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Abstract

This thesis deals with two aspects of recursive state estimation: distributed
estimation and estimation for hybrid systems.
In the first part, an approximate distributed Kalman filter is devel-

oped. Nodes update their state estimates by linearly combining local mea-
surements and estimates from their neighbors. This scheme allows nodes
to save energy, thus prolonging their lifetime, compared to centralized in-
formation processing. The algorithm is evaluated experimentally as part
of an ultrasound based positioning system.
The first part also contains an example of a sensor-actuator network,

where a mobile robot navigates using both local sensors and information
from a sensor network. This system was implemented using a component-
based framework.
The second part develops, a recursive joint maximum a posteriori state

estimation scheme for Markov jump linear systems. The estimation prob-
lem is reformulated as dynamic programming and then approximated us-
ing so called relaxed dynamic programming. This allows the otherwise
exponential complexity to be kept at manageable levels.
Approximate dynamic programming is also used to develop a sensor

scheduling algorithm for linear systems. The algorithm produces an off-
line schedule that when used together with a Kalman filter minimizes the
estimation error covariance.
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Preface

Contributions of the Thesis

The thesis consists of two introductory chapters and six papers. This sec-
tion describes the contents of the introductory chapters and the contribu-
tion of each paper.

Chapter 1 – Recursive State Estimation

In this thesis a number of different methods based on probabilistic state
estimation are both applied to specific problems and extended in various
directions. This chapter aims at presenting these methods in a unified
way. In particular, the relation between joint maximum a posteriori esti-
mation, which is the basis of Paper VI, and other estimation techniques
is discussed in more detail.

Chapter 2 – Sensor and Sensor-Actuator Networks

The first part of this chapter gives a brief overview of different data ag-
gregation methods aimed at sensor networks. In particular, distributed
state estimation, which is the subject of papers I, II and III, is discussed
in more detail.
In the second part, a few reflections on software related issues in

sensor networks are given. Specifically the importance of good simulation
tools and resource management are emphasized.
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Preface

Paper I

Alriksson, P. and A. Rantzer (2008): “Model based information fusion in
sensor networks.” In Proceedings of the 17th IFAC World Congress.
Seoul, South Korea.

Presents a model based information fusion algorithm for sensor networks
and evaluates its performance through numerical simulations.

Contributions. The algorithm extends the common Kalman filter with
one step where nodes exchange estimates of the aggregated quantity with
their neighbors. Under stationary conditions, an iterative parameter se-
lection procedure that aims at minimizing the stationary error covariance
of the estimated quantity is developed.
The performance of the algorithm is evaluated through numerical sim-

ulations. These simulations indicate that the algorithm performs almost
as good as a non-aggregating algorithm which thus uses more bandwidth.
This paper improves on the results presented in:

Alriksson, P. and A. Rantzer (2006): “Distributed Kalman filtering
using weighted averaging.” In Proceedings of the 17th International
Symposium on Mathematical Theory of Networks and Systems. Kyoto,
Japan.

Paper II

Alriksson, P. and A. Rantzer (2008): “Distributed Kalman filtering:
Theory and experiments.” Submitted to IEEE Transactions on Control
Systems Technology.

Extends the results of Paper I to compensate for effects of packet loss and
develops a lightweight synchronization protocol.

Contributions. The information fusion algorithm presented in Paper I
is extended to account for packet loss. It is also shown how Markov chain
models of packet loss can be used to analyse performance.
A lightweight synchronization protocol that only makes use of informa-

tion already transmitted by the information fusion algorithm is presented.
This protocol is analysed using formal verification tools based on theory
for timed automata.
Timing simulations of the protocol are also compared to experimental

data. From both the simulated and experimental data the conclusion is
drawn that timing related issues can contribute considerably to packet
loss.
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Contributions of the Thesis

Paper III

Alriksson, P. and A. Rantzer (2007): “Experimental evaluation of a
distributed Kalman filter algorithm.” In Proceedings of the 46th IEEE
Conference on Decision and Control. New Orleans, LA.

Presents an experimental evaluation of a distributed Kalman filter algo-
rithm in terms of an ultrasound based localization system.

Contributions. In this paper an ultrasound based localization system
using seven sensor nodes is developed. Distance measurements are com-
bined using trilateration and then fused using the algorithm presented
in:

Alriksson, P. and A. Rantzer (2006): “Distributed Kalman filtering
using weighted averaging.” In Proceedings of the 17th International
Symposium on Mathematical Theory of Networks and Systems. Kyoto,
Japan.

The distributed algorithm performs almost as good as a centralized solu-
tion. Two different strategies for handling packet loss are evaluated. One
is proven far superior to the other.

Paper IV

Alriksson, P. and K.-E. Årzén (2008): “A component-based approach to
ultrasonic self localization in sensor networks.” Technical Report ISRN
LUTFD2/TFRT--7619--SE. Department of Automatic Control, Lund
University, Sweden.

A component based software architecture is used to develop a distributed
ultrasound based localization system for mobile robots.

Contributions. In this report a component based middleware is used
to develop an ultrasound based self localization system for mobile robots.
The mobile robot navigates autonomously using both localization informa-
tion provided by the network and local sensors. The localization problem is
formulated as a state estimation problem which is then approximated us-
ing an extended Kalman filter. This system was part of a bigger software
platform described in:

Alriksson, P., J. Nordh, K.-E. Årzén, A. Bicchi, A. Danesi, R. Sciadi, and
L. Pallottino (2007): “A component-based approach to localization and
collision avoidance for mobile multi-agent systems.” In Proceedings of
the European Control Conference. Kos, Greece.
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Preface

The localization system was also simulated in TrueTime:

Årzén, K.-E., M. Ohlin, A. Cervin, P. Alriksson, and D. Henriksson (2007):
“Holistic simulation of mobile robot and sensor network applications
using TrueTime.” In Proceedings of the European Control Conference.
Kos, Greece.

Paper V

Alriksson, P. and A. Rantzer (2005): “Sub-optimal sensor scheduling
with error bounds.” In Proceedings of the 16th IFAC World Congress.
Prague, Czech Republic.

Presents a sensor scheduling strategy based on approximate dynamic pro-
gramming.

Contributions. This paper presents an algorithm based on approxi-
mate dynamic programming for computing a sequence of measurements
that will yield a minimum estimation error covariance. The algorithm is
demonstrated on a sixth order model of a fixed mounted helicopter. In
this example the optimal sequence is periodic which allows it to be easily
implemented.

Paper VI

Alriksson, P. and A. Rantzer (2008): “State estimation for Markov jump
linear systems using approximate dynamic programming.” Submitted
to IEEE Transactions on Automatic Control.

Presents a general strategy based on approximate dynamic programming
for constructing recursive state estimators. This general procedure is then
applied to a model class referred to as Markov jump linear systems.

Contributions. This paper revisits the formulation of recursive joint
maximum a posteriori state estimation as dynamic programming. This,
in general very computationally intensive formulation, is approximated
using methods from relaxed dynamic programming. The proposed estima-
tion scheme is then applied to Markov jump linear models. In the case of
a switching system, that is when the discrete mode changes arbitrarily,
we prove that the proposed estimation scheme yields a stable estimator
for a noise free system. Preliminary results where published in:

Alriksson, P. and A. Rantzer (2006): “Observer synthesis for switched
discrete-time linear systems using relaxed dynamic programming.” In
Proceedings of the 17th International Symposium on Mathematical
Theory of Networks and Systems. Kyoto, Japan.
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Contributions of the Thesis

Other Publications

Cervin, A. and P. Alriksson (2006): “Optimal on-line scheduling of
multiple control tasks: A case study.” In Proceedings of the 18th
Euromicro Conference on Real-Time Systems. Dresden, Germany.

This paper has not been included in the thesis because its main focus is
not estimation. However, also in this paper relaxed dynamic programming
is the key tool.
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1

Recursive State Estimation

By “state estimation” we refer to the task of finding out “what a system
is doing” based on what we observe. The word recursive in this context
means that we wish to process observations as they are made and not
have to redo all computations for every new observation.
The problem of recursive state estimation can be approached from a

number of different directions. Throughout this thesis, we will assume
that the system is subject to stochastic disturbances and thus the state of
the system is also a stochastic variable. Therefore our treatment will be
based on probability theory.
Recursive state estimation problems can often be formulated in a very

compact way. However, solving the problem is often very difficult. There-
fore much of the literature is devoted to finding approximations, some
tailored at specific applications and others more general.
In this thesis a number of different methods from the field of state

estimation are both applied to specific problems and extended in vari-
ous directions. This chapter aims at briefly presenting these methods in
a unified way. In particular, the relation between joint maximum a pos-
teriori estimation, which is the basis of Paper VI, and other estimation
techniques are discussed in more detail.

1.1 Problem Formulation

The most general model considered here is a discrete time hidden Markov
model written in terms of three probability distributions:







p(xk+1pxk)

p(x0)

p(ykpxk)

(1.1)

18



1.1 Problem Formulation

Here xk ∈ Rn denotes the state we want to estimate and yk ∈ Rp are
the observations made. The possible existence of known inputs has been
suppressed for brevity. The first distribution p(xk+1pxk) describes how the
system evolves with time. The second distribution models how an obser-
vation yk is related to the state of the system and the third represents
prior knowledge about the initial state.

EXAMPLE 1.1—LINEAR SYSTEM WITH ADDITIVE NOISE
Consider a linear time invariant system with additive independent noise
distributed as pw(wk) and pv(vk):

xk+1 = Axk +wk

yk = Cxk + vk
(1.2)

In this setup, the distributions (1.1) become

p(xk+1pxk) = pw(xk+1 − Axk)

p(ykpxk) = pv(yk − Cxk)
(1.3)

If pw(wk) is Gaussian with zero mean and covariance Rw, p(xk+1pxk) also
becomes Gaussian with the same covariance, but with mean Axk. The
same holds for the measurement distribution p(ykpxk).

Filtering, Prediction and Smoothing. Recall that our objective is
to determine what the system is doing, that is to estimate the state of
the system using a sequence of measurements. More specifically we wish
to estimate the state at time k given measurements Yl = {y0, . . . , yl} up
to and including time l. Depending on the relation between k and l this
problem can be divided into three cases:

Prediction k > l

Filtering k = l

Smoothing k < l

For the sake of simplicity, only the filtering problem will be considered
from now on.

Bayesian- and Point Estimates. One possible solution to the recur-
sive state estimation problem would be to construct an algorithm that
only produces an estimate x̂k of xk using the sequence of measurements
Yk. This type of estimate is referred to as a point estimate of xk.

19



Chapter 1. Recursive State Estimation

An alternative, and more general, approach would be to construct an
algorithm that not only computes a point estimate of xk, but the full con-
ditional probability distribution p(xkpYk) of xk given all measurements Yk.
Different point estimates can then be computed from this distribution.
Next, we will present a general algorithm for recursively computing

the probability density p(xkpYk). But first, a few tools from probability
theory will be introduced.

Probability Theory

First define the conditional distribution p(xpy) in terms of the joint dis-
tribution p(x, y) and the marginal distribution p(y) as

p(x, y) = p(xpy)p(y) (1.4)

The marginal distribution p(y) can be computed from the joint distribution
through integration over x as

p(y) =

∫

p(x, y)dx (1.5)

Now using (1.4) we can derive a central tool in stochastic state estimation,
namely Bayes’ theorem, which states that

p(xpy) =
p(ypx)p(x)

p(y)
(1.6)

When writing the system model in terms of the conditional distribution
p(xk+1pxk) we have implicitly assumed that if xk is known, knowledge
about xk−1, . . . , x0 does not change the distribution, that is

p(xk+1pxk, . . . , x0) = p(xk+1pxk) (1.7)

This type of model is known as a Markov model.

1.2 Conceptual Solution

In this section, recursive equations for the conditional distribution p(xkpYk)
will be derived. The presentation is heavily inspired by the one found in
[Schön, 2006]. First using Bayes’ theorem (1.6) write

p(xkpYk) =
p(ykpxk,Yk−1)p(xkpYk−1)

p(ykpYk−1)
(1.8)
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1.2 Conceptual Solution

Next using the Markov property write

p(xkpYk) =
p(ykpxk)p(xkpYk−1)

p(ykpYk−1)
(1.9)

We now need to find an expression for the probability distribution p(xkpYk−1)
in terms of p(xk−1pYk−1). First note that

p(xk, xk−1pYk−1) = p(xkpxk−1,Yk−1)p(xk−1pYk−1)

= p(xkpxk−1)p(xk−1pYk−1)
(1.10)

Now integrate with respect to xk−1

p(xkpYk−1) =

∫

p(xkpxk−1)p(xk−1pYk−1)dxk−1 (1.11)

The distribution p(ykpYk−1) is normalization constant, independent of the
state, that in general can be neglected. It can, however, be computed as

p(ykpYk−1) =

∫

p(ykpxk)p(xkpYk−1)dxk (1.12)

The measurement update equation (1.9) and time update equation (1.11)
(possibly together with (1.12)) constitute a recursive algorithm for gen-
eral state estimation. The solution presented above is, however, somewhat
illusive, as explicit expressions for the integrals are only available in very
special cases.
The conceptual solution described above recursively computes both the

filtering distribution p(xkpYk) and the one-step ahead prediction distribu-
tion p(xkpYk−1). These are only special cases of the general problem of
computing p(xkpYl). Distributions for both the smoothing and prediction
problems can be derived using the machinery described above, see for
example [Schön, 2006].

The Kalman Filter

If all distributions (1.1) are Gaussian, p(xkpYk) will also be Gaussian.
Since a Gaussian distribution can be fully described by its mean and
covariance, it is sufficient to derive recursive equations for these. The
Kalman filter equations have been derived in numerous papers and books
as a special case of the conceptual solution above, see for example [Ho and
Lee, 1964] or [Schön, 2006].
It is, however, worth noticing, that in Kalman’s original paper [Kalman,

1960] the filter was derived using orthogonal projection by minimizing the
expected loss

E L(xk − x̂k)
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Chapter 1. Recursive State Estimation

for some reasonable function L(⋅). Kalman showed that the optimal esti-
mator is an orthogonal projection on the space spanned by the observa-
tions in any of the two cases:

1. If the distributions (1.1) are Gaussian and L(⋅) belongs to a large
class of functions described in for example [Jazwinski, 1970].

2. If the estimator is restricted to be linear and L(x̃) = x̃T x̃.

The orthogonal projection is a function of the mean and covariance of a
number of quantities. In the first case, the familiar Kalman filter equa-
tions can be used to recursively compute these.
Because the second case does not assume that the distributions (1.1)

are Gaussian, it turns out to be useful when trying to find approximations
of the conceptual solution.

Approximations of the Conceptual Solution

As mentioned above, deriving an analytical expression for the integral
(1.11) is only possible in very special cases. In the general case one must
almost always resort to approximations. To be able to discuss approxima-
tions of the conceptual solution, we first define explicit expressions for the
system dynamics and measurement relationship as

xk+1 = f (xk, k) +wk
yk = h(xk, k) + vk

(1.13)

Here w(k) ∈ Rn and v(k) ∈ Rp are independent Gaussian zero mean
variables with covariance Rw and Rv respectively. Next we will present
three common approximation methods.

The Extended Kalman Filter. By far, the most common approxima-
tion technique is the Extended Kalman Filter [Jazwinski, 1970]. The ex-
tended Kalman filter is based on the first case under which the Kalman
filter is optimal. In the extended Kalman filter the system (1.13) is ap-
proximated by a linear system through linearization around the latest
estimate. Given a linear system with additive Gaussian noise, the distri-
butions (1.1) become Gaussian and the Kalman filter can thus be applied.
The problem with this approach is that, instead of approximating p(xkpYk)
in a good way, the extended Kalman filter approximates the model. This
can lead to bad performance or even divergence. However, the extended
Kalman filter has proven to work well in many applications, one of which
is presented in Paper IV.
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1.3 Point Estimates

The Unscented Kalman Filter. The unscented Kalman filter [Julier
and Uhlmann, 1997] is instead based on the second case under which
the Kalman filter is optimal, namely the best linear estimator in terms
of mean square error. It is important to understand that the Kalman
filter only uses information about the mean and covariance of various
quantities, not their full probability distributions. If these means and co-
variances can be approximated well enough, the Kalman filter equations
can be used and performance should be close to what a linear estimator
can achieve.
The unscented Kalman filter uses a deterministic sampling approach

where the mean and covariance is represented using a minimal set of
carefully chosen sample points. When propagated through the true non-
linear system, these points capture the mean and covariance accurately
to a 3rd order Taylor series expansion of the nonlinearity. See [Julier and
Uhlmann, 2004] for a good introduction.

Particle Filters. In both the extended and unscented Kalman filters
p(xkpYk) is approximated by its mean and covariance. If a more general
distribution is needed, the use of Sequential Monte Carlo Methods such
as the so called particle filter [Doucet et al., 2001] is a common approach.
The name particle filter comes from the fact that p(xkpYk) is approximated
as a weighted sum of particles

p(xkpYk) (

M∑

i=1

q̃
(i)
k δ

(

xk − x
(i)
kpk

)

(1.14)

where δ (⋅) is the Dirac delta function and q̃(i)k denotes the weight associ-

ated with particle x(i)
kpk. The problem with this approach is that if the size

of the state space is very large, we potentially need an enormous amount
of particles to get a good approximation. If, however, there is a linear sub-
structure present in the dynamical model, the marginalized particle filter
[Schön, 2006] can be used. In the marginalized particle filter, the state
vector is partitioned into one part that is estimated using a Kalman filter
and one part that is estimated using a particle filter. This allows for fewer
particles to be used.

1.3 Point Estimates

So far we have only, possibly with the exception of the Kalman filter, dis-
cussed methods for approximating p(xkpYk). Now we will present a number
of point estimates, some of which can be computed using these approxi-
mations. The two most obvious candidates are:
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Figure 1.1 Two-dimensional distribution p(x0, x1) together with its marginaliza-
tion p(x1), with all three point estimates indicated. Note that the last element x̂JMAPk

of the sequence x̂JMAP0,k in general does not coincide with x̂MAP
k
.

1. Conditional mean

x̂MMSEk =

∫

xkp(xkpYk)dxk (1.15)

2. Maximum a posteriori

x̂MAPk = argmax
xk

p(xkpYk) (1.16)

The name MMSE is due to the fact that it can be shown [Jazwinski, 1970]
that (1.15) minimizes the mean square error for all distributions p(xkpYk).
Next we will introduce a point estimate that can not be computed from
p(xkpYk), but will be the basis for the discussion in the next section.

3. Joint maximum a posteriori

x̂JMAP0,k = argmax
x0,...,xk

p(x0, . . . , xkpYk) (1.17)

To compute the JMAP estimate, it first seems like a maximization problem
that grows with time needs to be solved. Next we will, however, show that
this problem can be solved recursively using dynamic programing.
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1.4 Recursive JMAP State Estimation

In Figure 1.1 all three point estimates are shown for a two-dimensional
distribution p(x0, x1) together with its marginalization p(x1). Note that
the last element x̂JMAP1 of the sequence x̂JMAP0,1 does not in general coincide
with x̂MAP1 . We can thus draw the conclusion that, in general, all three
point estimates presented above may differ. However, in the case of a
Gaussian distribution, like in a Kalman filter, all three estimates coincide.
In a practical application, choosing a proper point estimate can be

far from trivial. The MMSE estimate might be located in an area with
low probability, thus making it a poor estimate, as in the case shown
in Figure 1.1. When using a particle filter, computing the MAP estimate
might prove difficult due to the discretization introduced by the delta
function approximation.

1.4 Recursive JMAP State Estimation

The recursive solution to the JMAP problem was developed in the “mid-
sixties” in a number of papers: In [Cox, 1964] a solution was presented
under the assumption of Gaussian noise. These ideas were then general-
ized to arbitrary noise distributions in [Larson and Peschon, 1966]. The
presentation here follows the latter. Recall that the problem we wish to
solve is

X̂k = argmax
Xk

p(XkpYk) (1.18)

where the superscript JMAP has been dropped and Xk denotes the se-
quence or trajectory {x0, . . . , xk}. To develop a recursive solution, first in-
troduce the function

Ik(xk) = max
Xk−1

p(XkpYk) (1.19)

This function can be interpreted as the probability of the most probable
trajectory terminating in xk. To get a recursive algorithm we next ex-
press Ik(xk) in terms of Ik−1(xk−1). Using Bayes’ theorem and the Markov
property, the following recursive relationship can be established:

Ik(xk) = max
xk−1

p(ykpxk)p(xkpxk−1)

p(ykpYk−1)
Ik−1(xk−1) (1.20)

For a detailed derivation, see [Larson and Peschon, 1966] or Paper VI
where the derivation is done for a Markov jump linear system. The de-
nominator of (1.20) is a normalization constant independent of the state,
thus the recursive equation

Ik(xk) = max
xk−1
p(ykpxk)p(xkpxk−1)Ik−1(xk−1) (1.21)
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can be used instead. The iteration is initiated with

I0(x0) = p(y0px0)p(x0) (1.22)

We have now transformed the task of maximizing p(XkpYk) with respect
to Xk into a recursive problem. Once again, note that maximizing I(xkpYk)
and p(xkpYk) will in general not give the same estimate, as illustrated in
Figure 1.1. Solving (1.21) for general distributions can of course be as hard
as computing the integral (1.11) associated with the conceptual solution.
The difference being that we now need to solve an optimization problem
instead of an integration problem.

Dynamic Programming Formulation. The recursive equation (1.21)
can be transformed into a dynamic programming problem by introducing
the value function

Vk(xk) = − log Ik(xk) (1.23)

The maximization problem (1.21) can now be written as a minimization
problem on the form

Vk(xk) = min
xk−1

{Vk−1(xk−1) + Lk(xk, xk−1)} (1.24)

Lk(xk, xk−1) = − log p(ykpxk) − log p(xkpxk−1) (1.25)

Solving this value iteration problem for general distributions p(ykpxk) and
p(xkpxk−1) is often very difficult and one must almost always resort to
approximations, two of which will be discussed next. But first note how
the Kalman filter fits into this framework.

Relation to the Kalman Filter. As pointed out above, in the case of
a Gaussian distribution, the last element of the JMAP estimate coincides
with the MMSE and MAP estimates. This implies that the recursive algo-
rithms (1.21) or (1.24) should both reproduce the Kalman filter equations.
This is indeed also the case as demonstrated in [Larson and Peschon, 1966]
or [Cox, 1964]. When the problem is formulated as in (1.24), the step cost
Lk becomes a quadratic function, and thus a quadratic function on the
form

Vk(xk) =

[
xk

1

]T

π k

[
xk

1

]

(1.26)

serves as value function.

Approximations of the Recursive JMAP Estimator

The general value iteration problem (1.24) can only be solved in special
cases, like the Kalman filter discussed above. Next we will present two
approximation techniques recently proposed in the literature.
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1.4 Recursive JMAP State Estimation

Relaxed Dynamic Programming. Relaxed dynamic programming [Lin-
coln and Rantzer, 2006] was recently proposed as a method for conquering
the complexity explosion usually associated with dynamic programming.
The basic idea is to replace the equality (1.24) with two inequalities

V k(xk) ≤ V
approx
k (xk) ≤ V k(xk) (1.27)

where the upper and lower bounds are defined as

V k(xk) = min
xk−1

{
V
approx
k−1 (xk−1) +α Lk(xk, xk−1)

}

V k(xk) = min
xk−1

{
V
approx
k−1 (xk−1) +α Lk(xk, xk−1)

} (1.28)

Here the scalars α > 1 and α < 1 are slack parameters that can be
chosen to trade off optimality against complexity. By the introduction of
inequalities instead of equalities it is in principle possible to fit a simpler
value function between the upper and lower bounds. If the approximate
value function is computed as above, it will satisfy

αVk(xk) ≤ V
approx
k (xk) ≤ αVk(xk) (1.29)

which gives guarantees on how far from optimal the approximate solution
is.
The approximate value function can be parametrized in many ways, as

long as there exist methods for computing the upper and lower bounds and
finding a V approxk satisfying (1.27). How to choose a good parametrization
of the relaxed value function for a state feedback control setup has recently
been studied in [Wernrud, 2008].
In Paper VI this approximation technique was applied to a state esti-

mation problem for Markov jump linear systems. In that case, the value
function was parametrized as a minimum of quadratic functions. That
example will now be used to illustrate the approximation procedure.
Consider the illustration in Figure 1.2. The dashed curve shows the

approximate value function V approxk−1 computed at the previous time step
k − 1. At time k, first the upper V k and lower V k bounds are computed
according to (1.28). The piecewise quadratic shape is due to the discrete
nature of the Markov jump linear system dynamics. Next, using the flex-
ibility introduced by the slack parameters, a simpler approximate value
function V approxk can be fitted between the upper an lower bounds. Choos-
ing a larger α and/or smaller α will increase the gap between the upper
and lower bounds, thus making it easier to fit the new approximate value
function.
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V
approx
k−1

V k

V k

V
approx
k

Figure 1.2 1-D illustration of relaxed dynamic programming. The dashed curve
shows the approximate value function Vapprox

k−1 computed at the previous time step

k− 1. At time k, first the upper V k and lower V k bounds are computed according
to (1.28). The piecewise quadratic shape is due to the discrete nature of the Markov
jump linear system dynamics. Next, using the flexibility introduced by the slack
parameters, a simpler approximate value function Vapprox

k
can be fitted between the

upper an lower bounds.

Moving Horizon Estimation. Instead of approximating the recursive
solution directly, moving horizon estimation takes the original problem

argmax
Xk

p(XkpYk) (1.30)

as its starting point. Taking logarithms and using Bayes’ theorem together
with the Markov property allows us to rewrite (1.30) as

argmin
Xk

{

−

k∑

i=0

log p(yipxi) −
k−1∑

i=0

log p(xi+1pxi) − log p(x0)

}

(1.31)

The main problem here is that this optimization problem grows with time.
In the control community, infinite horizon problems have successfully been
approximated with finite horizon approximations in a receding horizon
fashion, resulting in the model predictive control framework. Using similar
ideas the moving horizon estimation method only considers data in a finite
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time window of length N that moves forward with time,

argmin
xk−N ,...,xk

{

−

k∑

i=k−N+1

log p(yipxi) −
k−1∑

i=k−N

log p(xi+1pxi) + Φk(xk−N)

}

(1.32)

The function Φ(xk−N), commonly referred to as arrival cost, is used to
summarize previous information. In the literature, there is very little
support on how to choose this function [Rawlings and Bakshi, 2006]. How-
ever, in [Rao, 2000] it was shown that if this function is chosen sufficiently
small, the moving horizon estimation scheme is stable.
One big advantage with moving horizon estimation is that it is straight

forward to include constraints into the minimization problem (1.32). Care
must, however, be taken as state constraints can lead to models that do
not fulfill the Markov property. Some of these issues are discussed in [Rao,
2000]. In [Ko and Bitmead, 2005] this problem is studied for systems with
linear dynamics and linear equality constraints.
One interesting observation is that for N = 1 the moving horizon esti-

mation scheme reduces to the dynamic programming equation (1.24) with
Vk(xk) = Φk(xk). Thus one can view “dynamic programming estimation”
as moving horizon estimation with a horizon of length one and a very
elaborate arrival cost.
The field of moving horizon estimation has received considerable at-

tention in literature during the last ten years. On the application side, the
method has proven very useful for linear systems with linear constraints.
Much of this success is due to the fact the minimization problem in this
case becomes a quadratic program, which can be solved efficiently. For
a review of the present situation [Rawlings and Bakshi, 2006] is a good
starting point.
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2

Sensor and Sensor-Actuator

Networks

The advances in micro electronics have during the last three decades made
embedded systems an integral part of our every day lives. In the last
decade or so, the Internet has transformed the way we use desktop PCs
from word processors to information portals. The next natural step is
to also allow embedded systems to interact through the use of network-
ing technology. Sometimes the names Pervasive Computing or Ubiquitous
Computing are used to describe this evolution.
This chapter by no means claims to give a full description of the huge

field of networked embedded systems. Instead it points out some areas
which have inspired the work presented in this thesis. It also highlights a
few practical problems that one may encounter when networked embedded
systems are designed or even more so debugged.
Here we choose to divide the field into Sensor Networks and Sensor-

Actuator Networks. The reason for this is that the latter introduces ad-
ditional constraints inherent to all implementations of closed loop control
systems.

2.1 Sensor Networks

Traditionally the main focus of many research efforts and applications
have been networks of passive sensors, often referred to as “wireless sen-
sor networks” or WSN for short. In these networks wireless transceivers
are attached to a large number of sensors and the sensor readings are
processed at a central server. This “sense- and-send” paradigm works well
for low-frequency applications where high-latency is not an issue.
However, when the number of sensors grow and/or they have to report

values back at a higher rate the wireless channels might get saturated.
Also, as most WSN use multi-hop communication, nodes near the central
server will drain their energy resources unnecessarily fast.

