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1. Introduction

This report contains derivations of a rigid double-track ground vehicle model includ-

ing roll and pitch dynamics, using a Newton-Euler modeling approach. Suspension is

incorporated in the model. The suspension system is modeled as a rotational spring

and damper system, where the spring and damper constants for each wheel have

been lumped to two constants, one for each degree of freedom. The resulting chas-

sis model is of fifth order. The derivation can be found in Section 6. In addition,

a first-order approach to take load transfer into account is discussed, which gives

an additional degree of freedom. A schematic of the vehicle is shown in Figure 1.

Wheel dynamics is also modeled, and several tire models that may be used together

with the vehicle model are shown, which in conjunction gives a dynamic model on

differential-algebraic form.

More or less complicated variants of the model can be found in literature. There

exists numerous books and papers in the area of vehicle dynamics treating different

aspects of vehicle modeling; see [Pacejka, 2006], [Ellis, 1994], [Isermann, 2006],

[Kiencke and Nielsen, 2005], [Rajamani, 2006], [Gäfvert, 2003], [Schofield, 2008]

for a few of them. However, they are often derived for a specific purpose, resulting

in approximations appropriate for the problem considered. Moreover, important as-

pects of the derivations are often omitted in literature, resulting in a loss of insight.

Also, it is hard to find a reference treating, in a compact way, the aspects of vehicle

modeling considered in this report. Here, the model is derived with the aim of accu-

rate simulation in general. The chassis model should also be possible to utilize for

designing nonlinear controllers. If, for example, anti-rollover control is aimed for, it

is reasonable to neglect pitch dynamics. The resulting model is presented in Section

7.

z
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δ1

lflr

wfwr

ψ̇

φ̇

θ̇

Fx1Fy1

Fx2Fy2

Fx4

Fy4
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Figure 1 The vehicle model, with pitch dynamics as well as roll dynamics. The x and y-axes

are residing in the ground plane. The wheels are numbered from the front left wheel to the rear

right wheel.

2. Preliminaries

Vectors are denoted with a bar; that is, v̄ = (vx vy vz)
T is a vector of dimension

3 × 1. Time derivatives of a vector with respect to a specific frame i are indicated

with a subscript on the differential operator, as in d

dt

∣

∣

i
v̄. Matrices are denoted with
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capital letters as in A. Coordinate systems are denoted with Si, where i is the letter

indicating the frame.

3. Coordinate Systems

Three moving coordinate systems will be employed in the derivations, see Figure 2.

The equations will be derived in the vehicle-fixed frame SV , which is rotated with

an angle ψ, the yaw, about the z-axis of the inertial frame SE , yielding the rotation

matrix

RV =





cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1



 .

Moreover, the pitch θ is defined as a rotation about the y-axis of SV , giving the

chassis system SC , with the rotation matrix

RC =





cos(θ) 0 sin(θ)

0 1 0

− sin(θ) 0 cos(θ)



 . (1)

Finally, the body system SB is defined by a rotation of an angle φ, the roll, about the

x-axis of SC :

RB =





1 0 0

0 cos(φ) − sin(φ)

0 sin(φ) cos(φ)



 . (2)

The position of center of mass in the body frame is h̄B = (0 0 h)T. With zero

pitch and roll angle, this corresponds to the height over ground. Thus, the position of

center of mass in the vehicle frame is given by h̄V = RCRBh̄B .

x

y

z
ψ

x′y′

x′
y′

z′

θ

x′′

z′′

x′′
y′′

z′′

φ

y′′′

z′′′

Figure 2 The coordinate systems used in the derivations. Note that the rotations are made

with respect to the moving axes.

4. Kinematics

Denote with SE an inertial frame. Further, denote with SV a noninertial frame, rotat-

ing with the angular velocity vector ω̄ with respect to the inertial frame. Then, given

a vector v̄,
d

dt

∣

∣

∣

∣

E

v̄ =
d

dt

∣

∣

∣

∣

V

v̄ + ω̄ × v̄. (3)
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SE

SV

P

p̄

v̄0

ω̄

Figure 3 The inertial coordinate system, SE , and the noninertial system, here denoted SV .

The noninertial frame is translating with velocity v̄0 and rotating with velocity ω̄.

