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Abstrat
With the ontinued growth of digital servies o�ering storage and om-muniation of pitorial information, the need to e�iently represent thisinformation has beome inreasingly important, both from an informationtheoreti and a pereptual point of view.There has been a reent interest to design systems for e�ient repre-sentation and ompression of image and video data that take the featuresof the human visual system into aount. One part of this thesis investi-gates whether knowledge about viewers' gaze positions as measured by aneye-traker an be used to improve ompression e�ieny of digital video;regions not diretly looked at by a number of previewers are lowpass �l-tered. This type of video manipulation is alled o�-line foveation. Theamount of ompression due to o�-line foveation is assessed along with howit a�ets new viewers' gazing behavior as well as subjetive quality. Wefound additional bitrate savings up to 50% (average 20%) due to o�-linefoveation prior to ompression, without dereasing the subjetive quality.In o�-line foveation, it would be of great bene�t to algorithmiallypredit where viewers look without having to perform eye-traking mea-surements. In the �rst part of this thesis, new experimental paradigmsombined with eye-traking are used to understand the mehanisms be-hind gaze ontrol during sene pereption, thus investigating the prereq-uisites for suh algorithms. Eye-movements are reorded from observersviewing ontrast manipulated images depiting natural senes under aneutral task. We report that image semantis, rather than the physialimage ontent itself, largely ditates where people hoose to look. To-gether with reent work on gaze predition in video, the results in thisthesis give only moderate support for suessful appliability of algorith-mi gaze predition for o�-line foveated video ompression.
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Chapter 1Introdution
DIGITAL information is inreasingly more pitorial in nature, andwe are onstantly fed with visual impressions through television,the Internet, and our ellular phones, to name a few important ex-amples. Consequently, it is an ongoing hallenge to �nd improved methodsfor e�ient representation and storage of this voluminous data. Today,there are a number of quite mature methods for data ompression pop-ularized in standards suh as the JPEG and MPEG families of odes.However, a ommon denominator for these standards is that they takeonly few of the properties of the human visual system (HVS) and perep-tion into aount. It is therefore likely that many of tomorrow's improve-ments in these standards lie in optimizing images and videos not only in amathematial framework, but over the end-to-end optimization betweenimage aquisition and the viewer(s) at the reeiving end.Surely, the time is now right to further ross-fertilize knowledge frominformation theory and ognitive psyhology to failitate improved dataompression. In this thesis, we will investigate whether urrent state-of-the-art methods for ompression of pitorial data an be improved bytaking into aount where people look as measured by an eye-traker.Sine regions outside the entral line of sight annot be seen with high de-tail, the quality of suh regions an be redued without this being notied.Clearly, this opens a large potential for improved data ompression.Of ourse, it would be of great advantage if it was possible to algo-rithmially predit where people would look, without having to performtime-onsuming eye-traking experiments. In view of this, a part of thethesis is devoted to empirial investigations of the ognitive mehanismsbehind gaze ontrol in image viewing. For example, we address questionslike: 'Where do people look when presented to natural senes?' and 'Whydo they look toward these regions?'. The answers to these questions are



2 Introdutionruial �rst steps toward future suessful algorithms for gaze preditionin video.The thesis is divided in two parts. Using a new experimental paradigm,we investigate in Part I the mehanisms behind gaze ontrol. In Part II,we measure how o�-line foveation a�ets ompression, subjetive quality,and eye-movements. Below, an overview of the ontents and main resultsof the thesis are given.1.1 Overview of Part I: Gaze Behavior in Im-agesGaze behavior in sene viewing has been investigated for over a entury,with important pioneering work in the early twentieth entury by Buswell(1935) and later by Yarbus (1967). Some important aspets in sene per-eption onern the ognitive mehanisms behind eye-movement ontrol:to whih sene regions do viewers look, and why do they look toward thesepartiular regions of the sene? Although muh is known from the vastamount of published researh on the subjet, there is urrently an intensedebate of how higher- and lower ognitive fators interat to ontrol wherepeople diret their gazes. While this type of researh is well motivatedsolely to inrease the general understanding about the HVS and visualognition, aurate models of gaze ontrol and predition would have di-ret pratial appliations within �elds suh as omputer vision, imageand video ompression, marketing, and automobile safety. There havebeen numerous e�orts to develop omputational tools to predit human�xation loations, many relying on the basi struture outlined by Kohand Ullman (Koh & Ullman, 1985). Although many of these modelsseem promising, they are urrently quite far from mimiking the behaviorof a human viewer in terms of aurate modeling of �xation loations and,in partiular, �xation durations.In this part of the thesis, partly to highlight the limitations of mod-els prediting visual attention, we aim to better understand the ausesbehind gaze shifts during inspetion of natural images. We use a newexperimental paradigm where low-level image statistis are manipulatedto dissoiate objets from their low-level signal strength. Eye-trakingexperiments are then performed to eliit the spatial and temporal on-tributions of lower and higher ognitive fators to gaze guidane. Figure1.1 gives an example of the stimuli we used in the experiments. The im-age is ontrast manipulated suh that the fae is blurred, and the irlesrepresent �xations olleted from a number of observers free-viewing theimage. The diameter of eah irle is proportional to the �xation dura-tion. Notie that the fae attrats many (long) �xations despite its lowontrast and thus lak of detailed faial features. In this ase a typial,



1.1 Overview of Part I 3

Figure 1.1: Distribution of �xations over a ontrast manipulated image.Eah irle represents a �xation, and the diameter of eah irle is propor-tional to the �xation duration.image-driven algorithmi preditor would fail miserably to predit human�xations.The highlights of our �ndings reveal that the interplay and relativeontribution between lower and higher ognitive fators on gaze guidaneare linked with the semantis of the viewed image; �xated ontent inimages with neutral semantis orrelates quite well with image featureswhereas semantially important objets are gazed upon despite a weakfeature signal strength.Part I of the thesis is outlined as follows. Chapter 2 gives an intro-dution of some properties of the HVS and also a brief overview of eye-movements and visual attention as well as how they are oupled. Thatis, does the position of the eye also indiate where attention is loated?If so, how tight is this relationship? In Chapter 3, we review some keypapers on gaze behavior in image viewing. Spei�ally, we address whatis previously known about where people look, why they hoose to lookat these regions, and for how long. The following three hapters (4, 5,6) present our work whih is mainly based on material from the papersNyström and Holmqvist (2007b) and Nyström and Holmqvist (2008, inpress). Our main �ndings are summarized and disussed in Chapter 7.



4 Introdution1.2 Overview of Part II: O�-line Foveationfor Video CompressionIn most pratial appliation, ompression is essential to manage andstore image and video data. Compression e�ieny is a trade-o� betweenbitrate, quality, and omputational omplexity, and today's standardsfor ompression have addressed these issues quite suessfully. A typialimage oder suh as JPEG an ompress an image to about 1/30 of itsoriginal size and still produe aeptable quality. Video oders an furtherimprove this ratio due to signi�ant temporal redundanies present invideo data. Despite these substantial apabilities for data ompression,there is a onstant demand for improved ompression e�ieny due tofators suh as ever larger piture formats, inreasing osts for bandwidth,et.In this part of the thesis, we investigate how knowledge about wherepeople look an be utilized to improve ompression e�ieny of digitalvideo. If we knew where people looked while viewing video, unattendedparts ould be degraded in quality and, due to the inability of the HVSto resolve �ne detail in peripheral vision, this would not be notied. Sineregions low in spatial detail generally require fewer bits to represent dig-itally, this opens a large potential for improved data ompression. Thefollowing questions are addressed: Where do observers look? Do ob-servers look toward similar regions? If we know where people look, howmuh an we degrade regions where people do not look (and thus dereasethe bitrate) without dereasing the subjetive quality and hanging wherepeople initially look?In our work, eye-traking is utilized to ollet eye-movements froma number of observers while free-viewing images and videos. This eye-movement data is then used to study observers' viewing behavior as wellas to ontrol the bit-alloation suh that visually attended regions aregiven more bits than regions not visited by peoples' high-auity, fovealvision. We have dubbed this approah o�-line foveation. An illustrativeexample is shown in Figure 1.2. Figure 1.2(a) depits a frame from a videoshown to a group of viewers. Eah rosshair represents one viewer's gazeposition. Figure 1.2(b) shows this frame after o�-line foveation. Notiethe peripheral blurring in unattended regions.We will address the design, implementation and evaluation of o�-linefoveated image and video oding. Spei�ally, we fous on a number ofentral hallenges. First, a method is proposed to transform olleted gazepositions to regions of interest (ROIs) for images, and volumes of interest(VOIs) for video appliations. Seond, we address the problem of how theROI/VOI ould be used to implement o�-line foveation. Third, we targeto�-line foveation in a framework of video oding. Fourth, we devise newmethods to evaluate o�-line foveation subjetively.



1.2 Overview of Part II 5Our results show that o�-line foveation an yield substantial bitratesavings without dereasing subjetive quality. In some of the testedvideos, bitrate redutions of up to 50% due to o�-line foveation werefound ompared to unfoveated video. However, the degree of bitrate sav-ings largely depends on the type of the video, and what type of viewingbehavior the video eliits.Part II is strutured as follows. Chapter 8 provides a brief introdutionto image and video ompression, gives an overview of viewing behaviorwhile wathing video, and presents previous work in foveated image/videooding. Chapter 9 presents our initial work on o�-line foveation video od-ing, where we get an estimate of its potential in ompression. The hap-ter is based on results from Nyström, Novak, & Holmqvist, 2004. Thehighlights of Part II are given in Chapter 10, originating from the workpublished in Nyström & Holmqvist, 2007a, 2008. Here, a full-sale imple-mentation and evaluation of o�-line foveated video is undertaken. Finally,Chapter 11 summarizes our �ndings and disusses the pratiability andpotential of using o�-line foveation in real-world appliations.



6 Introdution

(a)

(b)Figure 1.2: Example of o�-line foveation. The upper video frame showswhere people look in the original frame and the lower video frame de-pits the same frame after o�-line foveation. Eah rosshair represents oneviewer's position of gaze.
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Chapter 2Human Visual System
KNOWLEDGE about the evolutionary optimized design as well asthe funtionalities of the human visual system (HVS) is key tounderstanding, implementing and evaluating systems for visualommuniations. This hapter gives a brief overview of some propertiesof the HVS. It desribes the anatomy of the eye, visual auity, the vi-sual pathway, eye-movements, visual attention, and reviews evidene fora oupling between eye-movements and visual attention.2.1 Physiology of the HVS

PSfrag replaementsRetinaFigure 2.1: Struture of the human eye (Modi�ed from Wikipedia, 2008b)



10 Human Visual System

Figure 2.2: Distribution of rods and ones on the retina (Adapted afterOsterberg, 1935)Figure 2.1 shows a ross-setion of the human eye. At the �rst stageof proessing, inoming light reahes the ornea, whih together with a�exible lens fouses the light on the retina. The ornea has more refrativepower than the lens; approximately 70% of the refrative power is providedby the ornea.On the inside of the eye ball lays the retina, whih omprises a set ofneural layers. The retina is sensitive to light and holds two di�erent typesof photo-reeptors involved in vision: rods and ones. Rods are sensitiveto illumination, total 70-150 million per eye and are found over the entireretinal surfae. Sine many rods an share the same nerve ending theyreprodue visual details quite poorly, typially yielding a oarse, gray saleimage of the world. However, rods are invaluable due to their sensitivityto dim light, and provide night vision. In addition to rods, about sevenmillion ones serve high auity olor vision. Cones are densely pakedwithin a small part of the retina alled the fovea, and are inreasinglymore sparse away from the fovea. With ones humans an resolve �nedetails in fovea sine eah one is onneted to one nerve end. Figure2.2 illustrates the distribution of rods and ones on the retina. The foveasubtends approximately 2◦ of visual angle. In other words, if we lookstraight ahead, we have sharp vision only in the entral 2◦ of vision.Regions outside the fovea are usually divided in two di�erent parts: theparafovea and the periphery. The parafovea is the area outside of the foveaextending over 2-5◦ of the visual angle. Due to the steep drop of ones,vision is redued in the parafovea ompared the fovea itself. The peripherysu�ers from very poor auity, and no detailed spatial information an beaquired from this part of the retina. However, peripheral vision has otherimportant funtionalities suh as guiding eye-movements, and is also very



2.2 Eye-Movements � Basi Fats 11sensitive to motion. One an rather easily get a feeling for foveal auity(and the lak of detail outside the fovea): �xate a word in the book youare reading and then try to read the next or previous two words. This isa very di�ult task without moving the eyes.In early retinal proessing, rods and ones translate inoming lightto ation potentials, whih are propagated to higher neural layers in theretina where bi-polar ells provide some basi visual proessing suh asedge detetion. In later stages of retinal proessing, ganglion ells trans-mit neural signals to the brain through the opti nerve. They leave the eyethrough a part of the retina where no reeptors exist. Thus we annot seean objet falling onto this part of the retina, hene the name 'blind spot'.Figure 2.3 depits how the visual input is transmitted to the visual or-tex through dediated pathways; information leaving the retina throughthe opti nerve is passed to the lateral geniulate nuleus (LGN), whihforwards the input primarily the the visual ortex, even though smallerpathways diretly to the superior olliulus (SC) exist. Neurons in pri-mary visual ortex, V1, are typially ativated by simple features suhas orientation, olor, intensity, and ontrast. V2-V5 represent regions ofthe visual ortex that failitate higher level interpretations of the visualinput. Typially, diret sensory information together with informationproessed in higher regions of the visual ortex are ombined in the SCto trigger eye-movements. The exat topology of the visual ortex andhow it ativates motor ontrol for eye-movements urrently remains a hottopi of researh.2.2 Eye-Movements � Basi FatsA general problem in biologial systems is information over�ow, that is,large amounts of sensory information are onstantly fed to the system,whih does not have the resoures and time for proessing and interpreta-tion. The HVS is no exeption; the retina has been estimated to reeiveup to 109 bits of (Shannon) information per seond (Kelly, 1962). Theevolutionary design to handle this huge amount of information is solvedby a foveated system, whih uses sparse visual input from the peripheryto guide the fovea to regions with potentially important or relevant in-formation through eye-movements. In fat, we onstantly move our eyesthree to four times per seond for this purpose. Foveal information is notonly aquired with higher detail than other regions on the retina, but isalso proessed by a disproportionally large part of the visual ortex. Thisis known as ortial magni�ation.To move our eyes, di�erent types of eye-movements are employed;shifting our gaze from one loation to another is alled a saade and be-tween these shifts the eye remains relatively stable in a �xation (typiallyaround 300 ms). However, the eye is not ompletely stable during a �xa-
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Figure 2.3: The visual pathway (Modi�ed from Wikipedia, 2008a).tion, but three types of small �xational eye-movements our (Martinez-Conde, Maknik, & Hubel, 2004): tremor, drifts, miro-saades. Tremorare the smallest eye-movements, having a frequeny around 90 Hz. Therole of tremor in vision is unlear, but is believed to help maintainingvision by preventing retinal stabilization. It has been observed that bystabilizing visual input on the retina, the impression of vision slowly fadesaway. Drifts are movements that slowly move the eye away from the pointof �xation, possible due to lak of preision or fatigue of the oulomo-tor system. This is ompensated for by miro-saades, small orretivemovements, whih rapidly guide the eye bak to its initial position.A saade is a rapid eye-movement and therefore sensitivity to visualinput is signi�antly impaired. The speed of a saade an be up to 1000degrees per seond and its length varies over 1-30◦. However, this depends



2.3 Eye-Traking and Its Appliations 13on fators suh as task and stimuli. Typially, the time it takes for theeye to move from one loation to another during a saade is 30-70 ms.As expeted, long saades take more time than short.Pursuit eye-movements our when the eye follows slow moving ob-jets. Compared to saadi eye-movements, pursuit eye-movements areonsiderably slower. This type of eye-movement is generally not possibleto evoke without a moving target for the eye to trak.Another type of eye-movement is alled vergene and ours when theeyes move toward eah other in order to �xate on lose objets. If the headmoves, but the gaze is kept on the same target, vestibular eye-movementshave been used to ompensate for head movements.Depending on type of task (silent reading, oral reading, visual searh,sene pereption, musi reading and typing), �xation duration and sa-ade length an vary onsiderably.For a more omprehensive overview on the basi properties of eye-movements and their signi�ane in visual ognition, refer to the overviewsby Rayner, 1998; Henderson & Ferreira, 2004; Rayner & Castelhano, 2007.2.3 Eye-Traking and Its AppliationsFor quite some time it has been known that eye-movements provide valu-able insights in ognitive proesses. However, high preision eye-trakersare relatively new and the number of papers using eye-traking as ameasurement tool are quikly inreasing. There is a range of availabletehniques and apparatus as well as methodologial onerns using eye-traking, and aurate eye-traking is of ourse essential to get valid data.Further information about eye-traking and related issues an be foundin the books by Duhowski (2003) and Holmqvist (2009).Eye-traking appliations have been reported from for a wide range ofdisiplines, for example neurosiene, psyhology, industrial engineeringand human fators, and has been divided in two broad areas: diagnostiand interative (Duhowski, 2002). In diagnosti appliations, the trakedeye-movements are analyzed o�-line in order to assess or to obtain obje-tive and quantitative measures of a viewer's overt visual attention. For ex-ample, suessful studies have been performed on subjets with shizotypy(O'Drisoll, Lenzenweger, & Holzman, 1998) and autism (Klin, Jones,Shultz, Volkmar, & Cohen, 2002) where eye-traking data show india-tions of sikness due to deviating eye-movement behavior. In appliationswhere a system responds or interats with reorded eye-movements inreal-time, it is said to be interative. An example of an interative systemis real-time, gaze-ontingent foveation, where the resolution of a displayhanges ontingent on viewers' position of gaze.In psyhology, eye-traking has beome an invaluable tool to studydi�erent aspet of visual ognition in reading, sene pereption, and visual