30



2.1 Sensor Networks

Design Challenges

When designing a WSN one has to consider a number of things [Akyildiz
et al., 2002] such as radio frequencies, frequency hopping, power tradeoffs,
latency, interference, network protocols, routing, security and so on. In
sense-and-send networks the major concern is often power consumption.
The reason being that nodes are expected to operate for long periods of
time using only battery power.
Contrary to what is often assumed in the control community, one

large source of energy consumption in many commercially available sen-
sor nodes is listening for packets. In for example [Dunkels et al., 2007]
the power consumption was estimated for a typical sense-and-send appli-
cation. There it was reported that more than 80% of the total energy was
consumed in idle listening mode. Similar results are also presented in Pa-
per II, where it was noted that the power consumption when transmitting
was only about 5% higher compared to idle listening.
This issue has been recognized by the more computer science oriented

part of the sensor network community, resulting in duty-cycled MAC pro-
tocols like X-MAC or B-MAC, see [Buettner et al., 2006]. The problem with
duty-cycled MAC protocols is that longer latencies from transmission to
reception are often the result.

Data Generation

Before we continue discussing more elaborate techniques to save energy
and avoid saturating communication links, a number of ways that data
might be generated will be specified [Akkaya and Younis, 2005]:

Event Based data generation refers to a scenario where nodes generate
data based on some external event. This event could for example be
generated if a measured quantity exceeds a specified threshold or if
an object is detected in the vicinity of the sensor.

Periodic data generation refers to a situation where all sensors in the
network generate data periodically. The distributed Kalman filter
algorithm in papers I, II and III is an example of this scheme.

Query Based data generation refers to a setup where one or many users
query the network for information. The sensor scheduling algorithm
in Paper V is an example of this scheme.

In the case of event driven and periodic data generation one may also
differentiate between the case where all nodes require information about
the measured quantity or only a small set of so called sink nodes.
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Data Aggregation

As the computational and memory resources of sensor nodes increase more
elaborate algorithms can be used. Local filtering, data analysis and clas-
sification can be performed prior to transmission. This increased flexibil-
ity can be used to reduce the rate at which nodes have to communicate
and also remove the need to route every single piece of data through
the network. It is, however, worth noticing that using more complicated
algorithms might introduce requirements on for example more accurate
synchronization. Also, because of the increased complexity, many design
flaws can only be detected after deployment. This leads to systems where
the ability to dynamically change software becomes important.
Data aggregation in WSN is a huge field spanning from in depth math-

ematical treatments based on for example information theory and consen-
sus algorithms to more practical aspects such as routing and the design of
various communication protocols. Several surveys have been published on
the subject of which [Akkaya and Younis, 2005], [Rajagopalan and Varsh-
ney, 2006] and [Luo et al., 2007] are among the more recent. One way
to classify data aggregation techniques is as in [Luo et al., 2007] where
the three categories: routing-driven, coding-driven and fusion-driven were
used.

Routing-driven. In routing-driven approaches, the focus is on routing
data to the sink node in an energy efficient way. Data aggregation only
takes place opportunistically, that is only if packets that can be aggregated
happen to meet on their way to the sink. One example of a routing-driven
protocol is the query based Directed Diffusion algorithm [Intanagonwiwat
et al., 2003].

Coding-driven. Coding-driven algorithms focus on compressing raw
sensor data locally to reduce redundancies, thus reducing the need for
further aggregation. This problem is often approached from an informa-
tion theoretic point of view. The compressed data can then be routed using
for example a purely routing-driven approach. In for example [Cristescu
et al., 2005] messages are routed along the shortest-path tree and node
transmission rates are chosen based on entropy measures.

Fusion-driven. Fusion-driven routing is the name for a large set of
algorithms where the basic idea is not only to allow every node to ag-
gregate data, but to route this aggregated data in such way that further
aggregation is possible. The total energy required for information to reach
the sink node(s) is thus minimized. Unfortunately solving this problem
for arbitrary node placements and a general communication topology has
proven to be NP-hard, see for example [Yen et al., 2005].
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2.2 Distributed State Estimation

2.2 Distributed State Estimation

Most of the techniques discussed in the previous section are directed at
scenarios where information flows from the sensor network to one or a few
sink nodes. An alternative approach is to let every node in the network
have full, or at least partial, knowledge of the aggregated quantity. In
distributed estimation problems this quantity is represented as the state
xk of a dynamical system. Each node updates its belief about the state
using local measurements and a dynamical model much like what was
described in Chapter 1. Nodes then exchange beliefs with their neighbors.
Often it is not only the directly measurable quantity, but some under-

lying phenomena that is of interest. In for example Paper III, sensor nodes
measure their distance to a mobile robot, but it is really the position of
the robot that is of interest. This scenario fits well within the distributed
estimation framework. Much of the work on distributed state estimation,
or distributed data fusion as it is sometimes called, has been done in the
target tracking community. There the term track-to-track fusion is often
used. For a recent survey directed at target tracking applications, but also
of general interest, see [Smith and Singh, 2006].
Because nodes only use information generated by themselves and their

neighbors, no routing/forwarding of packets is necessary. If these types of
algorithms are implemented in such a way that the radio can be turned
off during long periods, the energy consumption can be greatly reduced.
When using a dynamic model, the relationship between different mea-

surements, both in time and among different nodes, is made explicit. If
this assumed relationship is violated, for example by bad clock synchro-
nization or sampling-period jitter, performance may degrade considerably.

Conceptual Solution

In a distributed estimation application, each node has its own belief about
the aggregated quantity. This belief is then exchanged with neighboring
nodes and thus the collective knowledge is increased.
Similar to what was done in Chapter 1, the distributed estimation

problem can be formulated using probability distributions. However, com-
bining distributions from two nodes is far from trivial. The problem is
that one node’s belief can be based on the same data as the belief of an-
other node. To combine these, common data must be accounted for. Before
explaining how to combine two distributions, a notation similar to the one
in [Liggins et al., 1997] is introduced:
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YAk Information available in node A at time k.

YA∪Bk Information available in node A or B at time k.

YA∩Bk Information available in node A and B at time k.

Y
A\B
k Information available in node A and not B at time k.

Next we will derive a relation that can be used when combining two con-
ditional distributions that contain common information. This relation was
derived in for example [Chong et al., 1982] and is summarized as a theo-
rem below.

THEOREM 2.1
If the exclusive information in node A and B is conditionally independent
given the state xk, that is

p(Y
A\B
k ,YB\Ak pxk) = p(Y

A\B
k pxk)p(Y

B\A
k pxk) (2.1)

the combined belief p(xkpYA∪Bk ) is related to the two individual distribu-
tions p(xkpYAk ) and p(xkpY

B
k ) as

p(xkpY
A∪B
k ) ∝

p(xkpY
A
k )p(xkpY

B
k )

p(xkpYA∩Bk )
(2.2)

where ∝ denotes proportional to.

Proof. First note that

p(xkpY
A∪B
k ) = p(xkpY

A\B
k ,YB\Ak ,YA∩Bk ) (2.3)

Now using Bayes’ theorem write

p(xkpY
A\B
k ,YB\Ak ,YA∩Bk ) ∝ p(Y

A\B
k ,YB\Ak pxk,YA∩Bk )p(xkpY

A∩B
k ) (2.4)

The conditional independence assumption implies that

p(Y
A\B
k ,YB\Ak pxk,YA∩Bk ) = p(Y

A\B
k pxk,YA∩Bk )p(Y

B\A
k pxk,YA∩Bk ) (2.5)

Using Bayes’ theorem on the two factors in (2.5) together with (2.3) and
(2.4) gives the desired relation.

When more than two nodes are involved this formula can be used repeat-
edly, combining distributions one at the time. To illustrate this, consider
the following example where the time index has been dropped for brevity.
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EXAMPLE 2.1
Consider the following simple communication graph:

A B C

Node B can first combine information from A using (2.2) as

p(xpYA∪B) ∝
p(xpYA)p(xpYB)

p(xpYA∩B)
(2.6)

and then from C as

p(xpYA∪B∪C) ∝
p(xpYA∪B)p(xpYC)

p
(
xpY(A∪B)∩C

) (2.7)

The problem with this approach is how to compute the common informa-
tion in the denominators. Because these nodes communicate according to
a tree topology, A and C can not have any common information that B is
not aware of, or formally Y(A∪B)∩C = YB∩C. The conditional distributions
can thus be combined as

p(xpYA∪B∪C) ∝
p(xpYA)p(xpYB)p(xpYC)

p(xpYA∩B)p(xpYB∩C)
(2.8)

How to compute the common information for a general communication
topology was for example studied in [Liggins et al., 1997].

Unfortunately the conditional independence assumption (2.1) is rather
restrictive. It is satisfied in the following two cases:

1. The state evolution is deterministic, that is xk+1 = fk(xk) for some
known function fk(⋅).

2. Before taking a new measurement, nodes keep exchanging beliefs
until they all possess the same information.

If these assumptions are not satisfied the problem becomes more involved.
The problem can be solved by expanding the belief representation p(xkpYk)
to the distribution p(x0, . . . , xkpYk) of the full trajectory. With this repre-
sentation, (2.1) is fulfilled as long as the measurement noise in different
nodes is independent. Unfortunately the size of p(x0, . . . , xkpYk) grows with
time. If, however, an upper bound τ on the maximum delay between when
a measurement is collected and when it has been used in all nodes is
available, this information can be used to reduce the size of the belief
distribution to p(xk−τ , . . . , xkpYk). This approach was used in [Rosencrantz
et al., 2003] where a distributed particle filter was developed.
The next section is devoted to a number of approximate methods for

the special case of linear dynamics with Gaussian disturbances.
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Approximate Distributed Kalman Filters

In this section we will assume that the measured quantity yik in node
i ∈ {1, . . . ,N} can be modelled as the output of a linear system subject to
white Gaussian noise wk and vik

xk+1 = Axk +wk

yik = C
ixk + v

i
k

(2.9)

The process noise wk and measurement noise vik are assumed indepen-
dent with covariance matrices Rw and Riv respectively. Under these as-
sumptions, distributed state estimation algorithms are often referred to
as distributed Kalman filters or DKFs for short. In a DKF, all probability
distributions are Gaussian and thus only means and covariances need to
be considered.
One way to approximate the optimal solution presented above is to use

the merge equation (2.2) even if the conditional independence assumption
(2.1) is not satisfied. This approach was used in for example [Grime et al.,
1992] and in a series of papers by the same authors.
An alternative approximation technique is to combine estimates using

a weighted linear combination. The weights are optimized to yield a min-
imal error covariance matrix of the combined estimate. This scheme is
sometimes referred to as the Bar-Shalom-Campo algorithm [Bar-Shalom
and Campo, 1986]. Papers I, II and III are also based on this idea.
To find optimal weights, the cross covariance between estimates must

be known. If this is not the case, the so called covariance intersection algo-
rithm [Julier and Uhlmann, 1997b] can be used. The covariance intersec-
tion algorithm produces a consistent linear combination without knowl-
edge of the error cross covariance between the estimates. Note that the
resulting covariance is always larger or equal to the optimal one.
Performance for various approximation schemes was investigated in

[Mori et al., 2002], which also serves as a good survey on algorithms
based on the two approximation approaches discussed above.

Consensus Based Kalman Filtering. Recently there has been a large
interest in so called consensus algorithms. As defined in [Olfati-Saber
et al., 2007] consensus, in the context of networks of agents, means “to
reach an agreement regarding a certain quantity of interest that depends
on the state of all agents”. To reach this agreement a so called consen-
sus algorithm is used. A consensus algorithm is “an interaction rule that
specifies the information exchange between an agent and all of its neigh-
bors on the network”. These algorithms can be designed in a number of
different ways, for example to maximize the rate at which consensus is
reached. This was done in for example [Xiao and Boyd, 2004].
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The first consensus-based distributed Kalman filters [Olfati-Saber,
2005] used the information form of a centralized Kalman filter as their
starting point. The Kalman filter on information form can be written us-
ing the information matrix

Z−1k = E (x − x̂k)(x − x̂k)T (2.10)

and information vector
zk = Zk x̂k (2.11)

where x̂k denotes the state estimate. When it is necessary to specify on
which information an estimate is based, the notation zkpk (Zkpk) and zkpk−1
(Zkpk−1) is used to denote filtering and one-step ahead prediction respec-
tively.
Writing the Kalman filter in information form has the advantage that

conditionally independent measurements can be incorporated additively:

zkpk = zkpk−1 +

N∑

i=1

(Ci)T(Riv)
−1yik

Zkpk = Zkpk−1 +

N∑

i=1

(Ci)T (Riv)
−1Ci

(2.12)

The prediction step,

zkpk−1 = Zkpk−1AZ
−1
k−1pk−1zk−1pk−1

Zkpk−1 = (AZ
−1
k−1pk−1A

T + Rw)
−1

(2.13)

however, becomes somewhat more involved. If both sums in (2.12) are
available in all N nodes, for example by all-to-all communication, each
node can run the filter described above. When only neighbor-to-neighbor
communication is possible, consensus filters are used to compute these two
sums. Note that even if the system dynamics are time-invariant the first
sum is time-varying because it includes the actual measurements yik. This
fact has the important implication that unless the consensus algorithm
is run at a much higher rate than the filter, also this approach is only
approximate.
Recently, in [Olfati-Saber, 2007] a number of consensus-based algo-

rithms, where also neighboring state estimates are used, were developed.
These algorithms improve upon the approach described above, but are still
only approximations.
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2.3 Sensor-Actuator Networks

In a sensor-actuator network the WSN ideas are taken one step further.
Here sensors are not only required to measure, aggregate and transmit
data, but also to act on it. In these type of networks the sense-and-send
paradigm does not work very well, because of the long latency introduced
when decisions are made by a central server. Sensor-actuator networks can
be viewed as an application of distributed decision making. Distributed
decision making has been an active research area for several decades,
see for example [Gattami, 2007] for references and a recent mathematical
treatment.
In a network designed to only collect information, it is usually not

critical when this information reaches its destination, as long as it does
and does so in an energy efficient way. However, if a network not only
collects information from the physical world, but also acts on it, it makes
a big difference if this information is delayed. This has implications on the
tradeoffs made when designing for example data aggregation algorithms.
In the case of distributed estimation, usually filtering, that is estimating
the current state based on information up to and including the current
time, is considered. This fits well with the requirements imposed by closed
loop control.
The low quality wireless links often used further complicates the prob-

lem. Even if lost packets are retransmitted, there can still be situations
where no or very little information gets through. In these situations, it
is important that a node can make a reasonable decision based solely on
local information. In Paper IV a mobile robot uses a sensor network to
navigate. However, when no data is available from the network, the robot
navigates using only local sensors. This situation can be captured by the
general state estimation framework presented in Chapter 1.

2.4 Software Platforms

Real-time critical systems have traditionally executed in real-time operat-
ing systems, or at least on computational platforms where timing issues
can be kept under control. However, the tradeoff between cost and func-
tionality has forced also real-time critical applications to run on severely
resource-constrained platforms. Recently these issues have been studied
in for example [Henriksson, 2006].
In sensor and sensor-actuator networks the hardware platforms avail-

able are usually even more resource constrained. In addition to this, the
available operating systems are often focused on traditional WSN appli-
cations where delay and accurate timing is of less importance.

38



2.5 Development Tools

Recently there has been a trend towards modular and component-
based software development in these type of systems. In for example
the European integrated project Reconfigurable Ubiquitous Networked
Embedded Systems [RUNES, 2007] a component-based middleware was
developed. When using a component-based design methodology it is of
great importance to achieve a situation where component properties do
not change as a result of interactions with other components. If this is not
the case, the benefits of a component-based design methodology are to a
large extent only illusive.
In the networked embedded systems we consider here, the four main

resources are: memory, CPU time, network bandwidth and energy. To
achieve the situation described above, a component must make explicit its
uses and requirements of all these resources. This is, however, not enough.
The way components are combined into software systems must make sure
that the utilization of all resources does not exceed their maximum capac-
ity. Ideally a component should be able to recognize that it does not get
the resources it requires and adapt accordingly. Of course designing such
systems still remains a great challenge.
Sensor-actuator networks typically consist of a number of different

hardware platforms ranging from low-end sensor nodes through gateways
all the way to powerful central servers. The usage of a common network
protocol, such as IP, makes it possible to add new platforms without having
to write adaptor functions. Recent developments in network technology
such as the µIP stack [Dunkels, 2003] has made it possible to seamlessly
integrate severely resource-constrained platforms with high-end central
servers.

2.5 Development Tools

When developing distributed control and/or estimation algorithms oper-
ating on severely resource-constrained platforms the lack of distributed
debugging and monitoring tools becomes evident. Normally straight for-
ward tasks such as logging of measured signals become a problem. Using
wired logging might not be possible if the network covers a large geograph-
ical area and wireless logging will consume bandwidth and CPU time,
thus effecting the system under study. Because many issues in these type
of distributed applications can only be observed after deployment, these
problems can consume a considerable amount of time during the develop-
ment process.
One way to resolve the situation is through simulation. In the litera-

ture there are numerous simulators for wireless sensor networks, some of
which are listed below:
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TOSSIM [Levis et al., 2003] is simulator for TinyOS [TinyOS Open Tech-
nology Alliance, 2008] that compiles directly from TinyOS code.

ns-2 [ns-2, 2008] is a general purpose network simulator that supports
simulation of TCP, routing and multi-cast protocols over wired and
wireless networks.

Mannasim [Mannasim, 2008] is a module for WSN simulation based on
the network simulator (ns-2). Mannasim extends ns-2 introducing
new modules for design, development and analysis of different WSN
applications.

OMNeT++ [Varga, 2001] is a discrete event simulation environment. Its
primary application area is simulation of communication networks.

J-Sim [J-sim, 2008] is a component-based, compositional simulation en-
vironment written in Java.

COOJA [Österlind et al., 2007] is a Contiki [Dunkels et al., 2004] simula-
tor that allows cross-level simulation of both network and operating
system.

The simulation tools presented above are mainly focused on network
simulation. When introducing more complex data aggregation algorithms,
such as the distributed Kalman filter, one also need to consider how
timing-effects influence performance. This calls for so called co-simulation
tools, where embedded systems, networks and physical systems can be
simulated all within the same tool. In Paper II the Matlab/Simulink based
tool TrueTime [Andersson et al., 2005] was used to investigate how syn-
chronization effected packet loss in a distributed Kalman filter algorithm.

40



3

Future Work

Both state estimation for hybrid and distributed systems and sensor and
sensor-actuator networks are very active research areas. The work pre-
sented in this thesis can be extended in several directions.

Dynamic Programming Estimation

The approximate dynamic programming techniques used here, might also
prove fruitful for other problem classes. The key issue is, however, how to
parametrize the value function in an efficient way.
On the theoretical side, it could be interesting to quantify the relation-

ship between the relaxation parameters and estimation performance.
Recently, there has been increased interest in using relaxed dynamic

programming for estimating the degree of suboptimality in receding hori-
zon control schemes. See for example [Grüne and Pannek, 2008]. Similar
ideas might be used to develop the connection between moving horizon
estimation and “dynamic programming estimation”. Perhaps relaxed dy-
namic programming can be used as a systematic tool for constructing the
arrival cost.

System Theoretic Tools in Sensor(-Actuator) Networks

Currently there is a trend towards consensus based algorithms in the
control community. These algorithms could prove useful for many, but far
from all, problems in distributed estimation and decision making. Looking
at these problems from a general state estimation perspective might also
prove insightful.
Perhaps the main drawback with the distributed Kalman filter algo-

rithm in papers I, II and III is that it requires global knowledge of the
communication topology at the deployment phase. One way to relax this
assumption could be to make use of the covariance intersection algorithm
[Julier and Uhlmann, 1997b].
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Software Platforms

When working with more practical aspects of sensor-actuator networks
one gets painfully aware how much time simple tasks as updating soft-
ware on a deployed network or logging of various quantities can take.
Inherent in the distributed nature of the application is that many effects
can only be studied after deployment. Recently, some very promising Java
based platforms have been released. Perhaps these together with good
simulation tools can resolve some of these issues.
When introducing model-based system-theoretical tools, the require-

ments of accurate timing and synchronization increases. For this to work
well with a component-based software architecture, these requirements
must be made explicit in the component description. This is especially im-
portant when software modules can be loaded dynamically. Reservation-
based scheduling is a promising concept that might resolve some of these
problems. However, how to fit a sophisticated run-time kernel, a network
stack and still have room for applications on a low-end platform still re-
mains an open question.

42



References

Akkaya, K. and M. Younis (2005): “A survey on routing protocols for
wireless sensor networks.” Ad Hoc Networks, 3:3, pp. 325–349.

Akyildiz, I., W. Su, Y. Sankarasubramaniam, and E. Cayirci (2002): “A
survey on sensor networks.” Communications Magazine, IEEE, 40:8,
pp. 102–114.

Andersson, M., D. Henriksson, A. Cervin, and K.-E. Årzén (2005):
“Simulation of wireless networked control systems.” In Proceedings
of the 44th IEEE Conference on Decision and Control and European
Control Conference ECC 2005. Seville, Spain.

Bar-Shalom, Y. and L. Campo (1986): “The effect of the common process
noise on the two-sensor fused-track covariance.” IEEE Transactions on
Aerospace and Electronic Systems, AES-22:6, pp. 803–805.

Buettner, M., G. Yee, E. Anderson, and R. Han (2006): “X-MAC: a short
preamble MAC protocol for duty-cycled wireless sensor networks.”
In Proceedings of the 4th International Conference on Embedded
Networked Sensor Systems, pp. 307– 320. Boulder, Colorado, USA.

Chong, C. Y., S. Mori, E. Tse, and R. P. Wishner (1982): “Distributed esti-
mation in distributed sensor networks.” American Control Conference,
19, pp. 820–826.

Cox, H. (1964): “On the estimation of state variables and parameters for
noisy dynamic systems.” IEEE Trans. Automat. Contr., 9, January,
pp. 5–12.

Cristescu, R., B. Beferull-Lozano, and M. Vetterli (2005): “Networked
slepian-wolf: theory, algorithms, and scaling laws.” IEEE Transactions
on Information Theory, 51:12, pp. 4057–4073.

Doucet, A., N. de Freitas, and N. Gordon (2001): Sequential Monte Carlo
methods in practice. Statistics for engineering and information science.
Springer.

Dunkels, A. (2003): “Full TCP/IP for 8 Bit Architectures.” In Proceedings
of the First ACM/Usenix International Conference on Mobile Systems,
Applications and Services (MobiSys 2003). USENIX, San Francisco.

43



References

Dunkels, A., B. Grönvall, and T. Voigt (2004): “Contiki - a lightweight and
flexible operating system for tiny networked sensors.” In Proceedings of
the First IEEE Workshop on Embedded Networked Sensors (Emnets-
I). Tampa, Florida, USA.

Dunkels, A., F. Österlind, N. Tsiftes, and Z. He (2007): “Software-based
on-line energy estimation for sensor nodes.” In Proceedings of the
Fourth Workshop on Embedded Networked Sensors (Emnets IV). Cork,
Ireland.

Gattami, A. (2007): Optimal Decisions with Limited Information. PhD
thesis ISRN LUTFD2/TFRT--1079--SE, Department of Automatic
Control, Lund University, Sweden.

Grime, S., H. F. Durrant-Whyte, and P. Ho (1992): “Communication
in decentralized data-fusion systems.” In In Proc. American Control
Conference, pp. 3299–3303.

Grüne, L. and J. Pannek (2008): “Trajectory based suboptimality esti-
mates for receding horizon controllers.” In Proceedings of the 18th
International Symposium on Mathematical Theory of Networks and
Systems MTNS2008. Blacksburg, Virginia.

Henriksson, D. (2006): Resource-Constrained Embedded Control and
Computing Systems. PhD thesis ISRN LUTFD2/TFRT--1074--SE,
Department of Automatic Control, Lund Institute of Technology,
Sweden.

Ho, Y. C. and R. C. K. Lee (1964): “A Bayesian approach to problems in
stochastic estimation and control.” IEEE Trans. Automat. Contr., 9,
October, pp. 333–339.

Intanagonwiwat, C., R. Govindan, D. Estrin, J. Heidemann, and
F. Silva (2003): “Directed diffusion for wireless sensor networking.”
IEEE/ACM Transactions on Networking, 11:1, pp. 2–16.

J-sim (2008): http://www.j-sim.org.

Jazwinski, A. H. (1970): Stochastic Processes and Filtering Theory.
Academic Press.

Julier, S. and J. Uhlmann (1997a): “A new extension of the Kalman
filter to nonlinear systems.” In Int. Symp. Aerospace/Defense Sensing,
Simul. and Controls, Orlando, FL.

Julier, S. and J. Uhlmann (1997b): “A non-divergent estimation algorithm
in the presence of unknown correlations.” Proceedings of the American
Control Conference, 4, pp. 2369–2373.

44



Julier, S. and J. Uhlmann (2004): “Unscented filtering and nonlinear
estimation.” Proceedings of the IEEE, 92:3, pp. 401–422.

Kalman, R. E. (1960): “A new approach to linear filtering and prediction
problems.” Transactions of the ASME–Journal of Basic Engineering,
82:Series D, pp. 35–45.

Ko, S. and R. R. Bitmead (2005): “State estimation of linear systems
with state equality constraints.” In Proccedings of the 16th IFAC World
Congress.

Larson, R. E. and J. Peschon (1966): “A dynamic programming approach to
trajectory estimation.” IEEE Trans. Automat. Contr., 11, July, pp. 537–
540.

Levis, P., N. Lee, M. Welsh, and D. Culler (2003): “TOSSIM: accurate
and scalable simulation of entire TinyOS applications.” In SenSys
’03: Proceedings of the 1st International Conference on Embedded
Networked Sensor Systems, pp. 126–137. ACM, New York, NY, USA.

Liggins, M., C.-Y. Chong, I. Kadar, M. Alford, V. Vannicola, and S. Tho-
mopoulos (1997): “Distributed fusion architectures and algorithms for
target tracking.” Proceedings of the IEEE, 85:1, pp. 95–107.

Lincoln, B. and A. Rantzer (2006): “Relaxing dynamic programming.”
IEEE Transactions on Automatic Control, 51:8, pp. 1249–1260.

Luo, H., Y. Liu, and S. Das (2007): “Routing correlated data in wireless
sensor networks: A survey.” IEEE Network, 21:6, pp. 40–47.

Mannasim (2008): http://www.mannasim.dcc.ufmg.br.

Mori, S., W. H. Barker, C.-Y. Chong, and K.-C. Chang (2002): “Track asso-
ciation and track fusion with nondeterministic target dynamics.” IEEE
Transactions on Aerospace and Electronic Systems, 38:2, pp. 659–668.

ns-2 (2008): http://www.isi.edu/nsnam/ns/.

Olfati-Saber, R. (2005): “Distributed Kalman filter with embedded consen-
sus filters.” In Proceedings of the 44th IEEE Conference on Decision
and Control, and European Control Conference.

Olfati-Saber, R. (2007): “Distributed Kalman filtering for sensor net-
works.” In Proceedings of the 46th Conference on Decision and Control,
pp. 5492–5498. New Orleans, LA, USA.

Olfati-Saber, R., J. A. Fax, and R. M. Murray (2007): “Consensus and
cooperation in networked multi-agent systems.” Proceedings of the
IEEE, 95:1, pp. 215–233.

45



References

Rajagopalan, R. and P. Varshney (2006): “Data-aggregation techniques
in sensor networks: A survey.” IEEE Communications Surveys and
Tutorials, 8:4, pp. 48–63.

Rao, C. V. (2000): Moving Horizon Strategies for the Constrained Mon-
itoring and Control of Nonlinear Discrete-Time Systems. PhD thesis,
University of Wisconsin-Madison.

Rawlings, J. and B. Bakshi (2006): “Particle filtering and moving hori-
zon estimation.” Computers and Chemical Engineering, 30:10-12,
pp. 1529–1541.

Rosencrantz, M., G. Gordon, and S. Thrun (2003): “Decentralized sensor
fusion with distributed particle filters.” In Proc. Conf. Uncertainty in
Artificial Intelligence, Acapulco, Mexico.

RUNES (2007): “Reconfigurable ubiquitous networked embedded sys-
tems.” http://www.ist-runes.org.

Schön, T. B. (2006): Estimation of Nonlinear Dynamic Systems : Theory
and Applications. PhD thesis, Linköping Univ.

Smith, D. and S. Singh (2006): “Approaches to multisensor data fusion in
target tracking: A survey.” IEEE Transactions on Knowledge and Data
Engineering, 18:12, pp. 1696–1711.

TinyOS Open Technology Alliance (2008): TinyOS. http://www.tinyos.

net.

