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JOINT DOA AND MULTI-PITCH ESTIMATION USING BLOCK SPARSITY

Ted Kronvall, Stefan Ingi Adalbjörnsson, and Andreas Jakobsson

Centre for Mathematical Sciences, Lund University, Sweden.
email: {ted, sia, aj}@maths.lth.se

ABSTRACT
In this paper, we propose a novel method to estimate the
fundamental frequencies and directions-of-arrival (DOA) of
multi-pitch signals impinging on a sensor array. Formulating
the estimation as a group sparse convex optimization prob-
lem, we use the alternating direction of multipliers method
(ADMM) to estimate both temporal and spatial correlation of
the array signal. By first jointly estimating both fundamen-
tal frequencies and time-of-arrivals (TOAs) for each sensor
and sound source, we then form a non-linear least squares
estimate to obtain the DOAs. Numerical simulations indi-
cate the preferable performance of the proposed estimator as
compared to current state-of-the-art methods.

Index Terms— multi-pitch estimation, group sparsity,
convex optimization, ADMM, direction-of-arrival, time-of-
arrival.

1. INTRODUCTION

Fundamental frequency estimation is a problem occurring in
a wide range of applications, maybe most notably so in var-
ious forms of speech and audio processing (see e.g. [1] and
the references therein). Much of the work within the area has
focused on reliable estimation of signals containing only a
single fundamental frequency, or pitch, such as [2], although
there has, during recent years, also been efforts on estimat-
ing the fundamental frequencies of signals containing mul-
tiple pitches, see e.g., [3–5]. Notable contributions on ex-
ploiting or extracting spatial information of sound sources
have also been developed, wherein an array of receiver sen-
sors are used to separate the sources (see, e.g., [6–8]). How-
ever, typically existing methods for joint pitch and directions-
of-arrival (DOA) estimation assumes strong a priori knowl-
edge of the sound signals, such as knowledge of the num-
ber of sources, and the number of harmonics present in each
pitch signal, and are also often restricted to only allow for
single pitch sound sources. Model order information may
be found using, for example, various forms of information
criteria [9, 10], or by jointly estimating the pitch and model
order using an optimal filtering approach reminiscent to the
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one proposed in [11]. In this work, we build on the recent
block sparse multi-pitch estimator presented in [5], extending
it to allow for multiple sensors and thereby allow for the es-
timation of both the spatial and temporal correlations. Thus,
we reformulate the estimation problem using a sparse signal
reconstruction framework, reminiscent to the one presented
in [12], extending the signal model into a large and finely
spaced dictionary by grouping together candidate pitches and
their harmonics in blocks. By imposing block sparseness on
the solution, i.e., by forcing most of the dictionary pitches
to have zero magnitude, one may obtain a solution with as
many pitches with non-zero magnitude as there are pitches in
the received signal. We also show that the problem belongs
to the class of convex minimization problems, and propose
an efficient way to solve it using an alternating direction of
multipliers method (ADMM) optimization procedure. Using
the proposed method, one obtains a joint DOA and pitch es-
timate, freely allowing for multi-pitch sound sources without
imposing any assumptions on the number of sources, pitches,
or the number of harmonics for each pitch. Numerical sim-
ulations illustrate the preferable performance of the proposed
algorithm as compared to the non-linear least squares (NLS),
and subspace (Sub) approaches, presented in [6].

2. THE PITCH-DOA SIGNAL MODEL

Consider a number of acoustic signals impinging on an array
of sensors, such that y(t) =

[
y0(t) . . . yM−1(t)

]T , for
t = 1, . . . , N , where (·)T denotes the transpose, and ym(t)
the response of sensor m at time t. Assuming that the sound
sources consist of K complex-valued harmonic pitch signals
corrupted by interference and noise, the m:th sensor response
may be well modeled as (see also [6])

ym(t) =
K∑

k=1

Lk∑

ℓ=1

|ak,ℓ,m|ej(ωkℓ(t+τk,m)+φk,ℓ) + em(t) (1)

where ak,l,m is the complex-valued amplitude of the ℓ:th har-
monic of the kth pitch as measured at sensor m, whereas Lk,
ωk, and φk,ℓ are the number of harmonics, the pitch, and the
phase of the ℓ:th harmonic, for the kth signal source. It should
be noted that the different pitch signals may originate from the
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same direction, thus forming a multi-pitch signal. As an ex-
ample, this could occur if the sound source is a musical chord.
Furthermore, let em(t) denote the noise term at the m:th sen-
sor, and let τk,m represent the translated (with respect to some
reference point) time-of-arrival (TOA) at sensor m for sound
source k. In the case of a uniform linear array (ULA), the
TOA is related to the DOA as