14 Human Visual Systemsearh. One omprehensive soure of how the usage of eye-traking hasprogressed over the years is the review by Rayner (1998). He ompiles 20years of eye-movement researh mostly overing the ognitive mehanismsin reading, and provides a range of basi information about reading be-havior: When reading English, the �xation duration is typially 225-275ms and saade length about 8 letters; readers do not exlusively go for-ward in the text but use small saades to the left alled regressions ; goodreaders tend regress less frequently than bad readers and the number ofregressions inrease as texts grow more oneptually di�ult; silent read-ing is faster that reading aloud. Obviously, these types of observationswould be umbersome without modern eye-traking tehnology.Sene pereption is another �eld that has bene�ted signi�antly fromthe evolution of eye-traking. Unlike reading, sene viewing produes lesssystemati eye-movement aross viewers. In part, this an be explained bythe lassial observation made by Yarbus (1967) that task in�uenes eye-movements. While the task in sene viewing is not always well de�ned,reading follows ertain rules with the overall goal to omprehend the text.Eye-traking in sene pereption has partiularly been used to investigatethe in�uene of higher and lower fators to gaze guidane, whih typiallyis done by analyzing �xated image ontent.A more onstrained type of sene pereption is visual searh (see Wolfe,1998) where subjets are asked to searh for targets until they are found,or until subjets are ensured that the target is absent in the display. Whileresponse buttons an measure searh and reation times, eye-movementdata yield a rih olletion of pereptual measures indiating the alloationof attention during the searh.Eye-traking has been used in other areas suh as monitoring eye-movements of drivers, pilots, in newspaper design and advertising, andalso gaze ontingent displays and omputer graphis. As eye-trakingtehnology gets more portable, easier to use and heaper, the potential foreye-traking appliability is expeted to grow substantially. One exampleof a future appliation with huge potential is to integrate eye-trakers withomputer games, opening a whole new world of opportunities for rapidand intelligent game interation. Further information about appliationsan be found in the overview by Duhowski (2002).2.4 Visual AttentionGenerally speaking, attention refers to the ability to fous most of ourognitive resoures to limited or relevant parts in our environment, whilelargely ignoring other parts. In visual attention, these resoures an referto the ability of the HVS to fous on the most relevant and interestingvisual elements in the environment, and alloate proper parts in the brainto proess this information with priority. Visual attention is ommonly



2.4 Visual Attention 15divided into overt and overt attention. Overt attention is of a diretmeasurable nature, and is aligned with the eye-movement. Covert atten-tion is a mental state of attention and annot be measured expliitly; itis sometimes desribed as a mental 'spotlight' preeding overt attention(Posner, 1980).2.4.1 Bottom-up and top-down proessingPereiving visual information an be seen as a hierarhial proess; visualinput propagates from lower ognitive levels to higher, more omplex lev-els where the information gets inreasingly more tangible (Levine, 2000).Within this framework, attention may be responsible for integrating, or'gluing' simple features into whole objets (Treisman & Gelade, 1980).Moreover, it is argued that higher ognitive levels an in�uene the de-isions at lower levels through feedbak. These two proesses are oftenreferred to as bottom-up respetively top-down proessing. Bottom-upproessing onsists of rapid, spontaneous and automati deisions and ispurely stimulus dependent and omputed in parallel. Top-down proess-ing on the other hand re�ets higher ognitive mehanisms ontrolled byfators suh as task, ontext and linguisti input, and is believed to beslower than bottom-up proesses. In sene viewing, bottom-up proessingrefers to a quik, involuntary response after image onset to saade to-ward low-level features suh as olor, motion and ontrast while top-downguidane is in�uened by fators suh as task-dependene (e.g., rememberimage objets, objet searh) as well as prior knowledge and experienes(e.g., faes are important in human ommuniations).Although the metaphorial model of bottom-up and top-down proess-ing outlines an important oneptual model in ognitive psyhology, it isalso subjet to quite some onfusion. One key issue onerns whih partsof the brain omprise the 'top' and, likewise, the 'bottom' (f. Roepstor�& Frith, 2004). In an anatomial sense, the bottom an refer to the 'rep-tile' brain, whereas the top would omprise more developed mammalianparts of the brain. However, dividing the brain into setions responsiblefor top-down and bottom-up proessing has shown to be elusive, partlysine the funtions within and interations between di�erent parts of thebrain annot be fully explained. The top and bottom an also refer toan organism and its sensory input. The top is then ontrolled by theorganism's mental world, whereas bottom-up ontrol is modulated by theorganism's physial input. Today, the interplay between bottom-up andtop-down proessing in sene pereption as well as how they ontributeto di�erent ations are not ompletely understood.



16 Human Visual System2.4.2 Coupling between eye-movements and visual at-tentionA reurring question direted to researhers using eye-traking to study vi-sual attention touhes the relationship between the position of gaze (overtattention) and loation of our internal (overt) attention. There is a largebody of researh devoted to the relationship between visual attention andeye-movements. While it has been shown that eye-movements quite eas-ily an be separated from overt attention in simple disrimination tasks(Posner, 1980), there exists ample evidene that that this oupling gen-erally is quite tight (Deubel & Shneider, 1996), espeially when senesgrow more omplex (see e.g., Henderson & Ferreira, 2004).The onnetion between saadi programming and shifts in overt at-tention has been extensively researhed through lever visual searh anddisrimination task experiments. Deubel and Shneider (1996) used aletter disrimination task where subjets were asked to �xate a ross inthe enter of a display, and simultaneously prepare a saade to a uedloation. Before the saade was initiated, the disrimination letter ap-peared brie�y either at the ued loation or adjaent to the ued loation.Results showed that letter disrimination inreased signi�antly when theued loation oinided with the position of the disrimination target.This �nding supports the oupling hypothesis - that it is not possible toprepare a saade to a target without �rst direting attention to it. Ifthe ontrary were true, attention ould have been direted to the dis-rimination letter independently of the programmed saade target. Asa onsequene, letter identi�ation would be suessful even if the loa-tion of the disrimination letter would di�er from the intended saadelanding loation. These results are in line with the widely believed laimthat overt attention preedes saadi eye-movements and thus is usedto guide the eyes to interesting regions in a sene.2.5 SummaryThe foveated nature of the HVS is highly e�ient and addresses thetrade-o� between the huge amount of information onstantly availableand the limited omputational resoures of information proessing in thebrain. Information from our visual surroundings is gleaned through eye-movements, direting high auity vision to potentially relevant of inter-esting regions in our environment. This hapter desribed some key prop-erties of the HVS and the types of eye-movements used by humans toexplore the visual world, and also how visual information is transportedto the brain for further proessing. For the natural, omplex images,whih will be used in this thesis, we pointed to evidene that the ouplingbetween attention and eye-movement is tight.



Chapter 3Gaze Behavior in NaturalImages � The Where, Why, andFor How Long
UNDERSTANDING the subtle mehanisms behind eye-movementsin sene viewing has shown to be a hallenging and interestingproblem, and has attrated an inreasing amount of attentionfrom researhers using eye-traking as a measurement tool. Knowledgeabout visual attention and gaze behavior in sene pereption has im-portant appliation in, e.g., engineering and marketing, to render visualommuniations more preise and e�ient. This hapter reviews the lit-erature on sene pereption and eye-movement, and presents some key�ndings gleaned over the last entury.3.1 Sene Pereption and Eye-MovementsA sene usually refers to a depition of an environment, whih for examplean omprise the real world, an arti�ial world, or line drawings illustrat-ing real-world or arti�ial objets. In an experimental setting today, mostsenes are viewed as digitized images on omputer sreens, where it is easyto ontrol experimental parameters suh as where the sene is loated, thesize of the sene, how long the sene is shown and the viewing distanefrom the sene to the observer. The goals when studying sene perep-tion are multifaeted and involve how people understand and interpretsenes. In this hapter, we review what eye-movements an reveal aboutthe pereption about a partiular type of sene: Natural images. In thisthesis natural images refers to digitized photographs depiting natural



18 Gaze Behavior in Natural Imagesenvironments from the real-world, that is, visual input that is typial forthe everyday person.An exiting part in sene viewing onerns the speed and mehanismsof pereption, whih have been lively debated issues over the past deades.Currently, many aspets of the early pereptual mehanisms remain un-lear. There are however some general onsensus. There exists evidenethat the general semanti ategory, sometimes alled gist, of a image isapprehended very quikly, well within a �xation after image onset butperhaps as quikly as 30-50 ms. Gist is rather ill-de�ned in the litera-ture but is assumed to inlude the ategory of the image (e.g., indoor oroutdoor), and some information of the objets and their spatial layout(Henderson & Ferreira, 2004). However, more detailed semanti informa-tion of individual objets is not likely to be aquired during this very briefperiod of time unless the objet is large and lose to the point of �xation.A reent study by Fei-Fei, Iyer, Koh, and Perona (2007) investigated theamount of information subjets ould glean from a set of test images fora number of short presentation times (27 to 500 ms). They found thatonly a feature level representation of the images ould be aquired fromthe shortest times (27 and 40 ms). However, presentation times well be-low a typial �xation duration showed to be su�ient to aquire a �riholletion of pereptual attributes� whih �raises to onsious memory�.There are some evidene that low spatial frequenies failitate, but are notmandatory for, initial sene identi�ation, more so than high frequenies(Oliva & Shyns, 1997). Moreover, there is evidene that sene identi�a-tion is faster when objets are presented in (natural) olor rather than ingray sale (Oliva & Shyns, 2000).To understand how senes are pereived, it is neessary to understandhow the eyes move to provide us with the information that optimallyfailitates pereption. Knowing the position of the eye and for how longit stays at eah position provides valuable insight into what is sent to thebrain, and thus omprising a basis for pereption.Studies of sene pereption through eye-traking have been ondutedfor over a entury. Initial studies were based on diret observations ofhow humans moved their eyes while wathing di�erent stimuli. Two ofthe most frequently ited early studies in piture viewing were performedby Buswell (1935) and Yarbus (1967). Buswell used a simple but ingeniousdevie to reord eye-movements while partiipants viewed pitures, andmade a number of important observations. For example, he noted thatertain image regions attrated substantially more �xations than others,and that di�erenes in eye-movement loations were large aross subjets.Besides Buswell's work, Yarbus' book about eye-movements and vision isone of the most well-ited studies in the history of eye-movement researh.To a large extent, he repliated and expanded the �ndings of Buswell.Perhaps the most ited of Yarbus' observations is that the task heavily
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Figure 3.1: Typial �xation duration and saade amplitude in sene view-ing. Eye-movements were reorded from viewers looking at images pre-sented on a 19 inh sreen from a distane of approximately 70 m.in�uenes where people look in pitures. Considering the limited tehnialequipment used by Buswell and Yarbus, the results of these early studieswere remarkably fruitful and outline muh of today's work.Today, knowledge about how the eyes move in sene viewing is welldoumented (f. e.g., Rayner, 1998; Henderson, 2003; Henderson &Ferreira, 2004). For example, sene viewing eliits somewhat di�erent,more unonstrained, eye-movements than for example reading and visualsearh. Typially, both the �xation duration and saade length are onaverage slightly larger in sene viewing. The �xation duration is usuallyaround 300 ms and the saade length 2-20 degrees. However, �xationduration and saade length an vary signi�antly with the distributionof low-level image features, image semantis, task, size of stimulus, typeof stimulus, et. Figure 3.1 illustrates histograms of typial distributionsof �xation duration and saade amplitude. The �gures are generatedwith data olleted from subjets free-viewing natural images during �veseonds.3.2 Fators That In�uene Where We LookEye-movements are generally guided toward a small portion of the to-tal image area onsidered more interesting, relevant, or informative thanother regions. What makes an image region have these inherently ill-de�ned attributes largely remains an open question, entral in many re-ent studies aiming to unravel the auses behind �xation seletion. Speif-ially, the interplay between bottom-up and top-down fators in �xationseletion has been investigated in several reent eye-traking studies.In favor of a bottom-up perspetive, there is some evidene that at-tention, and hene eye-movements, quikly and e�ortlessly are guided



20 Gaze Behavior in Natural Imagestoward ertain regions based on low-level features in the image (Treisman& Gelade, 1980). These features an be ontrast, olor, luminane, andspatial frequeny. In agreement with this evidene, there are eye-trakingstudies showing that �xations on average land on regions with higher fea-ture densities than ontrol regions. For example, it is known that �xatedregions ontain higher ontrast (Reinagel & Zador, 1999; Parkhurst &Niebur, 2003; Parkhurst, Law, & Niebur, 2002; Einhäuser & König, 2003;Tatler, Baddeley, & Gilhrist, 2005; Henderson, Brokmole, Castelhano,& Mak, 2007; Rajashekar, Linde, Bovik, & Cormak, 2007) and edgedensity (Mannan, Ruddok, & Wooding, 1996; Tatler et al., 2005; Bad-dely & Tatler, 2006; Henderson et al., 2007) than ontrol regions. It hasalso been reported that high levels of luminane orrelate with �xationloations (Tatler et al., 2005; Rajashekar et al., 2007), although lowerthan ontrol luminane at �xated regions was reported by Henderson etal. (2007).The in�uene of bottom-up features on eye-movements has been stud-ied through omputational frameworks by omputing a salieny map, i.e.,the distribution of salieny over an image, and then measure how salienyoinides with human �xations. Salieny is de�ned as a weighted ombina-tion of a andidate set of low-level primitives, and peaks in a salieny mappoint to regions likely to be visually attended (Itti, Koh, & Niebur, 1998;Itti & Koh, 2000). Saliene has shown to orrelate with gaze positionsbetter than at random (Parkhurst et al., 2002), and has reently beenreported to oinide with image regions deemed as important by humanviewers (Elazary & Itti, 2008). Parkhurst et al. (2002) and Itti (2006) ar-gue that salieny is more in�uential early after stimulus onset than laterin viewing. However, these �ndings are not supported by Tatler et al.(2005), who found that bottom-up features are equally in�uential overtime, whereas top-down in�uenes inrease as a funtion of viewing time.Sine the auity of the HVS drops quikly as a funtion of eentriity1and thus prevents high frequenies from being registered by peripheralvision, the orrelation between feature ontent and �xation loations de-reases as a funtion of saade length (Rajashekar et al., 2007). Tatler,Baddeley, and Vinent (2006) found only short saades (≤ 8 degrees) tobe feature dependent, whereas longer saades show no suh tendenies.Obviously, the landing positions of long saades are hard to predit giventhe feature ontent available in the periphery of a viewer when the saadeis initialized.Despite the reent popularity of omputational models of visual atten-tion dominantly relying on bottom-up features, it is an undisputed fatthat higher ognitive fators are highly involved in the attentional pro-esses preeding eye-movements. Some fators known to in�uene wherepeople look are short and long term episodi memory and sene shema1Angular distane from the �xation point
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Figure 3.2: In�uene of task on eye-movements - a lassial example fromYarbus (1967).knowledge (f. Henderson & Ferreira, 2004 for an exellent review).An old, well known example of top-down in�uene on eye-movements isYarbus' experiment using a painting named 'The unexpeted visitor' on-taining a number of people in a room. Depending on the instrution givento the viewer prior to image onset, whih ould be to estimate peoples'ages or remember the positions of people and objets in the room, di�erentviewing pattern were observed. Figure 3.2 illustrates the eye-movementpattern eliited by di�erent viewer instrutions. The signi�ant in�ueneof ontext and task on eye-movements has been repliated and extendedby several other studies (Lipps & Pelz, 2004; Rothkopf, Ballard, & Hay-hoe, 2007; Einhäuser, Rutishauser, & Koh, 2008). As when viewing im-ages on omputer sreens, eye-movement guidane in everyday ativitiesseems to be even more about task and ontext (M. Land, 2007). Di�er-enes in eye-movement behavior have also emerged due to gender (Rupp& Wallen, 2007) (men look more toward faes in sexually expliit images,whereas women look more toward genitals or the bakground); ulturaldi�erenes (Chua, Boland, & Nisbett, 2005) (�Westerners attend more tofoal objets, whereas East Asians attend more to ontextual informa-tion.�); and between experts and novies (Law, M. Atkins, Kirkpatrik,



22 Gaze Behavior in Natural ImagesLomax, & Makenzie, 2004). All this despite being engaged in the sametask and ontext. Moreover, it is also well known that eye-movements arere�eted by linguisti input; this is extensively researhed using the visualworld paradigm, in whih the interplay between, for example, when anobjet is mentioned and when this objet is �xated is investigated. Evi-dene of linguisti ontrol of eye-movements an be found in antiipatoryeye-movements where objets expeted to be uttered are gazed upon, orwhen the mentioning of an objet eliits eye-movements to a part of ablank sreen where this objet previously was loated (Johansson, Hol-sanova, & Holmqvist, 2006). Clearly, suh eye-movements originate frominternal mehanisms.Lately, the salieny map hypothesis as well the empirial evideneshowing a oupling between ertain low-level features and �xations havebeen hallenged by a series of studies. Einhäuser and König (2003), for ex-ample, show that moderate hanges in loal ontrast at a number of imageregions do not hange where subjets �xate, as would be expeted by abottom-up preditor tuned toward ontrast. Moreover, it has been shownthat bottom-up preditors suh as the one presented by Itti et al. (1998)easily an be ognitively over-ridden by hanging the task instrutions dur-ing viewing (Underwood, Foulsham, Loon, Humphreys, & Bloye, 2006;Einhäuser et al., 2008). Interestingly, experiments by Henderson et al.(2007) report that �xated loations not only ontain high densities of er-tain low-level features, but also are judged as more semantially impor-tant than ontrol regions. Together, these results raise questions aboutthe auses behind the measured orrelations between low-level featuresand �xated image ontent. One spei� question is whether this e�etis simply orrelative or in fat ausal. A ausal e�et would imply that�xation loations are hosen as a diret onsequene of the signal strengthof one or a set of ombined low-level primitives. A orrelative e�et, onthe other hand, would mean that �xations land on regions that happento ontain high feature densities, but are in fat guided to these regionsby other, higher level mehanisms. For example, objets may be �xatedsine they ontribute to the semanti representation of the sene, and notbeause they happen to ontain high ontrast. It is hardly speulative tolaim that ertain objets are �xated due to their semanti ontributionto the sene, and not mainly beause they happen to ontain, e.g., highontrast or edge density.A well known observation is that eye-movements (positions) are stronglybiased to the enter of the display (see e.g., Tseng, Carmi, Cameron, &Munoz, 2007; Tatler, 2007). This tendeny is shown in Figure 3.3, whihplots �xation loations from eight subjets free-viewing 30 images. Inter-estingly, Tatler (2007) found this entral bias to be largely independentfrom both feature distribution and task. Instead, he suggests three alter-native explanations: �First, the enter of the sreen may be an optimal
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Figure 3.3: Central bias e�et of eye-movements. Eah dot represents a�xation.loation for early information proessing of the sene. Seond, it may sim-ply be that the enter of the sreen is a onvenient loation from whih tostart oulomotor exploration of the sene. Third, it may be that the en-tral bias re�ets a tendeny to re-enter the eye in its orbit.�. Besides thatgaze positions are biased toward the enter of the display, previous andfuture eye-movements in�uene where we look (Tatler & Vinent, 2008, inpress). For example, long �xations tend to be followed by long �xationsand we have a tendeny to exeute the urrent saade in the same or the180 degree opposite diretion as the previous saade. Overall, Tatler andVinent suggest a global and loal reloation of gaze; long global saadestake us to new image regions whereas short saades are employed in loalsanning to srutinize a limited image area in detail.3.3 SummaryWhat ontrols where we look and for how long we look there? There isample evidene that eye-movement guidane in sene viewing is deter-mined by a ombination of bottom-up, external fators, i.e., the physialproperties that ompile the sene, and top-down, internal fators, whihre�et a ompliated interplay between higher ognitive proesses. How-ever, the spatial and temporal manners in whih these fators interat arestill elusive. Currently, the attentional mehanisms behind eye-movementontrol are slowly starting to unravel, but unanimity among explanationsis surprisingly low onsidering the large number of papers published onthe subjet.
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Chapter 4E�ets of ContrastManipulations on GazeLoations
PREVIOUS hapters have shown that there exists a large body ofresearh on gaze behavior in natural images, and that the resultsare somewhat inongruent: on the one hand, people emphasize theontribution of image based salieny to gaze guidane while at the sametime it is known that top-down fators largely in�uene where people look.It has be argued that one of the problems in eliiting the auses behind�xation seletion is the lak of experimental manipulation of the naturalimages (e.g., Henderson, 2007). While it is ommon to use di�erent view-ing instrutions, whih are known to in�uene eye-movements, to arguefor the important role of higher level fators to gaze guidane, it is muhless ommon to use a neutral task and instead alter the low-level on-tent of the image. An exeption is the work done by Einhäuser and König(2003) who used a new experimental paradigm where natural images wereontrast manipulated at �ve randomly hosen points; ontrast was eitherdereased or inreased smoothly around these points. Eye-movementswere reorded from viewers wathing the ontrast manipulated imagesand an analysis revealed that ontrast by itself was not a good preditorof �xation loations. They observed that moderate hanges in ontrasta�eted �xated loations very little, whereas strong redutions in ontrastattrated �xations. This is inonsistent with previous researh that founda signi�ant orrelation between high ontrast and image ontent at �x-ations. However, their results were disputed by Parkhurst and Niebur(2004), who pointed to a number of methodologial �aws. First, the same