Varga, A. (2001): “The OMNeT++ discrete event simulation system.”
In In the Proceedings of the European Simulation Multiconference
(ESM’2001). Prague, Czech Republic.

Wernrud, A. (2008): Approximate Dynamic Programming with Applica-
tions. PhD thesis ISRN LUTFD2/TFRT--1082--SE, Department of Au-
tomatic Control, Lund University, Sweden.

Xiao, L. and S. Boyd (2004): “Fast linear iterations for distributed
averaging.” Systems and Control Letters, 53:1, pp. 65–78.

Yen, H.-H., F. Y.-S. Lin, and S.-P. Lin (2005): “Energy-Efficient Data-
Centric Routing in Wireless Sensor Networks.” IEICE Trans. Com-
mun., E88-B:12, pp. 4470–4480.

Österlind, F., A. Dunkels, J. Eriksson, N. Finne, and T. Voigt (2007):
“Cross-level simulation in cooja.” In Proceedings of the European Con-
ference on Wireless Sensor Networks (EWSN), Poster/Demo session.
Delft, The Netherlands.

46



Paper I

Model Based Information Fusion in
Sensor Networks

Peter Alriksson and Anders Rantzer

Abstract

In this paper, a model based sensor fusion algorithm for sensor net-
works is presented. The algorithm, referred to as distributed Kalman
filtering is based on a previously presented algorithm with the same
name. The weight selection process has been improved yielding perfor-
mance improvements of several times for the examples studied. Also,
solutions to both optimization problems involved in the iterative off-
line weight selection process are given as closed form expressions. The
algorithm is also demonstrated on a typical signal tracking applica-
tion.

cF2008 IFAC. Reprinted, with permission from Proceedings of the 17th
IFAC World Congress, Seoul, South Korea, 2008.
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1. Introduction

In recent years the increases in battery and processing power of sensor
nodes has made a wide range of sensing applications possible. However
as the number of sensors in a network increase the need for efficient data
aggregation becomes more and more evident. For a small sensor network
routing measurements to a central node using for example Ad hoc On
Demand Distance Vector (AODV) routing might be feasible, see [Perkins
et al., 2003]. However as the network grows, the computational- and net-
work load both in the central node and in bottleneck nodes throughout the
network will be a major problem. Also these nodes will drain their energy
resources unnecessarily fast.
There are numerous data fusion techniques in the sensor network lit-

erature, but most fall into two categories: data driven and model based.
An example of a data driven technique would for example be finding the
maximum temperature in an area. Each node compares its temperature
with its neighbors and only the maximum is transmitted. In this paper
we will focus on a model based approach. One simple example would be to
estimate the mean temperature in an area. The temperature could then
be modeled as a constant quantity that is observed through a number of
noisy sensors. In the model based approach the quantity of interest is not
required to be directly measurable but can be estimated from previous
measurements using a model.

2. Previous Work

The technique used in this paper is often referred to as distributed Kalman
filtering. In a distributed Kalman filter, nodes exchange estimates of the
quantity of interest possibly together with the their local measurements.
An early reference is [Durrant-Whyte et al., 1990] where a decentral-

ized Kalman filter was proposed. However, this algorithm requires every
node to be able to communicate with every other node, which is not pos-
sible in the setup studied here.
One common technique is to apply consensus filters, see [Olfati-Saber

et al., 2007], on various quantities such as the measurements, covari-
ances and/or state estimates. These consensus filters usually operate at
a faster rate than the sampling rate, thus allowing the network to reach
an agreement before the state estimate is updated. Under this assump-
tion the choice of Kalman gain can be treated in the same way as a cen-
tralized Kalman filter. Recent papers in this area include [Olfati-Saber,
2007], [Spanos et al., 2005] and [Xiao et al., 2005]. In [Carli et al., 2007]
it was noted that if the assumption of agreement is not fulfilled the op-
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3. Problem Formulation

timal Kalman gain for a centralized filter does not coincide with that of
a distributed. This issue was also addressed in [Schizas et al., 2007]. In
[Speranzon et al., 2006] the scalar case was studied under the assumption
that nodes communicate only once between each measurement.
In [Alriksson and Rantzer, 2006] a two step procedure for distributed

Kalman filtering was developed. This algorithm consists of one part that
is done online and one offline part where parameters for the online part
are selected. This paper aims at improving the parameter selection step
of that paper.
This paper is organized as follows. In Section 3 we present the math-

ematical problem studied and give necessary assumptions. In Section 4
the online part of the algorithm is given for clarity. Section 5 presents
the improved offline parameter selection process and in Section 6 three
numerical examples are given.

3. Problem Formulation

Consider the following discrete-time linear system

x(k+ 1) = Ax(k) +w(k) (1)

where x(k) ∈ Rn is the state of the system and w(k) ∈ Rn is a stochastic
disturbance. The disturbance is assumed to be a white zero mean Gaus-
sian process with covariance defined in (3).
The process is observed by N agents each with some processing and

communication capability. The agents are labeled i = 1, 2, . . . ,N and form
the setV . The communication topology is modeled as a graphG = (V ,E),
where the edge (i, j) is in E if and only if node i and node j can exchange
messages. The nodes to which node i communicates are called neighbors
and are contained in the set Ni. Note that node i is also included in the
set Ni.
Each node observes the process (1) by a measurement yi(k) ∈ Rmi of

the form
yi(k) = Cix(k) + ei(k) (2)

where ei(k) ∈ Rmi is a white zero mean Gaussian process. The process-
and measurement disturbances are correlated according to

E









w(k)

e1(k)

...

eN(k)

















w(l)

e1(l)

...

eN(l)









T

=









Rw 0 . . . 0

0 Re11 . . . Re1N
...

...
. . .

...

0 ReN1 . . . ReNN









δ kl (3)
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where δ kl = 1 only if k = l. Note that this is a heterogeneous setup
where each agent is allowed to to take measurements of arbitrary size
and precision. Further the disturbances acting on the measurements are
allowed to be correlated.
Each node is only allowed to communicate estimates with its neighbors

and only once between each measurement. Further the only assumption
made on the graph structure is that it has to be connected, other assump-
tions such as requiring it to be loop free are not necessary. No node is
superior to any other and thus no central processing is allowed after de-
ployment. This setup is somewhat different from the setup used in for
example distributed control problems where each node in the graph also
has dynamics associated with it. The reader should think of the problem
studied here as for example a network of sensors trying to estimate the
position of an external object they observe.
The goal is to make sure that every node in the network has a good

estimate x̂i(k) of the state x(k).

4. Online Computations

The algorithm consists of the two traditional estimation steps measure-
ment update and prediction, together with an additional step where the
nodes communicate and merge estimates. We will refer to an estimate
after measurement update as local and after the communication step as
regional.

1. Measurement update
The local estimate x̂locali (kpk) is formed by the predicted regional
estimate x̂re�i (kpk− 1) and the local measurement yi(k)

x̂locali (kpk) = x̂re�i (kpk− 1) + Ki[yi(k) − Ci x̂
re�
i (kpk− 1)] (4)

where Ki is computed off-line. The predicted estimate at time zero
is defined as x̂re�i (0p−1) = x̂0 where x̂0 is the initial estimate of x(0).

2. Merging
First the agents exchange their estimates over the communication
channel. This communication is assumed to be error and delay free.
The merged estimate x̂re�i (kpk) in node i is defined as a linear com-
bination of the estimates in the neighboring nodes Ni.

x̂
re�
i (kpk) =

∑

j∈Ni

Wi j x̂
local
j (kpk) (5)
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The weighting matrices Wi j are computed off-line by the procedure
described in Section 5.

3. Prediction
Because the measurement- and process noises are independent the
prediction step only includes

x̂
re�
i (k+ 1pk) = Ax̂

re�
i (kpk) (6)

5. Offline Parameter Selection

As the best estimate will be available after the merging step we will focus
on minimizing the estimation error covariance after this step. First, let
the estimation error in node i be denoted

x̃i(kpk) = x(k) − x̂
re�
i (kpk) (7)

and its (cross)covariance

P
re�
i j (kpk) = Ex̃i(kpk)x̃

T
j (kpk) (8)

Next introduce the stacked estimation error

x̃(kpk) =






x̃1(kpk)

...

x̃N(kpk)




 (9)

with covariance Pre�(kpk). Using (5) and requiring that

Wi j = 0 if (i, j) /∈ E (10)

the covariance after step 2) can be written as

Pre�(kpk) = WPlocal(kpk)WT (11)

To keep the estimate unbiased we also need to require that
∑

j∈Ni

Wi j = I ∀i ∈V (12)

The covariance Plocal(kpk) after step 1) can be expressed as

Plocal(kpk) = [ I K̃ ] F [ I K̃ ]T (13)
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where

F =

[
I

−C̃

]

Pre�(kpk− 1)
[
I

−C̃

]T

+

[
0 0

0 Re

]

(14)

and

K̃ =






K1

. . .

KN




 C̃ =






C1

. . .

CN




 (15)

After step 3) each block of the covariance matrix is updated as

P
re�
i j (kpk− 1) = AP

re�
i j (k− 1pk− 1)A

T + Rw (16)

with Pre�i j (0p − 1) = P0 where P0 is the initial estimation error covariance.
Equations (11), (13) and (16) form an iterative procedure for computing
the steady state covariance as time approaches infinity for given values
of W and K̃ .
Ideally, we would like to find values W and K̃ that minimizes the

steady state value of tr Pre�(kpk) as k→∞ subject to the constraints (10)
and (12). This non-convex problem will be approximated in two steps.
Instead of minimizing the steady state covariance directly, an approximate
iterative procedure in analogy with the standard Kalman filter will be
used.
Combining (13) and (11) the minimization problem to be solved in each

iteration can be written as

min
K̃ ,W

trW [ I K̃ ] F [ I K̃ ]T WT

s.t (10) and (12)
(17)

This problem will be solved using an alternating minimization type method.
The algorithm is divided into three steps. The first two steps corre-

spond to the minimization problem (17) and in the third step the covari-
ance is updated. The procedure is then iterated until convergence.

1. K-step

K̃ (k) = argmin
K̃

trW(k− 1) [ I K̃ ] F [ I K̃ ]T WT(k− 1)

2. W-step

For all i ∈V

Wi⋅(k) = argmin
Wi⋅

trWi⋅ [ I K̃ (k) ] F [ I K̃ (k) ]T WTi⋅

s.t (10) and (12)
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3. P-step

Pre�(kpk) = W(k) [ I K̃ (k) ] F [ I K̃ (k) ]T WT(k)

P
re�
i j (k+ 1pk) = AP

re�
i j (kpk)A

T + Rw ∀i, j ∈V

The algorithm is initialized with Pregi j (0p − 1) = P0 and W(0) = I. Note
that in step 2) the minimization with respect to Wi⋅, that is block row i, for
each i ∈V is equivalent to minimization with respect to the full matrix
W .
Compared to the algorithm proposed in [Alriksson and Rantzer, 2006]

the K-step now takes into account the fact that the estimates will be
merged. Both the K- and W-step are quadratic minimization problems
with explicit solutions which allows the algorithm to be applied to large
scale systems.

5.1 The K-step

In this section the optimization problem from the K-step will be studied.
To simplify notation time indices are dropped:

min
K̃
trW [ I K̃ ] F [ I K̃ ]T WT (18)

In this section linear conditions that the optimal K̃ have to fulfill will be
derived. First partition F as in

[ I K̃ ]

[
F11 F12

FT12 F22

]

[ I K̃ ]T (19)

To isolate the free parameters in K̃ it is expressed as a sum

K̃ =

N∑

i=1

UTi KiVi (20)

where

Ui = [ 0n$n(i−1) In$n 0n$n(N−i) ]

Vi = [ 0mi$li Imi$mi 0mi$l̃i ]
(21)

li =
∑i−1
j=1m j and l̃i =

∑N
j=i+1m j (22)

Using the decomposition (20) of K̃ , conditions for optimality of (18) are
given by

UiW
TW [ I K̃ ]

[
F12

F22

]

VTi = 0 ∀i ∈V (23)
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To simplify notation first introduce

Gi j = UiW
TWUTj and Hi j = VjF22V

T
i (24)

Qi = UiW
TWF12V

T
i (25)

Now (23) can be rewritten as

∑N
j=1 Gi jK jHi j = −Qi , ∀i ∈V (26)

To solve this set of matrix equations vectorization of the matrices will be
used:

N∑

j=1

(HTi j ⊗ Gi j)K̄ j = −Q̄i (27)

where
K̄ j = vec(K j) and Q̄i = vec(Qi) (28)

This can be written in matrix form as






HT11 ⊗ G11 ⋅ ⋅ ⋅ HT1N ⊗ G1N

...
. . .

...

HTN1 ⊗ GN1 ⋅ ⋅ ⋅ HTNN ⊗ GNN












K̄1
...

K̄N




 = −






Q̄1

...

Q̄N




 (29)

Thus we have derived linear equations for the optimal K̄i which gives the
optimal K̃ .

5.2 W-Step

Introducing the sparsity constraint (10) is equivalent to removing rows
and columns corresponding to weights that are required to be zero. Thus
for each i the optimization problem can be written as

min
W̃

tr W̃ P̃W̃T

s.t. W̃ e = In
(30)

where e = [ In . . . In ]
T . Here W̃ contains the non-zero blocks of Wi⋅ and P̃

the corresponding elements of the matrix [ I K̃ (k) ] F [ I K̃ (k) ]T . Using
Lagrange multipliers it can be shown, see [Sun and Deng, 2004], that
conditions for optimality are

[
P̃ e

eT 0

]

︸ ︷︷ ︸

G

[
W̃T

Λ

]

=

[
0

In

]

(31)
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The equation system (31) is in general underdetermined, so to get a unique
solution the following minimization problem is introduced

min
W̃

tr W̃W̃T

s.t. (31)
(32)

All solutions satisfying (31) can be parametrized in terms of V as

[
W̃T

Λ

]

= G†
[
0

In

]

︸ ︷︷ ︸

d

+G0V (33)

where G† denotes the Moore-Penrose pseudo inverse and G0 a matrix of
vectors spanning the null space of G. Now (32) can be rewritten as

min
V
tr
[
V

I

]T [
I (G01)

Td1

dT1 G
0
1 dT1 d1

] [
V

I

]

(34)

where d1 and G01 are the parts corresponding to W̃
T . The solution to this

unconstrained quadratic minimization problem is given by V = −(G01)
Td1.

Thus the optimal W̃ is given by

W̃ = dT1 (I − G
0
1(G

0
1)
T ) (35)

6. Numerical Examples

In this section three numerical examples will be studied. The first example
is chosen to illustrate the performance improvement gained by modifying
the K-step compared to the algorithm presented in [Alriksson and Rantzer,
2006]. The second example illustrates how varying the communication
topology influences achieved performance. The third example illustrates
an application where a scalar time varying signal, such as for example
the temperature in an area, is measured by a sensor network.

6.1 Performance Comparison

Ideally, when comparing two suboptimal algorithms one would like to
compare them to the results of the optimal solution. However in this case
the K̃ and W yielding the optimal covariance Popt can only be computed
for very simple systems with special structure.
As a comparison we will use an observer scheme that relies on commu-

nication of measurements rather than estimates, but respects the imposed
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communication topology. For all nodes to be able to maintain an opti-
mal estimate, they must have access to all measurements. The amount
of communication required to achieve this greatly exceeds the required
communication for the scheme in Section 4 and in most cases is practi-
cally impossible. This scheme will however yield a lower estimation error
covariance Pmeas than Popt because having access to all measurements is
clearly at least as good as having access to estimates generated by these
measurements. Thus we have

Pmeas ≤ Popt ≤ P (36)

where P refers to the scheme presented in Section 4.
As communication is only allowed to occur once every sample, the com-

munication topology will impose a delay equal to the graph distance to
a particular node. If measurement noise in different nodes is assumed
independent, delayed measurements can be incorporated in the current
estimate by extending the state space.
Note that the covariance will be different in different nodes due to

the imposed communication topology. To evaluate overall performance the
mean over all nodes in the network will be used.
In Figure 1 the relative performance tr P−tr P

meas

tr Pmeas is plotted as a function
of the process noise Rw for both weight selection algorithms. The perfor-
mance was evaluated for 843 randomly generated second order systems
with a communication topology described by graphs with 10 nodes and
5.95 neighbors on average. The shaded regions are 95% confidence inter-
vals for the mean over all 843 systems. The measurement noise covariance
matrix Re was chosen as the identity matrix.
Because estimates are used as information carriers and communica-

tion is only allowed to take place once every sampling interval the process
noise parameter Rw determines the effective distance from which a node
collects information. Therefore one would expect the suboptimal solution
to deteriorate as Rw is decreases, this is also confirmed by the results in
Figure 1.

6.2 Connectivity Dependencies

The effects on estimation performance of 1620 randomly generated com-
munication topologies with 20 nodes was studied for a system with in-
tegrator dynamics. As a measure of connectivity the average number of
neighbors was used. An alternative measure would be the algebraic con-
nectivity of the associated graph. Both these measures give similar results
but the average number of neighbors is more intuitive.
As mentioned in Section 6.1 the effective radius from which informa-

tion is used increases as Rw decreases. Therefore, choosing a small value,
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Figure 1. Comparison of the relative difference tr P−tr P
meas

tr Pmeas for the algorithm pre-
sented in [Alriksson and Rantzer, 2006] and the one presented here for 843 randomly
generated second order systems on a graph with 10 nodes with 5.95 neighbors on
average. The shaded regions are 95% confidence intervals for the mean over all 843
systems.

such as Rw = 0.001, of the process noise parameter will make effects
caused by different communication topologies more evident.
In Figure 2 the variance is plotted as a function of the average number

of neighbors for each of the 1620 topologies using the algorithm presented
in [Alriksson and Rantzer, 2006], the one presented in Section 5 and the
scheme with delayed measurements presented in Section 6.1. The improve-
ment compared to the previous weight selection algorithm is more evident
for strongly connected graphs. However even for very sparse graphs the
improvement is more than 50%.

6.3 Signal Tracking

This example aims at demonstrating how the proposed estimation scheme
can be used in a situation where a sensor network is used to estimate the
mean of a time varying signal in an area. Here 50 sensors are used to
measure a signal described by

x(k) = sin
(
2π
100
k

)

+ sin
(
4π
100
k

)
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Figure 2. Variance plotted as a function of the average number of neighbors for
1620 randomly generated graphs of size 20 using the algorithm presented in [Al-
riksson and Rantzer, 2006], the one presented in Section 5 and the scheme with
delayed measurements presented in Section 6.1.

Each node measures x(k) corrupted by Gaussian white noise with unit
variance. Further, the noise is assumed independent between nodes.
Two different signal models will be used: an integrator and a double

integrator. The reason for not using a fourth order model capable of fully
describing x(k) is that in general, an exact model of the signal studied is
hardly ever available.
Four different estimation schemes will be compared:

Centralized refers to a scenario where measurements are fused in a
central node without any communication delay.

Delayed Measurements refers to the scenario described in Section 6.1.

Distributed refers to the scheme described in Section 4 with the weight
selection procedure of Section 5.

Local refers to a scenario where no communication is used. Here each
node runs a Kalman filter based on local information only.

As both the integrator and double integrator model differs from the
true model describing x(k) the choice of process noise covariance Rv is
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Table 1. Optimal configuration for the four schemes.

Signal Model R̂v

Centralized Double Integrator
[
0 0

0 0.001

]

Delayed Measurements Integrator 0.01

Distributed Double Integrator
[
0 0

0 0.002

]

Local Integrator 0.09

crucial for the performance. Here two different ways of choosing Rv will
be used. The first involves making a maximum likelihood estimate of the
process noise covariance Rv for the centralized case and then using that
estimate as the true value. In the case of a double integrator model the
optimal ML-estimate is

R̂v =

[
0 0

0 0.001

]

and for the case of an integrator model R̂v = 0.03.
The second approach aims at making a fair comparison between the

four schemes. To this end, both the process noise covariance and the model
structure will be optimized to yield the best performance (measured as
the root mean square (RMS) of the estimation error). The optimal config-
urations are summarized in Table 1.
The performance, measured as RMS of the estimation error, for the

four different schemes in the three different model setups is presented in
Figure 3. In the two middle cases the estimation performance will vary
depending on which node is studied, this is represented as shaded boxes.
As expected, using a more complex model generally improves performance
except for the case with delayed measurements. A possible explanation
for this is that to make use of old measurements the model must be used
heavily, thus making the scheme very sensitive to modeling errors.
In the distributed case the double integrator model improves perfor-

mance significantly. This shows the importance of allowing a more complex
model structure than a simple first order model that is often assumed.
In Figure 4 typical trajectories are shown for the four different esti-

mation schemes together with the true value of x(k).

59



Paper I. Model Based Information Fusion in Sensor Networks

Centralized Kalman Filter Delayed Measurements Distributed Kalman Filter Local Kalman Filter
0

0.1

0.2

0.3

0.4

0.5

0.6

R
o
o
t 
M

e
a
n
 S

q
u
a
re

 E
rr

o
r

 

 

Integrator

Double Integrator

Optimized

Figure 3. RMS of the estimation error, for the four different schemes in three
different setups. In the cases referred to as integrator and double integrator, the
process noise parameter was chosen as the ML-estimate without time delays. In
the optimized case, both the model structure and parameters were optimized for
the specific estimation scheme. The shaded regions represent max- and minimum
values among all nodes.

7. Conclusions

In this paper an enhanced weight selection algorithm for the distributed
Kalman filter algorithm presented in [Alriksson and Rantzer, 2006] has
been presented. Improvements in terms of covariance reduction of several
times have been noticed for the examples studied. The algorithm relies on
the assumption that both the dynamics and communication topology are
time-invariant and known at deployment. Slow variations in the communi-
cation topology and dynamics can be handled by recomputing the parame-
ters on a regular basis. Fast variations in the communication topology can
be treated as packet loss, against which the algorithm has proved robust.
Ideally both the weights for neighboring estimates, W , and local mea-

surements, K̃ , should be optimized jointly. However this is a non convex
problem in general. Instead of a joint optimization in W and K̃ , W is held
constant equal to the value from the previous iteration when K̃ is opti-
mized and K̃ is held constant while W is optimized. This reduces both
optimization problems to quadratic optimization problems for which ex-
pressions in closed form are derived. Compared to the previous algorithm,
fewer but bigger optimization problems are now solved.
The second contribution of this paper is to evaluate performance of the
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Figure 4. Typical trajectories for the four different estimation schemes together
with the true value of x(k).

estimation algorithm on a number of numerical examples. The first two
numerical Monte Carlo studies conclude that a significant performance
improvement has been gained through the new weight selection algorithm.
In the third numerical example the importance of allowing a more complex
signal model than for example the commonly used integrator model is
highlighted.
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Paper II

Distributed Kalman Filtering: Theory
and Experiments

Peter Alriksson and Anders Rantzer

Abstract

In this paper, a model based sensor fusion algorithm for sensor
networks is presented. The algorithm extends the common Kalman
filter with one step where nodes exchange estimates of the aggre-
gated quantity with their neighbors, thus enhancing estimation per-
formance. Under stationary conditions, an iterative parameter selec-
tion procedure is developed to minimize the stationary error covari-
ance matrix of the estimate. A number of implementational aspects
such as synchronization and packet loss are both formally analysed
and investigated through experiments.

Submitted to IEEE Transactions on Control Systems Technology, 2008.
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1. Introduction

The recent increase in battery and processing power of sensor nodes has
made a wide range of sensing applications possible. However, as the num-
ber of sensors in a network increase, the need for efficient data aggrega-
tion becomes more and more evident. For a small sensor network, routing
measurements to a central node using for example Ad hoc On Demand
Distance Vector (AODV) routing [Perkins and Royer, 1999] might be feasi-
ble. However, as the network grows, the computational and network load
both in the central node and in bottleneck nodes throughout the network
will be a major problem. Also these nodes will drain their energy resources
unnecessarily fast.
One way to approach this problem is through energy efficient routing

algorithms, see for example [Akkaya and Younis, 2005] and [Rajagopalan
and Varshney, 2006]. In addition to minimizing the required energy, a
routing protocol can also try to route data in such a way that fusible
data have a high probability to pass through the same node. These data
pieces can then be fused, thus reducing the amount of data that need to
be transmitted [Luo et al., 2007].
Energy efficient routing algorithms often focus on problems where data

flows from the network to one or a few so called sink nodes. When nodes
are not only required to collect data but also to act on it, having a few sink
nodes make all decisions might introduce long delays. In these situations
it can be favourable to let all nodes have at least partial knowledge of the
quantities upon which decisions are based. From now on we will refer to
these quantities as the state. This setup is sometimes called distributed
state estimation and is the topic of the rest of this paper.

1.1 Distributed State Estimation

The most obvious solution is of course to route all measurements to all
nodes. Each node can then compute an optimal estimate of the state. How-
ever, in many situations this approach will use to much communication
bandwidth and energy resources.
A different approach is to not route measurements through the network

but to use consensus algorithms [Olfati-Saber et al., 2007] to propagate
measurement information. The first consensus-based distributed Kalman
filters [Olfati-Saber, 2005] were based on the information form of a cen-
tralized Kalman filter. In these algorithms, consensus filters were used to
distribute sensor and covariance data to all nodes and estimates were not
exchanged. As was pointed out in [Carli et al., 2007], unless the consensus
filters run at a much higher rate than at which measurements are taken,
this approach is only approximate. In [Olfati-Saber, 2007] an improved
scheme where nodes use estimates from their neighbors was proposed.
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The estimates are combined in such a way that the scheme is stable, but
performance is not considered. The distributed state estimation problem
has also been studied under the assumption that the state is constant
[Xiao et al., 2005] or slowly varying [Speranzon et al., 2008].
Using state estimates as information carriers is not a new idea. Much

of the early work on distributed state estimation has been done in the
target tracking community where the term track-to-track fusion is often
used. For a recent survey see [Smith and Singh, 2006]. Distributed state
estimation in its most general form can be formulated in terms of proba-
bility distributions. Each node keeps a distribution representing its belief
about the current state. This distribution is then updated using local
measurements and the distributions kept in other nodes. Because nodes
share information, the belief in two nodes will be partly based on the same
measurements. To combine two distributions one must take the common
information into account. This problem was solved in [Chong et al., 1982]
under the important assumption that “new” information in two nodes con-
ditioned on the current state is independent. This assumption is fulfilled
if either the state evolution is deterministic or if nodes keep exchang-
ing distributions until all nodes have the same information before a new
measurement is added. However, even if these assumptions are satisfied,
computing the common information for a general communication topology
with loops is very involved, see for example [Liggins et al., 1997]. Another
way to fulfill the assumptions in [Chong et al., 1982] is to let every node
not only have a belief about the current state, but the trajectory of previ-
ous states. This approach was used in [Rosencrantz et al., 2003] where a
distributed particle filter was developed.
As discussed above, the optimal distributed state estimation problem is

in general very involved, thus much of the literature, including this paper,
deals with approximate solutions. One way to approximate the problem
is to use the solution from [Chong et al., 1982] even if the assumptions
under which is was derived are not fulfilled. This approach was used in
for example [Grime et al., 1992] and is expected to work well if the process
noise is small and thus the state evolution is approximately deterministic.
An alternative approximation technique, which is the basis of this pa-

per, is to combine estimates using a weighted linear combination. The
weights are then optimized to yield a minimal error covariance matrix
of the combined estimate. A solution in the case of two nodes was given
in [Bar-Shalom and Campo, 1986] and later generalized to an arbitrary
number of nodes in for example [Kim, 1994]. Note, however, that these pa-
pers only treat the problem of combining estimates, not how to generate
estimates that when combined yield a small estimation error covariance.
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1.2 Contributions

Contrary to most of the strategies described above, where all computations
are distributed, the proposed scheme is divided into one deployment phase
and one online phase.
In the online phase, nodes update their state estimates using a model,

local measurements and estimates from their neighbors. How this is done
is specified with a set of parameters for each node.
During the deployment phase, these parameters are optimized by a

central node with global communication topology knowledge, thus reduc-
ing the amount of communication needed during the online phase. The pa-
rameter selection procedure not only addresses the problem of combining
estimates, but also how to generate estimates that when combined yield a
small estimation error. Optimizing parameters offline of course limits the
proposed approach to situations where the communication topology and
model parameters are constant or only slowly varying.
A preliminary version of the algorithm was published in [Alriksson

and Rantzer, 2006] and later improved upon in [Alriksson and Rantzer,
2008]. The contributions in relation to those conference papers are twofold:
it is shown how to incorporate knowledge about unreliable links in the
parameter optimization problem and a number of implementational con-
siderations such as node synchronization and timing-related packet loss
are investigated.

