+ channels and 
Na+ channels  (Barnett et al., 1995).  The overall depolarization and opening of 
voltage activated ion channels constitute the upstroke of action potentials. The 
resultant influx of Ca2+ and the increased intracellular Ca2+ concentration ([Ca2+]i) 
initiates exocytosis (Ammala et al., 1993b, Rorsman and Braun, 2013). 

 

 

Figure 3. Stimulus-secretion coupling of the pancreatic beta cell.  

The downstroke of the action potential possibly results from rapid voltage-
dependent inactivation of the Na+ channels, Ca2+-dependent inactivation of the L-
type Ca2+ channels, activation of voltage-gated K+ channels and Ca2+-activated K+ 
channels (e.g. SK channel, BK channel), which leads to membrane repolarization 
(Herrington et al., 2006, MacDonald et al., 2002, Seino and Bell, 2008, Rorsman 
and Braun, 2013).  

Voltage-gated Na+ channel consist of pore-forming α subunit and auxiliary β 
subunits. So far nine mammalian α subunits and four auxiliary β subunits of 
sodium channels have been identified (Catterall et al., 2005). Voltage-gated Na+ 
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channels play a crucial role in the initiation and propagation of action potentials in 
neurons and endocrine cells (Catterall et al., 2005). Voltage-gated Na+ channels 
can be present in three separate states; closed, open and inactivated (Fig. 4). The 
membrane depolarization leads to opening of the closed voltage-gated Na+ 
channels, these channels will subsequently within ~1 ms go to an inactive state. 
Once inactivated the channel cannot switch to open state.  The channel can only 
return to the open state via the closed state, which requires the resting membrane 
potential to be restored (Van Petegem et al., 2012, Guyton and Hall, 2000). 
Different types of Na+ channels are present in mouse and human beta cells (Zhang 
et al., 2014, Rorsman and Braun, 2013). In human beta cells voltage-gated Na+ 
channels shows half maximal inactivation at ~-40 mV and they are important in 
glucose stimulated insulin secretion (Braun et al., 2008). The role of voltage-gated 
Na+ channels in rodent beta cells is not clear. Because of their more negative half 
maximal inactivation (at -70 mV or below) they are thought not to be important in 
generation of action potential (Hiriart & Matteson, 1988). However, in rat beta 
cells their inhibition using tetrodotoxin (TTX) reduces glucose induced insulin 
secretion (Vidaltamayo et al., 2002).  

 

 

Figure 4. Different states of voltage-gated Na+ channels. 

The timing of action potential firing is regulated by depolarizing versus 
repolarizing ion fluxes. In mouse islets, glucose concentration of ~6 mM leads to a 
generation of electrical activity whereas in human islets as low as 3 mM glucose 
can be enough (Ashcroft and Rorsman, 1989, Braun et al., 2008, Rorsman and 
Braun, 2013). These differences may be because of the fact that the nonfasting 
plasma glucose concentration is lower in humans (~5 mM) than in mice (7–10 
mM) (Rorsman and Braun, 2013). At glucose concentration >20 mM 
uninterrupted action potential firing occurs. This ability of glucose to elicit 
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electrical activity and the underlying chain of events is called the triggering 
pathway of insulin secretion (Henquin, 2000).  

Modulation of insulin secretion 

If beta cell depolarization and resultant increased [Ca2+]i is induced experimentally 
by using sulfonylurea or high concentrations of extracellular K+ when holding 
KATP channels open with diazoxide, glucose still increases insulin secretion in a 
concentration-dependent manner (Gembal et al., 1992, Henquin, 2000). This  
effect is attributed to the KATP-independent or amplifying pathway of insulin 
secretion (Henquin, 2000). The amplifying pathway and its role in exocytosis can 
also be studied by using depolarization induced exocytosis measurements as a 
function of change in cell membrane capacitance (Eliasson et al., 1997, Renstrom 
et al., 1997). The molecular basis of this pathway is still not fully understood but 
some glucose metabolites such as GTP, ATP, NADH, NADHP have been 
suggested to be involved (Maechler and Wollheim, 1999, Ivarsson et al., 2005b, 
Wollheim and Maechler, 2002, Eliasson et al., 1997). However, glucose is unable 
to increase insulin secretion in the absence of increased [Ca2+]i suggesting that the 
triggering pathway predominates over the amplifying pathway (Henquin, 2000). 

Several hormones and neurotransmitters can affect insulin secretion. Based on 
their effect they are called either potentiators or inhibitors of insulin secretion. Gut 
hormones such as gastric inhibitory polypetides (GIP) and GLP-1 can potentiates 
insulin secretion in the presence of glucose by elevating cyclic AMP (cAMP) 
(Fehmann and Goke, 1995, Gromada et al., 1995b, Kim and Egan, 2008). This 
phenomenon is known as the incretin effect and it is reduced in T2D (Nauck et al., 
1986, Kim and Egan, 2008). Insulin secretion is potentiated by cAMP through 
several mechanisms including increased Ca2+-influx through voltage gated Ca2+ 
channels, activating Ca2+ release from intracellular stores and accelerating the 
process of exocytosis (Gromada et al., 1995a, Gromada et al., 1998b, Gromada et 
al., 1997, Gromada et al., 1998a, Ammala et al., 1993a).  In the process involved 
in exocytosis of insulin granules cAMP acts both in a PKA-dependent and a PKA-
independent manner (MacDonald et al., 2003, Ozaki et al., 2000, Eliasson et al., 
2003, Seino and Shibasaki, 2005, Renstrom et al., 1997). 

Process of exocytosis  

After having been processed in the endoplasmic reticulum and golgi apparatus 
insulin is stored in mature secretory granules, waiting to be secreted by the 
regulated exocytosis process. Exocytosis is a process where insulin granules fuse 
with the cell membrane to release its content into extracellular space. The 
exocytosis of insulin containing vesicles is tightly regulated and involves 1) 
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translocation of insulin granules to plasma membrane (mobilization) 2) docking of 
the insulin granules at plasma membrane 3) priming of the insulin granules i.e. 
making them release-compatible and 4) actual fusion with the plasma membrane 
and release of insulin into extracellular space (Gerber and Sudhof, 2002, Eliasson 
et al., 2008). 

Distinct pools of insulin granules and biphasic exocytosis 

Exocytosis measured as capacitance increase in response to photorelease of caged 
Ca2+ in isolated beta cell has a biphasic pattern and consist of a rapid initial 
component followed by sustained late component (Olofsson et al., 2002). This 
type of electrophysiological studies together with ultrastructural data from islet 
beta cells have led to an idea that insulin granules exits in distinct functional pools 
(Fig. 5) i.e. readily releasable pool (RRP) and reserve pool (RP), which are 
responsible for kinetically separable components of exocytosis (Bratanova-
Tochkova et al., 2002, Straub and Sharp, 2004).  The RRP consist of ~1-5% of the 
total granules in the beta cells which are immediately available for release upon an 
increase in Ca2+ and their release is reflected in the rapid component of the 
capacitance increase. A subset of RRP situated in a close vicinity of the Ca2+ 
channels is called immediately releasable pool (IRP) (Barg et al., 2001). As RRP 
is depleted it gets refilled by granules from RP which represents 95-99% of the 
granules in the beta cell (Rorsman and Renstrom, 2003). 

 

 

Figure 5. Different functional pools of granules and process of exocytosis. 
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Refilling of RRP which involves both mobilization and priming of granules is a 
rate limiting step of exocytosis, probably represented by later slower but sustained 
component of capacitance increase (Olofsson et al., 2002). Mobilization is the 
process by which granules is moved towards the plasma membrane to become 
docked. Priming is a Ca2+, temperature and ATP-dependent process that make the 
granules release-ready (Eliasson et al., 1997, Proks et al., 1996, Renstrom et al., 
1996).  

The estimated size of the RRP (20 to 100 granules) equates to the calculated 
number of granules secreted in 1st phase of insulin secretion in beta cells (Rorsman 
and Renstrom, 2003). Based on their similarity in appearance it is possible that 
biphasic insulin secretion and exocytosis have the same mechanistic background 
where distinct functional pools of granule play an important role. It is however 
important to bear in mind that the kinetics of capacitance increase and insulin 
secretion are different. Also, recently it was suggested that first phase secretion 
comprises not only pre-docked granules but also newly recruited granules, so-
called ‘restless newcomers’ (Ohara-Imaizumi et al., 2004b, Kalwat and Thurmond, 
2013, Shibasaki et al., 2007). Moreover, RRP is not homogenous and whether or 
not the size of the RRP is kept constant is not yet clear. Release probability of a 
granule depends on its distance from voltage-gated Ca2+ channels clusters and on 
the intrinsic state of the release apparatus (Wang and Thurmond, 2009, Neher, 
2015). It is difficult to estimate the exact RRP size because results can vary 
depending on the strength of the stimuli used, [Ca2+]i and the speed of recruitment 
of new vesicles. A method that takes into account heterogeneity among cells is the 
mixed-effect modelling (Pinheiro and Bates, 2000) used in paper I of this thesis.  

In several studies where capacitance measurements has been used to study pool 
depletion exocytosis has been studied as a function of time (Gopel et al., 2004, 
Olofsson et al., 2002, Rorsman et al., 2011). However, since exocytosis is highly 
dependent on Ca2+ influx some studies have proposed that instead of pool 
depletion, changes in Ca2+ influx could be responsible for the observed biphasic 
exocytotic pattern (Ammala et al., 1993b, Engisch and Nowycky, 1996, Barg et 
al., 2001, Pedersen, 2011, Pedersen et al., 2011). Therefore to study whether 
depolarization-induced pool depletion occurs, exocytosis should be studied as a 
function of Ca2+influx (measured as Q) rather than of time (Pedersen, 2011).  

Molecular machinery for exocytosis 

As mentioned above exocytosis is a multistep process. A plethora of proteins are 
necessary in this process. The complete molecular picture is not yet fully 
elucidated but some of the proteins which play key role in granule trafficking and 
membrane fusion have been identified.  Key protein families which are involved in 
the exocytotic process are 1) Soluble N-ethylmaleimide-sensitive factor 
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attachment protein receptors (SNAREs) 2) SM proteins (sec1/munc 18-like 
proteins) 3) Rab proteins and 4) Synaptotagmins (Syts) (Gerber and Sudhof, 2002, 
Sudhof and Rizo, 2011, Rorsman and Renstrom, 2003). 

The family of SNARE proteins shares a signature sequence called the SNARE 
motif. The SNARE motifs can bind to each other to form an extremely stable 
complex called core complex (coiled-coil motif) (Ernst and Brunger, 2003). These 
proteins are present on opposing membranes before fusion. There are two plasma 
membrane SNAREs (also called t-SNAREs), synaptosomal-associated protein-25 
(SNAP-25) and syntaxin 1, and one vesicular SNARE (also called v-SNAREs), 
vesicle-associated membrane protein-2 (VAMP-2). Both VAMP-2 and syntaxin 1 
possesses a transmembrane region, whereas SNAP-25 is instead bound to the 
plasma membrane through palmitoylation of a cysteine rich domain (Veit et al., 
1996). Syntaxin 1 when not within the SNARE complex is in a closed 
conformation. For the formation of the SNARE complex (Fig. 6) in time of fusion, 
syntaxin 1 needs to be in an open state to expose its SNARE motif where SNAP-
25 and VAMP-2 can bind (Burkhardt et al., 2008). Membrane fusion needs a lot of 
energy and according to the zippering model the force needed to bring the two 
membranes together comes from trans to cis conformational changes in the 
SNARE complexes (Chen and Scheller, 2001). Other important isoforms of 
SNARE proteins are SNAP23, Syntaxin 3 and Syntaxin 4. Syntaxin 1 is found to 
be important in first phase of insulin secretion whereas Syntaxin 3 and 4 are 
considered important for both phases of insulin secretion (Kalwat and Thurmond, 
2013). 