26 E�ets of Contrast Manipulations on Gaze Loationsimage (with slight modi�ation) was seen by eah subjet multiple times.This gave subjets the possibility to enode the images as well as the loa-tions of the manipulated image pathes into memory over the trials, andpotentially use this top-down information during later inspetions. Se-ond, Parkhurst and Niebur ritiized the lak of stimulus ontrol; whilehanging the loal ontrast, Einhäuser and König also altered the loalluminane in this regions, making is di�ult to relate the hanges in �x-ation loations to ontrast manipulations alone. Finally, Parkhurst andNiebur ritiized the introdution of undesired hanges in seond orderstatistis due to �rst-order ontrast manipulations. Spei�ally, they ar-gue that 'texture ontrast', de�ned as the 'ontrast of the ontrast', wasaltered and thus ated as a ausal attrator for �xations. In fat, using abottom-up model (Itti et al., 1998) tuned toward texture ontrast to pre-dit �xations on the image set used by Einhäuser and König, Parkhurstand Niebur found texture ontrast to predit �xations quite well.Despite the ritiism by Parkhurst and Niebur, we believe that properuse of the ontrast manipulation paradigm an serve as a useful tool todissoiate objets from their low-level signal strength, and therefore elu-idate possible relationships between gaze guidane and image featuresfrom a new perspetive. In the urrent and following two hapters, wewill use ontrast manipulated images to estimate the relationship betweenbottom-up and top-down proessing on eye-movements in image view-ing; eye-movement will be measured from subjets viewing natural im-ages with manipulated low-level statistis while engaged in rather neutraltasks (�free-view the images�, �inspet the images arefully�). We will ad-dress the issues brought up by Parkhurst and Niebur in our experimentaldesign.This hapter presents two experiments. In the �rst, Experiment I, eye-movements are olleted from viewers wathing 39 images. Thirty of theseare shown in their original form whereas three of the images are shownboth with and without ontrast manipulations. Eah of the three imagesis displayed in three version: One unproessed and two versions that areontrast manipulated at loations spei�ed by the experimenter. In Ex-periment II, ontrast is modi�ed ontingent on where people looked in theunproessed images from the �rst experiment. A new group of test sub-jets then views these images under the same experimental onditions asin Experiment I. Besides investigating how ontrast manipulation a�etsgaze behavior in these experiments, we analyze how ontrast statistisaround gaze positions are a�eted by the image manipulations.4.1 Implementing Contrast ManipulationsVariable image ontrast is implemented in the wavelet domain (f. Ap-pendix A) by multiplying a wavelet deomposed image with a Gaussian
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(a) Wavelet mask used to introduea varying ontrast. Five levels ofwavelet deomposition were used inthis example.PSfrag replaementsNormalized ontrast(b) Variable ontrast image om-puted by using the mask in (a).Figure 4.1: Implementing a varying image ontrast. The ontrast issmoothly redued away from the hosshair in the upper left orner.mask. Suh a mask with �ve levels of deomposition is exempli�ed in Fig-ure 4.1(a). The brightest areas in the mask represent unit values whereasthe dark areas represent values lose to zero. In order to ahieve a smoothontrast degradation, the mask is generated by entering a 2-D Gaussianfuntion with standard deviation λσ in eah wavelet subband at the posi-tion marked by a rosshair in Figure 4.1(b). λ denotes the deompositionlevel, where λ = 1 represents the highest frequeny level. Figure 4.1(b)illustrates the resulting variable ontrast image after inverse transforma-tion. If instead the region around the rosshair is to be degraded, eahGaussian funtion is inverted, normalized to unit height, and its standarddeviation is set to (L − λ + 1)σ. L denotes the number of deomposi-tion levels. The hoie of parameters (σ and number of deompositionlevels) were experimentally tuned to introdue notieable blur in desiredparts of the image. When implementing varying ontrast in olor images,eah olor omponent (R,G, and B) was manipulated separately as justdesribed.4.2 Experiment I � Manually Controlled Con-trast RedutionThe purpose of Experiment I is to investigate how eye-movements area�eted by ontrast manipulations. We observe qualitatively how gazeguidane to objets with high ognitive salieny, suh as human faes,interplay with lower level features suh as high/low image ontrast.



28 E�ets of Contrast Manipulations on Gaze Loations4.2.1 SubjetsEight naive subjets (two females, 32.6±7.6 (M ± SD) years old), studentsand sta� at Lund University, volunteered to take part in the experiment.All subjets had normal or orreted-to-normal vision.4.2.2 StimuliIn total 39 images (in gray sale and olor and of various dimensions)were used in the experiment. They are ommonly used by the imageompression ommunity and depit a range of di�erent image types suhas natural outdoor senes, humans, and omputer generated images, asshown in Figure 4.2. Among the images, there are three images that eahis represented in three di�erent versions: One original version and twoversions with di�erent on�gurations of variable spatial ontrast. Largerprints of these nine images an be seen in the left olumns in Figures 4.3,4.4 and 4.5. The reason for using more images than those with manipu-lated ontrast was threefold. First, sine three di�erent versions of three ofthe images are shown during the presentation, there will be undesirablememory-driven in�uenes on eye-movements if the versions were showndiretly after eah other. To alleviate this e�et other images are mixedin with the ontrast manipulated versions. Seond, eye-movements areolleted from all images in preparation for the seond experiment whereontrast is manipulated ontingent on gaze density instead of subjetivedeisions. Third, reorded gaze positions from unaltered images are usedas a baseline measure during the analysis in Experiment II.In the urrent experiment high and low ontrast regions were ho-sen to ompose the faial/non-faial regions in the two images ontainingfaes (Barbara and Kodak) and two arbitrarily de�ned regions in Peppers,whih ontains no obvious region of interest. Contrast manipulationswere implemented as desribed in the previous setion by entering Gaus-sian/inverted Gaussian funtions with σ = 0.10M at the desired regions.
M denotes the horizontal image dimension. Five levels of wavelet deom-position were used.4.2.3 ProedureSubjets were seated in front of a 19 inh (37.7×30.5 m ative displayarea) �at sreen (of resolution 1024×768 and an update rate of 75 Hz)where the sreen area subtended a visual angle of 27.7 degrees horizontallyand 22.5 degrees vertially. They were asked to plae their heads on a hinrest positioned 76.5 m from the sreen.A session started with a 13-point alibration and after verifying theauray of the alibration, the 39 test images were displayed one byone in a random order. Eah image was displayed for �ve seonds and



4.2ExperimentI
29Figure 4.2: Test images used in Experiment I.



30 E�ets of Contrast Manipulations on Gaze Loationsbetween two subsequent images a mid-gray image was shown for one se-ond. Images were displayed in full sreen while maintaining their aspetratio. No pre-stimulus �xation marker was used to onstrain the positionof subjets' initial gaze position.Subjets were given no spei� task and were asked to `free-view' theimages. Before a session started, they were introdued to the presentationsetup and were shown a trial presentation with images not ontained inthe set of test images. Eye-movements were reorded monoularly withan iView X Hi-Speed eye-traker, sampling gaze positions at 240 Hz withgaze position auray 0.2◦. A Matlab program using AtiveX sripting toommuniate with the Quiktime media player was developed to ontrolthe eye-traker, display the stimuli and ontrol the auray in timingthroughout the experiments.4.2.4 Data representationSubjets' visual interest is represented and visualized by entering a 2-DGaussian funtion at the loation of eah gaze point and then superimpos-ing all funtions belonging to the set of gaze points to be visualized. Thevariane of eah Gaussian funtion is set suh that the full width at halfmaximum height spans the foveal and para-foveal regions (approximately�ve degrees of visual angle) of a subjet viewing the stimuli presenta-tion. The aggregate Gaussian funtions represent the gaze density andare therefore referred to as gaze density funtions (GDFs). Examples ofGDFs represented as so alled heat maps are shown in the middle olumnsof Figures 4.3 through 4.5.4.2.5 ResultsFigures 4.3, 4.4 and 4.5 show di�erent versions of the three manipulatedtest images (�rst olumn). The seond and third image olumns depitGDFs generated by gaze positions olleted during short time intervals;the seond olumns show where attention is loated after subjets typiallyhave launhed their �rst saade (300-350 ms) and the third olumnsvisualize the distribution of subjets' gaze loations after about twie thistime. The fourth image olumns orrespond to the umulative distributionof GDFs omposing a representative set of olleted gaze positions fromall viewers over the whole �ve seonds of viewing.First, we observe that introduing a variable ontrast a�ets the waysubjets look at an image; total dwell time is inreased in regions remainedin high ontrast and dereased in regions redued in ontrast. This e�etis present in all three tested images. Seond, from the seond and thirdolumns in Figures 4.3-4.5, it an be observed that the loation of the�rst saade target seems largely una�eted by a hange in image on-trast. Rather is it onsistent, even when the saade is direted toward
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PSfrag replaementsmsmsPSfrag replaementsms 300 − 350 msPSfrag replaementsmsms 600 − 650 msPSfrag replaements 0 − 5000 msmsmsPSfrag replaementsmsmsmsPSfrag replaementsmsmsPSfrag replaementsmsmsPSfrag replaementsmsmsPSfrag replaementsmsmsPSfrag replaementsmsmsPSfrag replaementsmsmsPSfrag replaementsmsmsPSfrag replaementsmsmsPSfrag replaementsmsmsPSfrag replaementsmsmsFigure 4.3: Test image Barbara. The heat maps visualize how gaze posi-tions from seven viewers are distributed over di�erent time intervals. Therightmost olumn illustrates the loal image ontrast.
PSfrag replaementsmsmsPSfrag replaementsms 300 − 350 msPSfrag replaementsmsms 600 − 650 msPSfrag replaements 0 − 5000 msmsmsPSfrag replaementsmsmsmsPSfrag replaementsmsmsPSfrag replaementsmsmsPSfrag replaementsmsmsPSfrag replaementsmsmsPSfrag replaementsmsmsPSfrag replaementsmsmsPSfrag replaementsmsmsPSfrag replaementsmsmsPSfrag replaementsmsmsPSfrag replaementsmsmsFigure 4.4: Test image Kodak.



32 E�ets of Contrast Manipulations on Gaze LoationsPSfrag replaementsmsmsPSfrag replaementsms 300 − 350 msPSfrag replaementsmsms 750 − 800 msPSfrag replaements 0 − 5000 msmsmsPSfrag replaementsmsmsmsPSfrag replaementsmsmsPSfrag replaementsmsmsPSfrag replaementsmsmsPSfrag replaementsmsmsPSfrag replaementsmsmsPSfrag replaementsmsmsPSfrag replaementsmsmsPSfrag replaementsmsmsPSfrag replaementsmsmsPSfrag replaementsmsmsFigure 4.5: Test image Peppers.a region where the image ontrast is heavily degraded. In the imagesontaining faes, eye-movements are quikly direted toward the blurredfaial regions. Even in the Peppers image, whih ontains no obviousregions of interest, subjets' gaze diretions are initially not drawn to theregions of high ontrast but instead follow a similar path as in the same,unaltered image. The third observation onerns the initial saade la-teny; GDFs reveal that the initial saade is launhed more quikly whenit is direted direted toward a high ontrast region and at the same timeaway from a low ontrast region. Also, the initiation of a saade seems toslow down when the saade target is of low ontrast relative the overallimage.The rightmost olumns in Figures 4.3-4.5 illustrate the loal imageontrast, whih for a pixel at loation (m,n) is de�ned as the standarddeviation within a 15×15 pixel square entered at (m,n). These illustra-tions learly show that ontrast per se does not have a dominant in�ueneon the loation of the initial saade target, but seems to shift the overallgaze density toward regions kept in high ontrast.4.3 Experiment II - Gaze Density ControlledContrast RedutionIn this seond experiment, we further investigate the results from Experi-ment I by asking the following questions: 1) What happens with subjets'gaze behavior if regions known to attrat overt visual attention are de-



4.3 Experiment II 33
PSfrag replaementsmsPSfrag replaementsmsPSfrag replaementsms
PSfrag replaementsmsPSfrag replaementsmsPSfrag replaementsmsFigure 4.6: Variable ontrast images used in Experiment II.graded in ontrast? 2) How do these manipulations a�et ontrast statis-tis around viewers' positions of gaze? The reason for degrading regionswith a known high probability of attrating gaze is to quantify how fea-tures and semantis interat to guide eye-movements toward informativeregions. Sine the experimental setup and proedure in Experiment IIfollow that in Experiment I, only di�erenes from the �rst experimentare desribed below. If nothing else is mentioned it is assumed that theonditions from Experiment I are ful�lled.4.3.1 Subjets15 naive subjets (nine females) of ages 30.2±16.1 (M ± SD) years.4.3.2 StimuliStimuli onsisted of six of the images used in Experiment I, eah havingits ontrast modi�ed in in aordane to the gaze density (as found inthe �rst experiment) from all viewers between t = 500−600 ms suh thatregions of high gaze density were redued, whereas other regions were keptin high ontrast. Contrast modi�ations were implemented as desribedin Setion 4.1, but with a GDF replaing the single Gaussian funtion inthe wavelet mask. The resulting six stimuli images are shown in Figure4.6. These images were presented to the subjets. Again, the imageswere shown with another 35 images, not inluded in the urrent analysis.

t = 500−600 ms was hosen sine the similarity between di�erent viewers'
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Figure 4.7: Inter-subjet dispersion aross eight people free viewing the 33original test images from Experiment I. Error bars span one ± one standarddeviation.gaze positions typially peaks around that time (f. Tatler et al., 2005),hene identifying regions of partiular visual interest. Figure 4.7 on�rmsthis observation for data olleted from all 33 (unproessed) test imagesin Experiment I. The �gure illustrates the degree to whih subjets' gazepositions oinide as a funtion of time after image onset, de�ned by theinter-subjet dispersion, St, whih at time t is alulated as
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t (m,n) denotes a GDF at time t that has been generated by P−1gaze positions olleted during the time interval [t−∆t, t+∆t], exludingthe ith gaze loation (mi, ni). Gi′
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t,avg denote the maximum andaverage value of Gi′

t (m,n), respetively. To obtain a robust measure ofdispersion at time t, ∆t was set to 40 ms. Following this notation, St = 0indiates that all gaze positions are loated at the same spatial loation,whereas St = 1 represents a random distribution of gaze positions. Thebottom urve depits the inter-subjet dispersion aross the olleted gazepositions. Notie the dip in dispersion around 500 ms. As a ontrol, thetop urve in Figure 4.7 represents simulated random viewers (whose gazepositions were drawn from a uniform distribution).



4.3 Experiment II 354.3.3 ResultsFigure 4.8(a) shows the inter-subjet dispersion between viewers wathingthe images in Figure 4.6. As for the unproessed images in Experiment I,similarity peaks around 500 ms, whih typially oinides with subjets'�xation loations after the �rst voluntary eye-movement. This indiatesthat, after reduing the ontrast in regions where people normally lookearly after image onset, subjets still largely agree on where to initiallymove their eyes. However, we annot tell whether people look at similarregions as the viewers from Experiment I or if they have deided to lookat a region elsewhere in the image. One way to approah this issue is byanalyzing the image ontent at �xation. Spei�ally, how is �xated imageontent orrelated to ontrast densities?The analysis of ontrast statistis was limited to gray images. Imagespresented in olor were therefore onverted to gray images through anRGB to YUV transformation, where the Y omponent omposed the grayimage after transformation. Eah image was then resized to math thedisplay resolution it was presented at. After resizing, a pixel subtendedthe same visual angle in all images. Contrast at eah pixel loation (m,n)was de�ned as the loal standard deviation of pixel intensities within asquare region entered at (m,n). We used squares of size 15×15 pixels.Symmetri padding was used at the image borders. In the analysis below,we have extrated the average ontrast from 35×35 pixel squares (roughlyorresponding to the foveal part of the visual �eld) around gaze positionsreorded during a range of temporal interval, and normalized it with theaverage ontrast of the whole image. Other square sizes for ontrast al-ulation and analysis of ontrast were tested with similar results as thosepresented below.Figure 4.8(b) presents how ontrast statistis around viewers' gaze po-sitions hange as a funtion of viewing time t. Eah box represents theaverage normalized ontrast around eah gaze position reorded duringtime [t−∆t, t + ∆t]. The analysis reveals that after about 500 ms, gazepositions land on image regions with lower than average ontrast, and areafter a while drawn to regions with higher than the average ontrast. Thissuggests that the region(s) attrating many subjets' gaze some hundredmilliseonds after stimulus onset indeed are those where ontrast has beendegraded. For omparison, normalized ontrast at gaze loations olletedfrom the 33 test images in Experiment I is given in Figure 4.9. It on-�rms �ndings from earlier work that ontrast is elevated at gaze loationsompared to random loations, whih give a unit normalized ontrast asindiated by the solid red line in the �gure. The low values of ontrastright after image onset our beause subjets have not yet ompletedtheir �rst voluntary eye-movement. An interesting, and maybe somewhatsurprising observation from Figures 4.8(b) and 4.9 is their large di�erenesin normalized ontrast after a few seonds of viewing. This happens sine
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(a) Inter-subjet dispersion. Error bars span one ± one stan-dard deviation.
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(b) Contrast statistis at gaze. Error bars span ±1 standarderror.Figure 4.8: Statistis at gaze positions olleted from 6 subjets free view-ing the 6 variable ontrast test images from Experiment II.
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Figure 4.9: Statistis at gaze positions olleted from 8 subjets free view-ing the 33 original test images from Experiment I.visually interesting regions are positioned lose to the enter of the image,where �xations generally are biased (Parkhurst et al., 2002; Tatler, 2007).4.4 SummaryEarlier studies have shown that while free-viewing images people tendto gaze at regions with a high loal density of bottom-up features suhas ontrast. In partiular, this tendeny was found to be more empha-sized during the �rst few �xations after image onset. In this hapter, weused a new experimental paradigm to investigate how gaze loations arehosen; image ontrast was modi�ed and we measured how this a�etedeye-movement behavior during free viewing. Results showed that gazedensity overall is shifted toward regions presented in high ontrast overthose redued in ontrast. However, initial saade targets are largelyuna�eted by a hange in ontrast and ertain image regions seem to at-trat early �xations regardless of display ontrast. These results suggestthat ognitive fators, instead of image features, are dominant in guidingeye-movements early after image onset.
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Chapter 5E�ets of ContrastManipulations and ImageSemantis on Fixation Behavior
SINCE the ontrast manipulation paradigm proved to be an inter-esting and e�ient experimental method to study gaze ontrol inimages, we ontinue in this hapter to pursue the auses behind gazeontrol using this paradigm. We make a number of important modi�a-tions and extensions ompared to the previous hapter. First, it is inves-tigated how image semantis in�uene the relative ontribution of lower-,and higher level ognitive mehanisms to viewing behavior. We propose amethod to quantify image semantis dubbed semanti information disper-sion (SID). Seond, Gaussian pyramids, instead of wavelets, are used toimplement ontrast manipulations beause they yield smoother ontrastredutions and fewer undesired ontrast artifats. Third, we analyze eventbased measures in the form of �xations instead of solely observing peo-ples' gazing behavior. Fourth, sine edge density and ontrast arguablyare the two most investigated low-level features in earlier works, both ofthese features are analyzed in this hapter. Fifth, the level of disrimina-tion for ontrast and edge density between �xated and ontrol loationsis analyzed using reeiver operating harateristis (ROC), whih latelyhas arisen as a popular method in suh analyses. Moreover, we use aslightly modi�ed viewing instrution to alleviate the undesired top-downadoptions reported by partiipants in the previous hapter. Finally, dueto the importane faes have in human ommuniation and interation,one setion is devoted to the e�et ontrast manipulations have on faepereption.