1.3 Organization

The paper is organized as follows: In section 2 the problem is formally
stated and some notation is introduced. Section 3 presents the online part
of the proposed scheme. In Section 4 it is shown how the estimation error
covariance evolves for a given set of parameters. These parameters are
then optimized for both the case of ideal communication and lossy links.
In Section 5 a simple communication protocol is developed, analyzed and
evaluated through experiments. It is also shown that simulations of tim-
ing related packet losses coincide with experimentally observed behavior.
Section 6 presents a signal tracking case study to illustrate the important
performance vs power consumption tradeoff. Finally some concluding re-
marks are given.
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2. Problem Formulation

2. Problem Formulation

Consider the following discrete-time linear system

x(k+ 1) = Ax(k) +w(k) (1)

where x(k) ∈ Rn is the state of the system and w(k) ∈ Rn is a stochastic
disturbance. The disturbance is assumed to be a white zero mean Gaus-
sian process. Further, the initial state x(0) is assumed Gaussian with
mean x̌0 and covariance P0.
The process is observed by N agents, each with some processing and

communication capability. The agents are labeled i = 1, 2, . . . ,N and form
the setV . The communication topology is modeled as a graphG = (V ,E),
where the edge (i, j) is in E if and only if node i and node j can exchange
messages. The nodes to which node i communicates are called neighbors
and are contained in the set Ni. Note that node i is also included in the
set Ni.
Each node observes the process (1) by a measurement yi(k) ∈ Rmi of

the form
yi(k) = Cix(k) + ei(k) (2)

where ei(k) ∈ Rmi is a white zero mean Gaussian process. The process-
and measurement disturbances are correlated according to

E









w(k)

e1(k)

...

eN(k)

















w(l)

e1(l)

...

eN(l)









T

= E
[
w(k)

e(k)

] [
w(l)

e(l)

]T

=

[
Rw 0

0 Re

]

δ kl (3)

where δ kl = 1 only if k = l. Note that this is a heterogeneous setup where
each agent is allowed to take measurements of arbitrary size and preci-
sion. Further, the disturbances acting on the measurements are allowed
to be correlated.
Each node is only allowed to communicate estimates with its neighbors

and only once between each measurement. No node is superior to any other
and thus no central processing is allowed after deployment. The goal is
to make sure that every node in the network has a good estimate x̂i(k) of
the state x(k).
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2.1 Notation

Throughout this paper we will make frequent use of matrices with equal
size partitions on the form

W =






W11 . . . W1N
...

. . .
...

WN1 . . . WNN




 =






W1⋅
...

WN⋅






and block-diagonal matrices

C̃ = diag(C1, . . . ,CN) =






C1

. . .

CN






3. Online Computations

As mentioned in the introduction, performing optimal distributed state
estimation in general requires nodes to not only keep a belief about the
present state, but also about past states. How long this history has to be
depends on the maximum delay between when a measurement is taken
and when it has been fused in all nodes. Even in the linear Gaussian
setting studied here, this would require nodes to exchange a potentially
large amount of estimates and covariance information. All this communi-
cation will consume bandwidth and energy, perhaps more so than if all
measurements would have been routed to all nodes.
Here we will instead, as stated in the problem formulation, only let

nodes exchange estimates of the current state. Nodes will then form an
estimate based on their neighbors’ estimates using a weighted linear com-
bination. Note that this procedure only requires the cross covariance be-
tween estimation errors in the involved nodes to be known. There is no
need to keep track of common information which, in case of a general
communication topology, can be very involved.
The proposed algorithm consists of the two traditional estimation steps

measurement update and prediction, together with an additional step
where the nodes communicate and merge estimates. We will refer to an
estimate after measurement update as local and after the communication
step as regional.
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ALGORITHM 1—ONLINE COMPUTATIONS
1. Measurement update
The local estimate x̂locali (kpk) is formed by the predicted regional es-
timate x̂regi (kpk− 1) and the local measurement yi(k)

x̂locali (kpk) = x̂regi (kpk− 1) + Ki[yi(k) − Ci x̂
reg
i (kpk− 1)] (4)

where Ki ∈ Rn$mi is computed offline using Algorithm 2. The pre-
dicted estimate at time zero is defined as x̂regi (0p − 1) = x̌0 where x̌0
is the mean of x(0).

2. Merging
First nodes exchange estimates over the communication channel.
The merged estimate x̂regi (kpk) in node i is then formed as a linear
combination of the estimates in the neighboring nodes Ni

x̂
reg
i (kpk) =

∑

j∈Ni

Wi j x̂
local
j (kpk) (5)

The weighting matrices Wi j ∈ Rn$n are computed offline using Al-
gorithm 2.

3. Prediction
Because the measurement- and process noises are uncorrelated the
prediction step only includes

x̂
reg
i (k+ 1pk) = Ax̂

reg
i (kpk) (6)

Next the the problem of choosing the parameters Ki and Wi j will be ad-
dressed.

4. Offline Parameter Selection

Throughout this section will assume that the central node selecting the
parameters Ki and Wi j have knowledge of the global communication topol-
ogy and measurement models used in all nodes.

4.1 Covariance Evolution

Before describing the proposed parameter selection algorithm we need to
establish how the estimation error covariance evolves when Algorithm 1
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is executed. First introduce the joint estimation error

x̃local(kpk) =






In
...

In




 x(k) −







x̂local1 (kpk)

...

x̂localN (kpk)







with covariance Plocal(kpk) ∈ RnN$nN . Next define x̃reg(kpk), Preg(kpk),
x̃reg(k + 1pk) and Preg(k + 1pk) in the same way. The evolution of these
covariance matrices are summarized in the following lemma:

LEMMA 1
If the weight matrix W fulfills

Wi j = 0 if (i, j) /∈ E (7)

and ∑

j∈Ni

Wi j = In ∀i ∈V (8)

executing Algorithm 1 results in a covariance of the joint estimation error
that evolves as

Plocal(kpk) = [ I K̃ ] F [ I K̃ ]T (9)

Pre�(kpk) = WPlocal(kpk)WT (10)

P
re�
i j (k+ 1pk) = AP

re�
i j (kpk)A

T + Rw ∀i, j ∈V (11)

P
re�
i j (0p − 1) = P0 ∀i, j ∈V (12)

where

F =

[
I

−C̃

]

Pre�(kpk− 1)
[
I

−C̃

]T

+

[
0 0

0 Re

]

K̃ = diag(K1, . . . , KN)

C̃ = diag(C1, . . . ,CN)

Proof. See [Alriksson and Rantzer, 2008].

Note that even though Algorithm 1 is only an approximate solution, Lemma
1 describes the evolution of the true estimation error covariance using Al-
gorithm 1.
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The Kalman Filter. Towards an iterative parameter optimization al-
gorithm first repeat how the covariance evolves in the case of a fully cen-
tralized Kalman filter:

Pcentral(kpk) = [ In K central ] Fcentral [ In K central ]T (13)

Pcentral(k+ 1pk) = APcentral(kpk)AT + Rw (14)

with

Fcentral =









In

−C1
...

−CN









Pcentral(kpk− 1)









In

−C1
...

−CN









T

+

[
0 0

0 Re

]

(15)

If the system is observable, the optimal K central can be found by sequen-
tially minimizing Pcentral(kpk) while updating the covariance using (13)-
(15). The key to this procedure is that the optimization can be done by
completion of squares and thus the optimal Pcentral*(kpk) is optimal in
semi-definite sense Pcentral*(kpk) 5 Pcentral(kpk).
Inspired by the close resemblance between the Kalman filter itera-

tion and Lemma 1 we now present an iterative approximate optimization
procedure for determining the parameters W and K̃ .

4.2 Optimization

Compared to the Kalman filter iteration (13)-(15) the iteration in Lemma
1 differs on a few key points. First of all there are two sets of parameters
W and K̃ . Because K̃ is block diagonal, Plocal(kpk) can not be minimized
by completing squares and thus a scalar criteria needs to be introduced.
This has the important implication that the optimal Plocal(kpk) will in
general not be optimal in semi-definite sense. This in turn implies that
Preg(kpk) should be optimized with respect to both W and K̃ . Unfortunately
the same holds for Preg(k + 1pk) and consequently all future covariance
matrices.
However, for many systems, sequential minimization of tr Preg(kpk)

with respect to both W and K̃ yields close to optimal performance. In [Al-
riksson and Rantzer, 2008] performance was evaluated for a large number
of systems and communication topologies.
Performing the joint optimization with respect to W and K̃ for net-

works with many nodes is however intractable. Here we will instead use
a heuristic based on the observation that W will not change too much
between two iterations and thus the previous value can be used when
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minimizing with respect to K̃ . This heuristic makes both optimization
problems quadratic which allows them be solved efficiently.
The algorithm is divided into three steps: The first two steps corre-

spond to minimizing tr Preg(kpk) and in the third step the covariance is
updated. The procedure is then iterated until convergence.

ALGORITHM 2—PARAMETER SELECTION
1. K -step

K̃ (k) = argmin
K̃

trW(k− 1) [ I K̃ ] F [ I K̃ ]T WT(k− 1)

2. W-step
For all i ∈V :

Wi⋅(k) =







argmin
Wi⋅

trWi⋅ [ I K̃ (k) ] F [ I K̃ (k) ]T WTi⋅

s.t (7) and (8)

3. P-step

Pre�(kpk) = W(k) [ I K̃ (k) ] F [ I K̃ (k) ]T WT(k)

P
re�
i j (k+ 1pk) = AP

re�
i j (kpk)A

T + Rw ∀i, j ∈V

The algorithm is initialized with Pregi j (0p−1) = P0 and W(0) = InN .

Note that in step 2) the minimization with respect to Wi⋅, that is block
row i of W , for each i ∈ V is equivalent to minimization with respect to
the full matrix W .
Both the K - and W-step are quadratic minimization problems with

explicit solutions which allows the algorithm to be applied to large scale
systems. Solution procedures for both the K - and W-steps are given in
the appendix.

4.3 Packet Loss

When dealing with wireless networks, one must always keep in mind that
wireless links are unreliable and packets are frequently lost. In the pro-
posed scheme, lost packets has the consequence that estimates from all
neighboring nodes might not be available in the merge step of Algorithm
1. In [Alriksson and Rantzer, 2007] experiments indicated that using a
node’s current estimate as a replacement is favorable compared to using
the last received estimate. Therefore that strategy will also be used here.
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First Lemma 1 will be modified to account for packet loss under the as-
sumption that losses can be modeled as a sequence of independent events.
It will then be shown how to adapt Algorithm 2 to this situation. Because
the parameters W and K̃ are optimized offline, the optimization is re-
stricted to the expected covariance with respect to all possible packet loss
sequences. That is, a node is not allowed to change its parameters based
on the observed packet loss sequence. We also demonstrate how perfor-
mance can be analyzed using a more general Markov-chain packet-loss
model.

Covariance Evolution. Here we will use a stochastic packet loss model
where the probability of node i loosing a packet from node j is denoted Γi j .
Further it is assumed that packet losses can be modelled as independent
events, both in time and among nodes.
First let Ωi = 2Ni\i denote the power set of all neighbors (excluding

itself) to node i. For each element ω ∈ Ωi, representing from which neigh-
bors a packet was lost, define the replacement matrix

Mkl(ω , i) =

{

I (k /∈ ω and k = l) or (k ∈ ω and l = i)

0 otherwise
(16)

EXAMPLE 1
To illustrate the concepts described above consider the graph in Figure 1.
For node 2 we for example have N2 = {1, 2, 3}, Ω2 = {{}, {1}, {3}, {1, 3}},

M({3}, 2) =






I 0 0

0 I 0

0 I 0




 and M({1, 3}, 2) =






0 I 0

0 I 0

0 I 0






Because of the stochastic packet loss model, expectations are now taken
also with respect to all possible packet loss sequences. The regional co-
variance can thus be written as

P
reg
i j (kpk) = E P

reg
i jpω 1,ω 2

(17)

where Preg
i jpω 1,ω 2

denotes the conditional regional covariance given that nodes
i and j lost packets from the nodes in ω 1 ∈ Ωi and ω 2 ∈ Ω j respectively.
Now using the replacement matrix M(ω , i) the conditional regional co-
variance can be expressed as

P
reg
i jpω 1,ω 2

= Wi⋅M(ω 1, i)Plocal(kpk)MT (ω 2, j)WTj⋅ (18)
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1

2 3 4

5

Figure 1. Graph used in Example 1 and Section 4.4.

Using the packet loss model, the expectation in (17) can be computed as

P
reg
i j (kpk) =

∑

ω 1∈Ω i

∑

ω 2∈Ω j

P
reg
i jpω 1,ω 2

α (ω 1,ω 2, i, j) (19)

where α (ω 1,ω 2, i, j) denotes the probability of node i and j to only loose
packets from the nodes in ω 1 and ω 2 respectively. This probability can be
computed as

α (ω 1,ω 2, i, j) =







α̃ (ω 1, i) i = j and ω 1 = ω 2

0 i = j and ω 1 ,= ω 2

α̃ (ω 1, i)α̃ (ω 2, j) i ,= j

α̃ (ω , i) =
∏

k∈ω

Γik
∏

k∈Ni\i\ω

(1− Γik)

(20)

Note that
∏

k∈ω Γik = 1 if ω is empty. Replacing (10) with (19) is thus
sufficient to account for the proposed strategy used if packets are lost.

Optimization. When choosing K̃ and W it is desirable to take effects of
packet loss into account. Because the merge equation (10) is the basis of
both the K - and W-step in Algorithm 2, both these steps must be modified.
The W-step is easily modified using (19) and requiring that Wi⋅ does not
depend on ω 1

Wi⋅ = argmin
Wi⋅

trWi⋅




∑

ω 1∈Ω i

α̃ (ω 1, i)M(ω 1, i)Plocal(kpk)MT (ω 1, i)



WTi⋅

(21)
Thus the problem is on the same form as the W-step in Algorithm 2, for
which a solution procedure is given in Appendix A.2. In the K -step, the
trace of the regional covariance matrix is minimized with respect to K̃ or
equivalently

min
K̃

∑

i∈V

tr Pre�ii (kpk) (22)

Now, instead of using (10) to compute Pre�ii (kpk), it is replaced by (19).
This minimization problem is also quadratic in K̃ and can be solved using
a very similar procedure as the one presented in Appendix A.1.
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Markov Chain Model. The assumption that packet loss can be modeled
as a sequence of independent events allowed us to modify the weight
selection procedure in Section 4. If a more detailed packet loss model such
as a Markov chain is available, analyzing performance for a given set of
weights is possible using Markov jump linear system theory as follows.
First let θ(k) denote the discrete state of a Markov chain representing

which links that loose a packet at time k. Now the stacked error dynamics
can be written as

x̃reg(k+ 1pk) = Acl(θ(k))x̃reg(kpk− 1) + Bcl(θ(k))
[
e(k)

w(k)

]

(23)

where

Acl(θ) = ÃW(θ)
(
I − K̃ C̃

)

Bcl(θ) =




 ÃW(θ)K̃






In
...

In











Ã = diag(A, . . . , A) ∈ RnN$nN

(24)

The effective weighting matrix W(θ) can be constructed from W as

W i j(θ) =







Wii +
∑

l∈L(θ ,i)

Wil i == j

0 j ∈ L(θ , i)

Wi j otherwise

(25)

where L(θ , i) is the set of nodes from which node i looses a packet when
the Markov chain is in state θ .
The Markov chain model allows behaviors such as bursty and corre-

lated losses between nodes to be modelled. The stationary covariance for a
Markov jump linear system can be computed by solving a system of linear
matrix equations, see for example [Costa et al., 2005].

4.4 Numerical Example

In this section, a simple numerical example will be given to illustrate the
proposed algorithm. The example consists of a small network with five
nodes communicating according to the topology in Figure 1. The process
parameters were chosen as A = 1 and Ci = 1. To illustrate how the weights
depend on the communication topology, consider a situation where the
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Figure 2. Upper: Variance for the proposed scheme, measurement routing and a
simplified scheme that does not require global knowledge at the deployment phase.
Lower: Weights W32 and W34 in Node 3 for the proposed scheme. When the process
noise is small, estimates in Node 4 are favoured due to its proximity to Node 5,
which as superior measurement accuracy.

measurement precision in one node, in this case Node 5, is superior to all
other nodes. Here we for example set

Re =

[
I4 0

0 0.001

]

In the upper part of Figure 2 the stationary estimation error variance
P
reg
33 (kpk) in Node 3 is shown as a function of the process noise. As a
comparison the variance for two other schemes are also plotted. In the first
case, referred to as Measurement Routing, nodes run standard Kalman
filters with measurements from all nodes as input. The measurements are,
however, delayed according to the communication topology. This scheme
serves as a lower bound on the achievable variance. In the second case,
referred to as Simplified Scheme, the weights are chosen as

Wi j =
1

qNiq
In

and Ki is chosen as the optimal Ki for a truly decentralized non-communicating
Kalman filter. Note that this scheme does not require global knowledge
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Figure 3. Variance in Node 3 as function of packet loss probability when param-
eters are optimized for three different packet-loss levels. The variance of a non-
communicating estimator is plotted as a comparison.

about either the communication topology or measurement models during
the deployment phase.
In the lower part of Figure 2 the weights W32 and W34 in Node 3 are

shown as a function of the process noise variance Rw. If the process noise
is small, Node 3 will favour estimates from Node 4 because its proximity
to Node 5. If, however, the process noise is large, information originating
in Node 5 will be too old before it reaches Node 3 and thus both W32 and
W34 will be equal. This shows that Algorithm 2 indeed takes advantage
of global communication topology and measurement model knowledge.
To illustrate how packet loss influences performance, the packet loss

probability in the link between Node 4 and Node 5 was varied. Figure 3
shows the estimation error variance Preg33 (kpk) in Node 3 for various as-
sumed packet loss probabilities. The process noise variance was chosen
as Rw = 0.1 and all other links were left unaffected. Note that if perfect
communication is assumed, performance deteriorates below what can be
achieved without any communication. If, however, 50% packet loss is as-
sumed, the performance degradation, both for high and low packet loss
probabilities, is quite modest.
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Table 1. Measured power consumption of a TMote Sky Mote. Note the small dif-
ference between listening and transmitting.

Mode Power Consumption

Radio Off 9mW

Listening 60mW

Transmitting 62mW

5. Implementational Considerations

When designing algorithms for any sensor network, power consumption,
timing and packet loss play central roles. Previous implementations of
the proposed algorithm [Alriksson and Rantzer, 2007] have shown that
estimation performance to a large extent can be evaluated offline using
logged data as long as packet loss and timing effects are taken into ac-
count. Therefore the aim of this section is to first develop a simple com-
munication protocol and then compare packet loss and timing simulations
using this protocol to experimental data. All simulations are performed
in TrueTime [Andersson et al., 2005] which is a Matlab/Simulink based
simulator that supports both real time kernels and different network pro-
tocols.
The cheap hardware often used in sensor networks usually has lim-

ited clock accuracy. Relative clock drifts among nodes of the same type
of several milliseconds per hour is not uncommon. Also, when nodes are
replaced, a restart of the entire network is not desirable, thus some kind
of clock synchronization is needed. In the literature there are numer-
ous clock synchronization protocols available (see e.g. [Carli et al., 2008]
and [Sadler and Swami, 2006]), however most of them rely on additional
communication of for example clock differences. These protocols typically
achieve perfect synchronization, which might not be necessary.
Contrary to what is often assumed, the power consumption of a sen-

sor node that is listening for packets is of the same magnitude as when
it is transmitting. For example, the approximate power consumption for
a TMote Sky Mote [Sentilla Corporation, 2007] equipped with a IEEE
802.15.4 compliant transceiver running Contiki [Dunkels et al., 2004] is
presented in Table 1. This shows that when designing a communication
protocol, minimizing the time a node spends listening for packets is of
great importance.
In the literature there are numerous so called duty-cycled MAC pro-

tocols [Buettner et al., 2006] that try to minimize power consumption,
but often at the cost of increased latency. Here we will instead develop a
communication protocol that handles duty-cycling at the application level,
thus avoiding unknown latencies.
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h

h

t1

t1

t2

t2

t3

t3

Figure 4. Illustration of the communication protocol in Section 5.1. Note how the
second node is triggered by the first node. The shaded region illustrates the time
period when the radio is turned off.

5.1 Communication Protocol

The aim of this section is to develop and evaluate a simple communication
protocol that ensures synchronized sampling while trying to minimize
packet loss and power consumption. The protocol is described in pseudo
code below:

waitUntil(packetReceived())

loop

t=time

sampleProcess()

updateEstimateWithMeasurement()

waitUntil(time>t+t1)

broadcastEstimate()

waitUntil(time>t+t2)

radioOff()

mergeEstimate()

predictEstimate()

waitUntil(time>t+t3)

radioOn()

waitUntil(packetReceived() or time>t+h)

end

It is assumed that radio packets are received, processed and saved by
a high priority process, like an interrupt handler, during all times when
the radio is on. The network is initialized by inserting an external packet
to trigger the first node, which then triggers its neighbors and so on.
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Init

NotTriggable
t<t3_max

Busy
t<t1_max

WaitingForTrigger
t<h_max

active!

t=0
E[source]
message?

message!

t>=t1_min
source=a

t>=t3_min

t>=h_min
t=0

E[source]

message?
t=0

Figure 5. UPPAAL description of the possible behavior regarding synchronization
for one node.

The protocol has three parameters t1, t2, t3 together with the sampling
interval h. The first parameter t1 is the time a node waits before broad-
casting its estimate. The second parameter t2 is the time a node spends
collecting estimates from its neighbors before turning the radio off. This
time should be chosen greater than 2t1 to ensure that a node does not
miss any packets from its neighbors. The third parameter t3 determines
how long the radio is turned off. In Figure 4 the protocol is illustrated for
the case of two nodes, where the first node triggers the second.
One simple observation is that the sampling spread, that is the time

difference between when the first and last node samples the process, is
upper bounded by t1 times the diameter of the graph (the maximum graph
distance between any two nodes) or the sampling interval h, whichever
is smallest. However, in typical sensor network applications the sampling
period is very long compared to t1, thus the sampling spread will in general
be small relative to the sampling interval even for graphs with a large
diameter.

Synchronization Analysis. Verifying properties for all possible situ-
ations and communication topologies is an overwhelming task. However
formal verification tools like UPPAAL [Behrmann et al., 2004] makes it pos-
sible to detect many design flaws. The UPPAAL description language is a
non-deterministic guarded command language with data types. Figure 5
shows a simplified UPPAAL description of the possible behavior of one node.
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Sync

Checking
nbrSync<N && t<T+1

Waiting

NotChecking
nbrActive<N

nbrSync>=N-1
message?

message?
nbrSync++

t>T
t=0

message?
t=0, nbrSync=1

nbrActive>=N-1

active?

active?
nbrActive++

Figure 6. UPPAAL description of the property that all nodes must sample the pro-
cess within T time units from when the first node samples the process.

This description is then instantiated N times with the node identifier a

replaced with consecutive numbers 1, . . . ,N.
Note that only aspects relevant to synchronization issues are modelled.

For example as long as t2 is smaller than t3 it does not effect the synchro-
nizing behavior of the network, thus it is excluded from the description.
Also note that the timing parameters are specified in terms of their upper
and lower limits which allows for non-determinism. The incidence matrix
E is used to represent which nodes that can hear when a node broadcasts
a message. An edge marked for example message? will only fire if the
corresponding edge marked message! fires. A condition such as t<h_max

associated with a location must be true for the automaton to be allowed
to remain in that location. Conditions associated with edges force them to
only fire if their conditions are true.
To verify a property, a desired behavior must also be specified. When

for example the automaton in Figure 6 is in the Sync-state, N nodes have
sampled the process within T time units. Using UPPAAL it is then possible
to verify that all possible executions of the N copies of the automaton in
Figure 5 will drive the automaton in Figure 6 to the Sync-state
Note however that the verification is only valid for one particular com-

munication topology and parameter set. Yet useful insight of the com-
munication protocol can be gained by examining various topologies and
parameter sets. For example if t3max < hmin − c1t1min − c2t1max − c3 the
network will synchronize for all possible communication topologies involv-
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Figure 7. Measured and simulated difference between when nodes sample the
process. Each line represents the difference between when nodes 2, 3 and 4 sample
the process compared to Node 1. Clock drifts range from 0 to 16ms/h. The sawtooth
behavior is due to time quantization.

ing 4 nodes. The constants c1, c2 and c3 depend on the communication
topology, but are small compared to h. To avoid that a node is triggered
more than once within the sampling interval, t3min must be chosen large
enough. The exact limit depends on the communication topology, but if
t3min > Nt1max this situation can be avoided.

5.2 Experimental Validation

To investigate the behavior of the proposed communication protocol a
small experimental testbed with four nodes, all within communication
range, was used. The testbed consisted of four TMote Sky Motes [Sentilla
Corporation, 2007] equipped with IEEE 802.15.4 compliant transceivers.
The relative clock drifts among the nodes ranged from 0 to 16ms/h.

Timing Behavior. In Figure 7 both the simulated and measured dif-
ference between when different nodes sample the process are shown. The
three lines represent the difference between when nodes 2, 3 and 4 sample
the process compared to Node 1. Initially all four nodes sample the process
within a few milliseconds from each other. However, due to the relative
clock drifts synchronization is gradually lost. In this experiment t1 was
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Figure 8. Received and lost packets in Node 3 as function of the transmission
time separation between Node 1 and Node 2. A time separation higher than approx-
imately 0.25ms gives virtually no packet loss, whereas the opposite results in a very
unpredictable behavior.

chosen to 100ms which has the effect that when two nodes sample the
process more than 100ms apart, for example after approximately 6 hours,
the slowest one is triggered by a packet from the fastest one. However,
due to a time quantization of 15.625ms the next sampling interval of the
slowest node will be slightly shorter and thus it will not be triggered by
the fastest node the next time. This results in the sawtooth behavior that
can be seen in Figure 7.

Timing-Related Packet Loss. The packet loss probability in real world
applications depend on many things, among which effects of multipath
propagation, external disturbances and timing of packet transmissions
dominate. Because the first two are out of control when designing a com-
munication protocol, we will focus on the latter.
The IEEE 802.15.4 protocol specifies the use of CSMA/CA (Carrier

sense multiple access with collision avoidance), so as long as two nodes
can hear each other, the application layer in these two nodes should be
able to request a transmission at the same time without the risk of colli-
sion. However, experiments show that the packet loss probability increases
significantly if packet transmission times are not separated enough. In
Figure 8 the packet reception in one node is shown when two other nodes
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Figure 9. Measured and simulated packet reception in Node 1. Note the periods
of almost no packet reception when nodes transmission times are not separated
enough. For example between 3 and 4 hours nodes 1 and 4 interfere and after 16
hours nodes 2 and 3 interfere a number of times. The simulation and measurement
mismatch is mostly due to differences in clock drifts and starting times.

are transmitting a 14 byte packet once a second. The packet reception in
the third node becomes very unpredictable if transmissions times are not
separated by more than approximately 0.25ms.
Taking the CSMA/CA behavior into account, Figure 9 shows both mea-

sured and simulated packet reception in Node 1 for the same time interval
as as in Figure 7. Note that when packet transmission times are not sep-
arated enough the packet reception probability drops to almost zero. For
example between 3 and 4 hours nodes 1 and 4 interfere and after 16 hours
nodes 2 and 3 interfere a number of times. The length of these intervals
depend on the relative clock drifts among the nodes.
Both figures 7 and 9 show that in some situations a timing based tool

like TrueTime can be used to quite accurately predict the behavior of a
real system.
Having long periods of poor packet reception is if course not desirable.

One simple way of avoiding this is to randomize the parameter t1, that is
the delay between sampling the process and transmitting the estimate.
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Figure 10. Communication topology used in the case study.