 

 

Figure 6. Process of granule priming and formation of the SNARE complex.

Among the SM proteins, syntaxin-binding protein 1, Stxbp1 (or Munc18-1) is one 
of the more important proteins in regulated Ca2+-dependent exocytosis. The 
expression of Stxbp1 is positively associated with glucose-stimulated insulin 
secretion in islets from human donors (Andersson et al., 2012). Moreover, protein 
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level of Stxbp1 is significantly reduced in islets from the diabetic GK (Goto-
Kakizaki) rat (Gaisano et al., 2002). Together with granuphilin, Stxbp1 is 
necessary for docking of insulin granules to the plasma membrane (Tomas et al., 
2008).  Moreover, Stxbp1 also binds to the closed conformation of syntaxin 1  
(Fig. 6) to prevent core complex formation with other SNARE proteins under non-
stimulatory conditions.  When exocytosis is stimulated Stxbp1 facilitates the core 
complex formation during the priming step (Burkhardt et al., 2008, Tomas et al., 
2008, Gulyas-Kovacs et al., 2007). 

Other interesting proteins in exocytosis are the Rab proteins. They belong to a 
family of GTPases also known as SMGs (small-molecular-mass (20-28 kDa) 
GTP-binding proteins). Rab3A is one of the best studied in insulin secretion, and 
Rab3A null mice show glucose intolerance due to insufficient insulin secretion 
(Yaekura et al., 2003). Interestingly, activity of Rab proteins is suggested to be 
affected by statin treatment (Li et al., 1993). Rab proteins are essential in granule 
trafficking, docking and fusion of the granules (Balch, 1990, Lang, 1999, Takai et 
al., 2001). The small Rho-family GTPases are important in filamentous actin (F-
actin) remodelling (Wang and Thurmond, 2009).  

The influx of calcium through the Ca2+ channels is sensed by Syts. These proteins 
possess two C2 domains (C2A and C2B), which make them either Ca2+-sensitive 
or -insensitive according to their capacity to bind Ca2+. There are 17 known 
isoforms of Syts. Syt1 to 3, 5 to 7, 9 and 10 are known to bind Ca2+ whereas syt4, 
8 and 11 to 15 do not bind Ca2+ (Milochau et al., 2014). Various Ca2+ sensitive 
Syts (Syt 5,7,9)  play an important role in insulin release (Gauthier et al., 2008, 
Grise et al., 2007, Gustavsson et al., 2008, Iezzi et al., 2004, Iezzi et al., 2005, 
Eliasson et al., 2008) but the role of the Ca2+-insensitive forms is still largely 
unknown. 

The disassembly of the SNARE complex after the fusion event involves the 
ATPase N-ethylmaleimide Sensitive Factor (NSF). NSF binds to the SNARE 
complex via the adaptor protein α-SNAP and dissociates the complex by 
hydrolysis of ATP which separates syntaxin, Snap-25 and VAMP (Sollner et al., 
1993, Morgan et al., 1994). In beta cells antibodies against NSF reduce the 
refilling of the granules from RP to RRP (Vikman et al., 2003). 

Multidirectional movement of the granules occur in the beta cells prior to docking, 
priming and fusion. The  beta cell cytoskeleton (microtubule and actin network) 
plays an important role in these movements (Seino and Bell, 2008). F-actin 
cytoskeletal network is crucial in second-phase insulin secretion which requires 
recruitment of granules to the plasma membrane from intracellular stores, F-actin 
remodelling is a requisite for the normal biphasic insulin secretion (Kalwat and 
Thurmond, 2013). Also, different motor proteins (kinesins, dyneins and myosins) 
are involved in the granule mobilization process (Ivarsson et al., 2005a, Vitale et 
al., 1995, Varadi et al., 2003).  
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Role of Ca2+  

The Ca2+ ion is very important in cellular processes like neurotransmission and 
hormone secretion. It was understood long back that extracellular Ca2+ is a 
prerequisite for glucose-stimulated insulin secretion (Grodsky and Bennett, 1966, 
Milner and Hales, 1967). The [Ca2+]i plays a central role in insulin secretion and a 
direct correlation between increased [Ca2+]i and exocytosis was demonstrated in 
the early 1980s (Wollheim and Pozzan, 1984, Rorsman et al., 1984). Later, by 
monitoring exocytosis using patch-clamp technique in single beta cell, it was 
confirmed that exocytosis is dependent on the rise of [Ca2+]i (Ammala et al., 
1993b). Exocytosis evoked by voltage-clamp depolarizations in beta cells echoes 
the Ca2+ current and halts almost immediately upon repolarization or closure of the 
Ca2+ channels (Ammala et al., 1993b, Barg et al., 2001). Different types (L-,N-
,P/Q, R- and T-type) of Ca2+ channels are expressed in beta cells with different 
biophysical properties (Yang and Berggren, 2006). In rodent beta cells L- and R-
type Ca2+ channels play very important role in biphasic insulin secretion (Schulla 
et al., 2003, Jing et al., 2005). The L-type Ca2+ channels are organized in clusters 
and forms a tight complex with secretory granules which ensures that the 
exocytotic machinery is exposed to the very high [Ca2+]i at the mouth of the 
channels (Wiser et al., 1999, Barg et al., 2001).  However, beta cells also contain a 
highly Ca2+-sensitive pool of granules (HCSP). In this pool exocytosis occurs at 
[Ca2+]i almost close to basal levels (Barg and Rorsman, 2004, Yang and Gillis, 
2004). Human beta cells are equipped with LVA T-type Ca2+ channels which give 
rise to transient Ca2+ currents and HVA L-type and P/Q-type Ca2+ channels. In 
humans, P/Q-type Ca2+ channels shows tight coupling to exocytosis (Rorsman and 
Braun, 2013, Barnett et al., 1995). 

In addition to the influx of Ca2+ through LVA and HVA Ca2+ channels, the [Ca2+] 
in various intracellular organelles (endoplasmic reticulum (ER), mitochondria, the 
Golgi apparatus, secretory granules and lysosomes) play an important role in 
insulin secretion. Because most of these organelles have specific Ca2+ influx and 
efflux pathways, they mutually influence free [Ca2+] in the other organelles e.g. 
sarco-endoplasmic reticulum Ca2+-ATPases (SERCAs), mitochondrial Ca2+ 

uniporter (MCU), Na+/ Ca2+ exchanger (NCLX) etc. (Gilon et al., 2014). Changes 
in [Ca2+] in these subcellular compartments can affect many processes such as 
exocytosis, cell metabolism, apoptosis, gene expression, ER stress, etc. (Gilon et 
al., 2014, Gromada et al., 1999, Schonthal, 2012)    

It was found in 1988 that beta cells show pronounced [Ca2+]i oscillations with a 
periodicity of 2–6 min after glucose-stimulation (Grapengiesser et al., 1988). This 
inherent ability to generate oscillatory signals and coordination of the secretory 
activity among beta cells results in pulsatile insulin secretion from the pancreas, 
which is important for the actions of insulin on its target tissues (Tengholm and 
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Gylfe, 2009). Intracellular sequestration and release of Ca2+ from the ER 
contribute to shaping these oscillations (Fridlyand et al., 2003). Oscillations of the 
[Ca2+]i are synchronized with oscillations in beta cell metabolism, intracellular 
cAMP concentration, phospholipase C activity and plasma membrane 
phosphoinositide lipids (e.g. PIP3) concentrations (Tengholm and Gylfe, 2009). 

MicroRNAs  

MicroRNAs (miRNAs) are single-stranded, short (20-23 nucleotide), non-coding 
RNAs that negatively regulate their target proteins. MiRNAs are considered 
important in expanding cell diversity and maintaining cellular phenotype (Kosik, 
2010). In beta-cells, several miRNAs have been suggested to modulate cellular 
processes, this include effects on beta-cell development and physiology. Studies of 
miRNAs have proposed that they can emerge as novel biomarkers (Guay and 
Regazzi, 2013) and therapeutic targets (Eliasson and Esguerra, 2014) for diabetes. 
However, detailed knowledge about the function of miRNAs in insulin secreting 
cells is required. 

The production and maturation of most miRNAs occurs via the canonical pathway 
of miRNA processing (Fang and Bartel, 2015, Winter et al., 2009). After 
transcription in the nucleus, primary miRNA (pri-miRNA) is cleaved by 
microprocessor complex (Drosha–DGCR8 (Pasha)) to get precursor miRNA (pre-
miRNA) (Denzler and Stoffel, 2015). The resultant pre-miRNA is exported into 
the cytoplasm by a complex of Exportin-5 and Ran-GTP6 (Winter et al., 2009). 
Further processing of the miRNA and assembly of RISC (RNA-induced silencing 
complex) in the cytoplasm is mediated by the RISC loading complex (RLC). RLC 
is composed of RNase III Dicer, the double-stranded RNA-binding domain 
proteins TRBP (Tar RNA binding protein) and PACT (protein activator of PKR), 
and the core component Argonaute-2 (Ago2) (Winter et al., 2009). The RNase 
Dicer in complex with TRBP/PACT cleaves the pre-miRNA hairpin to generate a 
roughly 22-nucleotide long miRNA duplex. After unwinding of the miRNA 
duplex into a guide and a passenger strand, the guide strand is loaded together 
with Ago2 proteins into the RISC whereas the passenger strand is degraded. The 
functional strand guides RISC to silence target mRNAs through mRNA cleavage, 
translational repression or deadenylation (Winter et al., 2009). Recently new non-
canonical pathways for miRNA biogenesis have emerged including those that are 
independent of Drosha or Dicer (Ha and Kim, 2014). 

Recognition of the target mRNA happens through complementary binding of the 
so-called seed sequence in the 5′ region of the miRNA (nucleotides 2–7) with its 
target sequence (usually in the 3'UTR of the mRNA). Interestingly one miRNA 
can target many mRNAs and one mRNA can get targeted by many miRNAs. It 
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has been estimated that more than half of the human protein coding genes could be 
a target of miRNAs (Bartel, 2009). It is proposed that miRNAs either acts as 
binary off-switches to repress target protein output for disallowed genes in a 
particular cell type or they acts as a rheostat (tuning interactions) to maintain 
optimal level of a functional protein in the cell (Bartel, 2009). Because of these 
characteristics miRNAs can regulate many cellular processes (Guay et al., 2011).   