40 Contrast and Fixation LoationsIn this hapter, we will investigate how ontrast and edge density on-tribute to �xation seletion, and how this e�et varies over time. Unlikethe majority of previous studies, test images are ontrast manipulatedprior to display. Meanwhile, we aim to keep their semanti ontent in-tat. We believe that by deoupling objets (or regions) from their low-level signal strength, an analysis is more likely to eliit ausal relationshipsbetween where subjets �xate and the reason they hoose to look there.Besides manipulating the image statistis, three image ategories are used:Images naturally embedding faes, images with man-made objets, andimages depiting senes with neutral semantis (trees, leaves, et.). Eahlass is hosen to represent images with di�erent semanti informationdispersion (SID), a onept we de�ne as follows:De�nition 1 Semanti information dispersion (SID) measures how sat-tered the information is that subjetively best onveys the information ofthe whole image.For example, a fae generally ontributes more to the ore meaning of animage then does a leaf on a tree. Consequently, an image has a low SIDif a small aspet of the image (suh as a fae) is judged to ontain themajority of onveyed information. The rationale for using di�erent imageategories is to introdue a varying top-down in�uene without using anexpliit task, a strategy employed by a range of earlier works. For example,the task look at regions with uniform texture would yield a low orrelationbetween edge density and �xated image ontent, but would hardly revealmuh about the mehanisms behind gaze guidane. To verify that theimages hosen for the experiment indeed represent di�erent levels of SID,an experiment is performed where subjets are asked to identify a �xedsize region that best onveys the information of the whole image. Theaverage overlap between the regions hosen by the subjets is then usedto estimate the SID.The remainder of this hapter is organized as follows: Setion 5.1desribes the materials and methodology of the eye-traking and datareordings. Spei�ally, we desribe the images and how they are exper-imentally modi�ed, the experimental setup, and the proedure for dataolletions. Results are given in Setion 5.2 and disussed in Setion 5.3.5.1 Methods5.1.1 Test imagesThree semanti image ategories are used. In the �rst ategory, we useimages ontaining faes; it is known that faes are very semantially im-portant image regions and therefore frequent �xation targets (e.g. Yarbus,



5.1 Methods 411967). The seond ategory omprises images with neutral sene seman-tis and depits senes with motives from nature suh as trees and bushes(from Einhäuser & König, 2003), grass, and a piture of a brik wall.The last ategory falls between the �rst two ategories and ontains man-made objets embedded in natural environments. Six images from eahategory are used. Images were onverted to eight bit gray sale and re-sized to dimension 1024 × 768 through the Matlab funtions rgb2grayand imresize (bilinear), respetively. The test images are shown in Fig-ure 5.1. They omprise: Fae images (top two rows), images with neutralsemantis (row three and four), and images ontaining man-made objets(bottom two rows). As an be seen, eah image omes in two versionswhere ontrast has been modi�ed di�erently.Fae images are modi�ed to form two subategories. In the �rst sub-ategory faes were retained in high ontrast, whereas other regions weregraefully redued in ontrast away from the faial region. In the seondsubategory, these ontrast modi�ations were inverted; only the faial re-gions were redued in ontrast. Figure 5.2 exempli�es this. For the othertwo ategories, eah image was transformed into two di�erent versions asfollows: Four andidate positions, same for all images, were available asshown in Figure 5.3. One of these positions was seleted at random, andthe �rst version was generated by reduing the ontrast smoothly awayfrom this position. The other version was generated in a similar manner,but now with the ontrast being redued away from the point diagonallyopposite to the randomly seleted position.5.1.2 Image manipulationContrast manipulation was implemented by means of variable resolutionimage proessing using Gaussian pyramids. A �ve level pyramid was re-ated by iterative lowpass �ltering and downsampling of the original image,followed by upsampling and (bi-linear) interpolation bak to the originalimage resolution (1024 × 768). Lowpass �ltering was implemented byan ideal �lter with a uto� frequeny adjusted to avoid aliasing given asubsampling fator of two pixels. These operations resulted in a olle-tion of images where the original image omprised the bottom layer andhigher layers were opies of the original image with inreasingly lower on-trasts. To reate images with variable ontrast, high resolution regionswere seleted from the bottom layer of the pyramid, whereas low resolu-tion regions originated from the higher layers in the pyramid. Regionsfrom di�erent levels were then synthesized through a Gaussian shapedblending funtion. Let Iℓ(m,n) denote an image at level ℓ in the lowpasspyramid. m and n span the image dimensions and ℓ = {1, 2, 3, 4, 5}, where
ℓ = 1 denotes the bottom layer omprising the original image. Then theimplementation an be desribed by Algorithm 1. I(m,n) is the output
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PSfrag replaementsms Figure 5.1: Test images.
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PSfrag replaementsms (a)PSfrag replaementsms (b)PSfrag replaementsms ()Figure 5.2: Contrast manipulation for fae images. (a) shows the originalimage. In (b), the ontrast is dereased away from the marker in (a),positioned over the woman's fae. The �gure in () illustrates the asewhere ontrast instead is redued toward the fae area by inverting theontrast manipulation funtion in (b).
PSfrag replaementsms (a)PSfrag replaementsms (b)PSfrag replaementsms ()Figure 5.3: Contrast manipulation for images not ontaining faes. Figure(a) shows the original image with four andidate markers. One of thesemarkers is hosen at random, and (b) illustrates the ase when ontrast isredued away from this marker (in upper left orner). In Figure (), themarker diagonally opposite the randomly piked one is instead used as thepoint from were ontrast is redued.image, and G(m,n) denotes a Gaussian funtion
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) (5.1)where (mi, ni) represents the point where the Gaussian funtion is en-tered, i.e., the point from where the image is inreasingly redued in on-trast. The ·̂ operator denotes normalization to unit height. To introdue anotieable amount of blur, σm and σn were set to 1024/2 and 768/2 pixels,respetively. These parameters were hosen simply by pilot testing whereontrast redution was deemed as signi�ant without hanging the seman-tis of the image. It has been pointed out in an earlier study (Parkhurst &Niebur, 2004), that when using ontrast manipulations to study �xationseletion, it is important to implement smooth ontrast degradations toavoid undesired variation in higher order image statistis, whih ould ex-plain possible hanges in �xation behavior. Our implementation aounts



44 Contrast and Fixation LoationsAlgorithm 1 Implementing a variable ontrast1: I(m,n) = I1(m,n) {Initialize}2: for ℓ = 2 to 5 do3: I(m,n)← I(m,n) · Ĝ(m,n) + Iℓ(m,n) · (1− Ĝ(m,n))4: end forfor this observation.Contrast manipulation for fae images was implemented with the aboveparameters when ontrast was redued away from the fae. However, inthe opposite ase, when ontrast was redued toward the fae region (thefae was blurred), then the blending funtion was modi�ed as
Ginv(m,n) = 1−G(m,n), {σm, σn} = {1024/23, 768/23} (5.2)in order to better limit the ontrast redution e�et to the faial region.5.1.3 Subjets13 naive test subjets (25.7±4.9 (M±SD) years old, one female) werereruited to partiipate in the experiment. Their visions were normal ororreted to normal. Compensation was given in the form a lottery tiketand subjets onsented to use of their data by signing a form.5.1.4 Experiment I: Viewing ontrast manipulated im-agesContrast manipulated images from all three ategories were shown oneat the time in full sreen. Before the presentation of an image, a entraldynami �xation marker in the form of solid blak irle was shown on amid-gray sreen. The diameter of the irle was dereasing as a funtion oftime. After one seond, the irle disappeared and an image was displayedin full sreen during a time randomly drawn from the interval t = [3, 4, 5, 6]seonds. This proedure was repeated for all images, whih were shownin random order. Varying display time was used to prevent subjets fromadopting top-down strategies suh as systemati sanning of the images.Prior to eah image was displayed, subjets were asked to look at the�xation marker.The instrution given to the subjets was to please study the imagesarefully. Supposedly, being a fairly general instrution, it prevents sub-jets from adopting individual viewing strategies that try to guess thepurpose of the tests. For example, we saw in an earlier study (Nyström &Holmqvist, 2007b), where subjets were given the more neutral instru-tion solely to wath the images, that subjets adopted a top-down strategyavoiding to look at the blurred regions a bit into the presentation. We



5.2 Analysis and Results 45believe that the task instrution used in this hapter will alleviate thisundesirable adaption.5.1.5 Experiment II: Image semantis evaluationIn a seond experiment, that followed right after the �rst, subjets wereshown the 18 unproessed (no ontrast manipulation) images (in eight bitgray sale of dimension 1024 × 768), one by one in full sreen. For eahimage, their task was to position a box, ontrolled by the mouse ursor,over a region in the image that had the highest semanti importane.The exat instrution was given in writing before the experiment started:'Position the box over a region that best onveys the information of thewhole image'. There was no time onstraint to �nish this task, and whenthe �nal box position was deided, a mouse lik ended the semanti ratingto proeed to the next image. The size of the box was hosen large enoughto enapsulate whole objets or parts of objets, so that the meaning ofthe box ontent would be lear without aess to the whole image. Weused a box size that spanned four degrees (128 × 128 pixels). Subjetswere not informed about Experiment II until after the �rst experimentwas ompleted.5.1.6 Eye-trakingEye-traking was preformed monoularly during both experiments withan SMI iView X Hi-Speed 1250 Hz system. Subjets were seated 0.67 maway from a 19 Inh Samsung GH19PS sreen with the resolution andupdate rate set to 1024 × 768 pixels and 60 Hz. The physial dimen-sion of the sreen was 380 × 300 mm, spanning 32×25 degrees of visualangle. Eah reording started with a 13-point alibration. Stimuli pre-sentation, ommuniation with the eye-traker, and data analysis wereperformed with Matlab and its Psyhophysis Toolbox Version 3 exten-sion (Brainard, 1997). A saade based detetion sheme developed bySMI (IDFonvert.exe) was used to �lter out event based measures suh as�xations and saades. Gaze positions were lassi�ed as saades if theeye veloity was ≥ 75◦/s and if the saade duration lasted ≥ 10 ms. Ifthese assumptions were violated, and the eye was stable for ≥50 ms, a�xation was deteted.5.2 Analysis and ResultsThe analyses address the following questions: Are ontrast and edge den-sity di�erent at �xated regions ompared to ontrol regions for ontrastmanipulated images? Do ontrast manipulations hange where peoplelook, and how is the magnitude of hange related to image semantis?



46 Contrast and Fixation LoationsIf ontrast manipulations hange where people look, do they also hangewhat people look at? Finally, we target how one ategory of images,namely those ontaining faes, is a�eted by ontrast manipulations.5.2.1 What do we look at? � Feature analysisIt is known from several previous studies that ertain low-level features areelevated at �xated positions. For example, �xated loations tend to havehigher ontrast and edge density than non-�xated, ontrol regions. Webegin our analysis by testing whether these observations still hold usingontrast manipulated images. Contrast at the image loation (m,n) isde�ned as the standard deviation within a 3×3 neighborhood entered at
(m,n). Edge density is extrated by onvolving the image separately withhorizontal and vertial Sobel operators, and then omputing the averageof these �ltered outputs.In the analysis, an approximately 1 degree (32 × 32 pixel) region isextrated from the feature maps around eah �xation loation. For om-parison, 1 degree regions are also extrated from ontrol loations, andthe di�erene between �xated and ontrol feature ontents is analyzed.Instead of using uniform sampling over the image area to simulate a ran-dom viewer, we use ontrol �xations olleted from other images used inthe experiment. This way, a simulated 'random' �xation pattern oinideswith the distribution of �xations, whih is known to be non-uniform witha bias to the enter of the display. It has been argued that the entral biasmay give rise to arti�ially high features values at �xation (e.g., Tatler etal., 2005), and should therefore be arefully aounted for in the analysis.An inreasingly popular method to estimate the degree to whih �x-ated and ontrol feature ontent an be di�erentiated from eah otheris the reeiver operating harateristis (ROC) analysis (e.g., Hanley &MNeil, 1982). A ROC urve plots the fration of true positives (TPs)against the fration of false positives (FPs). In our ase, TPs onsist of�xated feature ontent, whereas FPs omprise feature ontent at ontrolloations. The area under the ROC urve varies between zero and one,and is a robust measure of how well image features an be disriminatedbetween �xated and ontrol loations; if the ROC area is signi�antlylarger than 0.5, a tested feature is said to disriminate �xated loationsfrom ontrol loations. A ROC area that equals 1 is said to give perfetlassi�ation.Figure 5.4 plots the average ROC areas for ontrast and edge den-sity. Blak bars represent results onsidering the �rst �xation (from allsubjets in all images) only, whereas the white bars represent a similaranalysis over all �xations. By the �rst �xation, we mean the �xation fol-lowing the initial saade after image onset and not the �rst registered�xation is the data �le, whih is onstrained to the enter of the sreen by
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Figure 5.4: ROC areas for disrimination between image features at �x-ated and ontrol loations. Blak bars show ROC areas for the �rst �xationwhereas all �xations are inluded in the white bars. Error bars span stan-dard errors of the mean. A ROC area larger than 0.5 indiates a di�erene.a �xation marker. As reported by several previous studies, feature den-sities at �xated loations are signi�antly higher (ROC area > 0.5) thanfeature densities at ontrol loations (p < 0.01, t-test, for both ontrastand edge density). Apparently, this is also true for ontrast manipulatedimages. Moreover, there is a tendeny, although non-signi�ant, that ini-tial �xations disriminate ontrast and edge density better than �xationsdo over the whole time ourse of viewing.5.2.2 Do image semantis and feature manipulationsin�uene where we look?To this point, our empirial �ndings are in line with previous results em-phasizing bottom-up ontrol over �xation seletion. The �ndings show,on average, that ontrast and edge density are higher at �xated positionsthan at other, ontrol positions. In this setion, it is investigated whetherthese general tendenies are onsistent when analyzing images with regardto their semanti information dispersion (SID) as well as their diretionof ontrast redution. What happens with peoples' alloation of �xations,for example, if a region deemed as semantially important is redued inlow-level signal strength? Obviously, a salieny based framework wouldpredit an obligatory shift in �xation density away from this region.
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PSfrag replaementsms PSfrag replaementsms PSfrag replaementsms
PSfrag replaementsms PSfrag replaementsms PSfrag replaementsmsFigure 5.5: Images in order of inreasing semanti information dispersion(SID). The top row shows where subjets have positioned a box that 'bestonveys the information of the whole image'. The bottom row illustratesthe �xation density of the same subjets while performing this task. Asan be seen, the inter-subjet agreement between �xation density and theregions judged to best onvey the information of the whole image is large.Using data olleted from the seond experiment, we found the SIDfor eah image, alulated as the average overlap between box loationswithin an image. Thus, if Bi,j denotes a box in the image i positioned bysubjet j, the SID for image number i is de�ned asSIDi =

[

2

P (P + 1)− 2P

∑

j=1,...,P−1
k=j+1,...,P−1

Bi,j ∩Bi,k

]−1 (5.3)where ∩ denotes the intersetion between the boxes in pixels, and P is thenumber of viewers. The inverse is omputed suh that a large SID valuerepresents a spread out semanti information and vie versa. The top rowin Figure 5.5 shows three of the unproessed test images and the boxesas positioned by the test subjets. Out of the 18 unproessed imagesused in the experiment, images with the lowest, midmost, and highestSID are shown in the �gure. Unsurprisingly, the image with the lowestSID ontains a fae, and the image with the highest SID ontains ratherneutral semantis. For the sake of omparison, the �xation density of thesame subjets performing the SID detetion task is given in the seondrow in the �gure. For these images, the overlap between where subjets�xated and where they positioned the box is quite large. As expeted,the image ategories were tightly ouple with SID; �ve of the six imagesontaining faes were among the images with the lowest SID (boxes weredominantly positioned over the fae), and all the six images from the
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PSfrag replaementsmsImagesAll FixationsFirst FixationContrastEdge DensityFigure 5.6: E�et of ontrast manipulation on �xation behavior.'neutral' ategory had the highest SIDs. Consequently, �ve images fromthe 'man-made objet' lass were loated in the mid-SID setion alongwith one fae image.Figure 5.6 illustrates how the �xation density hanges as a result ofontrast manipulations for images with low, medium, and high SID. The�xation densities are visualized as heat maps, where Gaussian funtionshave been entered at eah �xation loation and then superimposed. Thevariane of eah Gaussian funtion has been set suh that the width athalf its maximum height approximates the size of the foveal span of aviewer in the urrent experimental setup. In addition, the height of eahGaussian funtion has been saled in proportion to the �xation duration.As a onsequene the �xation densities not only re�et where people have�xated, but also their level of ognitive proessing during eah �xation,hene providing more sensitive and detailed information. Heneforth, werefer to the heat maps as �xation density funtions (FDFs), in order tobetter apture what the heat maps represent. The seond olumn in Fig-