6. Case Study

In this section it will be demonstrated how the proposed estimation scheme
can be used in a situation where a sensor network is used to estimate the
spatial mean of a time varying signal in an area. Here 16 sensors are used
to measure a signal described by

x(t) = sin
(
2π
100
t

)

+ sin
(
4π
100
t

)

Each node measures x(t) corrupted by Gaussian white noise with unit
variance. Further, the noise is assumed independent between nodes. The
nodes are placed randomly using a uniform distribution and can commu-
nicate if they are are closer than a maximum distance. Minimizing this
distance while keeping the graph connected results in the communication
topology shown in Figure 10.
Two different signal models will be used: an integrator and a double

integrator. The reason for not using a fourth order model capable of fully
describing x(t) is that in general, an exact model of the signal studied is
hardly ever available.
Because none of the two models can describe the signal perfectly, the

process noise covariance parameter Rw for the two models was estimated
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Figure 11. Tradeoff between power consumption and performance. The power
consumption is changed by changing the sampling interval h.

from data using the maximum likelihood method. Note that the optimal
values of Rw will depend on the sampling interval.
In sensor networks one of the most important tradeoffs is the one

between performance and power consumption. As mentioned in Section
5 the dominating state in terms of energy consumption is when a node
is listening for radio packets. When using the communication protocol
described in Section 5.1 the radio can be turned off during long periods,
except in the beginning and end of a sampling interval. As a result, the
average power consumption can be approximated by the following simple
model

Paverage ( Poff +
(Pon − Poff)(t2 + t

′
3)

h
h ≥ t2 + t

′
3 (26)

Here Poff is the idle power consumption, Pon is the average power con-
sumption when the radio is turned on, t′3 = h− t3 is the time the radio is
turned on at the end of a sampling interval and t2 is the time the radio is
on at the beginning of each sampling interval. Note that t2 and t′3 do not
depend on h.
In Figure 11 the performance of the distributed algorithm, measured

as the mean RMS error among all 16 nodes, is plotted as function of
Paverage for both signal models. The different power levels where achieved
by varying the sampling interval in a range from 1s to 50s. Numerical
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values for the constants in (26) are Pon=62mW, Poff=8.7mW, t2=125ms
and t′3=625ms, which represent typical values from a TMote Sky [Sentilla
Corporation, 2007] running Contiki [Dunkels et al., 2004]. Note that the
qualitative behavior does not depend on the particular values of these
constants. The benefit of using a more complex signal model is apparent
for all power levels.

7. Conclusions

In this paper a data aggregation algorithm for sensor networks was pre-
sented. The algorithm extends the common Kalman filter with one step
where nodes exchange estimates of the aggregated quantity with their
neighbors. Exchanging estimates instead of measurements can potentially
reduce the required number of messages exchanged per unit time, thus
prolonging battery life.
Under stationary conditions, an approximate iterative parameter selec-

tion procedure that aims at minimizing the stationary covariance matrix
of the estimated quantity was developed. The procedure will in general
not find the global optimum, but numerical experiments show that it in
general performs well.
A number of implementational aspects such as synchronization and

packet loss were both formally analyzed and investigated through exper-
iments. Finally, a signal tracking case study was used to illustrate the
important tradeoff between performance and power consumption.
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A. Appendix

A.1 The K -step

In this section the optimization problem from the K -step will be studied.
To simplify notation, time indices are dropped:

min
K̃

tr W [ I K̃ ] F [ I K̃ ]T WT (27)

First partition F as in

[ I K̃ ]

[
F11 F12

FT12 F22

]

[ I K̃ ]T (28)

To isolate the free parameters in K̃ it is expressed as a sum

K̃ =

N∑

i=1

UTi KiVi (29)

where

Ui = [0n$n(i−1) In$n 0n$n(N−i) ]

Vi = [0mi$li Imi$mi 0mi$l̃i ]
(30)

li =
∑i−1
j=1m j and l̃i =

∑N
j=i+1m j (31)

Using the decomposition (29) of K̃ , conditions for optimality of (27) are
given by

UiW
TW [ I K̃ ]

[
F12

F22

]

VTi = 0 ∀i ∈V (32)

To simplify notation first introduce

Gi j = UiW
TWUTj and Hi j = VjF22V

T
i (33)

Qi = UiW
TWF12V

T
i (34)

Now (32) can be rewritten as

∑N
j=1 Gi jK jHi j = −Qi , ∀i ∈V (35)

To solve this set of matrix equations vectorization of the matrices will be
used.

N∑

j=1

(HTi j ⊗ Gi j)K̄ j = −Q̄i (36)
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where
K̄ j = vec(K j) and Q̄i = vec(Qi) (37)

This can be written in matrix form as






HT11 ⊗ G11 ⋅ ⋅ ⋅ HT1N ⊗ G1N

...
. . .

...

HTN1 ⊗ GN1 ⋅ ⋅ ⋅ HTNN ⊗ GNN












K̄1
...

K̄N




 = −






Q̄1

...

Q̄N




 (38)

Thus we have derived linear equations for the optimal K̄i which gives the
optimal K̃ .

A.2 W-Step

Introducing the sparsity constraint (7) is equivalent to removing rows and
columns corresponding to weights that are required to be zero. Thus for
each i the optimization problem can be written as

min
W̃

tr W̃ P̃W̃T

s.t. W̃ e = In
(39)

where e = [ In . . . In ]
T . Here W̃ contains the non-zero blocks of Wi⋅ and P̃

the corresponding elements of the matrix [ I K̃ (k) ] F [ I K̃ (k) ]T . Using
Lagrange multipliers it can be shown, see [Sun and Deng, 2004], that
conditions for optimality are

[
P̃ e

eT 0

]

︸ ︷︷ ︸

G

[
W̃T

Λ

]

=

[
0

In

]

(40)

The equation system (40) is in general underdetermined, so to get a
unique solution the following minimization problem is introduced

min
W̃

tr W̃W̃T

s.t. (40)
(41)

All solutions satisfying (40) can be parametrized in terms of V as

[
W̃T

Λ

]

= G†
[
0

In

]

︸ ︷︷ ︸

d

+G0V (42)
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where G† denotes the Moore-Penrose pseudo inverse and G0 a matrix of
vectors spanning the null space of G. Now (41) can be rewritten as

min
V
tr
[
V

I

]T [
I (G01)

Td1

dT1 G
0
1 dT1 d1

] [
V

I

]

(43)

where d1 and G01 are the parts corresponding to W̃
T . The solution to this

unconstrained quadratic minimization problem is given by V = −(G01)
Td1.

Thus the optimal W̃ is given by

W̃ = dT1 (I − G
0
1(G

0
1)
T ) (44)
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Paper III

Experimental Evaluation of a
Distributed Kalman Filter Algorithm

Peter Alriksson and Anders Rantzer

Abstract

This paper evaluates the performance of a distributed Kalman fil-
ter applied to an ultrasound based positioning application with seven
sensor nodes. By distributed we mean that all nodes in the network
desires an estimate of the full state of the observed system and there
is no centralized computation center after deployment. Communica-
tion only takes place between neighbors and only once each sampling
interval. The problem is solved by communicating estimates between
neighbors and then forming a weighted average as the new estimate.
The weights are optimized to yield a small estimation error covariance
in stationarity. The minimization can be done off line thus allowing
only estimates to be communicated. In the experimental setup the dis-
tributed solution performs almost as good as a centralized solution.
The proposed algorithm also proved very robust against packet loss.

cF2007 IEEE. Reprinted, with permission from Proceedings of the 46th
IEEE Conference on Decision and Control (CDC07), New Orleans, LA,
December 2007.
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1. Introduction

As battery and processing power of nodes in sensor networks increases
the possibility of more intelligent estimation schemes become more and
more important. The use of sensor networks was first driven by mili-
tary applications, but with cheaper technology many other areas could
make use of sensor networks, see for example [Hall and Llinas, 1997] and
[Viswanathan and Varshney, 1997]. Advantages with wireless sensor net-
works typically include increased flexibility and more robustness, as more
than one unit is performing the same task.
However these advantages come with a cost: When communicating over

wireless channels packet loss becomes a major problem and decentralized
algorithms tend to be more complex than centralized solutions.
To illustrate the pros and cons a target tracking application will be

considered. In simple target tracking applications, the task is to estimate
the position of an external object. In some situations measurements are
taken from spatially separated locations and an estimate is needed at each
location. Ideally all measurements should be used at all locations, however
this may require high bandwidth communication channels between all
nodes.
To reduce the required bandwidth a distributed solution where only the

position estimate is communicated among neighbors will be considered.
The problem where estimates are communicated has been given great

attention in the literature. In for example [Durrant-Whyte et al., 1990]
a decentralized Kalman filter was proposed. However, this algorithm re-
quires every node to be able to communicate with every other node, which
might not be possible. An alternative approach is to only allow nodes to
communicate with their neighbors. As opposed to the case where mea-
surements are communicated no routing is required when estimates are
used as information carriers.
Without direct communication between all nodes a new problem is in-

troduced, namely how to combine estimates from just neighboring nodes.
To optimally combine two estimates one has to know the mutual informa-
tion between them. Computing this quantity for a general communication
graph is a difficult task, that requires global knowledge of the topology.
In the case of a loop-free graph the problem was solved in [Grime et al.,
1992] by introduction of a channel filter This approach was used in a coor-
dinated search strategy application, see [Bourgault and Durrant-Whyte,
2004]. The problem has also been studied intensively in the dynamic con-
sensus literature, see for example [Olfati-Saber et al., 2007] and the refer-
ences therein. In [Speranzon et al., 2006] a similar problem was studied,
but for scalar systems.
This paper is organized as follows. Section 2 and 3 gives a brief overview
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of the theory used in the rest if the paper. The main part of the paper
constitutes of sections 4, 5 and 6 where the experimental setup together
with the results are presented.

1.1 Target Tracking

In real target tracking applications sophisticated radar systems are used
to take measurements of the position of a target moving in three dimen-
sions. Here a simplified setup is used where the target to be tracked is a
mobile robot moving in two dimensions.
Localization of mobile robots can be performed with a number of tech-

niques. In laboratory experiments it is common to use vision, e.g., a
ceiling-mounted camera combined with an image-processing system. An-
other possibility is dead-reckoning using a high-precision inertial mea-
surement unit on board the robot. A problem with dead reckoning-based
approaches, however, is that they do not use feedback and thus unmeasur-
able disturbances will cause position errors that cannot be compensated
for. In an outdoor environment GPS would be another possibility.
The localization approach chosen here is based on ultrasound. The

basic idea is to transmit a wireless radio packet simultaneously with an
ultrasound pulse from each sender node. The receiver nodes measure the
difference in time of arrival between the radio packet and the ultrasound
pulse and can in this way calculate their distance to the sender node. By
combining, or fusing, several distance measurements an estimate of the
position can be obtained.
Two main approaches exist, [Smith et al., 2004]. In an active mobile

system the infrastructure, in this case the sensor network, has receivers
at known locations, which estimate distances to a mobile device based on
active transmissions from the device. These distances are then reported
to a central node for processing. Examples of this approach are the Active
Badge [Want et al., 1992], and the Ubisense [Cadman, 2003] systems. In
a passive mobile system, instead, the infrastructure has active beacons at
known positions that periodically transmits signals to a passive mobile
device. The mobile device then use these signals to compute its current
location. The most famous example of this is the Cricket system [Priyantha
et al., 2000].
An advantage of the active approach is that it is more likely to perform

accurate tracking than the passive approach. The passive approach, on the
other hand, scales better with the number of mobile devices. Since the
main objective here is for the sensor network to handle the localization,
an approach similar to the active one was chosen. However here no central
computation center is used.
As the robot has a practically unlimited power supply compared to the

nodes in the sensor network, it is reasonable to assume that the robot can
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reach all nodes in the network with high probability. Thus all nodes can
measure the distance to the robot at each sampling time and the robot
can transmit its expected movement to the sensor network. The nodes
however operate under severe power restrictions, thus only neighbor to
neighbor communication is possible.

2. Mathematical Formulation

The motion of the robot is described by a discrete-time linear model of the
following form, derived in [Alriksson, 2007].

x(k+ 1) = Ax(k) + Bu(k) + v(k) (1)

Here x(k) ∈ Rn denotes the state of the system, u(k) ∈ Rm a known input
and v(k) ∈ Rn a stochastic disturbance. The disturbance is assumed to
be a white zero mean Gaussian process with covariance defined below.
Note that in this simplified setup, it is assumed that the external input
u(k) is known to all nodes. As mentioned in Section 1.1 this assumption
is satisfied in the experimental setup.
The process is observed by N agents each with some processing and

communication capability. The agents are labeled i = 1, 2, . . . ,N and form
the set V . The communication topology is modeled as a graph G = (V , E),
where the edge (i, j) is in E if and only if node i and node j can exchange
messages. The nodes to which a node communicates are called neighbors
and are contained in the set Ni. Note that node i is also included in the
set Ni.
Each node observes the process (1) by a measurement yi(k) ∈ Rpi of

the following form
yi(k) = Cix(k) + ei(k) (2)

where ei(k) ∈ Rpi is a white zero mean Gaussian process. The measurement-
and process disturbances are correlated according to

E









v(k)

e1(k)

...

eN(k)

















v(l)

e1(l)

...

eN(l)









T

=









Rv 0 . . . 0

0 Re11 . . . Re1N
...

...
. . .

...

0 ReN1 . . . ReNN









δ kl (3)

where δ kl = 1 only if k = l. Note that this is a heterogeneous setup
where each agent is allowed to to take measurements of arbitrary size
and precision. Further the disturbances acting on the measurements are
allowed to be correlated.
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Each node is only allowed to communicate with its neighbors and only
once between each measurement. Further the only assumption made on
the graph structure is that it is connected, other assumptions such as
requiring it to be loop free are not necessary. No node is superior to any
other and thus after deployment no central processing is allowed.
The goal is to make sure that every node in the network has a good

estimate x̂i(k) of the state x(k).

3. Distributed Kalman Filter

When constructing an algorithm based on estimates instead of measure-
ments care must be taken on how to combine estimates in a good way. The
problem is that estimates in different nodes are not independent, as they
contain the same process noise, and possibly also the same measurement
information. To optimally combine two estimates the mutual information
must be subtracted.
For a graph with loops, two nodes can not compute the mutual infor-

mation by just using local information. Information can for example travel
from node A to node C and then to node B. When node A and B are to
compute their mutual information they may not be aware of the coupling
through C.
To solve the problem for a general communication topology neighboring

estimates are weighted so that the error covariance of the merged estimate
is minimized. This approach will not give the optimal solution in general,
but is applicable to graphs with loops. Weighted averaging can be seen as a
generalization of the two-sensor track-fusion algorithm presented in [Bar-
Shalom and Campo, 1986]. There is great freedom when choosing both how
to weigh local measurements and neighboring estimates. In [Alriksson
and Rantzer, 2006] a procedure aimed at minimizing the covariance of the
estimation error is presented, but other objectives such as minimizing the
amount of communication for a given accuracy could also be considered.

3.1 On-Line Computations

The algorithm consists of the two traditional estimation steps, measure-
ment update and prediction together with an additional step where the
nodes communicate and merge estimates. We will refer to an estimate
after measurement update as local and after the communication step as
regional.
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1. Measurement update
The local estimate x̂locali (kpk) is formed by the predicted regional
estimate x̂re�i (kpk− 1) and the local measurement yi(k)

x̂locali (kpk) = x̂re�i (kpk− 1) + Ki[yi(k) − Ci x̂
re�
i (kpk− 1)]. (4)

where Ki is computed off-line using for example the procedure pre-
sented in [Alriksson and Rantzer, 2006]. The predicted estimate at
time zero is defined as x̂re�i (0p − 1) = x̂0 where x̂0 is the initial esti-
mate of x(0).

2. Merging
First the agents exchange their estimates over the communication
channel. This communication is assumed to be error and delay free.
The merged estimate x̂re�i (kpk) in node i is defined as a linear com-
bination of the estimates in the neighboring nodes Ni.

x̂
re�
i (kpk) =

∑

j∈Ni

Wi j x̂
local
j (kpk) (5)

The weighting matrices Wi j could for example be chosen using the
procedure described in [Alriksson and Rantzer, 2006].

3. Prediction
Because the measurement- and process noises are independent the
prediction step only includes

x̂
re�
i (k+ 1pk) = Ax̂

re�
i (kpk) + Bu(k) (6)

4. Experimental Setup

To generate measurements, corresponding to (2), an ultrasound based
system together with trilateration will be used.
The stationary sensor nodes are each equipped with an ultrasound re-

ceiver and the mobile robot is equipped with an ultrasound transmitter.
The stationary sensor nodes are implemented as Tmote Sky sensor net-
work nodes together with a small ultrasound receiver circuit interfaced to
the node via an AD converter, see Figure 1.
Both the ultrasound transmitters and receivers are designed to be

isometric, i.e., to transmit and receive in the full 3600 degree plane.
The robot used in the experiments is a dual-drive robot developed in

Lund. It is equipped with three Atmel AVR Mega16 processors and one
TMote Sky node, see Figure 1. Two AVR processors are used to control the
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Figure 1. Stationary sensor network node with ultrasound receiver circuit and
robot with ultrasound sender. The nodes are packaged in a plastic box to reduce
wear.

wheel speeds using PI-controllers. The remaining AVR is used to generate
ultrasound. For a detailed description of the hardware see [Årzén et al.,
2007]. Throughout all experiments the robot is controlled using a wireless
joystick.

4.1 Ultrasound Based Localization

The implemented localization method works according to the following
principles. At the beginning of each measurement cycle, the robot trans-
mits a broadcast radio message to alert the nodes of the incoming ultra-
sound pulse. After a fixed time the robot then emits an ultrasound pulse.
When the radio message reaches the node, it starts to sample the ultra-
sound microphone. Then the stationary nodes detect the beginning of the
pulse using a moving median filter of length three.
The sample index where the pulse was detected is proportional to the

distance between the stationary nodes and the robot when the pulse was
emitted. If the speed of sound, the sampling interval in the nodes and
the fixed delay between ultrasound- and radio transmission are known
the actual distance can be computed. The position can then be computed
using trilateration.

4.2 Trilateration

Trilateration is a method to find the position of an object based on distance
measurements to three objects with known positions. In three dimensions
the problem has two solutions, however the correct one can usually be
determined from physical considerations. The basic problem is to find a
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solution [ px py pz ]
T to the following three nonlinear equations

(px − px1)
2 + (py − py1)

2 + (pz − pz1)
2 = d21

(px − px2)
2 + (py − py2)

2 + (pz − pz2)
2 = d22

(px − px3)
2 + (py − py3)

2 + (pz − pz3)
2 = d23 .

where pxi, pyi and pzi are known positions of the nodes and di is the
distance from node i to the object to be positioned. The problem can be
transformed to a system of two linear equations and one quadratic equa-
tion by e.g subtracting the second and third equation from the first, see
[Manolakis, 1996] for a detailed analysis.
An alternative more geometric approach was taken in [Thomas and

Ros, 2005] where the problem is solved using Cayley-Menger determi-
nants. This approach has the benefit of a geometric interpretation of the
solution in terms of volumes, areas and distances. Also the error analysis
with respect to e.g distance errors is simplified.
As the robot is assumed to only move in the xy-plane, the problem can

be reduced to a set of two linear equations. The two linear equations will
always have a solution unless all three known points are positioned on a
line. The two linear equations define two lines, see Figure 2, which can
be represented as

a0y = a1 + a2x (7)

b0y = b1 + b2x (8)

where

a0 = 2(py2 − py1)

a1 = d
2
1 − d

2
2 + p

2
y2 − p

2
y1 + p

2
x2 − p

2
x1 − 2pz(pz2 − pz1)

a2 = 2(px1 − px2)

b0 = 2(py3 − py1)

b1 = d
2
1 − d

2
3 + p

2
y3 − p

2
y1 + p

2
x3 − p

2
x1 − 2pz(pz3 − pz1)

b2 = 2(px1 − px3).

Note that the z-coordinate pz of the robot is assumed to be known,
as it is only moving in the xy-plane. The intersection point of these two
lines constitute the trilaterated position [ ptrix ptriy ]

T . Even though the
three circles do not intersect in one point, the algorithm still provides a
reasonable result. For a detailed discussion on how errors both in distance
measurements and node positions influence the trilateration result, see
[Manolakis, 1996] and [Thomas and Ros, 2005].
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Figure 2. Two lines defining the solution to the trilateration problem. Each line
corresponds to one pair of circles. For clarity only two of the three possible lines
are shown. This setup shows both overlapping and non-overlapping circles. Sensor
nodes are located at the center of each circle.

4.3 Camera Based Localization

To evaluate the distributed ultrasound based localization system an inde-
pendent localization system is needed. In the experimental setup a camera
based system was used. The robot was equipped with two markers to aid
the vision system. The camera system consists of one fixed mounted cam-
era with a resolution of 640 $ 480 pixels. Each marker is located in the
image using an algorithm based on a Harris corner detector, see [Harris
and Stephens, 1988]. If the robot is assumed to move in a plane, an image
coordinate can be transformed to a point pcam in the plane using a linear
transformation. The heading can then be computed using the two mark-
ers. In the experimental setup used, the vision based localization system
had an accuracy of approximately 1cm.

4.4 Choice of Noise Covariance Matrices

The choice of measurement- and process covariance matrices (Rv and Re)
are crucial to the performance of the algorithm. The process noise covari-
ance matrix determines the confidence in the model. Here Rv will be used
as a tuning parameter to trade off between noise rejection and trust in
the model.
The measurement noise covariance matrix Re in the experimental

setup is a symmetric 14 $ 14 matrix, thus it has 105 free parameters.
The somewhat standard choice of a diagonal matrix does not apply here
as the trilaterated position measurements are highly correlated. Instead,
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using a test trajectory, Re was estimated as a normalized version of

(R̂e)i j =
1
T

T−1∑

k=0

(ptrii (k) − p
cam(k))(ptrij (k) − p

cam(k))T (9)

where ptrii (k) is the trilaterated position in node i at time k and p
cam(k) is

the position generated from the vision system. The diagonal elements of R̂e
are thus the squared RMS-value of the trilateration error. The advantage
of using squared RMS-values instead of for example the variance is that
systematic errors are reflected in the RMS-value. As trilateration is a
nonlinear operation, the error is dependent of the position. Thus the result
of (9) is dependent on the specific trajectory the the robot has followed.
Ideally one would want to allow Re to vary with time, however this would
make the weights W time varying thus making it more complicated to
compute them off-line.
To illustrate the correlation pattern let us define the RMS-correlation

matrix as

ρi j =
(R̂e)i j

√

(R̂e)ii(R̂e) j j

(10)

In Figure 3 elements associated with the x-position for a typical trajec-
tory are shown for both measurements (left) and simulations (right). The
correlation pattern caused by trilateration is clearly visible both in the
experimental and simulated data.

5. Communication Protocol

As discussed in Section 1.1 it is assumed that the robot can reach all
nodes in the network with radio packets. Thus the robot constitutes a
global clock which simplifies the communication protocol.
As a single node can only measure the distance to the robot, nodes

need to form groups of three to be able to perform trilateration. One
node in each group collects distance measurements from the other two
and then computes the position of the robot using trilateration. To reduce
utilized bandwidth, distance measurements and position estimates are
transmitted in the same package. The protocol implemented is illustrated
by the schedule in Figure 4.
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Figure 3. Elements of the RMS-correlation matrix ρ associated with the x-
position for measurements (left) and simulations (right). The correlation pattern
introduced by trilateration is clearly visible.

1. At the beginning of each period the robot asks the wheel controllers
for the current wheel velocities.

2. The robot sends a broadcast message to all nodes with its expected
movement, that is previous heading estimate and wheel velocities.
This corresponds to the term Bu(k) in (1).

3. After sending the packet the robot updates its heading estimate
based on wheel speeds and position estimates received from the net-
work at step 7.

4. When the packet transmitted at step 2 reaches a node, it starts to
sample the incoming ultrasound pulse. The sampling is interrupted
when the edge of the pulse is reached.

5. The nodes compute their new estimate based on information received
during the previous time interval.

6. Each node logs data using a wired network to reduce interference.

7. After a specified time based on its identity number the nodes broad-
cast their new position estimate together with the distance measure-
ment taken at step 4. These messages are then received by neigh-
boring nodes, including the robot if it is in range.

8. Finally the robot receives commands from a joystick used to control
it.

In the implementation, data is transmitted after the prediction step
instead of between the update- and prediction step as described in Section
3. However it is straightforward to modify the algorithm for this scenario.
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Figure 4. Communication schedule used in experiments.

6. Experimental Results

To evaluate performance, the root mean square (RMS) of the difference
to the position estimated by the vision system pcam will be used.
When evaluating the impact of different parameters and design choices

it is crucial that experiments are repeatable. However, as the radio envi-
ronment where the experiments were performed is highly non-stationary,
repeatability was a big problem. This issue was resolved by studying esti-
mates generated in Matlab using logged trilateration-, wheel speed- and
packet arrival data as input. The average RMS difference for estimates
generated in Matlab compared to real experiments is approximately 1 cm.
This error is mostly due to quantization effects in the logging of wheel
speeds.
The main results of the experiments are summarized in Figure 5 where

the RMS error for different types of estimation schemes are shown. Global
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Figure 5. RMS error (p̂− pcam) for different types of estimation schemes. Global
refers to a Kalman filter that has access to all information without any delay. Dis-
tributed is the proposed distributed Kalman filter and Local refers to a Kalman
filter that only uses local trilateration information. As a comparison raw trilatera-
tion is also plotted. The big difference in trilateration accuracy among nodes is due
to the relative position of a node compared to the robot trajectory.

Kalman filter means that the filter has access to trilateration informa-
tion from all nodes without any delay. Distributed denotes the proposed
algorithm, whereas in the local case only local trilateration information is
used. As a comparison the raw trilaterated estimate is also plotted. Note
that even in the local case a node needs to communicate with two of its
neighbors to be able to perform trilateration. The big difference in tri-
lateration accuracy among nodes is due to the relative position of a node
compared to the robot trajectory.
For both the global- and distributed Kalman filter to perform well it is

crucial that the relation between the diagonal elements of Re is correct.
To achieve this, R̂e was computed based on the same trajectory as the
RMS errors in Figure 5.
Examining the results, we can draw the conclusion that the distributed

algorithm performs almost as good as a global solution. One can also note
that the performance of the local estimator is very close to that of both
the global and distributed schemes in e.g nodes 6 and 7 where the mea-
surement accuracy is high. Using a permutation test [Moore and McCabe,
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2006] differences between the global- and distributed Kalman filter could
only be verified at a 95% confidence level in node 1. Using the same test,
differences between the local- and distributed Kalman filter could not be
verified in nodes 6 and 7. The permutation test used here is somewhat
conservative as it does not utilize the correlation between different esti-
mates generated from the same data.
One critical issue for an algorithm that utilizes a wireless communi-

cation channel is sensitivity to packet loss. In the results presented in
Figure 5 the average packet loss probability was approximately 10%. To
further investigate how sensitive the proposed algorithm is to packet loss,
a number of simulations were performed. In this study two different ways
of handling lost packets were investigated: to use the last received packet
and to use the local estimate. In Figure 6 the average RMS error among
the seven nodes is plotted as a function of packet loss for the two differ-
ent methods. As a comparison the average RMS error for raw trilatera-
tion and local estimation are also shown. To isolate the errors caused by
the distributed Kalman filter algorithm, packets used in the trilateration
computations were left unaffected by the increased packet loss probabil-
ity. Therefore, the errors for raw trilateration and local estimation are
unaffected by the packet loss. From Figure 6 it is apparent that using the
local estimate when a packet is lost is preferable. If this approach is used
the performance of the distributed solution approaches the local solution
as the packet loss approaches one for this example.

7. Conclusions

In this paper an optimization based algorithm for distributed estimation
is evaluated experimentally. The algorithm is based on standard Kalman
filtering results and then extended with one step where nodes merge their
estimates. The estimates are merged by a weighted average approach.
The algorithm applies to a broad category of communication topologies,

including graphs with loops. The weights are optimized off-line allowing
only estimates to be communicated among the nodes. All communication
is restricted to neighboring nodes, which allows the algorithm to scale.
An experimental evaluation was done to demonstrate how the proposed

algorithm performs in an uncertain environment where, for example pack-
ets are lost and different nodes are not perfectly synchronized in time. The
scenario chosen is one where seven nodes in a sensor network estimate
the position of a mobile robot using ultrasound. It was concluded that the
performance in RMS sense of the proposed algorithm was very close to
the performance of a optimal global solution. Also the distributed Kalman
filter proved to be very insensitive to packet loss, which is of great impor-
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Figure 6. Average RMS error (p̂ − pcam) as a function of packet loss for the
distributed Kalman filter when the last received packet is used when a packet is
lost (solid) and when the local estimate is used (dashed). As a comparison the
average RMS error for raw trilateration and local estimation is also shown.

tance when dealing with wireless communication links. As presented in
Figure 6 the performance degradation at for example 10% and 50% packet
loss are only 1.1% and 9.4% respectively.

Acknowledgment

This work was partially funded by the RUNES Integrated Project contract
IST-2004-004536.

References

Alriksson, P. (2007): “Distributed Kalman filtering using weighted av-
eraging - theory and experiments.” unpublished report, http://www.

control.lth.se/publications/.

Alriksson, P. and A. Rantzer (2006): “Distributed Kalman filtering
using weighted averaging.” In Proceedings of the 17th International

109



Paper III. Experimental Evaluation of a Distributed Kalman Filter

Symposium on Mathematical Theory of Networks and Systems. Kyoto,
Japan.

Årzén, K.-E., M. Ohlin, A. Cervin, P. Alriksson, and D. Henriksson (2007):
“Holistic simulation of mobile robot and sensor network applications
using TrueTime.” In Proceedings of the European Control Conference.
Kos, Greece.