Consider a point P with coordinates p̄ with respect to SV . The frame SV is moving

with translational velocity v̄0 with respect to SE . Then the velocity of P is

v̄P = v̄0 +
d

dt

∣

∣

∣

∣

E

p̄ = v̄0 +
d

dt

∣

∣

∣

∣

V

p̄+ ω̄ × p̄. (4)

See Figure 3 for an illustration. By applying (3) to (4), the acceleration is found to be

āp =
d

dt

∣

∣

∣

∣

V

(

v̄0 +
d

dt

∣

∣

∣

∣

V

p̄+ ω̄ × p̄
)

+ ω̄ × (v̄0 +
d

dt

∣

∣

∣

∣

V

p̄+ ω̄ × p̄)

=
d

dt

∣

∣

∣

∣

V

v̄0 +
d2

dt2

∣

∣

∣

∣

V

p̄+
d

dt

∣

∣

∣

∣

V

ω̄ × p̄+ ω̄ × v̄0 + ω̄ × (ω̄ × p̄) + 2ω̄ × d

dt

∣

∣

∣

∣

V

p̄.

(5)

In the subsequent sections, the time derivative of a quantity x will be denoted ẋ.

5. Kinetics

In a Newton-Euler setting, the total external forces acting on a rigid body B is defined

by the identity
∫

B

āP dmP = māG = F̄ , (6)

where the integration is performed over all mass elements dmP . Further, āG denotes

the acceleration of center of mass. Likewise, the total external moments acting on the

body equals

d

dt

∣

∣

∣

∣

E

∫

B

p̄× v̄P dmP =
d

dt

∣

∣

∣

∣

E

IV ω̄E = M̄, (7)

where ω̄E = (φ̇ θ̇ ψ̇)T, and IV is the moment of inertia matrix of the vehicle with

respect to the vehicle-fixed frame. By applying (3) on (7) we get

IV ˙̄ωE + ω̄V × IV ω̄E = M̄, (8)

where ω̄V = (0 0 ψ̇)T is the angular velocity of the frame in which the formulas

are to be derived, in this case SV . In (8), we have used that IV is constant with respect

to SV . The moment of inertia is typically measured in the body frame, SB. However,

IV can be found by using the formula IV = RCRBIBR
T
BR

T
C , where IB is the

5



moment of inertia in the body frame, and RC and RB are given by (1) and (2). For

simplicity we have assumed that

IB =





Ixx 0 0

0 Iyy 0

0 0 Izz



 ,

that is, cross terms are neglected. This gives that

IV =





I1 I2 I3

I2 I4 I5

I3 I5 I6



 , (9)

where

I1 = cos2(θ)Ixx + sin2(θ) sin2(φ)Iyy + sin2(θ) cos2(φ)Izz,

I2 = sin (θ) sin (φ) cos (φ)(Iyy − Izz),

I3 = − sin (θ) cos (θ)
(

Ixx − Iyy + cos2(φ)(Iyy − Izz)
)

,

I4 = cos2(φ)Iyy + sin2(φ)Izz,

I5 = sin (φ) cos (φ) cos (θ)(Iyy − Izz),

I6 = sin2(θ)Ixx + cos2(θ)
(

sin2(φ)Iyy + cos2(φ)Izz

)

.

6. Vehicle Modeling

The total forces acting on the vehicle are found from force equilibriums in the x and

y-directions, see Figure 1:

FX = Fx1 cos (δ1)− Fy1 sin (δ1) + Fx2 cos (δ2)− Fy2 sin (δ2) + Fx3 + Fx4 (10)

FY = Fx1 sin (δ1) + Fy1 cos (δ1) + Fx2 sin (δ2) + Fy2 cos (δ2) + Fx3 + Fx4 (11)

By performing a torque equilibrium around the vehicle z-axis we find that

MZ = lf

(

Fx1 sin (δ1) + Fx2 sin (δ2) + Fy1 cos (δ1) + Fy2 cos (δ2)
)

+wf

(

− Fx1 cos (δ1) + Fx2 cos (δ2) + Fy1 sin (δ1)− Fy2 sin (δ2)
)

− lr(Fy3 + Fy4)− wr(Fx3 + Fx4). (12)

To derive the model we first assume that the noninertial frame SV is translating

with velocity vector v̄ relative to the inertial frame. By attaching SV at the center of

mass coordinates in the xy-plane, we get that p̄ = 0 in (4). Thus, the velocity in the

x and y-directions are v̄ = (vx vy)
T.