50 Contrast and Fixation Loationsure 5.6 depits FDFs for all subjets during the �rst �xation, and thethird olumn illustrates orresponding �xation densities ollapsed over all�xations. This an be ompared with the two rightmost olumns, whereontrast and edge density are visualized. An inspetion of the plots indi-ates that ontrast and edge manipulations learly in�uene where sub-jets look. However, the magnitude of hange seems to di�er dependingon the image type; the images ontaining faes undergo relatively smallhanges in �xation plaement due to ontrast manipulation whereas �xa-tions in the images that ontain more neutral semantis seem to be morein�uened by the manipulations.To quantify how �xation loations hange as a funtion of ontrast ma-nipulation and SID, the two-dimensional orrelation oe�ient betweenFDFs belonging to the two ontrast manipulated versions of eah imageis omputed. This metri has been used in other works for the same pur-pose (Rajashekar, Linde, Bovik, & Cormak, 2008). Although it is notlear how aurately the 2-D orrelation oe�ient, or any other metri forthat matter, aptures the di�erene between people's �xation loations, itgives an estimate that helps us to interpret the magnitude of hange. Fora referene of other metris used to estimate the similarity between �xa-tions, see for example Mannan, Ruddok, and Wooding (1995); Priviteraand Stark (2000); Tatler et al. (2005). Sine images' SID-values almostperfetly mathed the initial division of images into three semanti at-egories, the analysis is preformed with respet to the image ategories,whih heneforth are referred to as 'Fae', 'Man-made', and 'Neutral'.Figure 5.7(a) depits the average 2-D orrelation between FDFs gener-ated from the initial �xation (blak bars) and all �xation (white bars)within eah ategory. It an be seen that the image ategory in�uenesthe degree to whih ontrast manipulations trigger shifts in �xation densi-ties; images ontaining regions of high semanti importane, suh as faes,are less sensitive to the manipulations than other images and in partiularthose from the 'Neutral' ategory. This tendeny is present for both theinitial �xation and for �xations over the time ourse of viewing.Another way to represent how �xation loations are a�eted by on-trast manipulations and semantis, shown in Figure 5.7(b), is to plot theshift in �xation density (2-D orrelation oe�ient between FDFs) againstimages' SID. Cirles and triangles represent how the initial �xation andall �xations, respetively, are shifted in loation as a funtion of SID.The lines are least square �ts to the data points. Considering all �xa-tions, it an been seen that SID learly in�uenes the magnitude of shiftin �xation density, having a orrelation of ρ = −0.62. This tendeny isweak, or hardly present at all, onsidering the �rst �xation only. It maybe the ase sine fewer �xations are used to generate the �rst �xationFDFs, giving individual �xations more weight. Consequently, a �xationthat is not aligned with other �xations has a large impat on the shape
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52 Contrast and Fixation Loationsof an FDF, and therefore also the value of the 2-D orrelation oe�ientbetween two FDFs. In summary, the results from Figure 5.7 learly illus-trate that the degree to whih �xation loations are in�uened by ontrastmanipulations depends on SID and image ategory.5.2.3 Do image semantis and feature manipulationsin�uene what we look at?Sine ontrast manipulations hange where people look with di�erentmagnitudes depending on images' SID, one would expet this to be re-�eted in �xated image ontent aross the image ategories. For example,in the ategory that was least in�uened by the image manipulations, wewould expet a lower disrimination for ontrast and edge density between�xated and ontrol loations than for the other two ategories. Figure5.8(a) plots average ROC areas for ontrast and edge density over thethree image ategories. Results for both the �rst �xation and all �xationsare given for eah feature and ategory. As expeted, the disriminationof features between �xated and ontrol loations was the lowest in the'Fae' ategory and inreasingly higher for the 'Man-made' and 'Neutral'ategories. However, it was signi�antly (p < 0.05, t-test) better thanhane (ROC area > 0.5) in all ases. Also notie how ROC sores in the'Neutral' ategory are signi�antly (p < 0.05) higher for �rst �xation thanall �xations, whereas this tendeny was not signi�ant in the other twoategories. Figure 5.8(b) di�ers from Figure 5.8(a) in that only imagesfrom the 'Fae' ategory where ontrast was redued toward the fae, i.e.,where the faes were blurred, were inluded in the analysis. Sine peoplestill looked at the fae regions after being redued in ontrast, the dis-rimination was redued to a hane level, onsidering both the �rst andall �xations. Interestingly, disrimination was worse for feature ontent�xated at the initial �xation, ontrary to the �nding by Parkhurst et al.(2002).Both image semantis and features determine what we look at. Thereis a lear e�et, however, that semantially important regions are lookedat largely independent of their feature ontent in terms of ontrast andedge density.5.2.4 What so speial about faes?In agreement with previous �ndings faes seem to attrat viewers' gazes,and do so largely regardless of their ontrasts. So, what is so speial aboutfaes, and what an we learn about fae pereption using the ontrastmanipulation paradigm developed in this thesis? Considering all faeimages regardless of ontrast, and if faial regions are de�ned by the blakboxes in Figure 5.9, we found initial �xations to be loated within these
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(b)Figure 5.8: ROC analysis of ontrast and edge density over di�erent imageategories. (a) All images from eah ategory are inluded. (b) From the'Fae' ategory, only images with blurred faes are inluded.



54 Contrast and Fixation LoationsPSfrag replaementsmsFirst FixationAll Fixation PSfrag replaementsmsFirst FixationAll Fixation PSfrag replaementsmsFirst FixationAll FixationPSfrag replaementsmsFirst FixationAll Fixation PSfrag replaementsmsFirst FixationAll Fixation PSfrag replaementsmsFirst FixationAll FixationFigure 5.9: The images showed here depit the versions where ontrast hasbeen redued away from the fae regions, i.e., in 'non-faial' regions. Theblak boxes de�ne the fae regions used in the analysisregions in 68.6% of the trials, and in 30.9% when taking all �xations intoaount. In the ase non-faial regions are redued in ontrast, faes are�xated initially 93.6% of the times and overall in 39.1% of the trials.When the faes instead are redued in ontrast these numbers dereaseto 43.6% and 22.7% , respetively. Faes are expeted to be �xated with6.5% hane if �xation loations are drawn from a uniform distribution.Figure 5.10 breaks down the analysis to an image by image basis;Figure 5.10(a) plots the proportion of initial �xations loated on the faeregion, and Figure 5.10(b) ontains similar plots taking all �xations onthe fae into aount. The x-axis lists the images in Figure 5.9 numberedfrom left to right starting from the upper left orner. It an be seenthat subjets' initial �xations are overrepresented in fae regions in allthe tested images, and that fewer �xations are loated on a fae whenits ontrast is redued. The same trend is found when onsidering theproportions of all �xations on the fae regions. However, in this asemany �xations are loated on non-faial regions. In partiular, this istrue in images where other semantially important regions ompete forattention with the faes; in the image numbered '2', there are toy animalswhose faes attrat many �xations and in image '4' the hands of the manare a strong ompetitor to the fae region.Besides knowing the position of a �xation, the �xation duration is an-other important measure that re�ets ongoing visual and ognitive pro-esses (Rayner, 1998; Henderson & Ferreira, 2004). Initial �xation dura-tions are given in Figure 5.11(a), whereas all �xations loated on the faeare plotted in Figure 5.11(b). Apparently, if the initial saade lands onthe fae, the duration of the following �xation is longer when the ontrast
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(b) Overall �xated time on faeFigure 5.11: (*) indiates a signi�ant di�erene in mean for signi�anelevel α = 0.05 (t-test).of the fae is higher than its surrounding regions. Figure 5.11(b) gives thetotal �xation time on the fae as a proportion of the total viewing time.Again, it an be seen that the faes are looked upon more when they arekept in high ontrast. Sine �xation durations not only depend on fovealinformation available to the viewer but also on peripheral information, weanalyze initial saade latenies, in the ase a saade is direted towarda fae region. Latenies are measured as the time from image onset untilthe �rst saade lands in a �xation. Thus, inluded in the saade laten-ies is the time it takes to exeute the saade, whih typially is 50 ms.Figure 5.12 shows the initial latenies when all initial saades, regardlessof �nal destination, are onsidered (Figure 5.12(a)), and when only thoselanding on the fae are onsidered (Figure 5.12(b)). The �gures tell us
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(b) Saade lateny when initial saadeis direted toward the faeFigure 5.12: Initial saade latenies + durations for all saades (a), andonly for the saades direted toward the fae region. (*) indiates a sig-ni�ant di�erene in mean for signi�ane level α = 0.05 (t-test).that a redued fae ontrast yields an inrease in saade lateny.5.3 SummaryThis hapter extends the work from the previous hapter using the ex-perimental paradigm based on ontrast manipulations; it investigates theontribution of the low-level features ontrast and edge density as well asimage semantis to the seletion of �xations in images. Overall, both on-trast and edge density were elevated at �xated image pathes ompared toontrol pathes within an image. However, image ontent atively hosenby subjets' gazes varied signi�antly with a number of fators. First,when regions of high semanti importane were redued in ontrast, sub-jets still looked at these regions, ausing ontrast and edge density tobe lower at �xated loations ompared to ontrol loations. This ten-deny was partiularly strong when faes were redued in ontrast, andwas found both early after image onset as well as later in viewing. Seond,image ontent at �xation proved to orrelate better with the tested low-level features when the semanti information dispersion (SID) was high.In other words, when an image does not ontain any spei� regions ofhigh semanti importane, bottom-up features orrelate quite well withimage ontent around �xation loations. Overall, the results in this hap-ter do not support a ausal link between bottom-up features and imageontent at �xation.



Chapter 6Assessing Fixation PreditionAlgorithms on ContrastManipulated Images
ALGORITHMS for �xation predition have reently attrated on-siderable attention from researhers aross di�erent �elds. Onereason for this interest is the potential bene�t suh algorithmswould have in a range of researh disiplines and future tehnial systems.Aurate algorithms for gaze predition ould replae time onsuming eye-traking experiments and hene, for example, be used to automatiallyassess if people look at the desired produt in a ommerial, or providerelevant visual input to a robot. The ability of some of the proposed al-gorithms to predit human �xations has been reported to be quite goodunder ertain onditions (Itti & Koh, 2000; Parkhurst & Niebur, 2002;Itti, 2004), despite using only low-level features as a basis for predition.Given the urrent, intense debate on gaze ontrol and �xation preditionin natural images, we will in this hapter take a loser look at two algo-rithms that predit human �xations solely based on low-level image input:One, by Itti et al. (1998), is based on the onept of a salieny map and iswell established and evaluated against human �xations in several previousworks (see e.g., Parkhurst & Niebur, 2002). The other algorithm is a veryreent ontribution by Rajashekar et al. (2008).Previous hapters did not support the hypothesis that low-level fea-tures per se provide ausal ues to �xation seletion in natural images.Instead, regions with a high semanti importane, suh as a fae, ouldrather easily ognitively override manipulations in image ontrast.To put the preditive auray of the two algorithms to a test, they



58 Assessing Fixation Predition Algorithmsare used to �nd �xations in some of the ontrast manipulated images weused in last hapter. The similarity between algorithmially generated�xations and human �xations will be ompared. Again, the main noveltyin this hapter lies in, as opposed to the majority of previous work, usingstimuli manipulations to naturally separate image semantis from its low-level signal strength. By applying the algorithms to the manipulatedimages, we will measure how they ontribute to �xation seletion undertask-neutral viewing.6.1 Prediting FixationsWe present in this setion two di�erent approahes to algorithmi pre-dition of �xations. It is not intended as a omprehensive desription ofthe algorithms, but merely an overview of their major omponents andfuntionalities. For details, refer to the referenes given.6.1.1 Salieny map approahThe onept of a salieny map and its relevane in attentional guidanewas �rst proposed by Koh and Ullman (1985). Aording to a salienymap, visual importane is represented by a two-dimensional map predit-ing how likely eah loation of an image is to be visually attended by aviewer; peaks in the salieny map point to regions likely to be gazed at,and vie versa. By suessively moving to the highest peak in the salienymap, a sequene of �xations an be predited. To prevent the algorithmfrom halting at the largest peak, it is endowed with an inhibition-of-returnmehanism, whih redues the salieny at previously visited peaks. Thesalieny at these regions is restored after a period of time suh that thesame image loation an be visited multiple times over the ourse of view-ing.A salieny map is omputed by �rst deomposing an image into a set offeature hannels, typially omprising luminane, orientation, and olor.Eah feature hannel is then transformed into a feature map by feedingit through enter-surround extrating �lters and a mehanism that allowsspatial ompetition between neighboring feature ontent. Finally, all fea-tures maps are ombined into a single salieny map. The hoie of featuresare motivated by early psyhologial researh, e.g., that by Treisman andGelade (1980), suggesting that some features trigger attentional seletionquikly and obligatorily by 'popping out' from their surrounds.Algorithmi implementations following the framework outlined by Kohand Ullman have been proposed in several papers, e.g., (Itti et al., 1998;Itti & Koh, 2000; Walther & Koh, 2006). We have used the Matlabbased Salieny Toolbox by (Walther & Koh, 2006) to ompute the �rst15 �xations in eah tested image. Besides generating a salieny map from



6.1 Prediting Fixations 59an image, this implementation identi�es salient objet-based representa-tions in a image. We do not use this extension of the implementation, butuse the salieny map diretly to predit �xated loations.Implementations of salieny maps have been validated against human�xations in some earlier papers (see e.g., Parkhurst et al., 2002; Hendersonet al., 2007; Rothkopf et al., 2007; Foulsham & Underwood, 2008). Thereis some evidene that peaks in salieny oinide with �xation loationswhen the viewing task is neutral, but also ample evidene that task andontext an override suh a relation.6.1.2 Gaze attentive �xation �nding engine (GAFFE)The gaze attentive �xation �nding engine (GAFFE), whih is designedby Rajashekar et al. (2008), uses an approah based on mahine learn-ing. Using an image set omprising gray sale, natural images, �xationsfrom a large number of subjets are olleted to �nd statistial di�erenesbetween �xated and ontrol image loations using a foveated image anal-ysis. In a foveated analysis, an image is blurred away from the urrentpoint of �xation in aordane to the spatial sensitivity of the human vi-sual system (HVS). Then a region around the loation for next �xationis analyzed in terms of feature ontent. This way, a foveated analysisuses the information available to a human viewer at the time a saadeto the next �xation loation is planned. Rajashekar et al. report thatluminane and ontrast as well as bandpass outputs of these features aresigni�antly higher at loations �xated by human viewers ompared toontrol loations. Consequently, these features are hosen as the basis forpredition.Fixation predition is initiated by foveating an image away from itsenter. This foveated image then is �ltered with respet to the four fea-tures mentioned above, and the next �xation target is deided by om-bining the �ltered feature maps based on parameters empirially foundby the initial analysis. The algorithm proeeds by updating the foveationpoint to the next (predited) �xation and repeats the �ltering proedureat this new �xation. GAFFE permanently inhibits previously �xated po-sitions from beoming �xated again. Also, it does not attempt to preditthe temporal order of the �xations.As for the salieny map approah, we use GAFFE to �nd 15 �xations(we do not use the entral, initial �xation). Before applying GAFFE topredit �xations on our set of images, parameters were modi�ed to �t theexperimental setting we used while reording eye-movements.6.1.3 Eye-traking on human subjetsTo validate the algorithmi preditions, �xations were extrated as de-sribed in the previous hapter, Setion 5.1.6. To allow for a fair om-



60 Assessing Fixation Predition Algorithmsparison between human and algorithmi �xations, the �rst 15 �xations(exluding the initial in the enter of the display) from eah viewer wereseleted to omprise the human baseline measure. In ase fewer than 15�xations were reorded from one viewer, these Nf < 15 �xations wereused in the analysis.6.1.4 StimuliImages belonging to the ategories 'Fae' and 'Neutral' from the last hap-ter were used. They were hosen sine they represent images with di�erentsemantis; faes are known to onvey muh information in human inter-ation whereas images from the 'Neutral' ategory ontain no objets ofpartiular informative semantis. Stimuli are shown in Figure 5.1 (p. 42).6.2 Analysis and Results6.2.1 Qualitative analysisFigure 6.1(a) illustrates how human and algorithmially predited �x-ations from all images (and subjets) are distributed. Consistent withwhat has been reported in previous works, human �xations show a learbias toward the enter of the image as illustrated by the heat map inFigure 6.1(b). It an further be noted that human �xations tend to havean oval distribution, being extended more in the horizontal diretion thanin the vertial diretion. GAFFE also shows a strong entral tendenyin �xation distribution (Figure 6.1()), but with more equally extendedhorizontal and vertial biases. Lastly, Figure 6.1(d) visualizes how �x-ations omputed from salieny maps are distributed; substantially more�xations are loated toward the edges in the images ompared to the othertwo ases.Figures 6.2 and 6.3 show a omparison between human and algorith-mi �xations for images belonging to the 'Neutral' ategory. As desribedin previous hapter, ontrast has been redued in a Gaussian-like man-ner away from a (di�erent) loation in eah version of an image. Dotsrepresent human �xations from all tested subjets, squares point to loa-tions predited by a salieny map, and irles indiate �xations generatedby GAFFE. As we reported from previous hapter, the distribution of�xations reorded from human viewers is shifted toward regions kept inhigh ontrast. The general tendeny for both algorithmi preditors issimilar. Interestingly, GAFFE seems to overemphasize the bias towardregions of high ontrast whereas the opposite is true for predition madefrom salieny maps.In Figures 6.4 and 6.5, algorithmi predition is ompared to human�xations on the images ontaining faes, whih we from the previous hap-



6.2 Analysis and Results 61

 

 

PSfrag replaementsmsFirst FixationAll FixationImage numberFaial regions blurredNon-faial regions blurredExpeted at random Human �xations GAFFE(Rajashekar et al.) Salieny(Walther and Koh)(a)PSfrag replaementsmsFirst FixationAll FixationImage numberFaial regions blurredNon-faial regions blurredExpeted at randomHuman �xationsGAFFE(Rajashekar et al.)Salieny(Walther and Koh) (b) Human �xations
PSfrag replaementsmsFirst FixationAll FixationImage numberFaial regions blurredNon-faial regions blurredExpeted at randomHuman �xationsGAFFE(Rajashekar et al.)Salieny(Walther and Koh) () GAFFE