Bar-Shalom, Y. and L. Campo (1986): “The effect of common process
noise on two-sensor fused-track covariance.” IEEE Transactions on
Aerospace and Electronic Systems, November, pp. 803–805.

Bourgault, F. and H. F. Durrant-Whyte (2004): “Communication in general
decentralized filters and the coordinated search strategy.” In The 7th
International Conference on Information Fusion.

Cadman, J. (2003): “Deploying commercial location-aware systems.” In
Proc. Fifth International Conference on Ubiquitous Computing.

Durrant-Whyte, H., B. Rao, and H. Hu (1990): “Toward a fully decen-
tralized architecture for multi-sensor data fusion.” Proceedings of the
IEEE International Conference on Robotics and Automation, pp. 1331–
1336 vol.2.

Grime, S., H. F. Durrant-Whyte, and P. Ho (1992): “Communication
in decentralized data-fusion systems.” In In Proc. American Control
Conference, pp. 3299–3303.

Hall, D. and J. Llinas (1997): “An introduction to multisensor data fusion.”
Proceedings of the IEEE, 85:1, pp. 6–23.

Harris, C. and M. Stephens (1988): “A combined corner and edge detector.”
In Proceedings of the 4th Alvey Vision Conference, pp. 147–151.

Manolakis, D. E. (1996): “Efficient solution and performance analysis
of 3-d position estimation by trilateration.” IEEE Transactions on
Aerospace and Electronic Systems, 32:4, pp. 1239–1249.

Moore, D. S. and G. P. McCabe (2006): Introduction to the Practice of
Statistics, 5th edition. W H Freeman.

Olfati-Saber, R., J. A. Fax, and R. M. Murray (2007): “Consensus and
cooperation in networked multi-agent systems.” Proceedings of the
IEEE, 95:1, pp. 215–233.

Priyantha, N., A. Chakraborty, and H. Balakrishnan (2000): “The
Cricket location-support system.” In Proc. Sixth ACMMOBICOM Conf.
Boston, MA.

110



References

Smith, A., H. Balakrishnan, M. Goraczko, and N. B. Priyantha (2004):
“Tracking Moving Devices with the Cricket Location System.” In
2nd International Conference on Mobile Systems, Applications and
Services (Mobisys 2004). Boston, MA.

Speranzon, A., C. Fischione, and K. H. Johansson (2006): “Distributed and
collaborative estimation over wireless sensor networks.” In Proceedings
of the 45th IEEE Conference on Decision and Control, pp. 1025–1030.
San Diego.

Thomas, F. and L. Ros (2005): “Revisiting trilateration for robot localiza-
tion.” IEEE Transactions on Robotics, 21:1, pp. 93–102.

Viswanathan, R. and P. Varshney (1997): “Distributed detection with
multiple sensors part i. fundamentals.” Proceedings of the IEEE, 85:1,
pp. 54–63.

Want, R., A. Hopper, V. Falcao, and J. Gibbons (1992): “The Active Badge
Location System.” ACM Transactions on Information Systems, 10:1,
pp. 91–102.

111





Paper IV

A Component-Based Approach to
Ultrasonic Self Localization in Sensor

Networks

Peter Alriksson and Karl-Erik Årzén

Abstract

This report describes the development of an ultrasound based self
localization system for mobile robots. The robot navigates using a com-
bination of internal wheel encoders and absolute distance information
from a sensor network. The sensor fusion problem is formulated as a
nonlinear state estimation problem which is approximated using an
extended Kalman filter.
Using a general state estimation formulation has the advantage

that if no information can be provided by the network, due to for
example heavy network load, the robot can still navigate using only
internal information.
The software was developed using a component-based middleware.

Technical report ISRN LUTFD2/TFRT–7619–SE, Department of Auto-
matic Control, Lund University, Sweden, May 2008
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1. Introduction

Networked embedded systems play an increasingly important role and af-
fect many aspects of our lives. By enabling embedded systems to commu-
nicate, new applications are being developed in areas such as health-care,
industrial automation, power distribution, rescue operations and smart
buildings. Many of these applications will result in a more efficient, ac-
curate and cost effective solution than previous ones. The European inte-
grated project Reconfigurable Ubiquitous Networked Embedded Systems
[RUNES, 2007] brings together 21 industrial and academic teams in an
attempt to enable the creation of large scale, widely distributed, heteroge-
neous networked embedded systems that inter-operate and adapt to their
environments. The inherent complexity of such systems must be simpli-
fied if the full potential for networked embedded systems is to be realized.
The RUNES project aims to develop technologies (system architecture,
middleware, networking, control etc.) to assist in this direction, primarily
from a software and communications standpoint.
Networked control systems impose additional requirements that arise

from the need to manipulate the environment in which the networked
systems are embedded. Timing and predictability constraints inherent in
control applications are difficult to meet in general, due to the variations
and uncertainties introduced by the communication system: delays, jitter,
data rate limitations, packet losses etc. For example, if a control loop is
closed over a wireless link, it should tolerate lost packets and be able to
run in open loop over periods of time. Resource limitations of wireless
networks also have important implications for the control design process,
since limitations such as energy constraints for network nodes need to be
integrated into the design specifications. The added complexity and need
for re-usability in the design of control over wireless networks suggest a
modular design framework.
In this report, we propose a component-based approach to handle the

software complexity of networked control systems. A general framework is
presented and it is shown how it can be instantiated in the specific prob-
lem of robot self localization and control. Section 1.1 briefly presents the
RUNES middleware and component architecture. In the RUNES project
a motivating scenario was developed, this scenario is described in Section
1.2. The different components and their connections are presented in Sec-
tion 2 and in sections 3 and 4 the algorithms used for self localization and
robot control are discussed.

1.1 Middleware and Components

The RUNES middleware [Mascolo et al., 2005] is illustrated in Figure 1.
The middleware acts as a glue between the sensor, actuator, gateway and
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Figure 1. Overview of the RUNES middleware platform. The component-based
middleware resides between the application and the operating systems of the indi-
vidual network nodes.

routing devices, operating systems, network stacks, and applications. It
defines standards for implementing software interfaces and functionali-
ties that allow the development of well-defined and reusable software. The
basic building block of the middleware developed in RUNES is a software
component. From an abstract point of view, a component is an autonomous
software module with well defined functionalities that can interact with
other components only through interfaces and receptacles. Interfaces are
sets of functions, variables and associated data types that are accessible
by other components. Receptacles are required interfaces by a component
and make explicit the inter-component dependencies. A graphical repre-
sentation of a RUNES component is shown in Figure 2.
The connection of two components occurs between a single interface

and a single receptacle. Such association is called binding and is shown in
more detail in Figure 3. Part of the RUNES middleware has been demon-
strated to work well together with the operating system Contiki [Dunkels
et al., 2004], which was developed for low memory low-computation de-
vices. The implementation of the component model for Contiki is known
as the component runtime kernel (CRTK). This component framework pro-
vides for instance dynamic run-time bindings of components, i.e., during
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Figure 2. Graphical representation of a RUNES component. Interfaces are sets
of functions, variables and associated data types that are accessible by other com-
ponents. Receptacles are required interfaces by a component.

execution it allows components to be substituted with other components
with the same interface.

1.2 Motivating Scenario

One of the major aims of the RUNES project is to create a component-
based middleware that is capable of reducing the complexity of application
construction for networked embedded systems of all types. Versions of the
component runtime kernel, which forms the basis of the middleware, are
available for a range of different hardware platforms. However, the task
is a complex one, since the plausible set of sensing modalities, environ-
mental conditions, and interaction patterns is very rich. To illustrate one
potential application in greater detail, the project selected a disaster relief
scenario, in which a fire occurs within a tunnel, much as happened in the
Mont Blanc tunnel in 1999. In this, the rescue services require informa-
tion about the developing scenario both before arrival and during rescue
operations, and such information is provided by a network of sensors,
placed within the tunnel, on robots, and on rescue personnel themselves.
We explore the scenario in more detail below, but it should be noted this
is intended to be representative of a class of applications in which sys-
tem robustness is important and the provision of timely information is
crucial. So, for example, much the same considerations apply in the pre-
vention of, or response to, Chemical, Biological, Radiological, Nuclear or
Explosive (CBRNE) attacks; likewise, search and rescue operations, and
even industrial automation systems form application domains with simi-
lar requirements for predictability of response given challenging external
conditions.
In the RUNES scenario, we project what might happen in a simi-

lar situation if the vision of the US Department of Homeland Security’s
SAFECOM programme becomes a reality. The scenario is based around a
storyline that sets out a sequence of events and the desired response of the
system, part of which is as follows. Initially, traffic flows normally through
the road tunnel; then an accident results in a fire. This is detected by a
wired system, which is part of the tunnel infrastructure, and is reported
back to the Tunnel Control Room. The emergency services are summoned
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by Tunnel Control Room personnel. As a result of the fire, the wired in-
frastructure is damaged and the link is lost between fire detection nodes
(much as happened in Mont Blanc). However, using wireless communica-
tion as a backup, information from (for example) fire and smoke sensors
continues to be delivered to the Tunnel Control Room seamlessly. The first
response team arrives from the fire brigade and rapidly deploys search
and rescue robots, following on foot behind. Each robot and firefighter car-
ries a wireless communication gateway node, sensors for environmental
temperature, chemical and smoke monitoring, and the robots carry light
detectors that help them identify the seat of the blaze.
The role of the robots in this scenario is twofold: to help identify haz-

ards and people that need attention, without exposing the firefighters
to danger; and to augment the communications infrastructure to ensure
that both tunnel sensor nodes and those on firefighters remain in contact
with the command and control systems that the situation commander
uses to make informed decisions about how best to respond. To accom-
plish this, the robots are moving autonomously in the tunnel taking into
account information from tunnel sensors about the state of the environ-
ment, from a human controller about overall mission objectives, and from
received signal strength measurements from the wireless systems of var-
ious nodes about the communication quality. The robots coordinate their
activity with each other through communication over wireless links. Local
backup controllers allow the robots to behave reasonably in the event that
communication is lost.

2. Software Components

This section presents an overview of the components and their bindings
used for navigation, self localization and control of a single autonomous
robot. Components aimed at for example restoring or improving network
connectivity, radio power control, coordination of multiple robots, security
issues and so on are described in [Årzén et al., 2007] and its companion
papers.
A component-based middleware has, at least in theory, the big advan-

tage that components can be developed and tested independently. How-
ever, when dealing with components that interact with the environment,
one must be aware of how the interconnection of components effect real-
time performance. Thus some of the advantages with a component-based
architecture can be illusive, especially in embedded systems with limited
resources. Techniques like reservation-based scheduling are promising,
but it is still an active research area, see for example [Lindberg, 2007] for
a recent survey.
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Figure 3. Overview of the component architecture used for navigation and de-
ployment of a single autonomous robot.

In Figure 3 an overview of the component architecture is shown. The
system also contains a network communication component which provides
UDP and TCP services together with Ad hoc On-Demand Vector Routing.

The interface-receptacle framework implies that components can be
added in an hierarchical fashion. For example, the wheel control compo-
nent (WCC), which does not require a connection to any other component
and thus have no receptacles, serves as the base of the hierarchy. The self
localization component (LoC) then binds to the WCC and so on.
As depicted in Figure 1 one component can reside in multiple devices,

possible running different operating systems. In case of the LoC and RCC
this is inherent to their function, whereas in the case of the HCC, WCC
and NaC it is an implementational choice. All components except the PC
part of the RCC was implemented in C code.
Next the different components together with their interfaces and re-

ceptacles will be described.

2.1 Wheel Control Component

The wheel control component is the most rudimentary component dis-
cussed here. It provides low level control of the movement of the robot.
Two interfaces are provided by the WCC: one containing the current an-
gular velocity of the two wheels and one providing a function to set the
reference velocities.
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2.2 Self Localization Component

The self localization component resides both in the robot and in a number
of stationary anchor nodes. To reduce the computational time of the algo-
rithm, some computations are also distributed among two microprocessors
within the robot.
The LoC provides one interface containing estimates of the robots po-

sition and heading in a predefined coordinate system. The interface also
contains the covariance matrix of the estimation error which acts as a
quality measure of the estimates. To enhance accuracy the LoC uses in-
formation about the movement of the robot. This is represented as a re-
ceptacle requesting wheel velocities.

2.3 Heading Control Component

The heading control component provides one interface containing func-
tions for changing the desired heading together with the reference ve-
locity of the robot. Measurements of the heading and wheel velocities
are requested through two receptacles. The HCC also requires a way of
changing the wheel reference velocities, this is represented as a receptacle
requesting an interface with this functionality.

2.4 Navigation Component

The navigation component provides one interface containing a function to
change the desired location of the robot. Measurements of the robots loca-
tion and heading are requested through one receptacle. The NaC requires
a way of changing the heading and velocity references, this requirement
is also represented as a receptacle. The algorithms used for navigation
are described in [Nordh, 2007] and [Edhner, 2007].

2.5 Remote Control Component

Naturally, also the remote control component is distributed between the
controlling computer and the robot. The RCC has only one receptacle,
representing a requirement of an interface that provides a function for
changing the desired location of the robot. The remote control component
generates this value through interaction with a remote user.

3. Self Localization

A prerequisite for navigation is self localization, i.e., the robots must know
their current position and heading. Since the tunnel is assumed to be well-
known, automatic map building is not considered. Instead it is assumed
that the overall layout of the tunnel is known, with the exception of the
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position of a number of stationary obstacles, modeling, e.g., stalled vehi-
cles.
Self localization of mobile robots can be performed with a number of

techniques. In laboratory experiments it is common to use vision, e.g., a
ceiling-mounted camera combined with an image-processing system. In
the tunnel scenario this is not a realistic approach due to, e.g., problems
with light and smoke. Another possibility is to use dead-reckoning using
a high-precision inertial measurement sensor unit on-board the robot. A
problem with dead reckoning-based approaches, however, is that they are
open loop and that unmeasurable disturbances will cause position errors
that cannot be compensated for. In an outdoor environment GPS would
have been another possibility, but inside a tunnel this is less realistic.
The self localization approach chosen in the RUNES project is based

on measuring the distance to a number of objects with known positions,
known as anchors, and then computing the position of the unknown object,
in this case the robot, using these measurements. In a real road tunnel,
the means of acquiring these distance measurements, would be dependent
on the environment in which the system must operate. As the aim of this
project was not to develop a positioning system capable of operating in
the harsh environment of a burning road tunnel, but to demonstrate the
benefits of a component-based design approach, a simple ultrasound based
solution was chosen.

3.1 Ultrasound Distance Measurements

The basic idea is to transmit a wireless radio packet simultaneously with
an ultrasound pulse from each sender node. The receiver nodes measure
the difference in time of arrival between the radio packet and the ultra-
sound pulse and can in this way calculate their distance to the sender
node.
Two main approaches exists, [Smith et al., 2004]. In an active mobile

system the infrastructure, in this case the tunnel, has receivers at known
locations, which estimate distances to a mobile device based on active
transmissions from the device. Examples of this approach are the Active
Badge [Want et al., 1992], and the Ubisense [Cadman, 2003] systems. In
a passive mobile system, instead, the infrastructure has active beacons at
known positions that periodically transmits signals to a passive mobile
device. The most famous example of this is the Cricket system [Priyantha
et al., 2000].
An advantage of the active approach is that it is more likely to per-

form accurate tracking than the passive approach. The passive approach,
on the other hand, scales better with the number of mobile devices. Since
in the tunnel scenario good tracking is important and the number of mo-
bile robots is small, the active approach was chosen. The stationary sensor
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Figure 4. Stationary sensor network nodes with ultrasound receiver circuit. The
nodes are packaged in a plastic box to reduce wear.

nodes in the tunnel are each equipped with an ultrasound receiver and
each mobile robot is equipped with an ultrasound transmitter. The station-
ary sensor nodes are implemented as Tmote Sky sensor network “motes”
together with a small ultrasound receiver circuit interfaced to the mote
via the AD converter, see Figure 4. The mobile robots are equipped with
an ultrasound transmitter circuit. Both the ultrasound transmitters and
receivers are designed to be isometric, i.e., to transmit and receive in the
full 360○ degree plane.
A second reason for choosing ultrasound-based self localization is that

it involves the use of the sensor network in closed loop. One of the objec-
tives of the RUNES project was to investigate the possibilities and prob-
lems associated with networked control over sensor networks. In wireless
networks the lack of worst-case latency guarantees and risk of losing radio
packets creates extra challenges for control. The ultrasound based location
method provides a possibility for evaluating this.

3.2 State Estimation

Inferring the position (or any other quantity) of an unknown object from
measurements of the distance to a number of objects with a priori known
positions can be done using a variety of methods. In general the distance
measurements are corrupted by noise, so any method used should involve
some kind of filtering. If additional measurements such as wheel veloci-
ties and heading information is available, this information should also be
incorporated in the estimate of the position. Both these requirements sug-
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gest the use of a dynamic model of the object to be positioned together with
some statistical inference technique. The problem can thus be formulated
as a general nonlinear state estimation problem on the form

x(k+ 1) = f (x(k), k) +w(k)

y(k) = h(x(k), k) + v(k)
(1)

where x(k) ∈ Rn is the state vector to be estimated, y(k) ∈ Rp is the
measured output, w(k) ∈ Rn and v(k) ∈ Rp are unknown disturbances.
Note that a known input can be seen as a time dependent f (⋅).
When solving a general nonlinear state estimation problem one must

almost always resort to approximations of some sort. The by far most com-
mon approach is the Extended Kalman filter [Jazwinski, 1970] where the
probability distribution of x(k) given all previous information is approx-
imated using a Gaussian distribution. A Gaussian distribution is fully
described by its mean and covariance, thus it is sufficient to find an ap-
proximate way of updating these quantities after a new measurement is
taken and as time progresses. In the Extended Kalman Filter, or EKF for
short, this is done through linearization of f (⋅) and h(⋅).
An alternative way of updating the mean and covariance is through

the use of the so called unscented transform, which results in the Un-
scented Kalman Filter (UKF) [Julier and Uhlmann, 1997]. The UKF uses
a deterministic sampling approach where the mean and covariance is rep-
resented using a minimal set of carefully chosen sample points. When
propagated through the true nonlinear system, these points capture the
mean and covariance accurately to the 3rd order Taylor series expansion
of the nonlinearity.
In both the EKF and UKF the the probability density of x(k) is ap-

proximated by a Gaussian distribution. If a more general distribution is
needed, the use of sequential Monte Carlo methods such as the so called
particle filter [Doucet et al., 2001] is a common approach.
All the methods presented so far, aim at approximating the full prob-

ability distribution of x(k) given all previous information. A different ap-
proach is the joint maximum a posteriori- or trajectory estimation method
where a point estimate of the full trajectory x(0) . . . x(k) is generated. Us-
ing dynamic programming a recursive procedure for generating a point
estimate of the last value x(k) can be derived in principal. However, in
general the complexity of this recursive scheme grows with kmaking it im-
possible to implement. One common method that finds an approximation
of the joint maximum a posteriori estimate is moving horizon estimation
(MHE) [Rao, 2000]. In MHE a point estimate of x(k−N) . . . x(k) for some
fixed value N is generated by solving an optimization problem online.
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Figure 5. Standard deviation of the distance measurement error as a function of
distance together with 95% confidence intervals.

3.3 Measurement Models

The measurement function h(⋅) is determined by if the distance measure-
ments are preprocessed or not. If no preprocessing is done it will simply
be the Euclidean distance between the object and the anchors. This setup
will be referred to as the direct measurement model. In this case the un-
known disturbance v(k) can, at least approximately, be modeled as white
Gaussian noise independent of the state. As can be seen in Figure 5 the
implemented system gives an error of about 1 cm for distances up to 7 m.
Also, the accuracy is fairly independent of the distance.

Trilateration. One common way of preprocessing the distance mea-
surements is called trilateration. Trilateration is a process, where three
(in the plane) distance measurements together with the known positions
of the anchor nodes, produces an estimate of the position of the unknown
object. In this case h(⋅) reduces to an identity map for the position co-
ordinates, but at the cost of making v(k) highly dependent of x(k). This
dependence is in general difficult to model, due to the nonlinear charac-
teristics of the trilateration procedure.
The basic problem is to find a solution [ px py pz ]

T to the following
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three nonlinear equations

(px − px1)
2 + (py − py1)

2 + (pz − pz1)
2 = d21

(px − px2)
2 + (py − py2)

2 + (pz − pz2)
2 = d22

(px − px3)
2 + (py − py3)

2 + (pz − pz3)
2 = d23 .

where pxi, pyi and pzi are known positions of the anchors and di is the
distance from anchor i to the object to be positioned. The problem can
be transformed to a system of two linear equations and one quadratic
equation by e.g subtracting the second and third equation from the first,
see [Manolakis, 1996] for a detailed analysis.
An alternative more geometric approach was taken in [Thomas and

Ros, 2005] where the problem is solved using Cayley-Menger determi-
nants. This approach as the benefit of a geometric interpretation of the
solution in terms of volumes, areas and distances. Also the error analysis
with respect to e.g distance errors is simplified.
As the robot is assumed to only move in the xy-plane, the problem can

be reduced to a set of two linear equations as discussed above. The two
linear equations will always have a solution unless all three known points
are positioned on a line. The two linear equations defines two lines, see
Figure 6, which can be represented as

a0y = a1 + a2x (2)

b0y = b1 + b2x (3)

where

a0 = 2(py2 − py1)

a1 = d
2
1 − d

2
2 + p

2
y2 − p

2
y1 + p

2
x2 − p

2
x1 − 2pz(pz2 − pz1)

a2 = 2(px1 − px2)

b0 = 2(py3 − py1)

b1 = d
2
1 − d

2
3 + p

2
y3 − p

2
y1 + p

2
x3 − p

2
x1 − 2pz(pz3 − pz1)

b2 = 2(px1 − px3).

Note that the z-coordinate pz of the robot is assumed to be known, as
it is only moving in the xy-plane. The intersection point of these two lines
constitute the trilaterated position [ ptrix ptriy ]

T . Even though the three
circles do not intersect in one point, the algorithm provides a reasonable
result. However, for nearly singular situations like the one shown in Fig-
ure 7, the result produced need not to be very accurate. For a detailed
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1

2

3

Figure 6. The intersection of two lines defining the solution to the trilateration
problem. The three circles correspond to distance measurements to three anchor
nodes with known positions. When measurement noise is present the circles may
as shown overlap or not intersect. However, the trilateration procedure results in a
reasonable result in both these cases.

discussion on how errors both in distance measurements and node posi-
tions influence the trilateration result, see [Thomas and Ros, 2005] and
[Manolakis, 1996].

3.4 Choice of measurement model

Using the direct measurement model has two major advantages over tri-
lateration: First of all, the direct approach can make use of only one or
two measurements, whereas to perform trilateration three measurements
are necessary. In a system relying on wireless communication, this is an
important advantage. Secondly, modeling the state dependent noise in the
trilateration case is very difficult. This results in that the algorithm is un-
aware of how good a measurement really is. This information is available
to the direct approach as it uses a nonlinear measurement function h(⋅).
The trilateration approach has the advantage that it is conceptually

simpler, as after a trilateration computation is done, an estimate of the
position is directly available. In the direct measurement model, the posi-
tion estimate is the result of an iterative algorithm involving other known
signals and/or unknown states.
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1

2

3

Figure 7. Nearly singular configuration where the trilateration result (intersec-
tion of the two lines) need not be very accurate. The distance measurements suggest
that the object is located in the vicinity of anchor 3, but the trilateration procedure
gives a result far away.

3.5 Dynamical Model

The choice of dynamical model f (⋅) should reflect both the available knowl-
edge and which quantities that are of interest. The robot used in the
RUNES project is a two wheeled dual drive robot with an unactuated
support. Using this type of robot has the big advantage that when turn-
ing, the actuated wheels are not slipping, thus a third order kinematic
model can easily be derived.
The robot together with coordinate definitions is shown in Figure 8.

Using the two position variables px and py together with the heading θ
as state variables the model can be written as







ṗx =
R

2
(ω 1 +ω 2) cos(θ)

ṗy =
R

2
(ω 1 +ω 2) sin(θ)

θ̇ =
R

D
(ω 2 −ω 1)

(4)

where R is the radius of the wheels and D is the distance between them.
Inputs to the system are the angular velocities ω 1 and ω 2 of the two
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θ

px

py

ω 1

ω 2

Figure 8. Definition of coordinates with respect to the robot.

wheels. In this model, these angular velocities are assumed to be com-
pletely known as they are controlled by two PI-controllers, see Section
4.2.
To get a model on the form (1) the continuous time model (4) must

be discretized. The most common choice of discretization scheme is the
simple forward Euler scheme,

x(k+ 1) = x(k) + T ẋ(k) = f (x(k), k) (5)

However, due to the limited computational resources in the hardware
platform, the sampling interval T must be kept rather large. For large
sampling intervals the forward Euler scheme can perform very badly. This
motivates the use of a higher order scheme such as a second order Adams-
Moulton method,

x(k+ 1) = x(k) +
T

2
(ẋ(k) + ẋ(k+ 1)) (6)

In general the Adams-Mouton method is implicit, that is, we have to solve
for x(k + 1) using some numerical method. However, for the continuous
time model (4) an explicit solution can be obtained. Note that f (x(k), k)
will depend on the wheel velocities at time k+1, but this poses no problem
if the model is not used for prediction.

3.6 Extended Kalman Filter

This section presents the extended Kalman filter and points out some
implementational issues. The presentation is made with the direct mea-
surement model in mind, but the same procedure applies for trilateration.
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Care must however be taken with how to compute the measurement noise
covariance matrix Rv in the case of trilateration.
The EKF consists of two steps: time update and measurement update.

In the time update step the mean x̂ and covariance P of the Gaussian
approximation of the probability density of x(k) given all information up
to k is updated as

x̂(k+ 1pk) = f (x̂(kpk), k)

P(k+ 1pk) = F(k)P(kpk)FT (k) + Rw
(7)

where Rw is the covariance of the process disturbance w(k). The matrix
F(k) is the Jacobian of f (⋅) with respect to x(k) at x̂(kpk),

F(k) =
�

�x
f (x, k)

∣
∣
∣
∣
x=x̂(kpk)

(8)

When a measurement is available the mean and covariance is updated as

x̂(kpk) = x̂(kpk− 1) + K (k) (y(k) − h(x̂(kpk− 1), k))

P(kpk) = (I − K (k)H(k))P(kpk− 1)
(9)

where

K (k) = P(kpk− 1)HT(k)S−1(k)

S(k) = H(k)P(kpk− 1)H(k)T + Rv

H(k) =
�

�x
h(x, k)

∣
∣
∣
∣
x=x̂(kpk−1)

(10)

and Rv denotes the covariance of the measurement disturbance v(k).
Note that if the Adams-Mouton approximation is used the time update

step has to be computed at the beginning of the sampling interval due to
the dependence in f (x, k) of ω 1(k+ 1) and ω 2(k+ 1).
Because the number of received distance measurements may vary with

time, the size of H(k), S(k) and K (k) will also change over time. In the
extreme, when no measurements are received, the measurement update
step is simply ignored and the estimates are updated using the dynamical
model only. This is often referred to as dead reckoning.
Perhaps both the most numerically sensitive and computationally de-

manding part of the above computations is the inversion of the output
prediction error covariance matrix S(k). This square matrix has the same
dimension as the number of received measurements. For a linear Kalman
filter, processing measurements with independent noise one at a time,
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thus reducing the matrix inversion to division with a scalar, is equivalent
to processing them all at once. For a description, see for example [Jazwin-
ski, 1970] or [Mendel, 1971] where a detailed computational analysis is
done. For the EKF a similar procedure can be used, however sequential
and non-sequential processing are in general not equivalent due to the
nonlinear update equation. To be consistent with the structure of (9) H(k)
should be re-linearized after the addition of each new measurement.

3.7 Experimental Validation

To validate the accuracy of a self localization system using an EKF with
the direct measurement model, a reference camera system was used. The
EKF with sequential measurement processing was implemented in C code
using 32 bit software emulated floating point arithmetic.
In Figure 9 the estimated position and heading is shown together with

the measurements generated by the camera system. The camera system
had a accuracy of about 1 cm and 6 degrees. The estimates were gener-
ated using seven anchor nodes distributed to form equilateral triangles
covering the working area.
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Figure 9. Estimates generated by a self localization system using the EKF to-
gether with the direct measurement model together with measurements generated
by a reference camera system.
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Wheel Controller

Wheel Controller

Heading Controller

Position Encoder

Position Encoder

Speed Reference

Heading Reference

Heading Estimate

Wheel Speed Reference

Wheel Speed Reference

Motor Voltage

Motor Voltage

Figure 10. Hierarchical control system used to transform heading- and speed
references into actual control signals for the two motors.