Genome-wide association studies (GWAS) have identified many genes associated 
with increased risk of T2D and most of them have been linked to beta cell function 
(Groop and Lyssenko, 2009). However despite great efforts GWAS studies can so 
far only explain ~10% of T2D, suggesting that much remains to be discovered 
(Billings and Florez, 2010). Recently, epigenetics and non-coding RNAs 
especially miRNAs have been found to play an important role in beta cell 
development and function (Dayeh et al., 2014, Kameswaran et al., 2014, van de 
Bunt et al., 2013, Bolmeson et al., 2011, Eliasson and Esguerra, 2014, Bagge et 
al., 2012). In human pancreatic islets 366 miRNAs have so far been identified 
using RNA-seq (van de Bunt et al., 2013). Moreover, miRNAs are known to affect 
many important components of glucose-stimulated insulin secretion such as 
glucose uptake and metabolism, membrane depolarization, insulin biosynthesis 
and exocytosis (Esguerra et al., 2014). Therefore miRNAs as important players in 
gene regulation have a huge potential of identifying new therapeutic approaches 
against diabetes and associated complications (Eliasson and Esguerra, 2014). Also 
it has been suggested that circulating miRNAs in blood can be used to evaluate 
health status and disease progression therefore miRNAs can emerge as novel 
biomarkers for diabetes (Guay and Regazzi, 2013). 

Statins 

Obesity is a risk factor for both T2D and cardiovascular disease (CVD). The latter 
is the leading causes of mortality worldwide. Hypercholesterolemia is one of the 
major CVD risk factors, therefore it becomes very important to normalize blood 
cholesterol levels (Brault et al., 2014, Prospective Studies et al., 2007). Statins are 
used effectively to reduce cholesterol levels and thereby reduce the risk of CVD 
disease. However, recent studies have shown diabetogenic effects of statins 
(Ridker et al., 2008, Cederberg et al., 2015).  

Cholesterol is an important structural component of all animal cell membranes and 
it also serves as a precursor for the biosynthesis of certain hormones and vitamins 
(Berg, 2002). Since cholesterol is essential, each cell can synthesize it through a 
complex process called the mevalonate pathway where production of mevalonate 
by the enzyme 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase is the 
rate-limiting step (Buhaescu and Izzedine, 2007). Though every cell can produce 
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cholesterol the rate at which they do so varies by cell type and organ function. The 
liver is responsible for most of the daily cholesterol production in the body (Berg, 
2002). In blood, cholesterol is transported by lipoproteins. There are several types 
of lipoproteins chylomicrons, very-low-density lipoprotein (VLDL), low-density 
lipoprotein (LDL), intermediate-density lipoprotein (IDL), and high-density 
lipoprotein (HDL) (Berg, 2002). The LDL cholesterol is considered “bad” 
cholesterol because it contributes to plaque formation in blood vessels which leads 
to atherosclerosis. The HDL cholesterol is considered “good” cholesterol because 
it helps remove cholesterol from the arteries and transport it back to the liver for 
excretion (Elshourbagy et al., 2014). 

Statins, also known as HMG-CoA reductase inhibitors, are a family of drugs that 
are used to lower the cholesterol levels and thereby reduce the risk of CVD. Since 
their discovery, many different statins has entered the market like lovastatin, 
simvastatin, pravastatin, fluvastatin, atorvastatin, cerivastatin and most recently 
rosuvastatin (Abbas et al., 2012). Several clinical trials have justified the role of 
statins in primary and secondary CVD prevention (Brault et al., 2014).  

Statins inhibit the HMG-CoA 
reductase which leads to 
decreased de novo hepatic 
cholesterol synthesis (Fig. 7). 
This results in expression of 
more LDL receptors on 
hepatocytes which in turn 
increase the LDL uptake. The 
end result is reduced circulating 
levels of LDL and thereby 
decreased risk of CVD (Abbas 
et al., 2012, Brault et al., 2014). 
Statins in general are considered 
safe. However, in the 
“Justification for the Use of 
Statins in Prevention: an 
Intervention Trial Evaluating 
Rosuvastatin” (JUPITER) study 
although rosuvastatin was found 
to prevent cardiovascular events 
physician reported diabetes 
among patients given 
rosuvastatin was significantly 
increased (Ridker et al., 2008). Another study has also pointed out the 
diabetogenic effects of statins, which seemed to be dose dependent. Moreover, 
statin treatment was demonstrated to be associated with both an increased risk of 

 

Figure 7. Mevalonate pathway of cholesterol 
synthesis. 
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insulin resistance and a reduced insulin secretion (Cederberg et al., 2015). Among 
the statins, rosuvastatin has been recognized as one of the more diabetogenic 
(Navarese et al., 2013). 
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Aims 

The general objective of this thesis was to investigate the role of Ca2+, miRNAs 
and rosuvastatin in the regulation of beta cell function. I have focused mainly to 
elucidate their effects on ion channels, exocytosis and insulin secretion of beta 
cells. 

 

The specific aims were to 

I. Examine the dynamics of Ca2+-dependent insulin exocytosis with respect 
to pool depletion and Ca2+ current inactivation in INS-1 832/13 cells. 

II. Investigate the role of miR-375 in the regulation of voltage-gated Na+ 
channel properties, exocytosis and glucose-stimulated insulin secretion in 
insulin-secreting beta cells. 

III. Investigate whether miR-335 regulates the expression of exocytotic genes 
and affects exocytosis and insulin secretion in beta cells 

IV. Study the effects of rosuvastatin on exocytosis and the stimulus-secretion 
coupling in the INS-1 832/13 cells. 

V. Understand the cellular mechanism by which rosuvastatin influences 
glucose homeostasis and to investigate the effect on glucose uptake in 
target tissue and insulin secretion from pancreatic beta cells in high fat 
diet (HFD) and normal diet (ND) fed mice. 
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Materials and Methods 

Cell culture 

Most of the experiments in this thesis are done in the INS-1 832/13 cell line. This 
clonal cell line was derived by stably transfecting original rat insulinoma INS-1 
cells with a plasmid containing the human proinsulin gene (Hohmeier et al., 2000). 
INS-1 832/13 cells secrete insulin both in a KATP channel-dependent and -
independent manner in response to glucose concentrations in the physiological 
range (Hohmeier et al., 2000). These cells are generally stable both in terms of the 
desired secretion phenotype and ease of maintenance; hence this cell line is a good 
model for mechanistic studies. Moreover, using cell lines is in accordance with the 
3R (replacement, reduction and refinement) principle of animal studies (European 
Commission, 2015).  

Rodent animal models were used in study V to perform in vivo experiments. 
Moreover islets, adipose tissues and isolated primary beta cells from rodents or 
human cadaver donors have been used whenever necessary for the studies (study 
II, III and V). 

Transfection 

Lipofectamine transfection reagent was used for transfecting oligonucleotides into 
INS-1 832/13 cells with high efficiency (Zhao et al., 2008). Lipofectamine reagent 
works on the principle of lipofection as it can entrap the oligonucleotides and form 
liposomes. The phospholipid bilayer nature of liposomes and its net positive 
charge helps it to merge easily with the negatively charged cell membrane 
(Felgner et al., 1987).  

MiRNAs are very short in length and in order to down-regulate them it is 
necessary to use highly specific and sensitive oligonucleotides. Locked nucleic 
acid (LNA) based oligonucleotides were used to down-regulate specific miRNAs 
(Braasch and Corey, 2001). LNAs are a class of high-affinity RNA analogs in 
which the ribose ring is “locked” in the ideal conformation (N conformation) for 
Watson-Crick binding. LNA based oligonucleotides show very good thermal 
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stability when hybridized to a complementary DNA or RNA strand (Exiqon, 2015, 
Braasch and Corey, 2001). For transient overexpression, chemically-modified 
doublestranded mature miRNAs were used. These are small, chemically modified 
double-stranded RNA molecules designed to mimic endogenous mature miRNAs. 
However, they are not hairpin constructs and should not be confused with pre-
miRNAs. 

For down-regulation of genes of interest pre-designed siRNA were used against 
the particular mRNA. siRNAs are small (20-25 base pairs), double-stranded RNA 
molecules. They inhibit expression of their target gene typically by causing 
destruction of mRNA molecules of complementary nucleotide sequences through 
the well-known RNA interference (RNAi) pathway (Agrawal et al., 2003). 

Reverse transcription quantitative real-time PCR 

In order to robustly detect and quantify gene expression, amplification of the gene 
transcript is necessary and reverse transcription quantitative real-time PCR (RT-
qPCR) technique was used for this purpose. RT-qPCR is a two-step process where 
the first step is to convert the RNA template into a complementary DNA (cDNA) 
using a reverse transcriptase and in the second step the resulting cDNA is used as a 
template for exponential amplification and simultaneous quantification using real-
time PCR (Heid et al., 1996). Reverse transcription was performed for mRNA 
using random primers and for miRNA using sequence-specific stem-loop primers. 
The stem-loop primer accomplishes two important tasks a) it is specific for only 
the mature miRNA target and b) it extends the 5’ end of the RT amplicon thus 
making it amenable to downstream PCR amplification (Chen et al., 2005). 

For qPCR, TaqMan assays (5´nuclease assay process) with primers and probes 
specific for each gene of interest are used (Heid et al., 1996). The TaqMan®MGB 
probes contains a reporter dye (FAM™ dye) linked to the 5′end of the probe, a 
minor groove binder (MGB) at the 3′end of the probe and a nonfluorescent 
quencher (NFQ) at the 3′end of the probe (Applied Biosystems, 2011). When the 
probe is intact, the proximity of the reporter dye to the quencher dye results in 
suppression of the reporter fluorescence but when DNA polymerase cleaves the 
probes it separates the reporter dye from the quencher dye. This results in 
increased fluorescence by the reporter. The increase in fluorescence signal occurs 
only if the target sequence is complementary to the probe and is amplified during 
PCR therefore  nonspecific amplification is not detected (Heid et al., 1996, Jensen 
et al., 2004). 

A relative quantitation allows for a quantification of the difference in expression 
level of a gene between different samples (e.g. treated vs untreated samples). The 
data is expressed as a fold-change of expression levels of that particular gene. To 
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obtain accurate relative quantification and to correct for variations (e.g. loading 
error) it is important to normalize the expression of the gene of interest with the 
expression of a proper endogenous control. The genes used as an endogenous 
control are genes whose expression levels does not differ between the investigated 
samples (e.g. housekeeping genes) (Vandesompele et al., 2002). The comparative 
CT method (ΔΔCT) was used for the normalization with endogenous control 
(Schmittgen and Livak, 2008). 

Patch-clamp technique  

Electrophysiology is the study of the electrical properties of cells and tissues 
where patch-clamp is one of the important techniques. The most important step in 
this technique is to form a tight pipette-membrane seal (resistance of 10-100 
gigaohams). This is done by applying slight suction to the pipette where a small 
patch of membrane is sucked into the pipette to form an omega-shaped 
semivesicle. The high seal resistance is important to get rid of background noise 
and to perform high-resolution current measurements (Sakmann and Neher, 1984, 
Hamill et al., 1981). The firm pipette-membrane seal allows a certain number of 
configurations to be performed as follows a) cell-attached b) perforated c) Whole-
cell c) outside-out d) inside-out  

Cell attached configuration is used to measure single ion currents in the membrane 
patch after formation of the seal. Outside-out and inside-out patch configurations 
are used to measure single ion channel currents in the small patch once withdrawn 
from the cell. Perforated patch or standard whole-cell configuration is used to 
measure the summed currents from all ion channels in the cell. In the latter 
configurations the amplifier has electrical contact with the cell interior. In 
perforated patch configuration cytoplasm is intact, whereas in standard whole-cell 
configuration the cytoplasm is exchanged by the content of the pipette solution. In 
this thesis I have mainly used the standard whole-cell configuration, which allows 
for studies of the electrical behaviour of the entire cell. With this configuration we 
can use voltage-clamp or current-clamp mode to study 1) currents passing through 
the membrane 2) measurements of membrane potential (action potentials) 3) 
exocytotic and endocytotic events. 