PSfrag replaementsmsFirst FixationAll FixationImage numberFaial regions blurredNon-faial regions blurredExpeted at randomHuman �xationsGAFFE(Rajashekar et al.)Salieny(Walther and Koh) (d) SalienyFigure 6.1: (a) Distribution of �xations olleted from human viewers andpredited algorithmially. (b)-(d) Fixation density funtions representedas heat maps.ter know attrat human �xation regardless of the tested ontrast. As ex-peted, the limitations of purely bottom-up preditors are made expliitwhen reduing the ontrast in the faial regions; the preditions deviatestrongly from human �xation in these situations. Both algorithms failsystematially to predit that �xations will land on a blurred fae. Infat, they are in most ases not even lose to the faes. Interestingly, alsowhen they are kept in high ontrast, faes are sometimes missed by thealgorithms.6.2.2 Quantitative analysisTo quantify the strengths of the tested algorithms' abilities to predithuman �xations, we use two di�erent methods to estimate the similar-ity between two sets of �xations: The 2-D orrelation oe�ient and a
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PSfrag replaementsmsFirst FixationAll FixationImage numberFaial regions blurredNon-faial regions blurredExpeted at randomFigure 6.2: Algorithmially predited �xations and human �xations (dots).Algorithmi preditions are made by GAFFE (irles) and by using asalieny map (squares).
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PSfrag replaementsmsFirst FixationAll FixationImage numberFaial regions blurredNon-faial regions blurredExpeted at randomFigure 6.3: Algorithmially predited �xations and human �xations (dots).Algorithmi preditions are made by GAFFE (irles) and by using asalieny map (squares).
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PSfrag replaementsmsFirst FixationAll FixationImage numberFaial regions blurredNon-faial regions blurredExpeted at randomFigure 6.4: Algorithmially predited �xations and human �xations (dots).Algorithmi preditions are made by GAFFE (irles) and by using asalieny map (squares).
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PSfrag replaementsmsFirst FixationAll FixationImage numberFaial regions blurredNon-faial regions blurredExpeted at randomFigure 6.5: Algorithmially predited �xations and human �xations (dots).Algorithmi preditions are made by GAFFE (irles) and by using asalieny map (squares).
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(b)Figure 6.6: Comparison between human �xations and model generated�xations using two di�erent methods. Error bars span one standard error.dispersion measure that we de�ned in Chapter 4, Eq.(4.1). Initially, �xa-tions olleted from humans and predited by GAFFE and salieny mapsare used to reate �xation density funtions (FDFs) for eah image. TheFDFs were generated using σ = 20 pixels. Sine neither of the algorithmsattempts to predit the duration of a �xation, human FDFs are generatedwithout taking �xation duration into aount.First, the orrelation oe�ient between human FDFs and algorithmiFDFs is omputed. Figure 6.6(a) illustrates these orrelations for all theimages together, and those from the 'Neutral' and 'Fae' ategories sepa-rately. For omparison, FDFs for 15 �xations drawn from a uniform anda Gaussian (to model the entral bias) distribution are ompared againsthuman �xations. Samples drawn from the latter distribution were gen-erated by Matlab's randn funtion and then saled by σ. In order toget more robust omparisons, uniform and Gaussian samples were om-pared to human �xations over 10 trials, and the average value over theseomparisons was used.Using the orrelation oe�ient to estimate the similarity betweenFDFs, it an be seen from Figure 6.6(a) that algorithmi predition per-forms best on images oming from the 'Neutral' ategory and worst onimages ontaining faes. These results are veri�ed in Figure 6.6(b), wheresimilar omparisons have been made using the dispersion measure. Re-markably, it seems like �xations generated from a Gaussian distribution,that is, �xations that are biased toward the enter of the image, are om-patible or outperform the algorithmi �xation preditors. Remember thatthis is the ase despite that ontrast manipulations expliitly are imple-mented 'o�-enter', i.e., the kept high-ontrast regions in the manipulatedimages are deliberately positioned a bit away from the enter of the image.Overall, GAFFE seems to predit �xations better than a salieny map.



6.3 Summary 67However, muh of this e�et derives from the entral bias that the design-ers of GAFFE have built in. The bias originates from two soures. First,GAFFE always begins its predition at the enter of the image, and sinethe distane between the urrent and the next predited �xation typiallyis quite small1, it may take a while for the algorithm to reah the bordersof the image. Seond, a mask attenuating features along the borders isapplied before predition. This prevents �xations from appearing lose tothe image borders, as an be seen from Figure 6.1(a).6.3 SummaryWe evaluated the performane of two bottom-up driven algorithms for �x-ation predition against human �xations reorded from viewers wathingimages with manipulated ontrast. While previous work has shown thatertain task instrutions an override preditions made by bottom-up al-gorithms, we show that by using a more neutral task in ombination withontrast manipulated images, the same e�et an be eliited. In view ofthese observations, our results strongly question the ausal ontributionof bottom-up algorithms to �xation predition.

1The orrelation between features and �xated image ontent is signi�ant only forshort saades, typially ≤ 8 degrees.
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Chapter 7Disussion of Part I
WE investigated gaze ontrol in natural images using a new ex-perimental paradigm where ontrast manipulated images wereinspeted during task neutral viewing. A measure alled se-manti information dispersion (SID) was devised to estimate the om-patness of an image's semantis and to lassify images into semantiategories, and we quanti�ed how both ontrast manipulation and SIDin�uened where people looked. Finally, using images before and aftertheir ontrasts were manipulated, we ompared two state-of-the-art algo-rithms for �xation predition against �xations olleted from partiipants.Over all subjets and images, we found a net e�et that ontrast manip-ulations hanged where people looked; their gazes were repelled from re-gions where ontrast had been redued. Interestingly, we also found thatthe degree to whih ontrast manipulations a�et partiipants' gazes de-pends on an image's semanti ategory; semantially informative regionsattrat visual attention despite being redued in ontrast. Fixations madeon images ontaining faes, in partiular, were rather insensitive to themanipulations, and partiipants looked at the fae regions regardless oftested ontrasts. In agreement with these results, our omparative studyrevealed that algorithms using bottom-up features to predit human �x-ations sometimes perform well, but many times fail miserably.In Chapter 4, the e�et ontrast manipulation has on gaze loationswas analyzed. Over all images and types of manipulations, we found thatsubjets' gaze positions were a�eted by ontrast manipulations; gazedensity was shifted toward regions in high ontrast over those redued inontrast. We also found that partiipants on average looked at regionswith ontrast higher than what was found at ontrol regions. This isonsistent with the hypothesis of preattentive seletion, i.e., that atten-tion is drawn to loal image ues based on their physial signal strength.



70 Disussion of Part IThe bulk of previous works emphasize the ontribution of suh low-levelfeatures to gaze guidane. For example, it has been shown that ontrast(Mannan et al., 1996; Reinagel & Zador, 1999; Tatler et al., 2005), edgedensity (Baddely & Tatler, 2006), and salieny (Parkhurst et al., 2002)are higher at �xated than ontrol regions. A salieny based framework, inpartiular, predits an obligatory shift in �xation density toward regionswhere the low-level signal strength is high (Koh & Ullman, 1985).By analyzing images from di�erent semanti ategories, we found inChapter 5 that the degree to whih ontrast manipulations a�et �xa-tion seletion heavily depends on the semanti ontent of an image, aswell as how this ontent is distributed over the image area. In our experi-ments, fae regions attrated attention regardless of their tested ontrasts,whereas �xations in images with more neutral semantis, suh as a pho-tograph of a brik wall or a forest, were shifted toward regions wherethe ontrast remained high. For the semanti ategory omprising pho-tographs of man-made objets, we observed a moderate hange in wherepeople looked; gaze loations were a�eted more than in the fae im-ages but less than for images ontaining neutral semantis. These resultssuggest a semanti override of low-level features, in ase the semantiinformation dispersion (SID) is low and points to regions with high se-manti relevane suh as a fae. In images with high SID, on the otherhand, ontrast manipulations seem to dominantly in�uene where peoplelook. However, even though the orrelation between bottom-up featuresand �xated image ontent is higher in the latter ase, it annot be ruledout that other high-level mehanisms still ontrol �xation seletion. Itis possible, for example, that the ontrast manipulations a�et images'semanti ontent, whih then is responsible for shifts in �xation density.This is by no means a ontroversial hypothesis sine there is ample evi-dene supporting that eye-movements are guided by ognitive fators suhas ontext and semantis, where the physial image omponents interplayognitively to give the raw image ontent a higher meaning (review evi-dene from Chapter 3).In Chapter 6, we tested two popular algorithms to predit �xations,implemented by Walther and Koh (2006) and Rajashekar et al. (2008),and ompared the predited loations with those olleted from partii-pants wathing the ontrast manipulated images. Although there exist ev-idene supporting the ontribution of low-level salieny to eye-movementguidane in both stati (Parkhurst & Niebur, 2002) and dynami (Itti,2005) senes, it has been shown that top-down fators suh as task andontext an override suh ontribution. For example, Underwood et al.(2006) used a searh task where subjets were instruted to detet thepresene of a low salieny target. This task yielded a low spatial overlapbetween salieny and �xation loations. Rothkopf et al. (2007) studiedthe deployment of gaze in a virtual environment during di�erent tasks



71and found that task and ontext, instead of salieny, dominate gaze al-loation. Everyday ativities suh as food preparation seem largely in-dependent of objets' low-level properties (M. F. Land & Hayhoe, 2001).While the dominant in�uene of task on eye-movements has been longknown (Buswell, 1935; Yarbus, 1967), signi�antly less work has beendone using the opposite experimental strategy with neutral, free-viewingtasks and images with manipulated low-level statistis, whih we use inthis thesis. Overall, we found the algorithms being remarkably poor atprediting human �xations, in partiular for low SID images where on-trast had been redued at semantially informative regions. These resultstogether strongly question that the low-level features used by these algo-rithms ontribute ausally to �xation seletion.It is urrently debated whether regions are looked at beause theyare informative with respet to their physial image properties (suh assalieny) or due to their semanti informativeness. Henderson et al. (2007)reported that, besides having higher salieny than ontrol regions, �xatedloations were deemed as more semantially informative than ontrol re-gions. Salient regions have also been shown to overlap with regions labeledas interesting (Elazary & Itti, 2008). By reduing the oupling betweensalieny and semanti informativeness, we found that semantially in-formative regions are looked at despite having a weak low-level signalstrength. Therefore, the previously reported (orrelative) link between�xation seletion and salieny may in fat re�et the ausal link betweensemanti informativeness and �xation seletion. A preditor based onsalieny an in other words output preditions that oinide with atual�xations olleted from humans, but does so not beause salieny attratsattention, but sine underlying, semantially informative objets happento ontain features with high salieny. As we have seen, if suh objetsare redued in salieny, they nevertheless attrat �xations.A number of studies have reently investigated the mehanisms on-trolling the �rst �xation, whih usually refers to the �xation following theinitial saade after image onset. A general observation (and onsensus)is that the position of the �rst �xation largely oinides aross viewers(Tatler et al., 2005). However, the explanation for this observation varies.Whereas early studies reported that objets inonsistent with the generalsemanti ategory of the image (Loftus & Makworth, 1978) and regionsdeemed as informative by viewers (Antes, 1974) attrated a dispropor-tional amount of initial �xations, some later works have emphasized theontribution of image features. For example, Parkhurst et al. (2002), sug-gested that salieny ontributes more to �xation seletion during the �rst�xation and thereafter ontributes less. Tatler et al. (2005), on the otherhand, argue that the ontribution of bottom-features does not hangewith viewing time. Instead, top-down in�uenes do. Using our data, weagain found that ontrast manipulations a�et the loation of the initial



72 Disussion of Part I�xation di�erently depending on the image ategory. The e�et reportedby Parkhurst et al. (2002) was found in the high SID, 'neutral' ategory.However, the opposite e�et was found when regions rated as semanti-ally important, suh as faes, were redued in ontrast; subjets' initial�xations instead landed on regions with low ontrast and edge density.Consequently, our results do not support the hypothesis that initial sa-ades ausally are driven by salieny. Instead, it is likely that the gistof the sene provides enough information to guide the initial saade. Infat, reent researh has shown that an image's gist an be apprehendedvery quikly after image onset and inludes �a rih olletion of perep-tual attributes� and �rises to onsious memory within a single �xation�(Fei-Fei et al., 2007).We have in this part of the thesis analyzed �xated ontent at ratherhigh spatial frequenies. For example, the �lters we used in Chapter 5 wereof size 3× 3 pixels and operated on images of size 1024× 768 pixels. Con-sequently, only image variations with high detail were extrated, whereasoarser variations were not aptured by these �lters. Mannan et al. (1995,1996) investigated how lowpass �ltering of an image a�ets where peoplelook. They found that during the �rst 1.5 seonds of viewing, people �xatethe same loations in the original image as in the lowpass �ltered versionof this image. Sine only the low frequeny ontent is shared betweenthese versions, this suggests that a representation based on low spatialfrequenies ould be responsible to guide early �xations. In this sense,a salieny map operating on lower spatial frequenies ould aount forthe results found in this paper. This line of argument has some supportonsidering images from the 'fae' ategory only; ontrast manipulationsdominantly attenuating higher frequenies have little in�uene on wherepeople look, and faes are looked at regardless of their ontrast levels.However, it seems more plausible that fae regions are looked at beauseof their known semanti importane than beause of some low-level a-ount. Moreover, images from the 'neutral' ategory diretly overthrowthis assumption sine �xation loations showed to be diretly a�eted bythe ontrast manipulations in this ase.In summary, the results from this part of the thesis do not supportthe hypothesis of a ausal relationship between �xation seletion and im-age features, i.e., bottom-up features do not obligatorily attrat visualattention.



Part IIO�-Line Foveation �Implementation andEvaluation





Chapter 8Compression and Foveation
THE lak of spatial detail in peripheral vision allows a display tobe redued in quality at loations where a viewer does not lookdiretly, without this being notied by the viewer. In image andvideo ompression, this fat an be exploited by alloating bits in a-ordane to the spatial sensitivity of the HVS; more bits are given tofovea-near regions than to peripheral regions. This is alled foveated om-pression.This hapter serves as an introdution and motivation to foveatedompression. It begins with an overview of traditional methods for imageand video ompression, followed by an introdution to foveation; whatit is, how it is implemented, and how it an be (and has been) used toimprove image and video ompression. Unlike ommonly known methodsfor foveated oding relying on real-time implementations, we introdue anapproah alled o�-line foveation where gaze data olleted from severalpreviewers are used to predit where later observers, wathing the samevideos, will look.8.1 Some Words on Soure CodingAs the digital information age matures, tehnologial advanes have al-lowed an inreasing number of people to use a range of multimedia ser-vies. Video appliations, in partiular, have reently undergone an ex-plosive growth. For the pratial appliability of video ommuniations,soure ompression is ruial. Without ompression, video �le sizes wouldbe too large to store on many devies and use exessive bandwidth duringtransmission. Sine this setion only srathes the surfae of the widearea of soure oding, the interested reader is referred to the textbooks



76 Compression and Foveationby Haskell & Netravali, 1995 and Sayood, 2000 for a more omprehensivetreatment of the subjet.There are two types of ompression: lossless and lossy. As the namesimply, lossless ompression requires the reonstrution of the soure to bean exat replia of the original soure, while in lossy ompression a er-tain amount of distortion, that is, a disrepany between the reonstrutedand original soure, is aeptable. A ommon goal in ompression is toremove so alled redundanies in a soure, that is, repeated informationthat we an disard and still keep the ruial soure elements. The sourean omprise digitized text, speeh, an image, or a video. Mathemat-ially, a soure an be desribed by a statistial model with alphabet
A = {A1, A2, . . . , An}, where letters in the alphabet our with probabil-ities P = {P (A1), P (A2), . . . , P (An)}.Lossless ompression is neessary in a variety of appliations wheredistortion is not aeptable. For medial purposes, for example, distortionin an X-ray image may lead to misinterpretations and onfuse authentifratures with ompression artifats. In text ompression, a single letterthat is lost or distorted may hange the meaning of a word or a sentenedrastially. Of ourse, there is a prie for not allowing image distortionafter reonstrution. Lossless shemes usually do not ompress to lessthan about three times of the original soure. The theoretial limit forhow muh a soure without memory, i.e., where the soure elements areindependent, an be ompressed is de�ned by the entropy of the soure(Shannon, 1948)