4. Robot Control

Many robot navigation algorithms produce heading- and speed references
as their output. These reference values must be turned into actual control
signals for the two motors driving the robot. In Figure 10 a hierarchical
control system for thus purpose is shown. First the heading- and speed
references are transformed into wheel speed references. The two wheels
are then controlled individually to these references.

4.1 Heading Control

Using the same dynamical model of the heading θ as in the self localiza-
tion algorithm and assuming that the wheel speeds are well controlled, a
model suitable for control can be written as

d

dt

[
θ

∆ω

]

=

[

0 R
D

0 − 1
Tω

][
θ

∆ω

]

+

[
0
1
Tω

]

∆ω ref (11)

Here ∆ω = ω 2 −ω 1 and Tω ( 0.4 s is the time constant of the closed loop
wheel control systems. Sampling the system with a sampling interval of
400 ms and designing an LQ-controller that minimizes

∞∑

k=0

(θ(k) − θ ref(k))
2 + R2∆ω 2(k) + 10R2∆ω 2ref(k) (12)

results in a controller on the form

∆ω ref = −L1(θ − θ ref) − L2∆ω (13)
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Because θ̇ is proportional to ∆ω , the control law can be interpreted as a
PD-controller. The two wheel speed references are then computed as

ω ref,1 =
vref

R
−
1
2

∆ω ref

ω ref,2 =
vref

R
+
1
2

∆ω ref

(14)

where vref is the speed reference of the robot in m/s.

4.2 Wheel Speed Control

As mentioned in Section 3.5 the angular velocity of the two wheels are
controlled by two PI-controllers operating at 100 Hz. The angular velocity
is estimated from position encoders by differentiating the position signal
and then using a low pass filter with a time constant of 100 ms.
In the heading control model it was assumed that the closed loop wheel

speed control system has a time constant of Tw ( 0.4 s. This is achieved
by prefiltering the reference signal with a first order low pass filter. The
time constant Tw had to be chosen large enough to prevent the wheels
from slipping, which would violate the assumptions made when deriving
the kinematic model (4).

5. Conclusions

The self localization and robot control system was part of a large scale
demo involving a variety of hardware platforms, wireless radio technolo-
gies and operating systems. This situation very much captures what might
be expected in a real world scenario. In the light of the experience draw
from the demo, a number of areas, some where further development is
needed, can be pointed out:
Co-existence of different wireless radio technologies need to be further

investigated. In the RUNES project IEEE 802.15.4, IEEE 802.15.1 (Blue-
tooth) and IEEE 802.15.11 (WLAN), all operating in virtually the same
frequency band, where used simultaneously. This together with the com-
plicated indoor radio environment created by multipath propagation and
the presence of people, gave rise to time variations which were virtually
impossible to predict. How to develop closed loop control systems capable
of handling this environment still remains a very challenging task.
When constructing distributed control/estimation systems operating

on severely resource-constrained platforms the lack of distributed debug-
ging and monitoring tools becomes evident. Normally straight forward
tasks such as logging of measured signals become a problem. Using wired
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logging is not possible if the network covers a large geographical area and
wireless logging will consume bandwidth and CPU time, thus effecting
the system under study. Debugging also becomes cumbersome as many
problems will only be detected after deployment. Thus, there is great po-
tential for development of tools resolving these issues. Another option is
of course simulation, but simulating wireless radios, dynamical systems
and software all at the same time is no simple task.
In heterogeneous environments such as the one described above, the

use of a common network technology is very important. In the RUNES
project a IP based solution was used. This allowed for example sensor
nodes to communicate with desktop PCs without the use of adaptor func-
tions, that would have been necessary if for example ZigBee would have
been used. The key technology that allowed this is the µIP stack [Dunkels,
2003] which is capable of running on systems with severe resource con-
straints.
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Paper V

Sub-Optimal Sensor Scheduling with
Error Bounds

Peter Alriksson and Anders Rantzer

Abstract

In this paper the problem of sub-optimal sensor scheduling with a
guaranteed distance to optimality is considered. Optimal in the sense
that the sequence that minimizes the estimation error covariance ma-
trix for a given time horizon is found. The search is done using relaxed
dynamic programming. The algorithm is then applied to one simple
second order system and one sixth order model of a fixed mounted
model lab helicopter.

cF2005 IFAC. Reprinted, with permission from Proceedings of the 16th
IFAC World Congress, Prague, Czech Republic, 2005.
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1. Introduction

Recently a great deal of attention has been given to the subject of wireless
sensor networks. As the number of sensors in an area increases, the com-
munication limitations imposed by bandwidth constraints will be more
and more evident. Thus not allowing all sensors to communicate their
measurements at each sampling interval could be very useful. Also, sen-
sors might be battery powered and thus saving power is an essential factor.
To save power a sensor can be put in stand-by mode and then woken by the
estimator at certain points in time. There could also be situations where
it is impossible to use two sensors at the same time due to the nature of
the sensors, ultra sonic sensors is one example.
All these problems urge for algorithms that not only decide how to

weight different sensors at different points in time, but also which sensors
to use. How to choose which sensor or sensors to use at a specific moment
is a nontrivial task studied by many others. In [Meier III et al., 1967]
the problem of discrete time sensor scheduling is solved by enumeration
of all possible sensor schedules. The combinatorial explosion limits this
approach to very short sensor schedules. A local gradient search is also
proposed, but this approach doesn’t guarantee that the global optimum is
found. It is also shown that if the state estimates are to be used for state
feedback, the plant control policy can be determined separately from the
measurement schedule. The optimal sensor schedule on the other hand
depends on the plant control policy. In [Chung et al., 2004] an effort is
made to prune the search tree by the use of a sliding window algorithm
and a thresholding algorithm.
The sensor scheduling problem has also been approached from a con-

tinuous time direction. In [Athans, 1972] it is shown that the sensor
scheduling problem can be transformed to a discrete-valued optimal con-
trol problem. This problem is then solved using a gradient search algo-
rithm. In [Lee et al., 2001] the discrete-valued optimal control problem
of sensor scheduling is transformed into a continuous-valued optimal con-
trol problem by the use of a control parameterization enhancing transform
(CPET). A method for robust sensor scheduling is developed in [Savkin
et al., 2001]. Here the problem with growing complexity is tackled in a
model predictive way.
Another related problem studied by many others is that of choosing the

time distribution of measurements with one sensor given a measurement
budget. This problem is studied for discrete time systems in [Shakeri et al.,
1995] and for continuous time systems in [Skafidas and Nerode, 1998].
In this paper a method of choosing the sensor switching strategy as

well as the Kalman estimator gain for a discrete time system is presented.
The objective is to minimize a function of the estimation error covariance
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matrix at the final time step. The method finds a sub-optimal strategy
within a pre-specified distance to optimality. The complexity of the algo-
rithm typically increases rapidly in the first iterations, but then levels
out below a constant level. The paper is organized as follows. In Section
2 the class of system to which the algorithm applies is presented and an
estimator structure is proposed. In Section 3 the optimization algorithm
is presented and the connection to the work by [Lincoln, 2003] is devel-
oped. Section 4 presents two examples and finally Section 5 talks about
problems and future extensions.

2. Problem Formulation

Consider a discrete time system described by
{

x(n+ 1) = Ax(n) + Bu(n) + v(n)

yi(n) = Cix(n) + ei(n)

where x(n) ∈ Rn is the state of the process, v(n) ∈ Rn a white Gaussian
stochastic process with zero mean. The system is observed through M
sensor groups i ∈ I = {1 . . .M} with outputs yi ∈Rpi all disturbed by zero
mean white Gaussian noise ei(n). The process noise and measurement
noise has the following correlation matrix.

E

[
v(n)

ei(n)

] [
v(n)

ei(n)

]T

= Ri

At each time instant the system can only be observed through one sensor
group. To estimate the state of the system a Kalman filter of the following
form will be used.

x̂(n+ 1) = Ax̂(n) + Bu(n) + K (n)ỹk(n)
ỹk(n) = yk(n) − Ck(n) x̂(n)

Here k ∈ κ (n) denotes a specific sequence in the set κ (n) of all possible
sequences and K ∈ Λ(n) a specific gain sequence in the set Λ(n) of all
possible gain sequences.. For a fixed sequence k and gain sequence K
the estimation error covariance is given by equation (1) see [Åström and
Wittenmark, 1997].

P(n+ 1, k, K ) = (A− K (n)Ck(n))P(n, k)(A− K (n)Ck(n))
T

+

[
I

−K T(n)

]T

Rk(n)

[
I

−K T(n)

]

(1)
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The initial estimation error covariance P(0) = P0 which should reflect the
knowledge of the initial state. The aim is to find a switching sequence k
and a gain sequence K such that the following function is minimized.

J(N) = min
k(0)...k(N−1)
K (0)...K (N−1)

tr(P(N)W) (2)

The problem can be solved by iterating equation (1) and expanding
the search tree for all possible sequences. The size of the search tree
qκ (n)q will however grow as Mn which makes this procedure impossible
in practice.

3. Finding an α -optimal Sequence

To address the problem of increasing complexity a way of pruning the
search tree has to be developed. In [Lincoln, 2003] a way of pruning the
search three for the problem of choosing a switching control law is devel-
oped. As expected that problem turns out to be the dual of the problem
addressed here and thus the algorithm could be used with only small
modifications.
Let Π(n) denote the set of all potentially α -optimal estimation error

covariances at time step n. α -optimal means that the estimation error
covariance matrix associated with the found sequence fulfills

α min
π ∗∈Π∗

π ∗ ≤ min
π∈Π(n)

π ≤ α min
π ∗∈Π

∗
π ∗

where π ∗ ∈ Π∗(n) denotes an element in the optimal set. The initial set
Π(0) is equal to the initial estimation error covariance P0. Further let
κopt(n− 1) denote the set of corresponding sequences and Λopt(n− 1) the
set of corresponding gain sequences.
To continue the iteration first define

Pi(n+ 1) = (A− K (n)Ci)π (n)(A− K (n)Ci)T

+

[
I

−K T (n)

]T

αRi

[
I

−K T(n)

]

and

Pi(n+ 1) = (A− K (n)Ci)π (n)(A− K (n)Ci)
T

+

[
I

−K T (n)

]T

αRi

[
I

−K T(n)

]
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where π (n) ∈ Π(n). Then an upper Π and lower bound Π for Π(n+ 1) is
calculated as

Π =

{

min
K (n)
Pi(n+ 1) pπ (n) ∈ Π(n) , i ∈ I

}

Π =

{

min
K (n)
Pi(n+ 1) pπ (n) ∈ Π(n) , i ∈ I

}

.
(3)

That is for each π ∈ Π and i ∈ I the estimation error covariance matrix
is computed by minimizing over K (n). Next the set of possible sequences

κcand = {[ k i ] p k ∈ κopt(n− 1) , i ∈ I}

is computed. The set of corresponding gain matrix sequences is then com-
puted using Procedure 1.

Procedure 1
For each π ∈ Π(n)

1. Pick the corresponding sequence K ∈ Λopt(n− 1)

2. For each i ∈ I

• Calculate the minimizing

K (n) = argmin
K (n)
Pi(n+ 1)

• Add the concatenated sequence [ K K (n) ] to Λcand.

Now the objective is to find a set Π(n+ 1) such that

min
π∈Π

π ≤ min
π∈Π(n+1)

π ≤ min
π∈Π

π (4)

Together with the set Π(n + 1), a set of corresponding sequences κopt(n)
and a set of matrix gain sequences Λopt(n) are also needed. This problem
is solved by Procedure 2 which is a more detailed version of Procedure 3.2
in [Lincoln, 2003].
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Procedure 2

1. Sort Π so that
trπ i ≤ trπ j ∀i < j

Λcand and κcand are ordered in the same way.

2. Let Π(n+ 1) = κopt(n) = Λopt(n) = :

3. Pick the first π ∈ Π and remove it from Π.

4. If there exists x s.t.

xTπ x < xTπ x ∀π ∈ Π(n+ 1)

then

• Pick the first π ∈ Π, k ∈ κcand and K ∈ Λcand.

• Add this π to Π(n+ 1) and remove π from Π.

• Add this k to κopt and remove k from κcand.

• Add this K to Λopt and remove K from Λcand.

• Go to step 3

5. Remove the first π from Π.
Remove the first k from κcand.
Remove the first K from Λcand.
If Π ,= : go to step 3.

The new set of possibly α -optimal estimation error covariance matrices
can now be used to compute upper and lower bounds for the next iteration.
The iteration procedure can be ended when the old set fulfills (4) that is

min
π∈Π

π ≤ min
π∈Π(n)

π ≤ min
π∈Π

π

or when n=N.
The slack parameters α and α are used to control the tradeoff between

complexity and accuracy. To find the α -optimal sequence it is enough
to find the element in Π(N) that minimizes (2) and pick the sequence
associated with that estimation error covariance matrix.
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4. Examples

4. Examples

In this section two examples will be given to illustrate the optimization
algorithm presented in Section 3. First a very simple second order system
will be used to show the basic principle. Then a sixth order fixed mounted
helicopter from the lab at Lund Institute of Technology will be used to
illustrate that the procedure is applicable to problems of higher order.

4.1 A Second Order System

Consider the following discrete second order system with two sensors







x(n+ 1) =
[
0.9 0.009

0.009 0.9

]

x(n) + v(n)

y1(n) = [ 1 0 ] x + e1(n)

y2(n) = [ 0 1 ] x + e2(n)

with noise covariance matrices

R1 =






10 0 0

0 10 0

0 0 1




 R2 =






10 0 0

0 10 0

0 0 r




 P0 = I .

The system consists of two weakly interconnected states, each observed
through a separate sensor. The goal is to minimize (2) with W = I and
N = 50.
The α -optimal sequence was computed for three different values of the

parameter r = { 10 , 50 , 110 }. These values correspond to sequence k1,
k2 and k3 in Figure 1. The slack parameters where chosen as α = 1.01
and α = α−1, which gave a set Π(50) of size 5.
As the variance of the measurement noise at sensor 2 increases the

number of samples taken from sensor 2 also increases up to a certain
point. For this particular example sensor 2 is not used at all for a value
of r > 104. The singular values of the observability Gramian

σ (Wo) =

[
5.5534

0.0138

]

give an indication that x2 has a low degree of observability from sensor
1. Thus the observer needs to use sensor 2 despite the large amount of
measurement noise associated with it.
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Figure 1. Sequences for measurement noise variance r = { 10 , 50 , 110 } at sensor
two.

4.2 The Model Helicopter

In this section a sensor switching strategy for a fixed mounted model heli-
copter will be developed. The model helicopter is situated in the Automatic
Control Lab at Lund Institute of Technology. For a detailed description
of the helicopter see [Gäfvert, 2001]. The helicopter can be modeled by a
sixth order system with the following state vector.

State Description

w1 Angular Velocity of Propeller 1

w2 Angular Velocity of Propeller 2

φ Yaw angle

φ̇ Yaw rate

θ Pitch angle

θ̇ Pitch rate

A discrete time model with sample time h = 0.05 linearized around
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the forced equilibrium point x0 = [w01 w02 0 0 0 0 ]T is given by

x(n+ 1) = Ax + v(n).

The system is observed through one yaw position sensor, one pitch angle
sensor and one angular velocity sensor for propeller 1. The three sensors
denoted y1, y2 and y3 are disturbed by white Gaussian noise.






y1(n)

y2(n)

y3(n)




 =






0 0 1 0 0 0

0 0 0 0 1 0

1 0 0 0 0 0




 x(n) + e(n)

The corresponding covariance matrices are

R1 = R2 = R3 = P0 = I.

The objective parameters where chosen as N = 100 and W = I. Because
of the higher complexity of this problem the the slack parameters where
chosen as α = 1.5 and α = α−1. This resulted in a set Π(100) of size 4.
The α -optimal sequence was computed and is given in part one of

Figure 2. The sequence is periodic with the period [1 2 1 2 3 2 ]
except for the first 14 samples. The reason for this is the influence of the
initial estimation error covariance P0. The trace of the error covariance
matrix P(n) was also calculated for the α -optimal sequence and for a
periodic sequence consisting of the triple [ 1 2 3 ]. As a comparison the
trace of P(n) was also computed for a Kalman filter which uses all three
sensors at each sampling instant. These traces are found in part two and
three of Figure 2.
To illustrate the pruning of sequences the size of the sequence candi-

date set κ is plotted in Figure 3. Here one can see the rapid increase in
size the first 10 or so samples, but then instead of growing exponentially
the size levels out. The size of κ (n) never exceeds 7. If the slack parame-
ters α and α are changed the shape of the complexity graph will remain
the same, but the steady state level will be greater.

5. Conclusions and Future Work

In this paper, the problem of minimizing the estimation error covariance
matrix at the final step for a time discrete linear system, when only one
sensor group may be used at each sampling interval is considered. The
problem was solved by slightly modifying the the procedure given in [Lin-
coln, 2003] for minimizing the quadratic cost with respect to a control
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Figure 2. α -optimal sequence kopt together with traces of P(n) for kopt and for
the sequence [ 1 2 3 ].
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Figure 3. Complexity in terms of the size of the sequence candidate set κ (n).

sequence. The procedure uses relaxed dynamic programming where the
parameters α and α are used in the tradeoff between complexity and
distance to optimality. The procedure was applied to two different exam-
ples, one simple second order example and one more complex sixth order
example.
One drawback with the procedure presented here is that it minimizes

the error covariance matrix at the final step only. Future work would
include to extend the procedure to more general cost functions such as

J(N) = min
k(0)...k(N−1)
K (0)...K (N−1)

N∑

0

tr(P(n)W(n)).

This is possibly a more difficult task, because the choice of sensor and
Kalman gain not only effects the covariance in the next sample, but the
value of the cost function for all future samples.
Work is also going on to combine switching observers with switching

controllers to achieve sub-optimal performance of control systems with
limited communication abilities.
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Paper VI

State Estimation for Markov Jump
Linear Systems using Approximate

Dynamic Programming

Peter Alriksson and Anders Rantzer

Abstract

In this paper, recursive Joint Maximum a Posteriori (JMAP) state
estimation for Markov jump linear systems is considered. The JMAP
estimation problem is formulated as dynamic programming and then
approximated using so called relaxed dynamic programming. The pro-
posed estimator is demonstrated on the problem of estimating the
state of a finite Markov chain observed in colored noise.
In the case of a switching system, that is when the mode changes

in an arbitrary fashion, we also show that under suitable observability
assumptions, the recursive state estimator produces an estimate that
approaches the true state in the absence of noise.

Submitted to IEEE Transactions on Automatic Control, 2008. Preliminary
results published in:

Alriksson, P. and A. Rantzer (2006): “Observer synthesis for switched
discrete-time linear systems using relaxed dynamic programming.” In
Proceedings of the 17th International Symposium on Mathematical
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1. Introduction

The subject of this paper is recursive state estimation for a class of discrete-
time hybrid systems referred to as Markov Jump Linear Systems or MJLS
for short.These systems have dynamics and measurements described by
the equations:

xk+1 = A(θ k)xk + B(θ k)uk + noise

yk = C(θ k)xk + D(θ k)uk + noise
(1)

In a MJLS the discrete mode θ k evolves according to a Markov chain.
Generally the covariance of the Gaussian noise is allowed to depend on
the mode. In this paper, the goal is to compute an estimate of both the
continuous state xk and the discrete mode θ k given measurements yk.
Markov jump linear models are used in a wide range of areas such as

signal processing, target tracking, speech recognition and econometrics to
name a few. A more comprehensive list of application areas are available in
[Oh et al., 2006]. Specifically, many signal processing problems such as de-
interleaving of pulse trains, IIR channel equalisation and state estimation
of a Markov chain in colored noise, can be formulated as MJLS estimation
problems, see for example [Logothetis and Krishnamurthy, 1999] and the
references therein. In target tracking [Mazor et al., Jan 1998], constant
velocity and acceleration models are often used to describe the movement
of an object to be tracked.
The area of recursive state estimation for Markov jump linear sys-

tems has received considerable attention in the literature during the last
three decades, starting with the paper by Ackerson and Fu [Ackerson and
Fu, 1970]. However, the optimal filter derived in [Ackerson and Fu, 1970]
requires infinite memory and thus much attention has been devoted to de-
riving finite memory approximations. Perhaps the most popular approach,
at least for target tracking, is the Interacting Multiple Model (IMM) al-
gorithm proposed in [Blom, 1984]. The problem has also been approached
using simulation based methods such as particle filters [Doucet et al.,
2001]. In [Costa, 1994] the best (in mean square sense) linear filter was
derived and it was shown to be of dimension nM , where n is the size of
xk and M is the number of modes.
In [Logothetis and Krishnamurthy, 1999] a non-recursive estimator

based on the expectation maximization (EM) algorithm was proposed. It
was also shown that many estimators based on Kalman filter banks plus
mode decision logic can be interpreted as recursive implementations of
the EM-algorithm.
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1. Introduction

1.1 Switching Systems

A closely related class of systems is what is often referred to as Switching
Systems. In a switching system, the mode θ k, is assumed to change in an
arbitrary fashion. The switching systems literature has mainly focused
on noise-free dynamics with stability of the estimation error as a central
concept.
In [Alessandri and Coletta, 2001] the modes are assumed to be known

and a classical Luenberger observer is designed for the switching system
using an LMI formulation. The assumption of known modes is relaxed in
[Babaali et al., 2004] and [Babaali and Egerstedt, 2005], where observers
are derived using linear algebra methods. In [Balluchi et al., 2005] and
[Balluchi et al., 2002] the mode is estimated by comparing the residuals
from a bank of Luenberger observers. The continuous state is then esti-
mated using a Luenberger observer for the resulting time-varying linear
system, where the uncertainty in the mode estimate is ignored.
The problem has also been approached from a receding horizon point

of view. In [Bemporad et al., 1999] the moving horizon estimation prob-
lem is solved using mixed integer quadratic program solvers. Recently, in
[Alessandri et al., 2005b] linear algebra methods where used to form a
set of possible mode sequences, each for which a quadratic program was
solved. The method was simplified further in [Alessandri et al., 2005a].
When designing observers for switching systems the concept of ob-

servability plays a central role. The notion of observability for a switching
system is , however, far more complex than for linear systems. The concept
has been treated in numerous papers including [Babaali and Egerstedt,
2004] and [Vidal et al., 2002].

1.2 Contributions and Organization

The main contribution of this paper is to revisit the formulation of joint
maximum a posteriori estimation as dynamic programming and use re-
cent advances in approximate dynamic programming to construct recur-
sive state estimators. This general idea is then demonstrated on both
Markov jump linear and switching systems.
In the case of switching systems, we also show that under suitable

observability assumptions, the recursive state estimator produces an es-
timate x̂k that approaches the true state xk in the absence of noise. Pre-
liminary results have been published in [Alriksson and Rantzer, 2006].
This paper is organized as follows. In Section 2 the problem is formally

stated and some notation is introduced. Sections 3 and 4 give an intro-
duction to recursive state estimation and present the main algorithm. In
Section 5 a numerical example is given. Section 6 treats the special case of
switching systems, for which a stability result is presented. Finally some
concluding remarks are given.
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2. Problem Statement

The system under consideration is

xk+1 = A(θ k)xk + B(θ k)uk +wk

yk = C(θ k)xk + D(θ k)uk + vk
(2)

where xk ∈ Rn denotes the continuous state, uk ∈ Rm a known input
and wk ∈ Rn a process disturbance. The mode of the system at time k is
denoted θ k and takes values from a finite set I = {1, . . . ,M}. The system is
observed through a continuous measurement yk ∈ Rp which is corrupted
by a measurement disturbance vk ∈ Rp.
The process and measurement disturbances are assumed to be white

zero mean Gaussian stochastic processes with covariance Rw(θ k) ∈ Rn$n

and Rv(θ k) ∈ Rp$p respectively. It is also assumed that wk and vk are
independent. The initial state x0 is assumed Gaussian with covariance
P0 ∈ Rn$n and mean x̌. The mode variable θ k is modeled by a finite state
Markov chain with initial probabilities p(θ0) and transition probabilities
p(θ k+1pθ k).
The goal of this work is to develop a recursive state estimator for θ k and

xk given the sequence of measurements {y0, . . . , yl}. Here we will consider
both filtering k = l and smoothing k < l.

2.1 Notation

First let
X i: j = {xi, . . . , x j} = {xk}

j

k=i

denote the sequence of continuous states at time i up to time j. Further
let X j = X0: j and define Θ j and Yj in the same way. Throughout this
paper we will make frequent use of quadratic forms

qxq2Q = x
TQx

where xT denotes matrix transpose. When dealing with stability in the
case of switching systems, it is convenient to first introduce the following
notation

Ã(Θi: j) =

{
A(θ j)A(θ j−1) . . . A(θ i) j ≥ i

I j < i

A (ΘN−2) =






Ã(Θ−1)

...

Ã(ΘN−2)




 =






I
...

A(θN−2) . . . A(θ0)
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3. Recursive State Estimation

C (ΘN−1) =






C(θ0)

. . .

C(θN−1)






O (ΘN−1) = C (ΘN−1)A (ΘN−2)

3. Recursive State Estimation

The recursive state estimation problem can be approached in many ways.
Here we will adopt a statistical Bayesian point of view.
Perhaps the most common way to proceed is to develop recursive equa-

tions for the conditional probability p(xk,θ kpYk) of the state. Various es-
timates such as Minimum Mean Square Error (MMSE) or Maximum a
Posteriori (MAP), together with measures of uncertainty can then be com-
puted from this quantity. The recursive equations typically involve inte-
gration (summation) over the state variables at each time step. Solving
these integrals for a general setup is often very difficult. Instead simula-
tion based methods such as particle filters [Doucet et al., 2001] are often
used.
An alternative is to construct estimates using the joint probability

p(Xk,ΘkpYk) of the whole trajectory given all measurements. To get a
recursive estimator we will restrict the problem to computing the most
probable state sequence

argmax
Xk,Θk

p(Xk,ΘkpYk)

This approach will be referred to as recursive Joint Maximum a Posteri-
ori (JMAP) state estimation. Using forward dynamic programming, this
problem can in principle be solved recursively as demonstrated in Section
4. The recursive procedure encounters the same difficulties as general dy-
namic programming, namely that of an explosion of computational com-
plexity. Recently this problem has been addressed in a receding horizon
fashion, giving rise to the moving horizon estimation (MHE) framework,
see for example [Rao, 2000] for a detailed treatment. In this paper we
instead use relaxed dynamic programming [Lincoln and Rantzer, 2006] to
handle the complexity explosion.
Note that, maximizing p(xk,θ kpYk) will in general not yield the same

estimate as the xk obtained frommaximizing p(Xk,ΘkpYk), see for example
Figure 1 or Chapter 9 in [Goodwin et al., 2005] for a thorough treatment.
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Figure 1. Two-dimensional distribution p(x0, x1) together with its marginaliza-
tion p(x1), with three common point estimates indicated. Note that the last element
x̂JMAP
k

of the sequence X̂ JMAP
k

in general does not coincide with x̂MAP
k
.

However, for the special case of a linear system with Gaussian noise both
approaches give the well known Kalman filter, see [Ho and Lee, 1964] and
[Cox, 1964] for derivations.