The translational force equations can be found by combining (5), (6), (10), and

(11). Note that we have assumed that p̄ and all its derivatives are zero with respect to

SV . By reshuffling the equations we get:

6



v̇x = vyψ̇ + h
(

sin (θ) cos (φ)(ψ̇2 + φ̇2 + θ̇2)− sin (φ)ψ̈ − 2 cos (φ)φ̇ψ̇

− cos (θ) cos (φ)θ̈ + 2cos (θ) sin (φ)θ̇φ̇+ sin (θ) sin (φ)φ̈
)

+
FX

m
(13)

v̇y = −vxψ̇ + h
(

− sin (θ) cos (φ)ψ̈ − sin (φ)ψ̇2 − 2 cos (θ) cos (φ)θ̇ψ̇

+ sin (θ) sin (φ)φ̇ψ̇ − sin (φ)φ̇2 + cos (φ)φ̈
)

+
FY

m
. (14)

The motion equation in the ψ-direction (about the z-axis) can be found by combining

(8), (9), (10), (11), and (12). Note that because of the deflection of center of mass, the

external forces in the x and y-directions give rise to additional external torques τz, in

this case τz = −h(FX sin (φ) + FY sin (θ) cos (φ)):

ψ̈(Ixx sin (θ)
2 + cos (θ)2(Iyy sin (φ)

2 + Izz cos (φ)
2)) =MZ − h

(

FX sin (φ)

+ FY sin (θ) cos (φ)
)

. (15)

In the same manner we get the equation in the θ-direction as:

θ̈(Iyy cos (φ)
2 + Izz sin (φ)

2) = −Kθθ −Dθθ̇

+ h
(

mg sin (θ) cos (φ) − FX cos (θ) cos (φ)
)

+ ψ̇
(

ψ̇ sin (θ) cos (θ)
(

∆Ixy

+ cos (φ)2∆Iyz
)

− φ̇ cos (θ)2Ixx + sin (φ)2 sin (θ)2Iyy

+ sin (θ)2 cos (φ)2Izz)− θ̇
(

sin (θ) sin (φ) cos (φ)∆Iyz
)

)

, (16)

where Kθ and Dθ are the rotational spring and damping constants in the θ-direction.

Further, ∆Iyz = Iyy − Izz and ∆Ixy = Ixx − Iyy . The third equation of angular

motion is in the same manner found to be

φ̈(Ixx cos (θ)
2 + Iyy sin (θ)

2 sin (φ)2 + Izz sin (θ)
2 cos (φ)2) = −Kφφ

−Dφφ̇+ h(FY cos (φ) cos (θ) +mg sin (φ))

+ ψ̇∆Iyz

(

ψ̇ sin (φ) cos (φ) cos (θ) + φ̇ sin (θ) sin (φ) cos (φ)
)

+ ψ̇θ̇(cos (φ)2Iyy + sin (φ)2Izz). (17)

Equations (10)–(17) constitute the chassis double-track model with five degrees

of freedom. With the addition of the load transfer Equations (34)–(39) in Section 9,

the model is of sixth order.

7. Simplified Equations

For specific purposes different parts of the model can be neglected. For example, from

a torque balance we can find an approximate condition for when rollover is imminent.

Given this condition we can design a controller using the brakes as actuators. In this

7



scenario we are primarily interested in the roll dynamics. Thus, we can neglect the

pitch dynamics and the resulting equations become

mv̇x = FX +mvyψ̇ −mh sin (φ)ψ̈ − 2mh cos (φ)φ̇ψ̇,

mv̇y = FY −mvxψ̇ −mh sin (φ)ψ̇2 +mhφ̈ cos (φ)−mφ̇2h sin (φ),

ψ̈ =
MZ − FXh sin (φ)

Izz cos (φ)2 + Iyy sin (φ)
2
,

Ixxφ̈ = FY h cos (φ) +mgh sin (φ) + ψ̇2∆Iyz sin (φ) cos (φ)−Kφφ−Dφφ̇.