Currents can be measured in the voltage-clamp mode where membrane potentials 
are controlled by the amplifier. The cell is held at a negative membrane potential (-
70 mV) and different depolarization protocols are used to study currents flowing 
through different voltage-gated ion channels.  
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Capacitance measurements 

Exocytosis can be measured as a function of changes in cell membrane 
capacitance (Cm). This is based on the fact that biological membranes act as 
capacitors. A typical capacitor in an electronic circuit contains at least two 
electrical conductors (plates) separated by a dielectric where the dielectric is 
largely impermeant to current flow. Opposite charges are attracted to one another 
across the cell membrane. Capacitance in patch clamp measurements is a measure 
of the charge separated by the cell membrane. The alignment of charge along the 
cell membrane is sufficiently uniform for membrane capacitance to be a reliable 
index of membrane area (Kornreich, 2007). The specific capacitance of biological 
membrane is 9 fF/µm2 (Gentet et al., 2000). The Cm is proportional to the 
membrane surface area (A) and the relationship is given by the equation  

ܥ ൌ ߝ ∗  ݀/ܣ

Where ε is a constant (specific membrane capacitance) and d is the distance 
between the two layers of phospholipids. 

There are several advantages to the technique a) the possibility to conduct single 
cell experiments b) the total exocytosis in a cell can be monitored in one 
experiment c) high time resolution (~1 ms) d) access to the cytosol (Rorsman and 
Renstrom, 2003). On the other hand capacitance changes is calculated on net 
changes in cell surface area hence it does not discriminate between exocytosis and 
simultaneous endocytosis and between fusion of insulin granules and fusion of 
other vesicles such as small GABA-containing synaptic-like microvesicles 
(SLMVs). However it has been demonstrated that endocytosis is a slower process 
(Eliasson et al., 1996) and SLMVs are much smaller and do not contribute so 
much to the total change in capacitance (Braun et al., 2004).   

In this thesis two different protocols have been used to investigate exocytosis. In 
one protocol exocytosis was elicited by ten successive 500 ms long 
depolarizations from -70 mV to 0 mV applied at 1Hz. This protocol is called train 
of depolarizations which is used to study release of granules from different pools 
(RRP and RP). The other protocol used is termed pulse length protocol which is 
used to study early exocytosis (IRP and RRP). Here, exocytosis was elicited by 
depolarizations (from -70 mV to 0 mV) at varying pulse durations from 5 ms to 
800 ms and with varying interval between the depolarizations to examine 
exocytosis with respect to pool depletion and/or Ca2+ influx. Pulse-length data has 
been analysed using mixed effect modelling. 

Mixed-effects statistical modelling 

Common statistical models incorporates fixed effects which are parameters 
associated with an entire population or random effects which are associated with 
individual experimental units drawn at random from a population. A model which 
incorporates both fixed effects and random effects is called a mixed-effects model. 
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This model is appropriate for studying clustered data, e.g., pulse-length protocol 
where several depolarizations are applied to the same cell. Pooling of data neglects 
natural cell heterogeneity but mixed-effects modelling can handle and quantify 
biological variation and at the same time account for within-cell correlation 
(Pinheiro and Bates, 2000). Mixed-effects model describes relationships between a 
response variable and some covariates in the data. For analysing pulse-length data 
the linear mixed-effects model was used which included treatment group as fixed 
effect and cell as random effect (Pedersen et al., 2011, Pedersen, 2011). 
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Results and discussion 

Paper I 

Calcium current inactivation rather than pool depletion explains reduced 
exocytotic rate with prolonged stimulation in insulin-secreting INS-1 832/13 
cells 

T2D has been associated with a reduction in first phase insulin secretion. 
Previously our group together with others have suggested that first phase insulin 
secretion is associated with RRP. Several factors have been suggested to impact 
the size of RRP including cAMP (Rorsman and Renstrom, 2003, Renstrom et al., 
1997, Eliasson et al., 2003). However, the main determinant of exocytosis is Ca2+ 
and the influx of Ca2+ is reduced during a depolarization due to Ca2+ channel 
inactivation. It is therefore important to study exocytosis as a function of Ca2+ 

influx (measured as Q) rather than pulse duration to determine the pool depletion 
(Pedersen, 2011) as has not been performed in some previous studies (Gopel et al., 
2004, Olofsson et al., 2002, Rorsman et al., 2011). Moreover, single cell responses 
are often heterogeneous, which is neglected in most studies when only comparing 
mean values. Mixed-effects modelling can handle biological variation and at the 
same time considers within-cell correlation (Pinheiro and Bates, 2000). 

In paper 1 we wanted to investigate the exocytotic response in INS-1 832/13 cells 
with respect to pool depletion and Ca2+ current inactivation. In order to do so, we 
applied different depolarization protocols to the cells and used linear mixed-effects 
modelling of the increase in capacitance (ΔCm) as a function of Q. We also 
investigated the Ca2+ current sensitivity; with this we mean the sensitivity of 
exocytosis to Ca2+ entry via Ca2+channels.  

The overall hypothesis was that only a clear deviation (i.e. concave curve) from a 
linear relation between the Q and ΔCm would suggests a pool depletion. 

A linear relationship between exocytosis and Ca2+ influx was found in INS-1 
832/13 cells and the mixed-effect model analysis revealed unaffected IRP and 
reduced Ca2+ current sensitivity in presence of EGTA 

Exocytosis measured as capacitance increases was evoked by a standard pulse 
length protocol with varying pulse durations (5, 10, 20, 40, 80, 160, 320 and 640 
ms) to investigate pool depletion under control conditions or in presence of the 
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calcium-buffer EGTA in the pipette solution to vary the [Ca2+]i. The ΔCm showed 
a biphasic relation to the pulse length such that the average rate of exocytosis was 
higher during shorter than during longer pulses. However, plotting ΔCm to Q gave 
a linear relationship. 

Using linear mixed-effects model the common intercept for the control and EGTA  
groups was estimated to be 6.5±1.6 fF. The intercept reflects exocytosis in the 
limit of zero Ca2+ entry; here it corresponds to ~10 granules, which probably 
represent the IRP in INS-1 832/13 cells. The IRP was not affected by EGTA, but 
as expected the Ca2+ current sensitivity was significantly lower (reduced by 55%) 
in the EGTA group compare to control. However, there was no deviation from 
linearity in the EGTA group. 

A 50-ms pre-pulse leads to depletion of IRP but not later exocytosis 

To investigate pool depletion from another angle we used a double pulse protocol 
(two 50 ms depolarizations separated by 100 ms ). The estimated intercept was 
different in the first and second pulse, but again it was not influenced by EGTA 
and therefore the same for the control and EGTA group. For the first pulse, the 
common intercept for the two groups was estimated to be 6.94±68 fF. In contrast, 
for the second pulse the common intercept was estimated to be -0.40±1.59 fF, 
showing that the first pulse depleted the small IRP. As expected, EGTA lowered 
the Ca2+ current sensitivity (by 71%) compared to control. Interestingly, the 
exocytotic response to Ca2+ entry was reduced by EGTA. The reduction was 
similar for the first and second pulse. This indicates that the first pulse did not 
deplete the granule pool responsible for later exocytosis.  

Double pulse protocol was the subset of the larger protocol where we used varying 
pulse duration for the second pulse from 50-800 ms. The hypothesis was; if the 
cell possessed a limited granule pool then a prepulse of 50 ms would lead to 
changed Ca2+ current sensitivity of the following longer pulses. This would be so 
because the inflowing Ca2+ would have fewer granules to act upon because the 
prepulse would have reduced the pool of available vesicles. Here, linear mixed-
effects modelling for the second pulse independent of the pulse duration showed 
that Ca2+ current sensitivity was not reduced either in the control group or in the 
EGTA group following a 50 ms prepulse. These results speak against the notion of 
pool depletion causing the biphasic capacitance pattern. 

Recovery of Ca2+ current was enough to reset the exocytotic response 

To study whether pool depletion or Ca2+ channel inactivation is the cause of the 
declined exocytotic response from another perspective, we used the combined 
prepulse pulse length protocol. Here, two initial depolarizations were followed by 
a third 500 ms depolarization after a rest interval at -70 mV lasting either 200 ms 
(protocol I) or 10 seconds (protocol II). 
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The idea was that if the first two pulses do not deplete the RRP (as shown by 
previous results) then current recovery would dictate the exocytotic response 
evoked by the third depolarization. Therefore, in this case one should expect the 
Ca2+ current sensitivity between protocols I and II to be equal. This idea was based 
on the fact that the Ca2+ current recovers much faster (Rorsman et al., 2011) from 
inactivation than the RRP recovers from depletion (~1 min) (Gromada et al., 1999, 
Barg et al., 2001). 

For smaller second pulses the Ca2+ current recovered substantially (mean recovery 
>75) in a rest interval of just 200 ms. In contrast, following longer second pulses 
(≥200 ms) the current did not recover much during the 200 ms resting period, but 
recovered almost completely in 10 s. Mixed-effects modelling for third-pulse data 
with the longer second depolarization (≥200 ms) showed that Ca2+ current 
sensitivity between protocols I and II was not different. These findings show that 
the exocytotic response recovers in parallel to Ca2+ currents and therefore speak 
against the notion of pool depletion. 

A train of 500 ms depolarizations did not able to empty the RRP 

As observed above, short depolarizations were able to deplete IRP. We next 
wanted to study if more intense stimulation in the form of the widely used train 
protocol (train of ten 500 ms depolarizations), would deplete the relatively larger 
pool i.e. RRP. Here by using mixed-effects modelling we related the cumulative 
increase in membrane capacitance evoked by the depolarizations to the cumulative 
Ca2+ influx. There was no sign of pool depletion and intercept was estimated to be 
-3.1±15.1 fF and Ca2+ current sensitivity was estimated to be 1.81±0.48 fF/pC. 
However, if analysed only for first three pulses then the data showed an estimated 
intercept of 29.1±8.6 fF in agreement with the presence of IRP from the data 
analysed in the previous results. 

In summary 

a) INS-1 832/13 cells possess an IRP of ~10 granules. 

b) Most exocytosis of granules occurs from a large pool. Exocytosis of granules 
from this pool is attenuated by the calcium-buffer EGTA, while IRP is unaffected 
by EGTA. 

c) Pool depletion plays a minor role in the decline of exocytosis upon prolonged 
stimulation in INS-1 832/13 cells. 

Discussion  

Exocytosis in beta cells is operational at [Ca2+]i, of tens of micromolars (Takahashi 
et al., 1997). These levels can only be reached in the close vicinity of the Ca2+ 
channels. In beta cells calcium channels are organized in clusters (e.g. L-type Ca2+ 
channels) with secretory granules, which makes sure that the exocytotic machinery 
is exposed to high [Ca2+]i (Barg et al., 2001, Wiser et al., 1999). In mouse beta 
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cells, IRP comprises ~10% of RRP. Recovery of IRP and RRP are rate limiting 
where IRP takes even longer time than RRP to recover (Barg et al., 2001). Here, 
we demonstrate that the same pools exist in INS-1 832/13 cells but their kinetics is 
different from primary cells which are illustrated in Fig. 8.  