4. Recursive JMAP State Estimation

In this section we will show how to transform the JMAP problem to a
recursive state estimation problem using forward dynamic programming.
The presentation follows the ideas in [Larson and Peschon, 1966]. Recall
that the problem we want to solve is

{X̂k, Θ̂k} = argmax
Xk,Θk

p(Xk,ΘkpYk) (3)

First define
Ik(xx,θ k) = max

Xk−1,Θk−1
p(Xk,ΘkpYk) (4)

To get a recursive formulation, Bayes’ theorem is used to express Ik in
terms of Ik−1. First rewrite the conditional probability using Bayes theo-
rem as

p(Xk,ΘkpYk) =
p(ykpXk,Θk,Yk−1)p(Xk,ΘkpYk−1)

p(ykpYk−1)
(5)
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Using the Markov property of the system, (5) can be written as

p(Xk,ΘkpYk) =
p(ykpxk,θ k)p(xk,θ kpxk−1,θ k−1)p(Xk−1,Θk−1pYk−1)

p(ykpYk−1)
(6)

Now using the Markov jump assumption we can write

p(xk,θ kpxk−1,θ k−1) = p(xkpθ k, xk−1,θ k−1)p(θ kpxk−1,θ k−1)

= p(xkpθ k−1, xk−1)p(θ kpθ k−1)
(7)

We can now write (6) as

p(Xk,ΘkpYk) =
p(ykpxk,θ k)p(xkpθ k−1, xk−1)p(θ kpθ k−1)p(Xk−1,Θk−1pYk−1)

p(ykpYk−1)
(8)

and thus

Ik(xk,θ k) =

= max
Xk−1,Θk−1

p(ykpxk,θ k)p(xkpθ k−1, xk−1)p(θ kpθ k−1)p(Xk−1,Θk−1pYk−1)
p(ykpYk−1)

=

= max
xk−1 ,θ k−1

p(ykpxk,θ k)p(xkpθ k−1, xk−1)p(θ kpθ k−1)
p(ykpYk−1)

Ik−1(xk−1,θ k−1) (9)

The denominator of (9) is a normalization constant independent of the
state, thus the recursive equation

Ik(xk,θ k) = max
xk−1 ,θ k−1

p(ykpxk,θ k)p(xkpθ k−1, xk−1)p(θ kpθ k−1)Ik−1(xk−1,θ k−1)

(10)
can be used instead. The iteration is initiated with

I0(x0,θ0) = p(y0px0,θ0)p(x0)p(θ0) (11)

4.1 Value Iteration

The procedure outlined in Section 4 applies to general Markov models.
Next we will make use of the special structure of the problem studied
here. If either A(θ k) or Rw(θ k) are invertible the recursive JMAP problem
can be transformed into a value iteration problem. Here we will pursue
the latter.
First using the Gaussian noise assumption we find that

p(ykpxk,θ k) =
1

(2π )p/2
√

det Rv(θ k)
exp

{

−
1
2
qvkq

2
R−1v (θ k)

}

vk = yk − C(θ k)xk − D(θ k)uk

(12)
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and

p(xk+1pxk,θ k) =
1

(2π )n/2
√

det Rw(θ k)
exp

{

−
1
2
qwkq

2
R−1w (θ k)

}

wk = xk+1 − A(θ k)xk − B(θ k)uk

(13)

To simplify the maximization required for computing I(xk+1,θ k+1) define
the value function

V
opt
k+1(xk+1,θ k+1) = − log Ik+1(xx+1,θ k+1) (14)

The maximization problem now becomes a minimization problem on the
form

V
opt
k+1(xk+1,θ k+1) = min

xk,θ k

{

V
opt
k (xk,θ k) + Lk(xk+1, xk,θ k+1,θ k)

}

(15)

with initial conditions

V
opt
0 (x0,θ0) =

1
2
qx0 − x̌0q

2
P−10
+
1
2
qv0q

2
R−1v (θ0)

+ K (θ0)

K (θ0) =
1
2
log det Rv(θ0) − log p(θ0)

(16)

The step cost Lk becomes

Lk(xk+1, xk,θ k+1,θ k) =
1
2
qvk+1q

2
R−1v (θ k+1)

+
1
2
qwkq

2
R−1w (θ k)

+ K (θ k+1,θ k)

K (θ k+1,θ k) =
1
2
log det Rv(θ k+1) +

1
2
log det Rw(θ k) − log p(θ k+1,θ k) + K̃

(17)

Here K̃ is a constant chosen in such a way that

min
θ k+1,θ k

K (θ k+1,θ k) = 0 (18)

The reason for this choice will be clear when the value iteration procedure
is approximated.

4.2 Value Function Parametrization

When choosing a value function parametrization, it is essential that the
new value function can be parametrized in the same way. To achieve this,
first assume a value function on the form

V
opt
k (xk,θ k) = min

π∈Π
opt
k
(θ k)

[
xk

1

]T [π11 π12

π T12 π22

] [
xk

1

]

(19)
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Here Π
opt
k denotes a set of matrices and Π

opt
k (θ k) are disjoint subsets de-

pending on θ k. Next note that the step cost Lk can be written as

Lk(xk+1, xk,θ k+1,θ k) =

∥
∥
∥
∥
∥
∥
∥

Λ(θ k,θ k+1)






xk+1

1

xk






∥
∥
∥
∥
∥
∥
∥

2

Q(θ k ,θ k+1)

(20)

We can now write the new value function as

V
opt
k+1(xk+1,θ k+1) = min

θ k,π∈Π
opt
k
(θ k)
min
xk






xk+1

1

xk






T

U (θ k,θ k+1,π )






xk+1

1

xk




 (21)

Minimizing over xk and θ k gives a new value function on the same form

V
opt
k+1(xk+1,θ k+1) = min

π∈Π
opt
k+1(θ k+1)

[
xk+1

1

]T

π

[
xk+1

1

]

(22)

Expressions for Λ(θ k,θ k+1), Q(θ k,θ k+1), U (θ k,θ k+1,π ) and π ∈ Π
opt
k+1(θ k+1)

are given in Appendix A.1. Because the new value function is on the same
form, it is theoretically possible to continue the value iteration. However,
the size of the set Π

opt
k+1 will in general be M times larger than Π

opt
k . Thus

the size grows exponentially with k. The fact that K (θ k+1,θ k) ≥ 0 by
construction ensures that all π ∈ Π

opt
k+1 are positive semi-definite. This

property will be useful when the exact value iteration is approximated
next.

4.3 Relaxed Value Iteration

As proposed in [Lincoln and Rantzer, 2006] the value iteration (15) can
be relaxed if the Bellman equality is replaced by two inequalities instead.
First define upper and lower bounds on Vk+1 as

V k+1(xk+1,θ k+1) = min
xk,θ k

{Vk(xk,θ k) +α Lk(xk+1, xk,θ k+1,θ k)}

V k+1(xk+1,θ k+1) = min
xk,θ k

{Vk(xk,θ k) +α Lk(xk+1, xk,θ k+1,θ k)}
(23)

Now it is possible to replace (15) with the two inequalities

V k+1(xk+1,θ k+1) ≤ Vk+1(xk+1,θ k+1) ≤ V k+1(xk+1,θ k+1) (24)

Here the scalars α > 1 and α < 1 are slack parameters that can be
chosen to trade off optimality against complexity. By the introduction of
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inequalities instead of equalities it is in principle possible to fit a simpler
value function function between the upper and lower bounds.
If, in each step, (24) holds with the upper (V k+1) and lower (V k+1)

bounds computed as in (23), the obtained solution will satisfy

αV optk (xk,θ k) ≤ Vk(xk,θ k) ≤ αV optk (xk,θ k) (25)

which gives guarantees on how far from optimal the approximate solution
is.
The approximate value function can be parametrized in many ways,

as long as there exist methods for computing (23) and finding a Vk+1
satisfying (24). How to choose a good parametrization of the relaxed value
function for a state feedback control setup has recently been studied in
[Wernrud, 2008].
If Vk is parametrized in the same way as V

opt
k , the approximate value

function Vk+1 can be constructed by selecting matrices from the lower
bound V k+1 until (24) is satisfied, see Figure 2 for an illustration. Note
that adding a matrix to the set Πk+1 decreases the overall function value
because of the parametrization used. For a detailed discussion on how
to construct Vk+1 see for example Procedure 1 in [Lincoln and Rantzer,
2006]. The fact that all π ∈ Πk are positive semi-definite simplifies the
procedure for testing (24).

4.4 Computing Estimates

Filtered estimates, that is x̂kpk and θ̂ kpk, given measurements up to and
including yk can be computed by minimizing the value function Vk(xk,θ k).

{x̂kpk, θ̂ kpk} = argmin
xk,θ k
Vk(xk,θ k) (26)

To compute an estimate of the full trajectory {Xk,Θk} we can backtrack
using previously computed value functions

{x̂i−1pk, θ̂ i−1pk} = arg min
xi−1,θ i−1

{
Vi−1(xi−1,θ i−1) +α Li−1(x̂ipk, xi−1, θ̂ ipk,θ i−1)

}

(27)
Because x̂ipk is fixed, terms independent of xi−1 and θ i−1 can be removed
from Li−1. Thus the problem reduces to

{x̂i−1pk, θ̂ i−1pk} = arg min
xi−1,θ i−1

{
Vi−1(xi−1,θ i−1) +α L̃i−1(x̂ipk, xi−1, θ̂ ipk,θ i−1)

}

(28)
where

L̃i−1(x̂ipk, xi−1, θ̂ ipk,θ i−1) =
1
2
qx̂ipk − A(θ i−1)xi−1 − B(θ i−1)ui−1q

2
R−1w (θ i−1)

+ K (θ̂ ipk,θ i−1) (29)
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Vk

V k+1

V k+1

Vk+1

Figure 2. 1-D illustration of how the new approximate value function Vk+1 is con-
structed by adding functions from the lower bound until it fits between the bounds.
The functions are plotted for a fixed θ .

Note that L̃i−1 does not depend on yi, thus there is no need to save old
measurements. The reason for including α in (27) and (26) will be clear
from the discussion on stability for switching systems in Section 6.

5. Simulation Results

In this section, we will demonstrate the proposed recursive state estimator
on the problem of estimating the state of a Markov chain in colored noise.
This problem was also studied in [Logothetis and Krishnamurthy, 1999],
from which the parameters are taken. The observed output is

yk = ek + rk + vk (30)

where rk is the Markov chain output ±q, vk is white Gaussian noise and
ek is colored Gaussian noise. The problem can be formulated as a MJLS
on the form (2) with A(θ k) = A and C(θ k) = C describing the colored
noise ek = Cxk, B(θ k) = 0, uk " 1 and

D(θ k) =

{

q if θ k = 1

−q if θ k = 2
(31)
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As in [Logothetis and Krishnamurthy, 1999] we will use a fourth order
model for the colored noise ek with

A =








0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0








C = [ 1 −3.83 2.62 −1.15 ]

Rw = diag ([10 1 1 1 ]) ⋅ 10−3

Rv = 10−6 (32)

Compared to [Logothetis and Krishnamurthy, 1999] some additional noise
has been added to make Rw positive definite. In all simulations, the al-
gorithm was run on 300 data points and the results were averaged over
a number of independent runs to achieve good confidence levels. In the
case of noticeable uncertainty, 95% confidence intervals are indicated in
the figures by shaded lines.
In the following three sections, performance in terms of error proba-

bility is investigated. The first two scenarios are also studied in [Logo-
thetis and Krishnamurthy, 1999] whereas in the third, relaxation level ef-
fects specific to the proposed approximation method are investigated. Two
different estimation schemes were considered: fixed interval (of length
1) smoothing x̂k−1pk and as in [Logothetis and Krishnamurthy, 1999] full
smoothing x̂kp300.
The overall performance of the full smoother x̂kp300 was slightly worse

than what was reported by the best batch algorithm in Figure 5 in [Logo-
thetis and Krishnamurthy, 1999]. This is expected, however, since a batch
algorithm should perform at least as good as a recursive one. Also, the
signal to noise ratio was slightly lower in our case due to the extra noise
added to make Rw positive definite.

5.1 Signal-to-Noise Ratio Effects

The Markov chain level q was varied from 0.1 to 1 with the dwell probabil-
ity p(θ k+1 = ipθ k = i) fixed at 0.9. The relaxation levels were set to α = 1
and α = 1.1. From Figure 3 we can make the following observations:

1. The error probability decreases with increased Markov chain level q
as expected. This is a simple implication of the increased signal-to-
noise ratio.

2. The variation in performance improvement due to full smoothing
over one step smoothing is still unexplained.
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Figure 3. Error probability as a function of the Markov chain level q for the one
step smoother x̂k−1pk and the full smoother x̂kp300.

5.2 Transition Probability Effects

The Markov chain level was fixed at q = 0.1 and the dwell probability
p(θ k+1 = ipθ k = i) was varied from 0.5 to 0.975. As in the previous setup
the relaxation levels were set to α = 1 and α = 1.1. From Figure 4 we
make the following observations:

1. As expected, the error probability decreases with increased dwell
probability. This allows the estimator to average over a longer period,
thus reducing the noise level.

2. The performance improvement due to full smoothing over one step
smoothing increases with increased dwell probability.

5.3 Relaxation Level Effects

The Markov chain level was fixed at q = 0.5 and the dwell probability was
fixed at p(θ k+1 = ipθ k = i) = 0.75 while the relaxation level α was varied
from 1.1 to 100. The lower limit α was held at 1. In addition to the error
probability for the full smoother, the complexity measured as the number
of matrices in Πk, was also studied. From Figure 5 we make the following
observations:

1. As expected, the complexity decreases with increased relaxation level
almost everywhere. The reason for the non-monotonic decrease is the
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Figure 4. Error probability as a function of the dwell probability for the one step
smoother x̂k−1pk and the full smoother x̂kp300.

fact that a lower relaxation level might force the estimator too keep
a function that will later prove useful to reduce the complexity.

2. Also for the error probability the general trend is that it increases
with an increased relaxation level, but here the non-monotonic be-
haviour is even more evident.

3. Notice how a complexity reduction from more than 40 to 20 functions
barely effects the error probability.

6. Switching Systems

Switching systems is a sub-class of the general class presented in Section
2. In a Switching System, the mode θ k is assumed to change in an ar-
bitrary fashion. Here we also assume that the noise covariance matrices
don’t depend on the mode θ k. This implies that the constant K (θ k,θ k+1)
will not depend on the mode and thus it will be equal to zero by construc-
tion. We will also restrict the discussion to the case when uk = 0. Under
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Figure 5. Error probability for the full smoother x̂kp300 and complexity as a func-
tion of relaxation level α . The shaded regions indicate 95% confidence intervals.

these assumptions the step cost becomes:

Lk(xk+1, xk,θ k+1,θ k) = qvk+1q
2
R−1v
+ qwkq

2
R−1w

vk+1 = yk+1 − C(θ k+1)xk+1

wk = xk+1 − A(θ k)xk

(33)

6.1 Stability

Switched systems have two very different types of states, the continuous
state xk and the discrete mode θ k, thus what is meant by stability needs
to be specified. In this section, the properties of the continuous state es-
timate will be studied. Particularly the following type of stability will be
addressed:

DEFINITION 1
An estimator is an asymptotically stable observer for the noise-free system

xk+1 = A(θ k)xk

yk = C(θ k)xk
(34)

if there exists an integer Ts ≥ 0 such that for every initial condition x0
and mode sequence ΘT+Ts the estimate x̂T pT+Ts → xT as T →∞.
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Next, a few concepts concerning observability need to be established. The
field of observability for switched systems is not as well developed as for
linear systems and thus there are quite a few notions of observability.
Here we will use a definition of observability similar to the one of State
Observability in [Babaali and Egerstedt, 2004].

DEFINITION 2
The system (34) is said to be (Nx,N)-observable if there exists a non-
negative integer N and a finite κ (i) such that

qÃ(Θi−1)x0 − Ã(Θ̂i−1)x̂0q
2 ≤ κ (i)qO (ΘN−1)x0 −O (Θ̂N−1)x̂0q

2 (35)

holds for all x0, x̂0,ΘN−1, Θ̂N−1 and 0 ≤ i ≤ Nx.

Checking (0,N)-observability is equivalent to checking State Observabil-
ity as defined in [Babaali and Egerstedt, 2004], which is shown to be
decidable. To the best of our knowledge, the only way of checking for gen-
eral (Nx,N)-observability is by directly checking (35) for all possible mode
sequences of length N. The numbers N and Nx can be interpreted in the
following way: If the output is observed from 0 to N−1, the state sequence
x0, . . . , xNx can be uniquely determined for all mode sequences, regardless
if they were estimated correctly or not.

EXAMPLE 1
The second order system with two modes

A(1) =
[
0.8 0.9

−0.9 0.5

]

A(2) =
[
0.8 0.9

−0.9 0

]

C(1) = [ 1 0 ] C(2) = [ 1 0 ]

(36)

is (0, 2)-observable with κ (0) ( 2.54. In this particular example O (Θ)
does not depend on Θ and thus κ (0) = λ−1min(O

TO ). For i = 1 for example
x0 = x̂0 = [ 0 1 ]T makes the right hand side of (35) equal to zero whereas
the left hand side becomes 0.25, thus there does not exist a finite κ (1).

EXAMPLE 2
The second order system taken from [Babaali and Egerstedt, 2004]

A(1) =
[
1 1

0 1

]

A(2) =
[
1 2

0 3

]

C(1) = [ 1 0 ] C(2) = [ 1 0 ]
(37)

is (2, 3)-observable with κ (2) ( 54.2.
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Next, we need to establish a connection between the value function Vk(xk,θ k)
and the size of the estimation error qx̂ − xq. A desirable property is that
if the value function is small the estimation error is also small. This fact
is made explicit by the following lemma, which is a modified version of
Lemma 4.4.2 in [Rao, 2000].

LEMMA 2
If the system (34) is (Nx,N)-observable then there exists a finite µ(i)
such that

qxT−N+1+i − x̂T−N+1+iq
2

≤ 4µ(i)

(
T∑

k=T−N+1

qv̂kq
2
R−1v
+

T−1∑

k=T−N+1

qŵkq
2
R−1w

)

(38)

for all 0 ≤ i ≤ Nx.

Proof. The proof is given in Appendix A.2.

Note that Lemma 2 holds for any estimate, regardless of how it was gen-
erated, but only for xk generated by (34). We are now ready to formulate
a theorem regarding stability in the sense of Definition 1 for the class of
systems referred to as switching systems.

THEOREM 1
If the system (34) is (Nx,N)-observable then the proposed recursive state
estimator, using the step cost defined in (33), will be asymptotically stable
in the sense of Definition 1, for N − 1− Nx ≤ Ts < N.

Proof. First note that

V ∗
T = min

xT ,θT
VT(xT ,θT) = VT (x̂T pT , θ̂T pT )

≥ min
xT−1,θT−1

{VT−1(xT−1,θT−1) +α LT−1(x̂T pT , xT−1, θ̂T pT ,θT−1)}

= VT−1(x̂T−1pT , θ̂T−1pT) +α LT−1(x̂T pT , x̂T−1pT , θ̂T pT , θ̂T−1pT) (39)

where the inequality is due to relaxed value iteration. Note that the
estimates x̂T pT and x̂T−1pT are computed in the same way as prescribed by
(26) and (27) in Section 4.4, thus explaining why α was included there.
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Now repeating the same procedure as in (39) we get

V ∗
T ≥ VT−N(x̂T−NpT , θ̂T−NpT )

+
T−1∑

k=T−N

α Lk(x̂k+1pT , x̂kpT , θ̂ k+1pT , θ̂ kpT)

(40)

Substituting (33) for Lk and using optimality of V ∗
T−N gives

V ∗
T ≥ V

∗
T−N +α

T−1∑

k=T−N

qv̂k+1pTq
2
R−1v
+ qŵkpTq

2
R−1w

(41)

Rearranging the sum and using positivity of the terms we get

V ∗
T ≥ V

∗
T−N +α

(
T∑

k=T−N+1

qv̂kpTq
2
R−1v
+

T−1∑

k=T−N+1

qŵkpTq
2
R−1w

)

(42)

Now putting N = 1 gives that V ∗
T−V

∗
T−1 ≥ 0, thus the sequence of optimal

costs is non-decreasing. Using the fact that there are no disturbances
acting on the system the optimal cost is bounded from above as

V ∗
T = min

xT ,θT
VT (xT ,θT)

≤ min
xT ,θT

αV opt(xT ,θT ) ≤ α qx0 − x̌0q
2
P−10

(43)

where x̌0 is the initial guess and x0 is the true initial value. Because the
sequence {V ∗

T} is non-decreasing and bounded from above it will converge
to V ∗

∞ < ∞ as T →∞. Thus the partial sum

(
T∑

k=T−N+1

qv̂kpTq
2
R−1v
+

T−1∑

k=T−N+1

qŵkpTq
2
R−1w

)

→ 0 (44)

as T →∞. Now using Lemma 2 we can conclude that

∥
∥xT pT+Ts − x̂T pT+Ts

∥
∥2 → 0 (45)

as T →∞ for N − 1− Nx ≤ Ts ≤ N − 1.

If a system is only (Nx,N)-observable, with Nx < N − 1, we can not con-
clude that the estimation error approaches zero unless fixed lag smoothing
is used. We will now give one example, where we indeed need fixed lag
smoothing.
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Figure 6. Root mean square error for filtering and one step smoothing estimates
of the unobserved second state in Example 3. Note that smoothing is required for
the estimation error to approach zero.

EXAMPLE 3
Applying the proposed recursive estimator with α = 1, α = 1.5, Rv = 0.1
and Rw = diag ([ 0.1 0.1 ]) on the system from Example 1 gives the root
mean square errors shown in Figure 6. The mode sequence was generated
as the output of a Markov chain with transition probability matrix

P =

[
0.3 0.7

0.4 0.6

]

(46)

which yields a mean square stable system. In this case, fixed lag smooth-
ing is required for the estimation error to approach zero. Because the sys-
tem was shown to be (0, 2)-observable, Theorem 1 states that if Ts = 1,
that is one step smoothing is used, the estimation error will approach
zero.

In this section we have assumed a rather restrictive, that is hard to fulfill,
criterion for observability. One common relaxation is to assume a mini-
mum dwell time between switches, this was done for example in [Alessan-
dri et al., 2005b].
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7. Conclusions

In this paper, we have presented a recursive joint maximum a posteriori
(JMAP) state estimation algorithm for Markov jump linear systems. The
JMAP estimation problem was first transformed into a recursive problem
using dynamic programming. To conquer the complexity associated with
dynamic programming, we used a technique often referred to as relaxed
dynamic programming. In relaxed dynamic programming, the Bellman
equality is replaced by two inequalities which permits the value function
to be simplified in each step, keeping the complexity at manageable levels.
The proposed state estimator was applied to the problem of estimating

the state of a Markov chain in colored noise. The achieved performance
was similar to that of a non-recursive estimator presented in [Logothetis
and Krishnamurthy, 1999].
In the special case of a switching system, that is when the mode at time

k is independent of the mode at time k− 1, we proved that the proposed
recursive state estimator is a stable observer for a noise free system.
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A. Appendix

A.1 Parametrizations

Step Cost.

Λ(θ k,θ k+1) =






I −B(θ k)uk −A(θ k)

−C(θ k+1) yk+1 − D(θ k+1)uk+1 0

0 1 0




 (47)

Q(θ k,θ k+1) =






1
2R

−1
w (θ k) 0 0

0 1
2R

−1
v (θ k+1) 0

0 0 K (θ k,θ k+1)




 (48)
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U (θ k,θ k+1,π ) = ΛT (θ k,θ k+1)Q(θ k,θ k+1)Λ(θ k,θ k+1) +






0 0 0

0 π22 π T12
0 π12 π11






(49)
When computing the upper and lower bounds (23), Q(θ k,θ k+1) is replaced
by αQ(θ k,θ k+1) and αQ(θ k,θ k+1) respectively.

Value Function. For π ∈ Π0

π = ΛT(θ0)Q(θ0)Λ(θ0) (50)

where

Λ(θ0) =






I −x̌0

−C(θ0) y0 − D(θ0)u0

0 1






T

(51)

Q(θ0) =






1
2P

−1
0 0 0

0 1
2R

−1
v (θ0) 0

0 0 K (θ0)




 (52)

For π ∈ Πk+1, k ≥ 0

π =

[
U11 U12

UT12 U22

]

−

[
U13

U23

]

U−133

[
U13

U23

]T

with U (θ k,θ k+1,π ) partitioned as






xk+1

1

xk






T 




U11 U12 U13

UT12 U22 U23

UT13 UT23 U33











xk+1

1

xk




 (53)

A.2 Proof of Lemma 2

Before proving Lemma 2 we first establish the following two lemmas con-
cerning quadratic forms.

LEMMA 3
∥
∥
∥
∥
G

[
x1

x2

]∥
∥
∥
∥

2

Q

≤ λmax
(
GTQG

) (

qx1q
2 + qx2q

2
)

(54)
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Proof.

∥
∥
∥
∥
G

[
x1

x2

]∥
∥
∥
∥

2

Q

=

[
x1

x2

]T

GTQG

[
x1

x2

]

= tr

(

GTQG

[
x1

x2

] [
x1

x2

]T
)

≤λmax
(
GTQG

)
tr

([
x1

x2

] [
x1

x2

]T
)

= λmax
(
GTQG

) (

qx1q
2 + qx2q

2
)
(55)

LEMMA 4
For R1 and R2 invertible

∥
∥
∥
∥
[ A B ]

[
x1

x2

]∥
∥
∥
∥

2

Q

≤ γ
(

qx1q
2
R1
+ qx2q

2
R2

)

(56)

with
γ = λmax

([

AR
−1/2
1 BR

−1/2
2

]T
Q
[

AR
−1/2
1 BR

−1/2
2

])

(57)

Proof. Let y1 = R
1/2
1 x1 and y2 = R

1/2
2 x2

∥
∥
∥
∥
[ A B ]

[
x1

x2

]∥
∥
∥
∥

2

Q

=

∥
∥
∥
∥

[

AR
−1/2
1 BR

−1/2
2

]
[
y1

y2

]∥
∥
∥
∥

2

Q

≤γ
(

qy1q
2 + qy2q

2
)

=
(

qx1q
2
R1
+ qx2q

2
R2

)
(58)

Proof. [Lemma 2] Without loss of generality let us assume that T =
N − 1. Next introduce the following notation, for which subscript sizes of
some quantities such as O (ΘN−1) has been dropped where they can be
inferred from context. First let

Ŵ =






ŵ0
...

ŵN−2




 V̂ =






v̂0
...

v̂N−1




 X̂ =






x̂0
...

x̂N−1




 X =






x0
...

xN−1




 (59)

Now we can express the vector of state estimates X̂ and the true state X
as

X̂ = A (Θ̂)x̂0 + MŴ

X = A (Θ)x0
(60)
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where

M =






M0
...

MN−1




 =











0 0 . . . 0

I

Ã(Θ̂1:1) I

. . .

Ã(Θ̂1:N−2) Ã(Θ̂2:N−2) . . . I











(61)

Next express the sum as a quadratic form

N−1∑

k=0

qyk − C(θ k)x̂kq
2
R−1v
+

N−2∑

k=0

qx̂k+1 − A(θ̂ k)x̂kq
2
R−1w

= qV̂q2
R
−1
v

+ qŴq2
R
−1
w

= qY − G(Θ̂)X̂ q2R−1 (62)

We can now bound qxi − x̂iq
2 for 0 ≤ i ≤ Nx from above as

qxi − x̂iq
2

=
∥
∥
∥Ã(Θi−1)x0 − Ã(Θ̂i−1)x̂0 − MiŴ

∥
∥
∥

2

(56)
≤ 2

(
∥
∥Ã(Θi−1)x0 − Ã(Θ̂i−1)x̂0

∥
∥
2
+ γ (i)

∥
∥
∥Ŵ

∥
∥
∥

2
)

(35)
≤ 2

(

κ (i)
∥
∥O (ΘN−2)x0 −O (Θ̂N−2)x̂0

∥
∥
2
+ γ (i)

∥
∥
∥Ŵ
∥
∥
∥

2
)

= 2

∥
∥
∥
∥

[
O (Θ)x0 −O (Θ̂)x̂0

Ŵ

]∥
∥
∥
∥

2
2

4

κ (i)I 0

0 γ (i)I

3

5

= 2

∥
∥
∥
∥

[
I C (Θ̂)M

0 I

] [
O (Θ)x0 −O (Θ̂)x̂0 −C (Θ̂)MŴ

Ŵ

]∥
∥
∥
∥

2
2

4

κ (i)I 0

0 γ (i)I

3

5

(57)
≤ 2µ(i)

(∥
∥
∥O (Θ)x0 −O (Θ̂)x̂0 −C (Θ̂)MŴ

∥
∥
∥

2

R
−1
v

+
∥
∥
∥Ŵ
∥
∥
∥

2

R
−1
w

)

= 2µ(i)

(∥
∥
∥C (Θ)X −C (Θ̂)X̂

∥
∥
∥

2

R
−1
v

+
∥
∥
∥Ŵ

∥
∥
∥

2

R
−1
w

)

= 2µ(i)

(∥
∥
∥G(Θ)X − G(Θ̂)X̂

∥
∥
∥

2

R
−1

)

(56)
≤ 4µ(i)

(
∥
∥Y − G(Θ)X

∥
∥
2

R
−1 +

∥
∥
∥Y − G(Θ̂)X̂

∥
∥
∥

2

R
−1

)

= 4µ(i)
∥
∥
∥Y − G(Θ̂)X̂

∥
∥
∥

2

R
−1
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= 4µ(i)

(
N−1∑

k=0

qyk − C(θ k)x̂kq
2
R−1v
+

N−2∑

k=0

qx̂k+1 − A(θ̂ k)x̂kq
2
R−1w

)

(63)

with
γ (i) = max

Θ̂
λmax

(
MTi Mi

)
(64)

and

µ(i) = max
Θ̂

λmax





[

R
1/2
v MR

1/2
w

0 R
1/2
w

]T [
κ (i)I 0

0 γ (i)I

] [

R
1/2
v MR

1/2
w

0 R
1/2
w

]



(65)
where the maximization over Θ̂ is due to the fact that M depends on it.
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