τk,m = (m− 1)d sin(θk)c
−1 (2)

with d, c, and θ denoting the uniform distance between sen-
sors, the wave propagation velocity, and the DOA, respec-
tively [9]. Collecting the snapshots of the array signal, y(t) ∈
CM , we introduce

Y =
[
y(1) . . . y(N)

]T (3)

allowing (1) to be expressed in an extended form as

Y =
P∑

p=1

WpAp +E = WA+E (4)

where E denotes the combined noise term constructed in the
same manner as Y, and

W =
[
W1 . . . WP

]
(5)

Wp =
[
wp . . . w

Qp
p

]
(6)

wp =
[
ejωp . . . ejωpN

]T (7)

A =
[
AT

1 . . . AT
P

]T (8)

Ap =
[
ap,1 . . . ap,Qp

]T (9)

ap,q =
[
ap,q,1 . . . ap,q,M

]T (10)

Here, the resulting dictionary matrix, W, is formed as a
column-wise stack of a large number of Fourier matrices,
Wp for p = 1, . . . , P , each containing the Fourier vectors,
wp, for a candidate pitch ωp and its (nominal) Qp harmonics
q = 1, . . . , Qk. The dictionary matrix is thus formed such that
all the candidate pitches and harmonics that coincided with
the spectral components in (1) have a non-zero amplitudes,
whereas all other candidate elements have zero amplitude. To
allow for a sparse representation, the dictionary is expanded
to include all feasible candidate elements, with the candi-
date pitches being assumed to be chosen to be so numerous
and finely spaced that K of them may coincide with the K
pitches in the signal. For these pitches, the amplitude matrix
A will thus have non-zero blocks Ap, and every such block
will have non-zero array amplitude vectors ap,q ∈ C1×M , for
q = 1, . . . , Qp. All other blocks of A are thus zero, making
the amplitude matrix block-sparse. Note that the considered
number of harmonics, Qp, for each pitch, ωp, needs to be
chosen such that Qp ≥ Lp, ∀p, although being limited above
by the Nyquist criterion, i.e., ωpQp < πfs, with fs denoting

Algorithm 1 The ADMM algorithm
1: Initiate z = z0, u = u0, and k = 0
2: repeat
3: zk+1 = argmin

z
f(z) + µ

2 ||z− uk − dk||22
4: uk+1 = argmin

u
g(u) + µ

2 ||zk+1 − u− dk||22
5: dk+1 = dk − (zk+1 − uk+1)
6: k ← k + 1
7: until convergence

the sampling frequency. Using (4), the non-linear model in
(1) is thus reformulated into a sparse structured linear system
of sinusoids with respect to the complex-valued amplitudes.
As the amplitudes ap,q,m estimate the product of the signal
magnitude, the initial phase, and the TOA, one may thus, by
imposing a sparse assumption on A, form a joint estimation
of both the pitch signal and the TOA.

3. MULTI-PITCH ESTIMATION USING ADMM

We proceed to express the estimation of the pitches and the
TOAs using a group sparse minimization. Generalizing the
sparse multi-pitch scheme presented in [5] to multiple sen-
sors, the minimization with respect to A is formed as

minimize
A

{
1

2
∥Y −WA∥22 + λγ

P∑

p=1

Qp∑

q=1

∥ap,q∥2

+λ(1− γ)
P∑

p=1

∥Ap∥F

}
(11)

where two different kinds of group sparsities are imposed.
Firstly, it should be noted that there is no particular reason
for the sensor amplitude vector ak,l to be sparse, i.e., if one
sensor receives a certain frequency component, the remain-
ing sensors will also receives it. However, the set of 2-norms
for these vectors, which is in the second entry of the min-
imization, should be sparse, and ideally only have as many
non-zero elements as there are sinusoids in the signal, i.e.,∑K