H = −
∑

i

P (Xi) logP (Xi) (8.1)where {X1, X2, X3, . . . , } denotes a sequene generated from the alpha-bet A. There are many well known methods for lossless ompression,for example Hu�man (1952) and arithmeti odes (Rissanen, 1976), ex-ploiting statistial properties of the soure, and Lempel, Ziv and Welsh(LZW) (Welh, 1984) oding, taking advantage of repeated patterns in thesoures. The LZW implementation an be found in, for example, Adobe'sPortable Doument Format (PDF).Lossy ompression addresses the trade-o� between rate and distortion,with the overall goal to simultaneously minimize the rate and the distor-tion. Besides addressing statistial and strutural redundanies, lossyompression targets psyho-visual redundanies by taking advantage ofthe very forgiving nature of human visual or auditory pereption. A-ording to this philosophy, a soure an be ompressed until the �delity isviolated as judged by human observers. The vagueness of this statementindiates the subtle nature of lossy soure oding, whih is even more om-pliated sine individual, subjetive di�erenes exist between humans; oneperson an judge the soure quality as poor while another person judgesthe quality of the same soure as being fair or even good. In image om-
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Figure 8.1: Overview of a ompression sheme.pression, lossy ompression shemes an give about 30 fold ompressionof natural gray sale images with little or no pereived distortion.Soure oding is an important part of a ommuniation system, whihinludes a soure and hannel enoder/deoder and sometimes also soureenryption/deryption. We only onsider soure oding and assume thatthe hannel is ideal and hene introdues no errors. As previously men-tioned the soure an be an image, speeh, musi et. In this thesis wewill onsider only image and video soures. Figure 8.1 depits a generisoure oding sheme. A soure X is fed into a soure enoder whih out-puts a di�erent (often binary) ompressed representation Y of the originalsoure X . To protet the enoded soure from being orrupted when sentover the ommuniation hannel, redundany an be added before trans-mission if the hannel is not ideal. Sine we only deal with ideal hannels,in our ase Ŷ = Y . For lossless ompression we demand that X̂ = X af-ter soure deoding while in lossy ompression, we want to minimize thedistortion. In other words, we want the reonstrution X̂ to be as loseto the original image X as possible, but at the ost of as few transmissionbits as possible.8.1.1 Image odingImage oding is a speial ase of soure oding. A typial system forimage oding is outlined in Figure 8.2. It onsists of an enoder and adeoder, whih further are divided into a transform, quantization, and en-tropy oding stage. As a �rst step the image is transformed. The purposeof transformation is to deorrelate neighboring pixels and ompat themajority of the image information into a small number of transform o-e�ients from an alphabet C. Popular transforms are the disrete osinetransform (DCT) and the disrete wavelet transform (DWT), inluded inthe standards JPEG (Wallae, 1992) and JPEG2000 (Taubman & Mar-ellin, 2001), respetively. The transform oe�ients are then quantized,whih an be de�ned as an operation that maps oe�ients from C to
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X Figure 8.2: A lossy image oder.another, oarser alphabet CQ. The purpose of quantization is to reduethe entropy of the oe�ients. Lastly, an entropy oder is applied tothe quantized oe�ients. In JPEG, for example, the quantized outputis entropy oded with run length oding (RLE) ombined with Hu�manoding. Deoding is generally straightforward, where entropy deodingis followed by inverse quantization and transformation. The degree ofompression depends mostly on the quantization strategy, sine both thetransform and entropy oding stages are lossless or nearly lossless.8.1.2 Video odingA video onsists of a sequene of images (alled frames), eah slightly dif-ferent from its neighboring frames. Showing the frames quikly after eahother reates the illusion of motion. In terms of ompression, the moststraightforward approah would be to ode eah frame as a still image.However, this approah is very ine�ient. Instead, besides exploiting spa-tial redundanies as in image oding, a video oding sheme also exploitstemporal redundanies through the fat that neighboring frames largelyontain the same information. As a onsequene, ompression rates invideo an be muh higher than in still image ompression.The struture of a general video enoder/deoder is depited in Figure8.3. As a �rst step at the enoder, the input video is divided into a groupof pitures (GOP), whih typially onsists of 8, 16, or 30 onseutiveframes. In intra (I) mode, an input frame is diretly transformed, quan-tized, and entropy oded, i.e., it is oded as a still image. In the preditive(P) mode, the (urrent) frame is �rst predited from the previous deodedframe, and only the di�erene between the urrent predited frame theurrent original frame, i.e., the predition error (PE) is enoded. Predi-tion is made in two steps through motion estimation (ME) and motionompensation (MC). Figure 8.4 illustrates the general idea behind ME.Initially, two onseutive frames are divided into non-overlapping bloks.Eah blok in the urrent frame is then mathed against bloks of the same
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Previous framePSfrag replaementsmsFirst FixationAll FixationImage numberFaial regions blurredNon-faial regions blurredExpeted at random Figure 8.4: Blok based motion estimation.size in the previous frame within a searh window. A vetor desribingthe translational motion between the blok in the urrent frame and thebest mathing blok in the previous frame is stored. These motion vetorsare used in MC to rearrange bloks of information in the previous frameto best desribe the urrent frame. Algorithms for video oding followingthis basi framework have suessfully been inluded in standards suhas the moving piture experts group (MPEG) family of odes (see, e.g.,Gall, 1991; Wiegand, Sullivan, Bjontegaard, & Luthra, 2003).8.1.3 Quality assessment in ompressionTo be able to design, implement, and evaluate an algorithm for ompres-sion, we need to be able to obtain aurate estimates of a ompressedimage's quality. The di�erene in quality between an original image Xand its ompressed representation X̂ of dimensions m × n is typiallymeasured with the mean squared error (MSE )
MSE =

1

mn

m−1
∑

i=0

n−1
∑

j=0

(X(i, j)− X̂(i, j))2 (8.2)or with the related peak signal-to-noise ratio (PSNR)
PSNR = 10 · log10

(

[maxi,j(X(i, j))]2

MSE

)

. (8.3)While these objetive measures have been used extensively by researhersworking with image and video ompression, they have been found to or-relate with the quality as pereived by human viewers quite poorly. Thisis hardly surprising sine the HVS takes several aspets into aount thatare not onsidered by simple, pixel-based measures suh as the MSE . Forexample, these aspets inlude (from Wang, Sheikh, & Bovik, 2003)
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• Non-uniform retinal sampling.
• Light adaptation (luminane masking).
• Contrast sensitivity funtions.
• Spatial frequeny, temporal frequeny and orientation seletive sig-nal analysis.
• Masking and failitation.
• Contrast response saturation.Unfortunately, there are today no objetive measures that produequality measures indistinguishable from those olleted through subjetivequality assessment. Currently, �nding suh objetive methods is an ativearea of researh (see e.g., Wang, Sheikh, & Bovik, 2003). Instead, toensure reliable quality sores, experiments where several observers viewand assess ompressed images on rating sales (e.g., bad, poor, fair, good,exellent) or impairment sales (e.g., very annoying, annoying, slightlyannoying, pereptible but annoying, impereptible) are preformed. (ITU,2002).8.2 Using Foveation in CompressionAs we saw in Chapter 2, humans have evolved a foveated system thatombined with eye-movements is used for visual exploration. Foveatedompression exploits the foveated nature of the HVS by removing unde-tetable high frequeny ontent away from the foveation enter as a fun-tion of eentriity. Sine high frequeny ontent generally requires moreinformation to represent digitally than low frequeny ontent, foveationinherently improves ompression. Although the huge potential to exploitfoveation for the purpose of ompression has been known for quite sometime (formalized in e.g., Girod, 1988), it is today not a widespread teh-nology. The reasons for this are mainly twofold. First, the ompressionsystem needs to know, or aurately estimate where the viewer looks. Se-ond, in real-time appliations, the delay introdued by oding and trans-mission is believed to exeed that aeptable to an observer. This delayauses a lag between the position of the urrent foveation point and thefoveation enter in the image urrently being deoded. In other words, itannot be guaranteed that the position where a viewer looks and the posi-tion where the deoded image has its best quality are aligned. Moreover,ompression standards need to be extended to optimally ode foveatedimage and video representations.



82 Compression and Foveation8.2.1 FoveationUnlike the omposition of a digital image as a uniform, two dimensionalgrid of pixels, aquisition of visual information on the retina is highlynonuniform with the highest sampling density in the fovea. The proessof mathing the image resolution in aordane to the sampling density ofphotoreeptors on the retina is alled image foveation (Kortum & Geisler,1996). Suessfully implemented, foveation transforms an image suh thata viewer looking at the foveation enter annot distinguish the foveatedversion from its original. Figure 8.5 illustrates image foveation; Figure8.5(a) shows an unproessed image and Figure 8.5(b) depits the imageafter foveation, whih is entered at the ball being pushed by the train.There are a number of methods proposed to implement foveation.Early ones were based on adding pixels into larger elements, SuperPix-els, whih inrease in size with inreasing eentriity from the point ofgaze aording to a resolution fall-o� model onsistent with anatomi-al measurements in the human retina and visual ortex (Kortum &Geisler, 1996). This type of implementation is simple and quik. How-ever, borders between SuperPixels give rise to distint bloking artifats,whih proved to be visually unpleasant. More reent implementationsused multi-resolution pyramids (e.g., Geisler & Perry, 1998, 1999), whereperipheral regions in the foveated image ontain information from up-sampled, higher pyramid levels, while regions loser to the foveation en-ter omprise higher frequeny ontent available from the low pyramidlevels or from the original image itself. The borders between pyramidlevels are typially smoothed with a blending funtion to avoid sharptransitions in the foveated image. Figure 8.5(b) has been generated us-ing a foveated multi-resolution pyramid. The ode is available online(http://svi.ps.utexas.edu/software.shtml).Foveation has also suessfully been implemented in the transformdomain, using wavelets (Chang & Yap, 1997; Duhowski, 2000; Sheikh,Liu, Evans, & Bovik, 2001), and the disrete osine transform (DCT)(Bergström, 2003) where appropriate transform oe�ient saling priorto inverse transformation produes foveated images. Typially, transformoe�ients are saled by a fator, p ∈ [0, 1]. Where p is small, the dis-play quality is heavily degraded and where p is one, the quality is un-a�eted ompared to the original display. Moreover, foveation has beenimplemented using polar down-sampling shemes (Juday & Fisher, 1989;Kuyel, Geisler, & Ghosh, 1999). The hoie of implementation methoddepends on the appliation. Typially, smooth and artifat free resolutiondegradations are desirable.In this thesis, we have hosen to implement foveation in the waveletdomain, mostly beause the suessful appliation of wavelets in ompres-sion. For example, the transform stage in many urrent state-of-the-artompression methods is based on wavelets (e.g., JPEG2000). Implement-
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PSfrag replaementsmsFirst FixationAll FixationImage numberFaial regions blurredNon-faial regions blurredExpeted at random (a) Original
PSfrag replaementsmsFirst FixationAll FixationImage numberFaial regions blurredNon-faial regions blurredExpeted at random (b) FoveatedFigure 8.5: Image foveation. The bottom piture shows a foveated versionof the original image on the top. Foveation enter is loated in the middleof the dotted ball. The foveated image was generated by the softwarepublily available from http://svi.ps.utexas.edu/software.shtml.
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PSfrag replaementsmsFirst FixationAll FixationImage numberFaial regions blurredNon-faial regions blurredExpeted at randomFigure 8.6: Overview of a foveated ompression sheme.ing foveation requires a number of parameters to be known (or auratelyestimated). First, we need to know where a person looks. Seond, we needa funtion approximating how visual sensitivity dereases as a funtion ofeentriity. Third, we need to know the distane from the image to theviewer. Fourth, we require knowledge about the resolution of the imageand the sreen on whih it is presented, as well as the physial dimensionsof the sreen.Foveated displays have been used for a number of purposes (see, e.g.,Parkhurst & Niebur, 2002), for example to redue omputational resouresin omputer graphis rendering, to evaluate the pereptual span in senepereption, and to improve the ompression e�ieny of digital imagesand videos, whih is the spei� target of investigation in this thesis.8.2.2 Foveated ompressionFoveation improves ompression e�ieny by removing high frequenyontent, whih typially onsumes a substantial portion of the bit budget,from unattended parts of an image. We have identi�ed two major at-egories of foveation-based, or foveation-like methods for improved imageand video ompression: Real-time and o�-line. Maybe the most straight-forward, intuitive approah to foveated oding is in real-time, �rst pointedout by Girod (1988), with potential appliations in, e.g., surveillane, tele-operating of remote vehiles, telemediine, and teleonferening; these aresituations where transmission bandwidth may be limited. In a typial sit-uation shown in Figure 8.6, the position of the foveation enter is sentto a remote loation (amera) where the image is foveated in the spatialor transform domain, ompressed with a standard oder suh as JPEG,and transmitted bak to the viewer where it is deoded and displayed.Of ourse, this type of setup requires a minimum delay from the timethe foveation point is aquired until the image is deoded and displayed.Otherwise, it annot be ensured that the foveation enter and the re-gion with best image quality oinide, whih would redue the subjetivequality of the deoded image. Real-time foveated ompression requiresa fast and reliable link to transmit the foveation point to the enoder



8.2 Using Foveation in Compression 85side, a quik algorithm to implement foveation, and symmetri odingshemes of relatively low omplexity. Reent work has found that if agaze-ontingent display is updated within 60 ms after an eye-movement,blur due to foveation is not detetable (L. C. Loshky &Wolverton, 2007).One strategy to alleviate the e�ets of larger delays is to foveate an imagewhile prediting how viewers' gazes hange during the period of the delay(Khan & Komogortsev, 2006). The penalty is that a larger portion of theimage needs to be represented in high quality than if the gaze positionswould be known exatly. Real-time foveation has been reported to sub-stantially improve ompression. The bit rate savings depend on fatorssuh as image size and viewing distane, but typially ontributes witha fator ≥ 3 ompared to standard 'unfoveated' ompression (Geisler &Perry, 1999). With only minor hanges in system design and implemen-tation, real-time foveated ompression an easily be extended to onsidermultiple foveation points (viewers).A perhaps less intuitive way to use the fat that vision is redued inthe periphery, that we have named o�-line foveation, is to beforehandpredit where viewers will look and keep a high display �delity only inthese regions, while degrading other regions. Given that later viewers lookwithin the predited regions and that the peripheral degradation does notintrodue visually unpleasant video distortions, o�-line foveation will the-oretially not redue subjetive quality. Obviously, besides exploiting pe-ripheral image degradations to improve ompression, o�-line foveation re-lies on the assumption that di�erent viewers will look at similar loations.If this was not the ase, and if viewers' gaze positions were uniformlydistributed, no region ould be degraded without signi�antly reduingthe pereived quality for an unontrollable number of later viewers. For-tunately, there is ample evidene that di�erent viewers look at largelysimilar video regions (Elias, Sherwin, & Wise, 1984; Stelmah, Tam, &Hearty, 1991; Tosi, Meai, & Pasquali, 1997; Goldstein, Peli, Lerner, &Luo, 2004; Dorr, Böhme, Drewes, Gegenfurtner, & Barth, 2005). Most ofthe time, these regions are on�ned to the enter of the video display. Thegeneral struture of a system for o�-line foveated ompression is the sameas in Figure 8.6. However, the foveation points are replaed by estimatesof the loations where future viewers are likely to look. In our imple-mentation, estimates ome in the form of gaze density funtions (GDFs)generated from superimposed Gaussian funtions derived from empirialgaze data olleted from previewers. Also, sine the enoder is not on-strained by any real-time omputational demands, o�-line foveation allowsfor a more non-symmetri onstrution where omplexity an be shiftedto the enoder. O�-line foveated ompression is mainly suitable for, butnot limited to, o�-line, and semi real-time appliations suh as sports andnews broadast and streaming video over the Internet.In addition to being real-time and o�-line, foveated ompression an



86 Compression and FoveationReal-time O�-lineNon-salable Juday and Fisher (1989) Itti (2004)Kortum and Geisler (1996) Agra�otis et al. (2006)Geisler and Perry (1998)Sheikh et al. (2001)Bergström (2003)Khan and Komogortsev (2006)Rate salable ←−Wang and Bovik (2001)→
←−Wang, Lu, and Bovik (2003)→Table 8.1: Categorization of some papers on foveated image and videooding.be rate salable or not (see Wang & Bovik, 2001; Wang, Lu, & Bovik,2003). Salability in foveated ompression refers to the ability to orderthe bit stream suh that regions lose to the foveation enter are odedand transmitted with priority. As a onsequene, when initial parts of thebit stream are reeived at the deoder side, the foveated region onsumesbits almost exlusively, and is therefore reonstruted with higher �delitythan other regions. At this point, only a heavily foveated image versionan be deoded. As more bits get available to the deoder, regions furtheraway from the foveation enter are suessively re�ned. When the wholebit stream is deoded, the reeived image is fully 'unfoveated'. In foveatedvideo ompression, salability an also refer to temporal salability, wherefoveated regions are prioritized in frame rate. Table 8.1 lists a number ofrepresentative works from eah ategory.8.2.3 O�-line foveation: Open problemsOne of the main hallenges in o�-line foveated video is how to auratelypredit where future viewers will diret their gazes. There have beentwo main approahes: Using eye-movements from a number of previewerswathing the video (Stelmah & Tam, 1994; Duhowski & MCormik,1998), and using omputational algorithms for automati predition (e.g.,Osberger & Rohaly, 2001; Wang, Lu, & Bovik, 2003; Itti, 2004; Le Meur,Le Callet, & Barba, 2007).Without expliitly targeting video oding appliations, the use of pre-viously reorded eye-movements to implement o�-line foveation was pre-sented and evaluated by Stelmah & Tam, 1994 and Duhowski & M-



8.2 Using Foveation in Compression 87Cormik, 1998. Stelmah and Tam manipulated eah video frame suhthat the one region where most previewers looked remained in high reso-lution, whereas other parts of the frame were inreasingly degraded awayfrom this region by means of low-pass �ltering or DCT oe�ient quan-tization. The pereived quality of the manipulated, variable-resolutionvideo was assessed by human observers and ompared with three otherversions of the same video; one unproessed, one with an equal level ofblur distributed uniformly over the frame, and one with a entrally �xedhigh-resolution region. As expeted, the unproessed video got the high-est quality ratings and the uniformly blurred video the worst. The authorsfound, rather surprisingly, that the judged quality of the o�-line foveatedvideo was omparable to having a entrally �xed high resolution regionthroughout the video. In view of these results, Stelmah and Tam (1994)onlude that �Given the modest bene�ts and high ost of implementa-tion ... gaze ontingent proessing is not suitable for general purposeproessing�. However, as they also disuss, the poor quality ratings of theo�-line foveated sequene may derive from repeated viewings of the testsequenes as well as the imposed task of quality evaluation, whih ouldmake subjets atively searh for quality impairments. Either of these tworeasons may disrupt the natural viewing behavior of subjets and heneause them to gaze outside the regions of high resolution where the im-age quality is signi�antly dereased. A similar study by Duhowski andMCormik (1998) investigated the subjetive quality of videos that weremanipulated (o�-line) suh that high resolution was maintained aroundeah previewer's position of gaze (from several viewers), whereas otherregions were degraded in resolution. Results showed that eye-movementsolleted from subjets wathing the manipulated videos deviated fromeye-movements olleted from the unproessed, original video. The au-thors argue that new, suddenly appearing high-resolution regions maydistrat viewers' natural viewing patterns in the former ase. Appar-ently, both Stelmah and Tam and Duhowski and MCormik ame tothe onlusion that o�-line foveation is infeasible sine it introdues videoartifats dereasing the subjetive quality, and also seems to hange theviewing behavior of new viewers.Computational models for gaze predition typially use low-level im-age features suh as luminane, ontrast, edge density, and motion (f.Chapter 6 for gaze predition in images), or use heuristi rules suh as'always hoose faes'. Although there exist a few implementations usingomputational approahes for gaze predition to generate o�-line foveatedvideos (e.g., Osberger & Maeder, 1998; Itti, 2004) none, to the author'sknowledge, has been subjetively evaluated. Interestingly, a reent studyshowed that the best among urrent state-of-the-art gaze preditors invideo was one simply prediting that viewers would look at the enter ofthe sreen (Le Meur et al., 2007). As for gaze predition algorithms in still



88 Compression and Foveationimages disussed in the �rst part of the thesis, automati gaze preditionin video is urrently quite far from produing data onsistent with thosereorded from human observers. This motivates the use of eye-trakingdata, whih de�ne the 'ground truth', to predit future gazing behaviorfor the purpose of o�-line foveation. In this thesis, therefore, we haveadopted this approah.There are a number of entral hallenges in o�-line foveated om-pression that we will address in the oming hapters. First, it is an openquestion how reorded gaze positions best are transformed into a foveationfuntion, that is, a funtion that manipulates the video quality suh thatperipheral degradations do not ompromise the subjetive quality expe-riened by later viewers. Imagine for example that gaze data is olletedfrom 14 previewers; 11 look at an objet in the upper left orner and theother three look toward a region in the lower right orner. When foveatingand oding the video to be looked at by other viewers, how many bits dowe want to spend in the lower right orner ompared to the upper leftorner? Seond, given a foveation funtion, how is it used to e�ientlyalloate bits in a oding sheme? Finally, assuming the �rst two problemsare solved, how an we estimate the quality of the foveated and odedvideo? Obviously, objetive quality estimates suh as the PSNR, whihtreats di�erent image regions without regard either to the varying spatialnature of foveated images or to the olletive viewing behavior, are notdiretly appliable to evaluate o�-line foveated video. These and otherissues will be the targets of investigating in the oming hapters.8.3 SummaryFoveated ompression exploits the non-uniform spatial auity of the hu-man visual system (HVS) by removing high spatial frequenies not de-tetable by our peripheral vision. By representing only the regions ina video where people look in high quality while degrading other regions,foveation has the potential to signi�antly improve today's state-of-the-artmethods for ompression. In a system for real-time foveation, a foveationpoint is sent from the viewer to a remote amera where the image isfoveated, enoded, and diretly transmitted bak to the viewer. At thedeoder side, the image is rapidly deoded and displayed. In a di�erentapproah to foveated oding that we have named o�-line foveation, gazepositions are olleted from a number of previewers. These gaze positionsare then used to manipulate the image quality suh that later viewers willnot pereive the blur introdued by o�-line foveation. Previous works ono�-line foveated video argue against the feasibility of suh an approah.In the oming hapters, we will revisit o�-line foveation and evaluate itspotential in ompression by addressing a number of open researh prob-lems.