8. Ground-Tire Interaction

The vehicle model can be used directly by assuming that the longitudinal tire forces

are control inputs. However, in a physical setup it is rather the wheel torques that are

possible to control directly. By assuming direct controllability of the longitudinal tire

forces, dynamics which in some situations is crucial is neglected.

The wheels are modeled as rotating masses with drive/brake torques and road

contact tire forces, see Figure 4. When initiating the brake or drive pedal a torque is

induced over the wheels, here referred to as M , which makes the wheels decelerate

or accelerate.

Fx

Mω
vwx

Figure 4 Wheel model.

From a torque balance around the center of the wheel, we find that

Iwω̇ =M − rFx. (18)

The notation is as follows:

• Iw is the moment of inertia of the wheel

• ω is the angular velocity of the wheel

• vwx is the longitudinal velocity at the wheel

• r is the effective radius of the wheel

• Fx is the longitudinal force acting on the wheel.

When the driver brakes or accelerates, longitudinal slip develops. In [Schindler,

2007] this is defined as

λ =
vwx − rω

vwx

= 1− rω

vwx

(19)

8



when braking and

λ =
vwx − rω

rω
=
vwx

rω
− 1 (20)

when accelerating. Here, vwx is the component of the wheel velocity in the longi-

tudinal direction, ω is the angular velocity of the wheel, and r is the effective wheel

radius, that is the distance from the center of the wheel to the road. The normalization

ensures that the slip is between −1 and 1.

The lateral slip angle is conventionally defined as

tanα = −vwy

vwx

, (21)

where vwx and vwy are the longitudinal and lateral wheel velocity, see Figure 5. The

wheel velocities can be found by using trigonometry and the velocity of the center of

mass, known from Section 6. A convenient approach is then to define lateral slip as

sinα. The definition ensures that the slip is between −1 and 1. The third slip quantity

y

x

α

vw

Figure 5 The wheel together with its coordinate system seen from above.

considered is the vehicle body sideslip angle β, which is defined through the vehicle’s

longitudinal and lateral velocity as

tan β =
vy

vx
. (22)

The nominal tire forces; that is, the forces under pure slip conditions which are

to be used in (18), can be computed with the Magic Formula model [Pacejka, 2006],

given by

F0(m) = D sin
(

C arctan
(

Bm− E(Bm− arctan (Bm))
)

)

, (23)

where

• B is the stiffness factor

• C is the shape factor

• D is the peak factor

• E is the curvature factor

• F0 is either the longitudinal or lateral force and m is either λ or α.

The typical shape of (23) for a high friction surface is Shown in Figure 6, where µ is

the friction coefficient.

9



Another formula often used to model lateral forces is the Highway Safety Re-

search Institute (HSRI) Tire Model1, see Figure 7. The following formulas are taken

from [Klĕcka, 2007]:

Fy =

{

Cα · tanα
1+λ

if sr ≤ 0.5

Cα · tanα
1+λ

· sr−0.25
s2r

if sr > 0.5
(24)

where

sr =

√

(Cλλ)2 + (Cα tanα)2

µ(1 + λ)Fz

and Cα and Cλ denote the initial slopes of the force curves. The HSRI equations

do not exhibit any force peak, and may thus mimic the true force poorly for high-

friction surfaces. Still, the model is sometimes used in traction control systems, see

[Berntorp, 2008].
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Longitudinal Force versus Slip

Figure 6 The tire-force model generated by the Magic formula (23) for different surfaces

using a typical set of parameters. The friction between road and tire is denoted with µ.

8.1 Friction Ellipse

One way to model combined slip is to use the idea of the friction ellipse. The idea is

that the longitudinal and lateral forces are described by

(

Fx

Fx,max

)2

+

(

Fy

Fy,max

)2

= 1.

When using the brakes as actuators the longitudinal forces can be seen as control

inputs, and then the above equation can be used to calculate Fy as

Fy = Fy0

√

1−
(

Fx

µxFz

)2

. (25)

1Also known as the Dugoff Tire Model.
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Figure 7 The HSRI tire model.

