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Abstract—In application areas that process stream-like
data such as multimedia, networking and DSP, the pipelined
concurrent processing is frequently represented as a dataflow
network of communicating computational kernels connected
by FIFO queues. However, while dataflow is a natural
medium for conceptualizing and modeling stream-processing
systems, its adoption as a programming methodology has
been hindered by an unappealing choice between expres-
siveness and efficient implementability—efficient implemen-
tation techniques being primarily limited to restricted sub-
classes of dataflow programs.

The paper presents a simple machine model for a very
general class of dataflow programs and shows how it can be
used as a foundation for their efficient implementation.

I. INTRODUCTION

Describing systems as collections of computational
kernels (actors) that communicate through FIFO-buffered
sequences or streams of data packets (tokens) has a long
tradition, especially in application areas characterized
by the processing of stream-like data, e.g. [1], [2], [3],
[4]. Recent years have seen a resurgence of interest in
this kind of dataflow model of computation—for instance,
MPEG and ISO adopted CAL dataflow programming
language as part of their video coding standards. [5]

Implementing dataflow programs on sequential ma-
chines involves scheduling the computation performed
within the various actors onto a single computing re-
source.! It is here that dataflow has so far offered an
unattractive trade-off: For dataflow programs whose
activities are amenable to compile-time scheduling, very
efficient software synthesis techniques are available [3],
[6] that gain much of their performance by eliminating
all scheduling decision making from the runtime, and
also by exploiting the regularities of accessing the buffers
used to communicate between actors. However, the ex-
pressiveness of statically schedulable dataflow programs
is limited to behavior that is independent of the values of
the input data and of its timing. More general dataflow
programs, such as Kahn process networks [2], or even
those supported by the CAL language, are outside of the

In the more general case where a dataflow program is implemented
on a parallel computing substrate, scheduling still remains essential as
long as the number of computing elements is exceeded by the number
of actors in the program.

scope of these techniques. Accordingly, software synthe-
sis technology for these kinds of dataflow programs has
fallen short of being competitive with low-level hand-
written code, in spite of some significant improvements
in recent years. [7], [8], [9]

One technique for improving software synthesis for
very general dataflow programs attempts to find regions
of a dataflow program that are amenable to compile-time
scheduling by analyzing the dataflow actors comprising
the program. [10] Once such regions are found, exist-
ing algorithms for static scheduling can be applied to
each of them in order to eliminate unnecessary runtime
overhead from the synthesized code. This approach thus
leverages techniques developed for specialized dataflow
programs to improve software synthesis for the more
general case, but is predicated on the existence of stati-
cally schedulable regions in a given dataflow program,
as well as on the ability of tools to recognize them.

This paper presents a different take on this problem
that is based on a simple machine model for actors.
It turns out that one application for this model is
an approach to generating efficient sequential imple-
mentations of arbitrary dataflow networks that natu-
rally generalizes the techniques for statically schedulable
dataflow. The machine model is also a promising start-
ing point for actor analysis and optimization. Building
on this model, we expect to create software synthesis
for general dataflow programs that equals the current
state of the art for statically schedulable programs, and
which gracefully degrades for programs whose behavior
depends on the value of input data and its timing.

II. ACTORS AND ACTION SELECTION

The behaviors of the actors we are concerned with in
this paper are defined by finite collections of actions,
as for instance in the CAL actor language [11]. The
execution of an actor is a sequence of action executions
(firings). At each step in the sequence, an actor selects
one of its enabled actions (if any—otherwise it needs to
wait until at least one action becomes enabled), and then
executes it. During its execution, an action can (a) read
and consume input tokens, (b) produce output tokens,
(c) modify the internal state of its actor if it has any.
In addition to the code describing these activities, the



description of an action also contains a definition of
its enabling conditions. There are two kinds of enabling
conditions—an action may require that one of the input
queues to its actor, g, have at least a n tokens available,
which we write as (¢,n), and it may require that some
guard predicate g (on the state of the actor and the input
tokens) is true.

actor Split () A= P, N:

Al: action A: [v] = P: [v]
guard v >= 0
end

A2: action A: [v] = N: [v]
guard v < 0
end

end

Listing 1. A simple actor.

The above actor contains two actions, and their se-
lection is controlled by three conditions: the condition
that there be one input token available in the queue
connected to port A, which we shall write as (4, 1), and
the two guards g; : v > 0 and g5 : v < 0, where v in each
case is the first input token.