In INS-1 832/13 cells we found a tiny pool of ~10 granules, that could be released 
by minimal amounts of entered Ca2+. It is therefore likely that this pool is the IRP 
situated near the Ca2+ channels. Importantly, this pool was not affected by EGTA 
and depletion of this pool did not disturb later exocytosis probably because of its 
small size. In contrast later exocytosis was strongly affected by EGTA, which 
suggests that most exocytosis in INS-1 832/13 cells occurs away from Ca2+ 
channels. Also, the large granule pool was not depleted by depolarizations lasting 
even up to a second. Interestingly in INS-1 832/13 cells even repeated 500-ms 
pulses did not lead to the exhaustion, if anything late exocytosis was tended to 
increase when Ca2+ entry was taken into account probably due to residual Ca2+ 
from the first pulses. This indicates that either this pool is very large or very 
rapidly refilled. Therefore, it seems likely that most of the exocytosis seen in our 
experiments is due to a HCSP (Fig. 8) or due to newcomers as in INS-1 cells 
(Yang and Gillis, 2004, Zhu et al., 2013).  

In mouse and human beta cells there is a clear role of pool depletion contributing 
to biphasic insulin secretion (Henquin et al., 2002, Henquin et al., 2006). 
However, in INS-1 832/13 cells using patch-clamp capacitance measurements and 
mixed-effect modeling we showed that, RRP is not as easily depleted as 
previously thought and pool depletion plays a negligible role in shaping the 
decline in the exocytotic response. The observed exocytotic profile is instead 
mostly determined by the kinetics of Ca2+ current inactivation. 

 

Figure 8. Model figure summarizing important results of paper I.  
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Paper II 

Modulation of microRNA-375 expression alters voltage-gated Na+ channel 
properties and exocytosis in insulin-secreting cells 

After an initial detailed investigation on how Ca2+ affects exocytosis in the beta 
cells I moved into the studies of how miRNAs influences ion channels, exocytosis 
and thereby insulin secretion in beta cells. I started with miRNA-375, the most 
abundant miRNAs found in beta cells (Poy et al., 2004). Earlier studies have 
shown that modulation of miR-375 levels affect insulin secretion through effects 
on the exocytotic process (Poy et al., 2004) and miR-375 was found to be involved 
in glucose regulation of insulin gene expression (El Ouaamari et al., 2008). 
Moreover, miR-375 has been suggested to play an important role in islet 
development (Kloosterman et al., 2007). In agreement, a miR-375 knockout 
(375KO) mouse model showed that miR-375 is crucial for beta cell proliferation 
and thereby maintenance of normal beta cell mass and glucose homeostasis (Poy 
et al., 2009). Thus, miR-375 has multiple functions in the beta cells. Nobody 
though had earlier investigated in detail the effects on voltage-gated ion channels. 

Different subunits of Na+ channels were found to be predicted targets of miR-375 
and they differed among species (TargetScanHuman, 2015). Interestingly, the role 
of Na+ channels in beta cells seems to be species specific. Here we specifically 
investigated the role of miR-375 on voltage-gated Na+ channel inactivation 
properties in beta cells. In addition the effects of modulation of miR-375 levels on 
exocytosis and insulin secretion were studied. 

The studies were performed in INS-1 832/13 cells and beta cells from 375KO 
mice. To investigate the role of miR-375 in INS-1 832/13 cells we have either 
down-regulated or overexpressed miR-375 and these cells are called, LNA375 and 
OE375, respectively. Control cells are called SCR (scrambled).  

Effect of miR-375 on insulin secretion, insulin content and exocytosis in INS-1 
832/13 cells 

Insulin secretion was not changed in OE375 or LNA375 cells. However, insulin 
content in OE375 cells was reduced by ~20%. Standard whole-cell configuration 
of the patch-clamp technique was used to study exocytosis. In OE375 cells, 
exocytosis measured as the sum of the increase in membrane capacitance evoked 
by the train of ten depolarizations was significantly reduced (by 35%) compared to 
SCR cells.  

Effect of modulation of miR-375 levels on voltage-gated channel activity in 
INS-1 832/13 cells 

Voltage-dependent currents were evoked by membrane depolarizations from -70 
mV to voltages between -40 and +40 mV. The peak current (Ip) represents Na+ 
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current whereas sustained current (Isus) and charge (Q) are related to the Ca2+ 
current. The maximal Isus and Q at 0 mV was significantly reduced (by ~30%) in 
OE375 cells compare to SCR cells, whereas in LNA375 cells they were not 
changed. The Ip was not changed in either OE375 or LNA375 cells suggesting that 
the peak Na+ current is unaffected by miR-375.   

MiR-375 shifts Na+ channel inactivation properties in INS-1 832/13 cells and 
mouse primary beta cells 

Inactivation properties of voltage-gated Na+ channels were measured using a two-
pulse protocol. Here we used a conditioning pulse from -70 mV to voltages 
ranging from -130 to 40 mV; subsequent 1-ms resting period at -70 mV was 
followed by a depolarizing pulse to 0 mV during which the Na+ current was 
measured. The half maximal inactivation (Vh) was not different in OE375 cells 
compare to SCR cells. Interestingly Vh in LNA375 cells was significantly shifted 
to the left (-66 ± 2 mV) i.e. towards more negative membrane potential compared 
to SCR cells (-60 ± 2 mV). On the other hand, Vh in beta cells of 375KO mice was 
significantly shifted to the right  (-69 ± 2 mV) i.e. towards more positive 
membrane potential compared to beta cells of wild type mice (-83 ± 1 mV). 
Interestingly, the predicted miR-375 targets among Na+ channels subunits, SCN3A 
and SCN3B, were considerably down-regulated (~30%) at protein levels in OE375 
cells.  

In summary (Fig. 9) 

a) Overexpression of miR-375 leads to reduced exocytosis in INS-1 832/13 cells. 

b) Overexpression of miR-375 leads to decreased voltage-gated Ca2+ influx in 
INS-1 832/13 cells. 

c) Down-regulation of miR-375 shifts Na+ channel inactivation properties in INS-1 
832/13 cells towards more negative and in 375KO mice beta cells towards more 
positive membrane potential. 

d) Overexpression miR-375 results in decreased expression of SCN3A and 
SCN3B at protein levels.  

Discussion  

Steady-state inactivation controls the number of channels that can be opened at a 
particular membrane potential. Hence, small changes in Na+ channel kinetics can 
cause a considerable change in the number of channels available for generation of 
action potentials (Van Petegem et al., 2012). In human beta cells voltage-gated 
Na+ channels are active at physiologically relevant membrane potentials and they 
are important in generation of action potential and glucose stimulated insulin 
secretion. In human beta cells Na+ channels show a half maximal inactivation at ~-
40 mV (Braun et al., 2008). The role of voltage-gated Na+ channels in rodent beta 
cells in generation of action potential has been considered less important because 
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of their more negative half maximal inactivation (at -70 mV or below) (Hiriart & 
Matteson, 1988). However, in rat beta cells inhibition of voltage-gated Na+ 
channels using tetrodotoxin (TTX) reduces glucose induced insulin secretion 
(Vidaltamayo et al., 2002), indicating that these channels still might play a role. 

Interestingly, we saw that voltage-gated Na+ channels inactivation properties were 
regulated by miR-375 in both INS-1 832/13 cells and primary 375KO mice beta 
cells. Though, the shift in inactivation of Na+ channels could not lead to any 
detectable change in insulin secretion in INS-1 832/13 or 375KO mice beta cells, 
the concept can still be of importance for the regulation of insulin secretion. The 
notion that different Na+ channel subunits can be differently targeted by miR-375 
depending on the species makes it interesting to investigate if miR-375 is involved 
in regulation of Na+ channels in human beta cells where these channels play an 
important role in generation of action potentials. 

 

 

 

Figure 9. Summary of  important results in paper II. 
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Paper III 

MiR-335 over-expression impairs insulin secretion in β-cells through 
defective priming of insulin vesicles 

Another important miRNA in beta cells is miR-335. We have previously 
demonstrated that this miRNA along with others is upregulated in islets from the 
GK rat (Esguerra et al., 2011). The GK rat is a well-studied non-obese T2D rodent 
model characterized by defective insulin secretion (Srinivasan and Ramarao, 2007, 
Goto et al., 1976). Interestingly, putative targets of upregulated miRNAs in the 
islets of GK rat are enriched for several beta cell exocytotic proteins (Esguerra et 
al., 2011). Specifically, miR-335 has been demonstrated to directly target Stxbp1 
by luciferase reporter assay (Esguerra et al., 2011). Interestingly, the expression of 
many exocytotic genes is down-regulated in islets from the GK rat (Gaisano et al., 
2002, Zhang et al., 2002) and human donors with T2D (Andersson et al., 2012, 
Ostenson et al., 2006).  

In paper III we aimed to investigate whether modulation of miR-335 levels 
regulates the expression of the confirmed exocytotic protein target, STXBP1, as 
well as the putative targets, SNAP25 and SYT11 (Fig. 10).  

We hypothesized that miR-335 overexpression will lead to reduced expression of 
its target exocytotic proteins and thereby the exocytotic process and insulin 
secretion will be affected. 

To investigate the role of miR-335, we overexpressed the microRNA in INS-1 
832/13 cells (OE335) and compared these cells to cells transfected with a scramble 
control (SCR).  

Overexpression of miR-335 leads to reduced glucose- and depolarization 
induced insulin secretion  

The glucose-stimulated insulin secretion at 16.7 mM glucose was reduced (~24%) 
in OE335 cells compared to SCR cells but insulin content was not significantly 
different. These findings suggest impaired insulin release. To determine whether 
the observed defective insulin release is due to a disturbed exocytotic process, 
insulin secretion was measured athigh concentration of K+ (50 mM) with a non-
stimulatory concentration of glucose (2.8 mM). The K+-induced insulin secretion 
was reduced (~23%) in OE335 cells compared to SCR cells.  

Overexpression of miR-335 leads to reduced exocytosis  

Exocytosis, measured using the patch clamp technique, was significantly reduced 
(~36%) in OE335 cells as compared to SCR. We observed no significant 
differences in the size of the Ca2+ current (Isus) and charge (Q) in OE335 cells 
compared to SCR cells at any of the voltages tested. 
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The effect of elevated levels of miR-335 on the exocytotic process was further 
studied in detail by TIRF microscopy using the granular marker neuropeptide-Y 
(NPY)-mEGFP. The total number of exocytotic events in OE335 cells was 
significantly less than in SCR, but the density of docked granules was not 
changed. The granule fusion pore lifetime was also not significantly different in 
OE335 cells compare to SCR. However, the granular content release was 
significantly faster in OE335 cells compared to SCR.  

Overexpression of miR-335 leads to reduced expression of STXBP1, SNAP25 
and SYT11 

We wanted to investigate whether the impaired insulin secretion and exocytosis 
observed in OE335 cells were due to down-regulation of some exocytotic prwhich 
are putative targets of miR-335 (TargetScanHuman, 2015). 