k=1 Lk. The third entry makes the solution block sparse
over the candidate pitches, penalizing the number of pitches
with non-zero magnitude in the signal, ideally making them
as many as there are pitches in the signal, i.e., K. The user pa-
rameters λ and γ weights the fit of the solution to its sparsity
and the priority between the vector and the matrix sparsity, re-
spectively. In the case of different noise variance at each sen-
sor in the array, the 2-norm in the first entry of the minimiza-
tion criterion may be replaced with a weighted 2-norm, that
is ∥·∥2R̂, where R̂ ∈ RM×M denotes an estimate of the spa-
tial noise covariance matrix. The minimization in (11) may
be solved via one of the freely available interior point based
solvers, such as SeDuMi [13] and SDPT3 [14], although such
solvers will typically scale poorly both with increasing data
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Fig. 1. The PWL and RMSE for a single-pitch signal as com-
pared with the optimal performance of an estimator reaching
the CRB.

length, the use of a finer grid for the fundamental frequency,
and the number of sensors. As a result, such a solution may
in many cases be too computationally intensive to be practi-
cally useful. In order to form a more efficient implementa-
tion, the minimization in (11) is therefore reformulated using
a novel ADMM formulation. For completeness and to intro-
duce our notation, we here include an outline of the main steps
involved: consider the convex optimization problem

min
z

f(z) + g(z) (12)

where z ∈ Rp is the optimization variable, with f(·) and g(·)
being convex functions. If one introduces an auxiliary vari-
able, u, then (12) may be equivalently be expressed as

min
z, u

f(z) + g(u) subj. to z − u = 0 (13)

since at any feasible point z = u. Under the assumption that
there is no duality gap, which is true for (11), one may solve
the optimization problem via the dual function defined as the
infimum of the augmented Lagrangian with respect to x and z
[15], i.e.,

Lµ(z,u,d) = f(z) + g(u) + dT (z− u) +
µ

2
||z− u||22

The ADMM does this by iteratively maximizing the dual
function such that at step k + 1, one minimizes the La-
grangian for the one of the variables while holding the other
fixed at its most recent value, i.e.,

zk+1 = argmin
z

Lµ(z,uk,dk) (14)

uk+1 = argmin
u

Lµ(zk+1,uk,dk) (15)
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Fig. 2. The PWL and RMSE for a multi-pitch signal with two
pitches, as compared to the corresponding CRB.

and finally updating the dual variable by taking a gradient as-
cent step to maximize the dual function, resulting in

d̃k+1 = d̃k − µ(zk+1 − d̃k+1) (16)

where µ is the dual variable step size (see [15] for further
details). The general ADMM steps are outlined in Algorithm
1, using the scaled version of the dual variable dk = d̃/µ,
which is more convenient for implementation. The ADMM
is as most useful when the optimizations in steps 3 and 4 of
Algorithm 1 can be carried out more efficient than the orig-
inal problem. For (11), note that the matrix variable is only
of notational convenience and that the criterion may, using
the vec operation, be rewritten equivalently as the norm of an
affine function of the vector variable plus a sum of ℓ2 norms
of different partitions of the vector variable. Thus, convex-
ity of the criterion follows by the convexity of norms and the
composition rules for convex functions [16]. Defining

f(Z) =
1

2
∥Y −WZ∥22 (17)

g(U) = λγ
P∑

p=1

Qp∑

q=1

∥up,q∥2 + λ(1− γ)
P∑

p=1

∥Up∥F (18)

with Z, U, and D being defined similarly to A in (8)-(10),
leads to a quadratic problem in step 3 in Algorithm 1, with
closed form solution given by

Zk+1 =
(
µI +WHW

)−1 (
µ (Uk −Dk) +WHY

)

whereas in step 4, by solving the sub-differential equa-
tions, one obtains Uk+1 = S

(
S′ (Zk −Dk,λγ) ,λ(1− γ)

)
,

where S(X, ξ) = X (1− ξ/||X||F )+ for a matrix X and
postive scalar ξ, with (·)+ denoting the identity function for
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Fig. 3. Polar plot for a multi-pitch signal. The magnitude
scale indicates the power of the sound source, formed as the
sum of all magnitudes in the pitch. Every dot indicates the
direction and power of a candidate pitch in the dictionary.

positive finite values and zero otherwise, and S′ is defined
similarly but operating on each row of X separately. The
resulting algorithm yields a computationally efficient algo-
rithm for finding the A minimizing (11). As the estimate
of A will inherently contain estimates of the TOAs, this en-
ables a whole range of post-processing steps to, for instance,
estimate position, track, and calibrate the sources and/or sen-
sors. Here, we limit our attention to estimating the DOAs in
the case of a ULA, and to that end, consider Â as the solu-
tion obtained from minimizing (11). Each non-zero Âp thus
corresponds to the element-wise product of the amplitudes,
phases, and TOA for the p:th pitch, ωp, and its harmonics in
the signal model, i.e.,