Conditions are occasionally related to each other. For
instance, for any input queue ¢, it is always true that
(g,n) = (¢,m) if n > m (in other words, the presence of
n tokens in ¢ implies the presence of less than n tokens
in ¢). Also, if a guard depends on the value of the nth
token of some input queue q (as is the case above), then
it cannot be tested unless (¢q,n) is true. Furthermore, if
(A, 1) is found to be true, it will remain so until the actor
fires an action, whereas if it is false, it may become true
at some later point by itself’ (due to the arrival of a
token). We call the former situation stable and the latter
volatile.

In this model, selecting the next action to fire amounts
to testing sufficiently many conditions to know either (a)
that no action can be fired or (b) identify at least one
action that can be. For instance, in the above actor, we
would start by testing the condition (A, 1). If it is found
to be false, we know no action can be fired, and that we
need to wait. If it is true, we can then proceed to test
with g; or g2. Note that we cannot start with the guards,
since both depend on (4,1).

III. ACTOR MACHINES

An actor machine is an automaton that implements
an actor description. Let that actor have the enabling
conditions C = {¢; : i € I}, and the actions A =
{aj : j € J}. The actor also has internal state, but for
the sake of brevity we will omit its formal treatment
here (cf. [12] for a complete formal description) and
focus on the action selection process only. An actor
machine has a finite number of controller states %, and
an initial controller state oo € X. It has an interpretation
function €K : ¥ — C — {X,0,1} which maps each

controller state to a function that assigns each condition a
value from the set {X,0,1}. This function represents the
knowledge the controller maintains about the conditions
¢; of the actor, 1 meaning that the condition is true, 0
that it is false, and X that its value is unknown to the
controller.

Each state 0 € ¥ is associated with a set Z(o) of in-
structions the machine can perform in that state. Possible
instructions are test(c,01,02), exec(a,o) and wait(o)
with ¢ € C, a € A and o, 01,09 € X. The test instruction
tests the specified condition, and causes the machine to
proceed to state o if it is true, and to oy otherwise.
For the machine to be consistent, therefore, it must be
the case that K(o1)(c) = 1, that K(o2)(c) = 0, and that
K(o)(c) = X for any o such that test(c,o1,02) € Z(0).
Finally, all conditions ¢’ that ¢ depends on must be true,
i.e. Ctri(o)(c) = 1. (In this case, c is called testable in ¢.)

The exec instruction executes the specified action and
the causes the actor machine to proceed to the specified
controller state. During action execution, input tokens
may be consumed, output tokens may be created, and
the actor state (which is distinct from the controller state)
may be changed.

The wait simply proceeds to the specified controller
state. The purpose of this instruction is to erase knowl-
edge about volatile conditions. Say we are in state o,
with ¢ = (A,1), K(o)(c) = 0, i.e. the condition is false
which means there is no input token available on A.
If nothing else can be done to select an action, we
might want to erase the information about the absence
of input on A by transitioning to a state ¢’ such that
K(c')(c) = X, so that we may retest the condition.
Accordingly, if wait(c’) € Z(o), it must be the case that
(@) K(o)(e) = K(o')(c) V K(c')(¢) = X for all conditions
¢ and that (b) K(o) # K(o').

Any state o such that Z(o) = 0 is called a terminal
state, and if the actor machine reaches a state like this
its execution terminates. If an actor machine has (no)
terminal states it is called (non-) terminating. An actor
machine that has at most one instruction in each Z (o) is
called a single-instruction actor machine (SIAM).

The process of executing an actor machine, then, is
very simple: in any state o, pick one of the instructions
in Z(o) (terminate if it is empty), execute the instruction,
proceed to the appropriate subsequent state and repeat
the process.

Fig. 1 depicts a simple actor machine for the actor in
listing 1. The oval nodes represent controller states (the
labels indicate the value of the interpretation function
KC, by listing the values for the three conditions, (A,1)
and the two guards g; and go in that order), while the
diamonds, boxes, and rings represent test, exec and
wait instructions, respectively. The test instructions are
labeled with the condition they are testing (C1, C2, C3
for the three conditions in the above order), and the
continuous and dashed edges are the next states in case
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Fig. 1. Basic actor machine for the Split actor in listing 1.

the condition is found to be true and false, respectively.
The exec instructions are labeled with the action they
are executing.

Fig. 2. Reduced actor machine for the one in Fig. 1.