The protein levels of three miR-335 targets SNAP25 (~50%), STXBP1 (~25%) 
and SYT11 (~50%) were significantly reduced in OE335 cells compared to SCR 
cells (Fig. 10). 

 

 

Figure 10. Inhibition of key exocytotic proteins by miR-335.  

 

Knock-down of SYT11 leads to disturbed basal insulin secretion and 
impaired exocytosis 

We down-regulated SYT11 (~65% at mRNA level) in INS-1 832/13 cells 
(siSYT11) and investigated the response as compared to control (siSCR) cells. 
Insulin secretion at 16.7 mM glucose was not changed but basal insulin secretion 
at 2.8 mM glucose was significantly increased (~2 fold) in siSYT11 cells. 
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Exocytosis was studied as increases in membrane capacitance elicited by a train of 
ten depolarizations. The capacitance evoked by the first depolarization was 
significantly lower (~60%) in siSYT11 cells as compared to siSCR cells. We 
observed no significant differences in the Ca2+ current in siSYT11 cells compared 
to siSCR cells. 

In summary 

a) Overexpression of miR-335 leads to reduced glucose-stimulated insulin 
secretion and exocytosis without affecting insulin content, density of docked 
granules and Ca2+ influx. 

b) OE335 cells shows reduced expression of the exocytotic proteins STXBP1, 
SNAP25 and SYT11. 

c) Knock-down of SYT11 does not change glucose-stimulated insulin secretion 
but disturbs basal insulin secretion and impairs rapid exocytosis. 

Discussion 

It is known that in beta cells of the GK rat, reduced expression of exocytotic 
proteins plays a major role in defective insulin secretory response (Zhang et al., 
2002) and in these cells upregulated miRNAs putatively target several exocytotic 
proteins (Esguerra et al., 2011). However, it was unclear if dysregulated 
expression of specific miRNAs can affect the exocytotic process in these beta 
cells. 

Whole-cell patch clamp technique revealed that overexpression of miR-335 leads 
to a substantial reduction in exocytosis. This reduction in exocytosis could be 
because of impaired docking and/or priming of the insulin granules. Using TIRF 
microscopy it was found that miR-335 affects exocytosis through impaired 
priming or post priming processes such as granule fusion but the docking process 
was not affected. This interpretation is based on the fact that in OE335 cells the 
density of docked granules was not changed but the number of exocytotic events 
was significantly reduced. Moreover, insulin content was also not changed in 
OE335 cells suggesting that the regulatory effect of miR-335 is mainly on the end 
stage in the exocytotic process. Indeed, predicted targets among the exocytotic 
genes where significantly reduced on protein level. 

STXBP1 is known to be essential for granular docking (Tomas et al., 2008, 
Toonen and Verhage, 2007, Voets et al., 2001). Interestingly, although this protein 
was down-regulated in the OE335 cells the density of docked granules was not 
affected. One of the possible reasons for this could be that a ~25% reduction of 
STXBP1 was not sufficient to have noticeable effects on docking. However, it is 
also important to consider that it is difficult to compare the effects of modulation 
of miRNA levels with knock-down of single specific protein. 
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Knock-down of SYT11 leads to disturbed basal insulin secretion and reduced 
exocytosis without affecting Ca2+ influx, suggesting a direct role of SYT11 in the 
exocytotic process and in basal insulin secretion. This finding is very interesting as 
Syts are known to act as a clamp to prevent premature triggering of exocytotic 
events (Martin et al., 1995, Chicka et al., 2008). It is possible that the observed 
increased basal insulin secretion in siSYT11 cells is due to a failure to prevent 
premature insulin release because of the down-regulation of SYT11. Importantly, 
increased basal insulin secretion is vital characteristics of T2D (Del Prato et al., 
2002) and expression levels of SYT11 were found to be down-regulated in the 
islets of T2D human donors (Andersson et al., 2012). SYT11 does not bind to Ca2+ 
(Milochau et al., 2014), and its actual mechanism of action is currently unclear. 

In conclusion, this study suggests that modulating the levels of miR-335 may 
provide a novel approach to restoring insulin secretory functions in diseased 
pancreatic beta cells. 

Paper IV 

Rosuvastatin treatment affects both basal and glucose-induced insulin 
secretion in INS-1 832/13 cells 

Statins are consider safe and well-tolerated and used for their ability to lower 
cholesterol levels and thereby reduce cardiovascular events (Armitage, 2007). 
However, there are studies suggesting diabetogenic effects of statins including 
rosuvastatin (Ridker et al., 2008). Our group has earlier demonstrated that 
cholesterol is an important factor for exocytosis in beta cells (Vikman et al., 2009). 
Hence, to investigate if the diabetogenic effect of rosuvastatin is due to its 
cholesterol lowering ability we explored the impact of rosuvastatin on insulin 
secretion and exocytosis. 

Rosuvastatin is one of the most potent inhibitors of HMG-CoA reductase (White, 
2002). It is hydrophilic in nature and transported actively into hepatocytes by 
special transporters e.g. Organic Anion Transporting Polypeptides (OATP) 
(Kitamura et al., 2008), hence considered safe for non-hepatic tissue (White, 
2002). However, functional OATP1B3 has recently been found in pancreatic beta 
cells (Meyer Zu Schwabedissen et al., 2014) possibly making these cells more 
vulnerable for the effect of rosuvastatin. 

Here we have investigated the effects of short term incubations (24-48 hr) with 
rosuvastatin on exocytosis and the stimulus-secretion coupling of the INS-1 
832/13 cells. 

Rosuvastatin decrease both glucose- and K+-induced insulin secretion and 
increase basal insulin secretion 
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We first studied the effect of different concentrations of rosuvastatin (20 nM to 20 
µM) on basal (2.8 mM glucose) and glucose-stimulated (16.7 mM glucose) insulin 
secretion. Low concentration (20 nM) of rosuvastatin had no effect on insulin 
secretion but at concentrations ≥200 nM rosuvastatin reduced glucose-stimulated 
insulin secretion by ~25% compare to control. Interestingly, 2 μM and 20 µM 
rosuvastatin markedly increased basal insulin secretion compare to control by 
~65% and ~165%, respectively. Basal insulin secretion in cells treated with 20 µM 
rosuvastatin was not significantly different in the presence or absence of KATP 
channel opener diazoxide. K+-induced (50 mM) insulin secretion in the presence 
of 2.8 mM glucose was significantly reduced in cells treated with 20 µM 
rosuvastatin. 

High dose of rosuvastatin leads to decreased exocytosis and Ca2+ influx 
through the voltage-gated Ca2+ channels 

Exocytosis measured, using the patch clamp technique, as the total increase in 
membrane capacitance elicited by a train of ten membrane depolarizations was 
significantly reduced (~34 %) in cells treated with 20 µM rosuvastatin compare to 
control. In these cells there was no change in Ca2+ sensitivity. In this study Ca2+ 
was crudely measured by comparing the exocytotic response to the first 
depolarizing pulse in the train with the Ca2+ current elicited by the same pulse. The 
Ca2+ current was significantly reduced (~45%) in cells treated with 20 µM 
rosuvastatin. 

Mevalonate but not squalene can rescue reduced insulin secretion caused by 
rosuvastatin 

Mevalonate is present upstream in the mevalonate pathway whereas squalene is 
found further downstream in this pathway in one of the arms that exclusively leads 
to the formation of cholesterol (Fig. 7). In order to study if the observed effects of 
rosuvastatin on insulin secretion are via the cholesterol synthesis pathway we 
added mevalonate or squalene to cells treated with 20 µM rosuvastatin. 

Interestingly, we found that mevalonate, but not squalene could rescue both 
glucose- and K+-induced insulin secretion defects in cells treated with 
rosuvastatin. 

In Summary (Fig. 11) 

a) Rosuvastatin dose dependently reduce glucose-induced insulin secretion and 
increases basal insulin secretion. 

b) High dose of rosuvastatin (20 µM) leads to reduced K+-induced insulin 
secretion. 

c) Rosuvastatin (20 µM) leads to reduced Ca2+ influx and exocytosis. 
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d) Mevalonate can rescue reduction in glucose-induced insulin secretion caused by 
rosuvastatin. 

Discussion 

Cholesterol is an important component of the animal cell structure and it is 
required for the cell to function normally (Berg, 2002). Hence it was interesting to 
study if rosuvastatin affects the function of beta cells and whether that effect is 
through the cholesterol lowering ability of rosuvastatin.  

We found that rosuvastatin dose dependently affects insulin secretion. However, 
the reduced glucose-stimulated insulin secretion in INS-1 832/13 cells is in 
contrast with what was reported in MIN-6 cells using other statins (Ishikawa et al., 
2006). Interestingly, in this study (Ishikawa et al., 2006) they observed no 
significant effect on glucose-stimulated insulin secretion but importantly they also 
observed disturbed basal insulin secretion after treatment with different statins as 
found here in our study. These diverse results could be due to use of different cell 
line or it could be due to a difference between the statins with respect to how they 
affect beta cell function. However, the disturbed basal insulin secretion seems to 
be the more consistent effect of statins which is important to notice because 
increased basal insulin secretion is a vital characteristics of T2D (Del Prato et al., 
2002).  

Interestingly, 200 nM rosuvastatin reduces glucose-stimulated insulin secretion 
without affecting exocytosis and 20 µM rosuvastatin reduces both glucose-
stimulated insulin secretion and exocytosis. This indicates that processes both 
upstreams and downstreams of the KATP channels are dose affected by rosuvastatin 
depending on the dose. Diazoxide was not able to rescue the increased basal 
insulin secretion in rosuvastatin treated cells. It shows that increased basal insulin 
secretion is not due to premature closure of the KATP channels.  

Mevalonate rescued glucose-stimulated insulin secretion and there was a tendency 
to a reduced basal insulin secretion as well. Squalene could neither rescue glucose-
stimulated insulin secretion nor reduce basal insulin secretion. This is an important 
finding which shows that the effect of rosuvastatin in INS-1 832/13 cells is not 
related to the cholesterol lowering effects of the rosuvastatin, but rather side 
effects of its effective blockage of the mevalonate pathway. 
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Figure 11. Summary of important results in paper IV.  

Paper V 

Dual effect of rosuvastatin on glucose homeostasis through improved insulin 
sensitivity and reduced insulin secretion 

After studying the effect of rosuvastatin on insulin secretion and exocytosis in 
INS-1 832/13 cells, I wanted to investigate its role in vivo on glucose homeostasis 
in mice. We used C57BL/6 mice fed on HFD and compared them with mice fed 
on ND. The total study period was 12 weeks and these mice were treated with 
rosuvastatin (~0.2 mg/mice/day) for last 8 weeks. 

Here we studied a) effects of rosuvastatin on glucose homeostasis, insulin 
resistance and beta cell function b) differences in the effect of rosuvastatin in mice 
on HFD and ND.  

The HFD fed mouse is a widely used model to study insulin resistance and factors 
associated with the metabolic syndrome (Winzell and Ahren, 2004). The HFD fed 
mice are obese, have elevated blood cholesterol, slightly increased blood glucose 
and much increased blood insulin levels (Winzell and Ahren, 2004). 