In (25), Fy0 can be taken from a suitable tire model, for example the Magic formula

or the HSRI model. However, it is also possible to use the longitudinal slip λ as an

input. Then the force equations become [Isermann, 2006]

Fx =
λ√

λ2 + α2
Fres (26)

Fy =
α√

λ2 + α2
Fres (27)

where Fres is the resulting force. Figure 8 shows how the lateral force changes with λ

for some given values of α according to (27), which is a good approximation in many

driving situations. The impact of α on the longitudinal force can also be illustrated

by Figure 8.

8.2 Weighting Functions

Another approach to model combined slip is described in [Pacejka, 2006]. Here, the

idea is to scale the nominal forces, (23), for each wheel with weighting functions, Gα

and Gλ, depending on α and λ. The relations in the longitudinal (x) direction are

Bα = Bα,1 cos(arctan(Bα,2λ)), (28)

Gα = cos(Cα arctan(Bαα)), (29)

Fx = Fx0Gα. (30)

The corresponding relations in the y-direction are given by

Bλ = Bλ,1 cos(arctan(Bλ,2(αi −Bλ,i))), (31)

Gλ = cos(Cλ arctan(Bλλ)), (32)

Fy = Fy0Gλ. (33)

This way of modeling combined slip has been experimentally verified [Braghin et al.,

2006]. The difference in shape compared to the friction ellipse can be seen in Fig-

ure 9. The main difference is that for the weighting functions the longitudinal force

decreases when the lateral force approaches zero.
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Figure 9 Combined tire forces for the friction ellipse (Equations (26)–(27)) and the weight-

ing functions (Equations (28)–(33)). The slip angle is set to α = 14 [deg].

9. Load Transfer

The pitch and roll dynamics do not only influence the yaw and translational dynamics,

but also the load resting on each wheel. Further, the pitch and roll also affect the

parameters in (23). To establish how the pitch and roll influence Equation (23) is a

difficult problem, but to get a good approximation of the load transfer is rather easy.

A first approach is to assume that the pitch and roll angles influence the load transfer

independently, which should be a reasonable approximation for small angles. Then a

12



torque equilibrium gives that the change in lateral force caused by the roll for each

front and rear wheel, respectively, is

∆Fz,1 = −Kφφ+Dφφ̇

4wf

, (34)

∆Fz,2 =
Kφφ+Dφφ̇

4wf

, (35)

∆Fz,3 = −Kφφ+Dφφ̇

4wr

, (36)

∆Fz,4 =
Kφφ+Dφφ̇

4wr

. (37)

In the same way we find the load transfer for the front wheels caused by the pitch

as

∆Fz,f =
Kθθ +Dθθ̇

4lf
, (38)

and the load transfer for the rear wheels is

∆Fz,r = −Kθθ +Dθθ̇

4lr
. (39)

This load transfer model will fit the true load well for modest combined roll and

pitch angles. However, if (very) high accuracy is needed, approaches which take into

account coupling effects are necessary.

10. Conclusions

A six degrees-of-freedom ground-vehicle model was derived using a Newton-Euler

approach. It is a general purpose model suitable both for high-accuracy simulation

as well as for nonlinear control design. In addition, ground-tire interaction modeling

using different force-tire models were discussed, both for pure and combined slip.

Finally, a first approach to load transfer modeling was mentioned.
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Appendix

Symbol Description

x Longitudinal position

y Lateral position

h center of mass height in body frame

g Gravitational constant

Ixx Moment of inertia about center of mass x-axis

Iyy Moment of inertia about center of mass y-axis

Izz Moment of inertia about center of mass z-axis

Iw Wheel moment of inertia

ψ Yaw angle

θ Pitch angle

φ Roll angle

δ Steering angle (at the wheels)

α Wheel tire slip angle

β Sideslip angle

ω Angular velocity

λ Longitudinal slip

lf Distance between center of mass and front axle

lr Distance between center of mass and rear axle

wf Front half-track width

wr rear half-track width

r Effective wheel radius

vwx Wheel longitudinal velocity

vwy Wheel lateral velocity

Fx Longitudinal tire force

Fy Lateral tire force

Fz Vertical tire force

F0 Force in Magic formula

M Torque

B Stiffness factor in Magic formula

C Shape factor in Magic formula

D Peak factor in Magic formula

E Curvature factor in Magic formula
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