However, this actor machine is a very poor implemen-
tation of the original actor. Some simplifications are very
straightforward, such as fusing the states labeled [11X]
and [110], as well as [1X1] and [101], since both pairs are
assigned the same instruction and are thus equivalent.
A more sophisticated simplification requires the insight
that the two guards are logical inverses of each other. If
this can be determined, we can reduce the actor machine
to the one in Fig. 2. Note that the actor machine in Fig. 1
(falsely) appeared to be terminating, while its reduction
in Fig. 2 is not.

Fig. 3.

A very simple actor network.

IV. COMPOSITION

One application of the actor machine model is the
generation of sequential implementations of networks of
actors. Consider the simple actor network in Fig. 3. One
way of conceptualizing the task of mapping this network
to a sequential processing element is as a composition of
the actor machines representing the component actors
in such a way that the resulting composite machine
behaves in a way that is consistent with the behavior
of the network. For the sake of brevity we will eschew
a more detailed discussion of the notion of consistency
here, other than pointing out that it does not, in general,
imply equivalence—just as sequential implementations
of dataflow networks typically involve some form of
scheduling, which ends up restricting the observable be-
haviors, so may composition result in a composite actor
machine that has a smaller set of behaviors. See [13]
for a more thorough treatment of the composition of
actors, and [12] for a more complete discussion of the
composition of actor machines.

Fig. 4. The actor machine for A and B in listing 2.

actor P () In = Out:
A: action In: [v] = Out: [f(Vv)] end

end

actor Q () In = Out:
A: action In: [v, w] = Out: [g(v,w)] end

end

Listing 2. Two actors.

Let us assume that the two actors in Fig. 3 are defined
as in listing 2. They can both be implemented by the
actor machine in Fig. 4, the only difference is that the
condition C is (In, 1) in the case of the actor machine for
P, and (In,2) in the case of the machine for Q.

2This network is, of course, an SDF program. We have chosen this for
the sake of simplicity—nothing in the following assumes a particular
class of dataflow actor. Even a network that cannot be statically
bounded can, in general, be subject to the techniques presented here.



When composing the actors of a network, all buffers
associated with internal connections become state vari-
ables of the composite actor, and consequently, all input
token conditions associated with these internal connec-
tions are now conditions on those internal state vari-
ables, i.e. they become guards. In the example, Q. 1In,
the input queue of the actor Q, becomes a state variable,
and accordingly the single condition associated with Q,
(Q.In,2), becomes a guard.

One way of achieving the composition of the actor ma-
chines in a network is by building the product machine.
Apart from the fact that this scales very poorly with the
number of component actors, it also leads to a composite
actor that is very nondeterministic, and that does not
take advantage of the available knowledge about how
the executions on the component actors relate to each
other. For instance, in the example in Fig. 3, there is
no need to test the input condition for O until P has
fired twice, and then it is automatically known to be
true, so tests for that condition are, in this case, always
redundant, even though the product machine would
include the test instruction, and would in fact require
its execution before the action of Q could be executed.

In order to improve on this, the controller states need
to represent more information than just the interpre-
tation function K, particularly the size of the internal
queues. Let Q be the set of the internal queues of the
network, then we call £ Y — Q@ — N is the
extended interpretation function that assigns each state (in
the composite actor) a function that maps each internal
queue to a natural number indicating the number of
tokens currently in that queue. Again we will skip the
details, but in order for an extended interpretation to
be consistent additional conditions apply, for instance
that states connected by wait and test have the same
extended interpretation function, and that the difference
of extended interpretation of states connected by an exec
instruction be consistent with the action executed in that
instruction.

With this, the initial state of our example network
might be written as [XX-0], i.e. the two conditions are
unknown and the internal buffer is empty. Note, how-
ever, that the condition of Q is actually a condition on the
number of tokens in the internal buffer, and if we know
that it is empty, we know that this condition is false, in
other words we can refine [XX-0] into [X0-0]. As long as
we maintain accurate information about the size of the
internal queues, we will always be able to determine the
value of the input conditions related to them and thus
will never have to test for the size of internal buffers.