Rosuvastatin treatment resulted in improved insulin sensitivity in ND mice 

Decreased blood glucose levels were observed during the first 30 min in an oral 
glucose tolerance test (OGTT) performed in ND mice after 4 weeks of 
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rosuvastatin treatment. This was reflected by an increased insulin sensitivity in 
these mice. Moreover, in vitro basal glucose uptake was also found to be increased 
in isolated adipocytes from the same mice. 

Rosuvastatin reduce in vitro insulin secretion, insulin content and affects Ca2+ 
oscillation in the islets of ND mice 

The in vitro insulin secretion from isolated islets, performed by using different 
glucose concentrations in addition with 50 mM K+ and GLP-1, was significantly 
reduced in ND mice. Insulin content was also reduced (~25%) and there was no 
significant difference in the insulin secretion if normalized to insulin content. 
Intracellular Ca2+ oscillations were measured and interestingly several parameters 
in the Ca2+ response were changed. The changed parameters include reduced 
uptake in to ER (Ad) and a significant delay in first phase Ca2+ response to glucose 
(D0). 

Rosuvastatin reduce insulin secretion in vivo but improves glucose uptake and 
insulin secretion in vitro in HFD mice 

The acute insulin response in OGTT performed on HFD mice after 8 weeks of 
rosuvastatin treatment was significantly lower than in the controls. Insulin 
sensitivity in vivo was not significantly different between the groups but there was 
a tendency towards improved insulin sensitivity in the rosuvastatin group. Indeed, 
in vitro basal and insulin stimulated glucose uptake was increased in isolated 
adipocytes in the HFD rosuvastatin group. Interestingly, insulin secretion 
normalized to insulin content in vitro was significantly improved in the HFD mice 
that were on rosuvastatin compared to the control group.  

Expression of CHOP is reduce by rosuvastatin in islets from ND mice  

In order to understand impaired Ca2+ response in rosuvastatin mice, we 
investigated the expression of the ER-related genes SERCA2, SERCA3, Sel1l and 
CHOP together with Calb1. Interestingly, all 5 genes were significantly reduced in 
islets of HFD mice compare to ND mice, suggesting a tremendous effect of HFD 
on expression levels. Expression of CHOP was reduced in ND rosuvastatin group 
compare to ND but no reduction was found in the HFD rosuvastatin group. 

In summary 

a) In ND mice rosuvastatin treatment resulted in improved in vivo insulin 
sensitivity. In vitro it reduces insulin secretion, insulin content and affects Ca2+ 
oscillation but improved glucose uptake in isolated adipocytes.  

b) In HFD mice rosuvastatin treatment resulted in reduced insulin secretion in vivo 
but improved insulin secretion in vitro and improved glucose uptake in isolated 
adipocytes. 



54 

c) In ND mice islets expression of ER-stress marker CHOP was reduced by 
rosuvastatin treatment. 

Discussion 

In our in vivo experiments rosuvastatin clearly improves insulin sensitivity in the 
mice on ND and we could observe a tendency of improved insulin sensitivity also 
in the HFD mice. These findings are supported by the in vitro measurements 
showing increased basal and insulin-dependent glucose uptake in these mice after 
rosuvastatin treatment. Hence, our study is in agreement with work in support of 
improved insulin sensitivity after rosuvastatin treatment (Guclu et al., 2004, Okada 
et al., 2005, Paolisso et al., 1991, Sonmez et al., 2003). In adipose and muscle 
cells, glucose uptake is facilitated through insulin-regulated glucose-transporter 
GLUT4 (Stenkula et al., 2010). It would be interesting to examine whether 
rosuvastatin improves glucose uptake by modulating the activity of GLUT4.  

Our data also suggest that rosuvastatin cause impaired beta-cell function and 
reduced insulin secretion, which is in agreement with the recent METSIM study 
(Cederberg et al., 2015) and study IV of this thesis. The observed impaired insulin 
secretion could be a result of reduced insulin content and/or disturbed Ca2+ 
signaling after rosuvastatin treatment. Study IV in this thesis suggests effects on 
the Ca2+ currents, and this study shows changes in Ca2+ handling and reduced 
insulin content. In addition, the observation that rosuvastatin reduced expression 
of the ER-stress marker CHOP in ND mice, suggest a protective effect against 
ER-stress. Altogether, this might lead to long-term effects on the beta cell Ca2+-
signaling and insulin secretion. 

This study shows that rosuvastatin has an overall positive effect on glucose 
homeostasis, although observed deleterious effects on the beta cell function in the 
long run might lead to hyperglycemia. 
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Concluding Remarks 

In this thesis I have investigated factors that can affect beta cell function, 
especially exocytosis and insulin secretion. The exocytotic process is crucial in the 
beta cells and dysfunctional exocytosis plays an important role in the development 
of diabetes. Here, I have demonstrated (Fig. 12) that Ca2+ influx and Ca2+ channel 
inactivation plays a central role in observed exocytotic profile in INS-1 832/13 
cells. Dysregulated expression of miRNAs affects voltage-gated Ca2+ and Na+ 
channel properties, they also affects exocytosis and insulin secretion by regulating 
the expression of key exocytotic proteins. Rosuvastatin impairs Ca2+ oscillation 
and high dose rosuvastatin affects Ca2+ influx, exocytosis and insulin secretion.  

In this thesis the following specific conclusions were reached 

I. Pool depletion plays a minor role in the observed exocytotic profile of 
INS-1 832/13 cells instead it is mostly determined by the kinetics of Ca2+ 
current inactivation. The INS-1 832/13 cells possess a small IRP and most 
exocytosis occurs from a large pool of granules.  

II. Overexpression of miR-375 leads to reduced expression of Na+ channel 
subunits as well as reduced, Ca2+ influx and exocytosis in INS-1 832/13 
cells. Down-regulation of miR-375 affects Na+ channel inactivation 
properties in INS-1 832/13 cells and 375KO mice beta cells. 

III. Overexpression of miR-335 leads to impaired exocytosis and thereby 
reduced insulin secretion through decreased expression of STXBP1, 
SNAP25 and SYT11. Down-regulation of SYT11 leads to disturbed basal 
insulin secretion and impaired exocytosis. 

IV. In INS-1 832/13 cells rosuvastatin dose dependently affects Ca2+ influx, 
exocytosis, basal and glucose-induced insulin secretion. This effect is not 
related to the cholesterol lowering ability of the rosuvastatin, but rather 
side effects of its blockage of the mevalonate pathway. 

V. Rosuvastatin has an overall positive effect on glucose homeostasis in 
mice. Rosuvastatin treatment resulted in improved in vivo insulin 
sensitivity and improved in vitro glucose uptake in isolated adipocytes. In 
ND mice rosuvastatin treatment in vitro reduces insulin secretion, insulin 
content and affects Ca2+ oscillation. In HFD mice rosuvastatin treatment in 
vivo resulted in reduced insulin secretion. 
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Figure 12. Summary of important results in this thesis showing effects on beta cell function.  
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Future perspectives 

Impaired beta cell function plays an important role in the pathophysiology of T2D. 
Dysfunctional exocytosis is one of the major factors affecting beta cell function. 
Understanding the detailed cellular mechanism of exocytosis and factors 
regulating the exocytotic process could prove important  in finding innovative 
targets for therapeutic intervention in T2D.  

Exocytosis in beta cells is dependent on the availability of insulin granules and 
Ca2+ influx. The biphasic exocytotic pattern seen in beta cells is primarily 
attributed to granule pool depletion. However, reduction in Ca2+ influx due to 
inactivation of Ca2+-channels can also be responsible for observed biphasic 
exocytotic pattern. We investigated pool depletion in beta cells by using pulse-
length protocol and mixed-effect modelling. We found in study I that the 
exocytotic pattern is mostly determined by the kinetics of Ca2+ current inactivation 
rather than pool depletion in INS-1 832/13 cells.  Mixed-effect modelling used in 
this study takes care of cellular heterogeneity, which needs to be considered more 
in future analysis of these of type of clustered data to gain more detailed 
information. Granular pool regulation is central in beta cell exocytosis and defects 
in this process can very well impair exocytosis and thereby insulin secretion. This 
study would set a good example in order to investigate pool depletion in rodent 
and human beta cells in the future.  

Beta cell function can be influenced by miRNAs and they have a huge therapeutic 
potential due to their intrinsic ability to function as master regulators. We 
investigated miRNAs in this thesis; miR-375 and miR-335. MiR-375 was found to 
regulate Na+ channels inactivation properties. Inactivation properties are important 
as they can influence the availability of the channels for generation of action 
potentials.  Therefore modulating the levels of miR-375 in human beta cells would 
lead to better understanding of the importance of regulation of enigmatic Na+ 

channels. This would also further elucidate the role of miRNAs in generation of 
electrical activity in beta cells. Mir-335 was found to affect the exocytotic process 
and thereby insulin secretion by regulating the levels of exocytotic proteins 
(STXBP1, SNAP25 and SYT11). This is an interesting finding making it evident 
that a dysregulated miRNA can influence the beta cell function through 
exocytosis. Another interesting finding is that of SYT11, as its downregulation 
increase the basal insulin secretion  and decrease rapid exocytosis from beta cells; 
both of these phenomena are known to occure in T2D. Therefore, these findings 
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may be of great significance in T2D pathophysiology and worth investigating in 
human beta cells. If these roles of miR-335 and SYT11 are proven in human beta 
cells then they would stand a chance to emerge as an efficient biomarker or 
therapeutic target in T2D.  

Rosuvastatin, a drug used to reduce blood cholesterol and thereby CVD, has been 
suggested to be diabetogenic. Therefore, we investigated the role of rosuvastatin in 
insulin secretion and glucose homeostasis. The adverse effects of rosuvastatin 
were found to be dose dependent and not related to its cholesterol lowering ability. 
Although rosuvastatin has an overall positive effect on glucose homeostasis it 
impairs beta cell function. These findings emphasize the need of investigating the 
exact cellular mechanism by which rosuvastatin influences beta cell function. 
Understanding these mechansims would allow us to counteract adverse effects of 
rosuvastatin and thereby render the clearly lifesaving statins even safer to use. 