âp,q,m = |ap,q,m|ej(ωpd sin(θp)c
−1q(m−1)+φq) + ϵq,m (19)

where ϵq,m is the (q,m):th element of E. Then, the QpM

amplitudes in Âp will only depend on a single DOA, θp, and
the initial phases φq , for q = 1, . . . , Qp. Introducing η =
ωpd sin(θp)c−1, one may view this as a frequency estimation
problem for irregularly sampled data, and find an estimate of
η by solving Figure 2

min
η,φ,Pp

Qp∑

q=1

M∑

m=1

∣∣∣âp,q,m − ρq,mej(ηqm+φq)
∣∣∣
2

(20)

where φ =
[
φ1, . . . ,φQp

]
, and with Pp formed reminiscent

to Ap, containing the elements {ρq,m}, for q = 1, . . . , Qp

and m = 0, . . . ,M − 1. It is worth noting that the the mini-
mization may thus be viewed as a generalization of the time-
varying amplitude modulation problem examined in [9, 17],
to the case of several realizations of the same signal, sam-
pled at irregular time points, and with a different initial phase
for each realization. Reminiscent to the solution presented
in [9, p. 186], one may thus form a closed form solution for

φ1, . . . ,φQp and Pp as

η̂ = argmax
η

Qp∑

q=1

∣∣∣∣∣

M∑

m=1

(âp,q,m)2e−j2ηqm

∣∣∣∣∣ (21)

This is a one-dimensional optimization problem easily solv-
able using a grid search on ωpd sin ([−π/2,π/2]))c−1 , from
which the DOA may then be found as θ̂p = arcsin

(
d−1ω−1

p η̂c
)
.

4. NUMERICAL RESULTS

We proceed to evaluate the performance of the presented
method using synthetic audio signals. Figure 1 shows the
percentage within limits (PWL), defined as the ratio of pitch
estimates within a limit of ±0.1 Hz from the true pitch, and
the root mean square error (RMSE) of the DOA, defined as

RMSEθ =

√√√√ 1

nK

K∑

k=1

n∑

i=1

(
θ̂k,i − θk

)2
(22)

where n is the number of Monte Carlo (MC) simulation es-
timates and K is the number of pitches in the signal, for
the resulting estimates. For comparison, we use the Cramér-
Rao lower bound (CRB), the NLS estimator, and the Sub ap-
proach1 (see [6] for further details on these methods). These
results have been obtained using = 250 MC simulations of a
single pitch signal with ω1 = 220 Hz and L1 = 7 harmonics,
impinging from θ1 = −30◦, where both the NLS and the Sub
estimators have been allowed perfect a priori knowledge of
both the number of sources and their number of harmonics,
whereas the proposed method, here termed the Array DOA
and Pitch Estimation using Block Sparsity (APEBS), is al-
lowed no such knowledge. As is clear from the figures, the
APEBS method offers a preferable performance as compared
to the Sub estimator, and only marginally worse than the NLS
estimator, in spite of the latter being allowed perfect model
orders information. Here, the number of sensors in the ar-
ray was M = 5 and 20 ms of data sampled at fs = 8820
Hz, i.e., N = 176 samples, were used. Further, we have
c = 324.3 m/s and d = c/fs ≈ 0.037 m. We proceed to
consider the case of multi-pitch signals impinging on the ar-
ray. Measuring as in the single-pitch case, we now form a
multi-pitch signal with two pitches and fundamental frequen-
cies [150, 220] Hz containing [6, 7] harmonics, coming from
θ1 = −30◦. Figure 3 shows the an estimate of the parame-
ters at SNR = 20 dB. The sparsity is clearly shown here as
most dots, i.e., candidate pitches, are zero. Figure 2 shows
the RMSE and PWL estimates, as obtained using 250 Monte
Carlo simulations, clearly showing that the APEBS estimator
is able to reach close to optimal performance also in this case.
Here, no comparison is made with the NLS and Sub estima-
tors of [6] as these are restricted to the single-pitch case.

1The authors would like to express their gratitude to the authors of [6,18]
for sharing their Matlab implementations with us.
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