Armed with this insight, we can now start to create
the composite actor machine. We call the process used
to do this abstract simulation in analogy to the common
program analysis technique of abstract interpretation,
because it essentially amounts to executing (or simulat-
ing) the dataflow network without knowing the values

of the tokens being computed on, exploring multiple
execution paths in the process.

todo :=
o= 0;
while todo #( do

s := choose(todo);

todo := todo — s;

Y = YU {s};

if instructions(s) #0 then

i := choose(instructions(s));

networklInitialState;

Z(s) := 1i;
todo := todo U successors(i);
end
end

Listing 3. Abstract simulation.

The algorithm above outlines the basic idea of abstract
simulation. Starting with the initial state of the network
(in the example, the state [X0-0]) in the todo list of states
to be processed, we proceed until that todo list is empty,
picking one of the states to be processed, adding it to
the state space of the composite, and picking one of the
instructions that can be executed in it, if it has any. Note
that in many cases, several actors within the network
have at least one instruction that could execute, so this
choice amounts to some kind of scheduling process, and
it will significantly affect how the state space is being
explored. Once that instruction is chosen, we add all
successor states to the todo list, after computing the
proper internal queue lengths and resolving all internal
conditions accordingly, as we did above for the initial
state of the example.

Fig. 5. The first few steps in the abstract simulation of the composition
of Fig. 3.

Fig. 5 shows an intermediate result after a few steps
of abstract simulation for our example. Starting from
the initial state [X0-0], only one instruction can be per-
formed, test(P.C, [10—0],[00 —0]), i.e. testing the condi-
tion of P. Its successor state [00-0] again only admits a
single instruction, wait([X0—0]), and its other successor
state [10-0] only allows for executing the action of P,
exec(P.A,[X0 — 1]). Note that the internal queue now
has length 1, since the firing of the action produced
one token that was sent into that queue. However, the
input condition for O remains false, since that condition
requires two tokens.

Fig. 6 shows the result from a complete abstract
simulation of the example. Note that after two firings




Fig. 6. The composite actor machine for the network in Fig. 3.

of PA it reaches the state [X1-2], where the internal
queue contains two tokens and the input condition of
Q thus becomes true. At this point, there is actually a
choice of instructions: the abstract simulation algorithm
can execute the action of Q, as shown in the figure, or,
alternatively, it could again test the input condition of
P. In general, exact analysis or approximate heuristics
will need to be employed to make this choice, and
different choices might be preferable depending on the
objective. In this case, choosing to fire Q will lead back
to a previous state, which is usually desirable as it keeps
the controller state space small.

Note that in this case abstract simulation in fact com-
puted the SDF schedule for the composite, because that
is really the only way in which to execute it (apart
from the one choice mentioned above). In general, things
need not always go this smoothly: since the state of the
composite actor machine not only includes the states
of the component machines, but also the length of the
internal queues, the network state space can become
very large very quickly, and is, in general, not even
guaranteed to be finite. The latter problem would lead
to nontermination of the abstract simulation algorithm,
and can in general only be avoided by introducing some
‘artificial’” termination criterion, such as bounding the
size of the internal queues and adding special error
handling if an instruction is encountered that would
violate those bounds. If keeping track of internal queue
sizes proves to lead to an undue explosion of the state
space, more abstract representations for queue sizes can
be used that trade a smaller state space for more frequent
testing of internal buffers, cf. [12] for more details.

Even though the example was a statically schedulable
dataflow network, we never made any assumption that
it was, and the technique seamlessly generalizes to ar-
bitrary dataflow networks, effectively reducing to static
scheduling techniques in limit-cases such as the one of
the example.

V. DISCUSSION AND CONCLUSION

This paper presented a simple machine model for
dataflow actors that captures the structure and the logic
of selecting and executing the actions comprising an
actor. It then illustrated how that model can be used

to simplify and optimize the selection process based
on analysis of the actor machine itself and of the ac-
tor description. Finally, it showed how actor machines
can be the conceptual foundation of actor composition,
and how that leads to the elimination of all testing
of internal buffers. The expectation is that this will
eventually facilitate the generation of very efficient code
for arbitrary actor networks, alleviating the tension be-
tween expressiveness and efficient implementability of
dataflow networks.

Many question still remain open, however. It is still
unclear how this model behaves on at-size applications,
and which techniques are required to best address state
space explosion and unboundedness. Furthermore, the
abstract simulation algorithm involves a number of
choices that can have a large impact on the efficiency and
size of the implementation derived from a composition,
and much work needs to be done on building robust
heuristics that make these choices in the general case,
and to integrate exact analysis techniques that identify
and handle more specialized situations, such as statically
schedulable networks.
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