Our studies contribute to improved understanding of the cellular mechanisms of 
the beta cells, especially regulation of exocytosis and insulin secretion. I believe 
that, the above mentioned contribution of this thesis work is one small step 
forward towards solving the puzzle of diabetes. 
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Populärvetenskaplig sammanfattning 

När vi äter ökar nivån av blodsocker (blodglukos) i blodet. Glukos forslas i blodet 
till målvävnader, såsom fett och skelettmuskel, där det används som energi. Men 
för att glukos ska kunna tas upp av målvävnaden krävs insulin.   Insulin är ett 
hormon som produceras av beta-celler i bukspottkörtelns Langerhanska öar, vars 
sekretion ut i blodet regleras av blodglukos.  Då denna process misslyckas förmår 
inte kroppen att sänka blodglukos tillräckligt. Detta leder till utveckling av typ 2 
diabetes, som är en kombination av beta-cellernas oförmåga att frisätta tillräcklig 
mängd insulin och målvävnadens oförmåga att ta upp glukos.  
I denna avhandling har jag undersökt mekanismer som påverkar insulinsekretion 
och då framförallt en process som benämns exocytos. I beta-cellen fylls små runda 
blåsor, sk granula med insulin, då insulinet väl har producerats.  Exocytos är den 
process varmed dessa granula smälter samman med det omgivande membranet på 
beta-cellen för att insulinet ska komma ut i blodet.  Ökad koncentration av glukos 
är en grundläggande faktor för att exocytos ska ske och insulin utsöndras.  Jag har 
specifikt fokuserat på tre faktorer som kan påverka exocytos-processen i beta-
cellen och därmed också insulinsekretionen och nivån av glukos i blodet. Dessa är 
calcium, microRNA och rosuvastatin. 
Kalcium är den molekyl som initierar fusionen av granula med det omgivande 
membranet. Jag har i min avhandling på detaljerad cellulär fysiologisk nivå med 
hjälp av en matematisk modell studerat detaljer i förhållandet mellan kalcium och 
fusionen av granula, som har medfört ökad förståelse för den här processen. En 
viktig del i denna studie är att jag tagit tillvara att enskilda celler är heterogena, 
något som inte tidigare gjorts i liknande studier. 
MicroRNA är små molekyler som reglerar mängden av protein i cellen. Då en cell 
har mycket av ett microRNA så minskar mängden av protein som detta microRNA 
specifikt reglerar. Dessa molekyler har föreslagits kunna fungerar som 
biomarkörer då halten av specifika microRNA förändras vid uppkomst av 
sjukdom. MicroRNA är ofta vävnads-specifika och därför har reglering av 
mängden microRNA också förslagits kunna användas som läkemedel. Jag har 
studerat två microRNA, miR-375 och miR-335, och hur de reglerar mängden 
specifika protein, som påverkar sekretionen av insulin och exocytos-processen. I 
min avhandling fann jag att miR-375 reglerar beteendet hos en spänningskänslig 
jonkanal som forslar natrium in i cellen. Vidare fann jag att överuttryck av miR-
335 påverkar mängden av tre olika protein som medverkar i exocytos-processen. 
Det sistnämnda är extra intressant eftersom det tidigare har visats att mängden 
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miR-335 är förhöjd i diabetiska djurmodeller och mängden av flera proteiner som 
medverkar vid exocytos-processen är reducerad i Langerhanska öar vid typ 2 
diabetes.  
Rosuvastatin är en statin som används för behandling av kardiovaskulära 
sjukdomar för att sänka kolesterolnivån. På senare tid har det via flera studier 
framkommit att medicinering med statiner medför en ökad risk att få diabetes. För 
att undersöka detta närmare har jag i min avhandling undersökt hur rosuvastatin 
påverkar exocytos-processen, sekretion av insulin och blodglukosnivåer. Jag fann 
att rosuvastatin minskade insulinsekretionen och påverkade nivåerna av kalcium 
inne i cellen. Vidare hade rosuvastatin en positiv effekt på upptaget av glukos i 
målvävnad, och åtminstone under den period som vår studie pågick förändrades 
inte blodglukosnivåerna. Den minskade insulinsekretionen kan dock på längre sikt 
komma att öka glukoshalten i blodet. Detta får framtida studier visa. 
Sammanfattningsvis visar jag i min avhandling vikten av en fungerade exocytos-
process för fungerande sekretion av insulin. Genom denna kunskap har ytterligare 
en pusselbit lagts till det pussel som behöver läggas för att vi ska få en ökad 
förståelse av hur insulin utsöndras och hur defekter i denna process leder till typ 2 
diabetes. Nödvändigt för en framtida förbättrad behandling av sjukdomen.  
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लोकिप्रय िवज्ञान गोषवारा 

आपण जे  काही खातो ×या मुळे रक्ता तील साखरे (ग्लुकोस) चे प्रमाण वाढते. शरीराला 
उपयुक्त अशा या साखरेचे पिरवहन शरीराÍया िविभÛन भागात केले जाते; उदाहरणाथर्: 
चरबी, िविवध èनायू इ×यादी., िजथे तीचा वापर उजार् èत्रोत àहणून केला  जातो. परंतु ही 
साखर शरीरा मÚये शोषून घेÖया साठी इÛसुिलन नावाÍया संपे्ररकाची गरज भासते. 
इÛसुिलन नावाचे हे  संपे्ररक èवादिुपडंा ितल बीटा पेशी ɮवारे तयार केले जाते. इÛसुिलन 
चा रक्तातील प्रादभुार्व हा शरीरातील साखरे Íया प्रमाणा  वर अवलंबून असतो. मानवी 
शरीरातील िह एक सवर् सामाÛय प्रिक्रया आहे, या प्रिक्रये मÚये काही िबघाड झाãयास, 
शरीर रक्तातील साखरेचे प्रमाण िनयंित्रत कǾ शकत नाही. पुढे जाऊन याचे ǽपांतर 
मधुमेह-प्रकार-२ नावाÍया आजारात होते. या आजारा मÚये èवादिुपडंा तील बीटा पेशी 
इÛसुिलन तयार करÖयास असमथर् असतातच ×याच बरोबर शरीरातील èनायू सुद्धा 
इÛसुिलन शोषून घेÖयास असमथर् होऊन जातात. 

प्रèतुत शोधिनबंधा मÚये; इÛसुिलन बनिवÖयाÍया सवर् सामाÛय प्रिक्रयेवर बाधा आणणारे 
घटक आिण िवशषेत: एक्सोसायटोसीस (शरीरातील एक प्रिक्रया: Ïया ɮवारे पेशी मधील 
घटक द्रåय काही कारणाèतव पेशी बाहेर काढले जातात); या िवषया वर मी संशोधन केले. 
बीटा पेशी मÚये तयार झालेले इÛसुिलन, छोɪया फुग्या सारख्या आकारामÚये साठवले 
जाते; ×याला इÛसुिलन चे गोळे असेही àहणतात. ×या नÛतर एक्सोसायटोसीस Íया पे्रक्रीये 
ɮवारे इÛसुिलन चे गोळे बीटा पेशी Íया बाéय आवरणा तून पेशी Íया बाहेर रक्ता मÚये 
सोडले जातात. शरीरा मÚये अवाèतव वाढलेली साखर हे एक्सोसायटोसीस प्रिक्रयेला 
चालना देणार आिण इÛसुिलन Íया िनिमर्तीला भाग पाडणार मूळ कारण आहे. माÐया 
संशोधना मÚये मी प्रामुख्याने तीन घटकांचा अßयास केला ते àहणजे; कॅिãशयम, लघु-
आर.एन.ए., रोसुवाèतातीन. कारण की या तीनही घटकांमÚये; एक्सोसायटोसीस प्रिक्रया- 
×यावर अवलंबून असणारी इÛसुिलन िनिमर्ती प्रिक्रया आिण रक्तातील साखरे च प्रमाण; 
या मह×वाÍया गोçटी वर पिरणाम करÖयाची क्षमता आहे. 

कॅिãशयम या पदाथार् मुळे वेग-वेगळे गोळे सभोवतालÍया आवरणास चीकटÛयास मदत 
होते. मी गिणती पद्धतीने अßयास कǾन कॅिãशयम चे प्रमाण आिण इÛसुिलन चे गोळे 
यांÍया तील परèपरसंबंध िवèततृ पणे तपासला. िवशषे àहणजे या अßयासा मÚये 
"प्र×येक पेशी ही िविभÛन प्रकार ची असु शकते" िह गोçट िवचारात घेÖयात आली. 
आमÍया मािहती प्रमाणे अशाप्रकारचा प्रयोग आàहीच सवर् प्रथम करत आहोत. 

लघु आर.एन.ए.: हे लहान असे पदाथर् पेशी मधील एखाɮया ठरािवक प्रिथना चे प्रमाण 
कमी-जाèत कǾ शकतात. जर एखाɮया पेशी मÚये एखाɮया ठरािवक प्रिथन चे जाèत लघ ु
आर.एन.ए. असतील तर ते ×या ठरािवक प्रिथना ची संख्या कमी करतात. ×याच मुळे 
िविशçट आजाराशी संलग्न असलेãया लघु आर.एन.ए चा वापर ×या िविशçट आजाराच े
िनदान करÖया साठी होऊ शकतो. लघु आर.एन.ए. सहसा िविशçट èनायू साठीच कायर्रत 
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असतात, àहणूनच लघु आर.एन.ए. Íया प्रमाणा वर िनयंत्रण िमळवून आपण ×याचा उपचार 
करÖया साठी वापर कǾ शकतो. मी; मीर-३७५ व मीर-३३५ हे दोन लघु आर.एन.ए. तपासले, 
हे दोघे एखाɮया प्रिथना Íया िनिमर्ती मÚये कसा åयवहार करतात? ÏयाÍया मुळे इÛसुिलन 
Íया एक्सोसायटोसीस प्रिक्रये वर पिरणाम होत असावा. या संशोधना मÚये मला असे 
आढळून आले िक मीर-३७५ हा िवधुतदाबाला संवेदनशील असणार्या सोडीअम आयन चानेल 
चे िनयमन करतो. अिधक संशोधना मÚये मला असेही आढळून आले िक मीर-३३५ हा 
एक्सोसायटोसीस प्रिक्रये शी संलग्न असलेãया तीन प्रिथनांचे िनयमन करतो. आधी Íया 
प्रयोगा मÚये शाèत्रɮनानांनी दाखवले आहे िक प्रयोग शाळेतील मधुमेहाÍया मोडले प्राÖयान 
मÚये मीर-३३५ चे प्रमाण हे वाढलेलच असते. हा िनकाल माÐया संशोधनाला पूरकच àहणता 
येईल. 

रोसुवाèतातीन : हे एक ǿदयिवकार Íया उपचारासाठी वापरÖयात येणार औषध आहे. 
बाकीÍया शाèत्राɮनांनी आधी केलेãया अßयासात आढळून आलय िक या औषधा Íया 
वापरामुळे मधुमेह-प्रकार-२ होऊ शकतो. माÐया अßयासात, रोसुवाèतातीन  कशा प्रकारे 
एक्सोसायटोसीस प्रिक्रया- ×यावर अवलंबून असणारी इÛसुिलन िनिमर्ती प्रिक्रया आिण 
रक्तातील साखरेच प्रमाण इ×यादी वर कशा प्रकारे पिरणाम कारक आहे हे पाहÖयात आले. 
रोसुवाèतातीन  मुळे पेशी मधील इÛसुिलन िनिमर्ती कमी झाली आिण कॅिãशयम चे प्रमाण 
सुद्धा बदलले. ×या िशवाय रोसुवाèतातीन  मुळे िविशçट èनायू मधला साखरेच प्रमाण िह 
वाढल आिण िटकवून राहील. िनçकषर्: माÐया अßयासातून मी; एक्सोसायटोसीस चे 
इÛसुिलन िनिमर्ती मÚये असणारे मह×व दाखवून िदले. िवèतािरतèवǾपामÚये केलेãया या 
अßयासातून इÛसुिलन िनिमर्ती प्रिक्रया, ×या मÚये येणायार् अडचणी मुळे मधुमेह-प्रकार-२ 
होÖयाची शक्यता इ×यादी गोçटी लक्षात आãया. हा अßयास भिवçयामÚये मधुमेहा विरल 
उपचार पद्धती िवकिसत करÖयास िनिæचतच  उपयुक्त ठरेल. 
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