Chapter 9A First Glane Toward O�-LineFoveated Compression
WE begin to explore o�-line foveated ompression using eye-traking experiments ombined with a simple oding sheme.Foveated ompression is applied to six short image sequenesdepiting natural senes, where eah image is foveated and ompressedwithout regard to its neighboring images.9.1 OverviewFigure 9.1 gives an overview of the system design. It onsists of three mainbuilding bloks, eah outlined by a dotted box. Initially, eye-movementsare reorded from 17 people free-viewing the original image sequenes. Toimplement foveation, eah image from a sequene is wavelet transformed,and the wavelet oe�ients are multiplied by a weighting funtion de-riving from olleted gaze positions. The foveated oe�ients are �nallyquantized with a simple, uniform salar quantizer and entropy oded witha Hu�man oder. Deoding reverses the entropy ode and transformsthe wavelet oe�ients bak to the spatial domain. The degree of addi-tional ompression due to o�-line foveation is alulated. In the evaluationphase, another 18 people look at the foveated, deoded image sequeneunder the same onditions as during the initial data olletion. Again,their eye-movements are reorded. The purpose of a seond reording isto ompare where subjets look in the original sequene to where they lookwhile wathing the ompressed o�-line foveated sequene. Sine standardmethods for subjetive and, in partiular, objetive quality evaluation arenot diretly appliable to o�-line foveated video, we argue that omparing
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data collectionPSfrag replaementsmsFirst FixationAll FixationImage numberFaial regions blurredNon-faial regions blurredExpeted at random Figure 9.1: System overviewthe distribution of gazes in the two onditions serves as an indiator of thepereived quality. For example, if people look at similar loations arossthe onditions, we know by de�nition that they gazed toward regions withhigh quality. Otherwise we know that they looked at regions degraded byfoveation, whih were thus of poorer quality. Besides analyzing the gazingbehavior, we asked subjets some questions about their subjetive viewingexperiene.9.2 Methods9.2.1 Data olletionTest subjets were seated one by one at a viewing distane of 75 m in frontof a omputer sreen. The sreen extended 31×25 m (23×19 degrees) andhad a resolution and refresh rate of 720×576 pixels and 60 Hz, respetively.All observers had normal or orreted-to-normal vision. Image sequeneswere played with the Quiktime 6.3 player at 25 frames per seond (fps).



9.2 Methods 91
PSfrag replaementsmsFirst FixationAll FixationImage numberFaial regions blurredNon-faial regions blurredExpeted at randomFigure 9.2: Representative image (Y-omponent) from eah tested se-quene.To enable fast and aurate display, the image sequenes were enoded ata high bitrate. Stimuli onsisted of six short image sequenes depitingnatural senes, and had a total duration of 3 min and 30 seonds. Theresolution of the images was the same as the sreen resolution. The imageswere represented in 24 bit olor (RGB with 8 bit in eah olor hannel). Arepresentative image from eah sequene is shown in Figure 9.2. Duringimage display, gaze positions were reorded at 50 Hz with an SMI iVieweye-traker using a pupil/ornea re�ex system to trak the eyes. Subjetswere naive in the sense that they had no prior knowledge of either theontent of the stimuli or the purpose of the test. Prior to eah eye-traking session, subjets did a nine-point alibration and were instrutedto 'free-view' the sequenes ('wath the videos as you naturally would doat home').During the initial eye-movement data olletion, we had 17 subjetswathing the original image sequene. The olleted eye-movement datafrom 141 of these subjets were used for the purpose of foveation.In the seond data olletion (the evaluation phase), 18 new subjetswathed the foveated and ompressed image sequene under the sameonditions as in the �rst test. Again, data from 14 subjets were used.9.2.2 O�-line foveation and oding � ImplementationdetailsEah image from the sequenes is foveated and oded separately. Firstwe exploit the fat that humans are less sensitive to hromati than toluminane information by a RGB-to-YUV onversion, where the U andV omponents are subsampled by a fator two. The YUV omponents1Eye-traking data from the three test-subjets with the most deviant (from othertest-subjets) eye-movement patterns were omitted.
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PSfrag replaementsmsFirst FixationAll FixationImage numberFaial regions blurredNon-faial regions blurredExpeted at random(8)(4)(4)(4)(3)(3)(3)(1)(1)(1) (a)

PSfrag replaementsmsFirst FixationAll FixationImage numberFaial regions blurredNon-faial regions blurredExpeted at random(8)(4)(4)(4)(3)(3)(3)(1)(1)(1) (b)

PSfrag replaementsmsFirst FixationAll FixationImage numberFaial regions blurredNon-faial regions blurredExpeted at random(8)(4)(4)(4)(3)(3)(3)(1)(1)(1) ()Figure 9.3: (a) Image with overlaid gaze positions. Eah marker representsthe gaze position from one viewer. (b) Three level wavelet deompositionof the Y-omponent. () Subband weighting masks for a three level waveletdeomposition.are eah wavelet deomposed (.f. Appendix A) using a Daubehies 4-tap �lter with periodi border extension. Eah omponent is deomposedwith three levels as depited in Figure 9.3(b). Foveation is implementedin the wavelet domain by weighting (multiplying) the oe�ients in eahsubband Bλ at deomposition level λ = {1, 2, 3} with a Gaussian-likefuntion Wλ(m,n), whose shape is determined by the distribution of gazepositions. This way, high frequeny information is attenuated in regionslargely unattended by viewers' gazes. More preisely, if P denotes thenumber of viewers, (mi, ni) denotes the position gazed at by viewer i, and
M ×N de�ne the image dimensions, then

Gλ(m,n) =

P
∑

i=1

− exp
((m−mi)

2 + (m−mi)
2

2σ2

) (9.1)
m = 1, 2, . . . ,

M

2λ
, n = 1, 2, . . . ,

N

2λde�nes a gaze density funtion (GDF). Wλ(m,n) relates to the GDF asfollows
Wλ(m,n) = min

m,n

(

1, Gλ(m,n)
) (9.2)Consequently, values larger than one are trunated so that Wλ(m,n) on-sists only of values on the interval (0 1℄. Figure 9.3() gives an exampleof how the weighting funtion Wλ(m,n), λ = {1, 2, 3} is omposed in thewavelet domain. Notie how oe�ients from the lowest frequeny band,

LL3, are una�eted by the weighting to ensure a rude bakground qualityin the deoded image. The parameter σ in Eq. (9.1) ontrols how fast thedisplay quality is degraded away from regions with high gaze density. Inour experiments, we use σ = 0.10M . This lets the 'full width at half max'(used by, e.g., Rajashekar, Cormak, & Bovik, 2004) of eah Gaussianfuntion entered at a gaze position over the foveal span of an observer,



9.3 Data Evaluation 93and also aounts for the unertainty introdued by allowing new viewersto wath the o�-line foveated video.Wavelet oe�ient weighting is followed by quantization. We use avery simple quantization strategy where oe�ients at levels λ = {1, 2, 3}are quantized with respetively {1, 3, 4} bits using a salar uniform quan-tizer with the step size optimized for a Laplaian distribution (see e.g.,Table 8.3 on p. 225 in Sayood, 2000). The lowest frequeny band LL3,however, is quantized with the step size optimized for a uniform distribu-tion, using 8 bits. Quantized wavelet oe�ients are as a last step entropyoded with a Hu�man oder. Deoding is straightforward as shown inFigure 9.1.9.3 Data EvaluationImage ompression algorithms struggle with the trade-o� between main-taining a good pereptual quality and at the same time obtaining lowbitrates. Unfortunately, there exist urrently no objetive methods forquality evaluation that produe results indistinguishable from those ob-tained by human observers. In partiular, standard methods for objetivequality evaluation would fail miserably if applied to o�-line foveated video.For that matter, it is not even lear if standard methods for subjetivequality assessment would yield reliable results. We address these on-erns by olleting eye-movements from a new group of viewers wathingthe o�-line foveated image sequene, and ompare their gaze positionsagainst those olleted from the original image sequene. If gaze positionsoinide aross the two onditions, foveated ompression does not hangewhere people look. Consequently, the new viewers look at regions wherethe quality is high. This is an obvious prerequisite for o�-line foveatedompression.To quantify whether o�-line foveated ompression hanges where peo-ple look, we de�ne twomeasures based on the olleted gaze data: between-group (BG) di�erene and within-group (WG) similarity. The BG di�er-ene measures the degree of similarity aross any two sets of gaze posi-tions A and B. We use a modi�ed version of the Kullbak-Leibler distane(KLD) (Cover & Thomas, 1991) to de�ne this similarity mathematially.In its standard from, the KLD is expressed as
D(p ‖ q) =

∑

X

p(x) log2 .
p(x)

q(x)
(9.3)

p(x) and q(x) are probability density funtions (PDFs) of a disrete ran-dom variable X with alphabet X. The KLD, also known as the relativeentropy, is a known information theoreti measure and an be thoughtof as a distane, alas non-symmetri, between two PDFs; it equals zero



94 O�-Line Foveated Compression Iif and only if the distributions are idential. The more the distributionsdi�er, the larger this distane will be. To address the non-symmetriproperties of the KLD, we de�ne the BG di�erene, SBG(ĜA, ĜB) as theharmoni KLD (hKLD) (used by, e.g., Rajashekar et al., 2004) betweenthe normalized GDFs ĜA and ĜB

SBG(ĜA, ĜB) =

(

1

D(ĜA ‖ ĜB)
+

1

D(ĜB ‖ ĜA)

)−1 (9.4)where Ĝ(m,n) = G(m,n)/(
∑

m

∑

nG(m,n)), and G(m,n) is de�ned asin Eq. (9.1) with λ = 0.The WG similarity quanti�es the degree to whih subjets' gaze posi-tions are spread out over the sreen area. Obviously, in order to ahievelarge bitrate savings, gaze density must be onstrained to limited regions,onsiderably smaller than the whole display area. The WG similarity,
SWG aross gaze positions for any set A is found by omputing

SWG = SBG(ĜA, U(Ω)) (9.5)where U(Ω) denotes the uniform distribution spanned by the image area
Ω. In this hapter, a set (A or B) will omprise either gaze positionsolleted during the display of one image from a sequene, or positionsdrawn from an underlaying distribution (e.g., Gaussian or uniform).9.4 Results9.4.1 Compression due to o�-line foveationO�-line foveation prior to quantization and oding redues the bitratewith, on average, 17.8% in our tested image sequenes, despite usinga simple oding method not in any way optimized to enode foveatedimages. Figure 9.4 illustrates an image-by-image omparison in bitratebetween the original and o�-line foveated image sequenes. Notie theinreased variability in bitrate due to o�-line foveation, whih is a resultof the onstantly varying size of the weighting funtion used to ontrolthe bit alloation. Of ourse, the potential for improved ompression dueto foveation reahes its peak when all tested subjets gaze toward exatlythe same position. On the other hand, if the gaze density is evenly dis-tributed over an image, o�-line foveation may yield no or very little bitrategain. Figure 9.5 shows two images from the tested sequenes where o�-line foveation had the largest (Figure 9.5(a)) and smallest (Figure 9.5(b))impat on ompression. As an be seen, a ompat gaze density arossviewers is an important aspet for improved ompression. Just as im-portantly, however, is the frequeny ontent of the unattended regions;
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Foveated, ompressed versionFigure 9.4: Bitrates of the original and o�-line foveated image sequenesafter ompression.removing muh high-frequeny information due to foveation greatly in-reases the degree of ompression. If on the other hand the unattendedregions already are of lowpass nature, little additional gain in ompressionis won by foveation.9.4.2 EvaluationFigure 9.6(a) shows the within-group (WG) similarity aross gaze posi-tions olleted in the initial data olletion (�rst olumn), referred to as'Original', and those olleted during the evaluation phase (seond ol-umn), named 'Foveated'. Eah value re�ets the WG similarity amonggaze positions olleted from one image. A large value on the y-axis in-diates a high similarity. For omparison, the WG similarity for randomviewers is shown (third olumn), where 14 gaze positions were drawn froma uniform distribution for eah image. The similarities are visualized withbox plots. Eah box has lines at the lower quartile, median, and upperquartile values. The whiskers extend to 1.5 times the inter-quartile rangeand values outside this interval are onsidered as outliers and representedby plus signs. The noth in eah box re�ets the unertainty in median ina box-to-box omparison. If the nothes between two boxes do not over-lap, they have di�erent medians with 95% signi�ane. As an be seenfrom Figure 9.6(a), the WG similarity is signi�antly larger (p < 0.05)aross di�erent human viewers than aross positions drawn at random.



96 O�-Line Foveated Compression IPSfrag replaementsmsFirst FixationAll FixationImage numberFaial regions blurredNon-faial regions blurredExpeted at random (a) High ompression gain
PSfrag replaementsmsFirst FixationAll FixationImage numberFaial regions blurredNon-faial regions blurredExpeted at random (b) Low ompression gainFigure 9.5: Images with the highest (28.2%) and lowest (10.1%) additionalbitrate redution due to o�-line foveation.This is true for both the 'Original' and 'Foveated' data. Clearly, viewerslook toward limited parts of the display, and their viewing behavior isnot of 'random' nature. Moreover, it an been seen that 'Foveated' gazepositions are more ompat than the 'Original'. This ould imply that theperipheral blur introdued by o�-line foveation repels new viewers' gazes,whih instead are attrated to regions with high quality.While the higher-than-random WG similarity reveals that the distri-butions of gaze positions are ompat, it does not tell us whether twodistributions of gaze positions oinide spatially. Therefore, we omputebetween-group (BG) di�erenes, whih are illustrated in Figure 9.6(b).The �rst olumn plots the di�erene between 'Original' and the 'Foveated'gaze positions whereas the seond and third olumns illustrate the di�er-ene between 'Original vs. Interleaved' and 'Foveated vs. Interleaved',respetively. When interleaving gaze positions, we assign eah image withgaze positions taken from a di�erent, non-ontiguous image in the se-quene. Interleaving is done to ompare the olleted data against 'ran-dom' viewing behavior, whih inludes the entral bias inherent in typi-al gaze data. Figure 9.6(b) shows that di�erent viewers' gaze positionslargely oinide when wathing the same video before and after o�-linefoveated ompression.9.4.3 Viewer ratings and ommentsDiretly after the eye-movement reording in the evaluation phase, sub-jets were asked to name one or many sene(s) that were of better orworse quality than the others. To redue the potential top-down bias oneye-movements that a quality evaluation task ould give, subjets werenot informed of this quality assessment in advane. Although giving onlya rude estimate of the quality of the o�-line foveated image sequenes,
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98 O�-Line Foveated Compression Ithe assessment showed some interesting tendenies. Figure 9.7 illustrates
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Poor qualityPSfrag replaementsmsFirst FixationAll FixationImage numberFaial regions blurredNon-faial regions blurredExpeted at randomFigure 9.7: Subjetive rating of the six image sequenes. Subjets wereasked to name the image sequenes that stood out from the others interms of better or worse quality.these. The numbering is aording to Figure 9.2 (top left to bottom right).In partiular, the quality of the �rst and the seond image sequenes mir-rored eah other. The �rst sequene ontained many objets with vividolors whereas the seond ontained a few main objets (the dolphins)performing arobati triks. This leads us to assume that foveated om-pression works better when there is one or a few main objets reliablyattrating viewers' gazes. Subjets were also able to freely provide feed-bak on the viewed sequenes. One of the most frequent omments wasthat single, isolated high quality regions seemed to '�oat around'. Thesame e�et was reported by Duhowski and MCormik (1998). Suh ar-tifats derive from individual viewers whose deviant gaze positions werenevertheless used to foveate the images.9.5 SummaryIn this �rst look at o�-line foveated ompression, we found that: 1) O�-linefoveation prior to ompression yields an additional 17.8% bitrate redu-tion. These results are obtained without exploiting temporal redunan-ies, as used in oding of video. 2) Viewers largely look toward similarregions when wathing image sequenes. 3) O�-line foveation a�ets sub-jets' viewing behavior only a little, with a slight shift toward regions keptin high quality. Sine viewers look toward regions kept in high quality, itis likely that their subjetive quality remains high, given that peripheralregions do not ontain easily identi�able artifats.



Chapter 10
Using Volumes of Interest inO�-Line Foveated VideoCompression
IN ontrast to what previously has been reported in the literature, theresults from last hapter support that o�-line foveation an bene�timage sequene ompression. At the same time, some of the subjetsviewing the o�-line foveated sequenes reported that rapidly appearingand disappearing high quality regions were disturbing, hene dereasingthe subjetive quality. To maintain a high subjetive quality, it seemsruial to transform olleted gaze data into a funtion smoothly ontrol-ling the spatio-temporal amount of blur introdued by o�-line foveation.Using the observations and design issues from (Stelmah & Tam, 1994;Duhowski & MCormik, 1998), disussed in Chapter 8, ombined withthose from the previous hapter, we will in the urrent hapter design, im-plement and evaluate an improved and more elaborate system for o�-linefoveated ompression. The remainder of this hapter is strutured as fol-lows. Setion 10.1 desribes how gaze positions are used to de�ne smoothvolumes of interests (VOIs), whih are used in Setion 10.2 to implemento�-line foveation through wavelet domain �ltering. We use the state-of-the-art video ode H.264 to enode the o�-line foveated sequenes, andompute the bitrate gain due to o�-line foveation prior to ompression.Finally, evaluations are performed in Setion 10.3 to answer how o�-linefoveation a�ets subjetive quality and viewing behavior.



100 O�-Line Foveated Compression II10.1 Creating Volumes of Interests (VOIs) FromGaze PositionsVolumes of interests (VOIs) are derived from gaze data in the followingsteps:Gaze positions (A)→ GDF (B)
→ Intra-frame ROI (C)→ Inter-frame ROI (D)→ VOIEah of these steps will now be desribed in detail.Step (A)Initially, gaze oordinates are proessed per frame and represented bygaze density funtions (GDFs), denoted G(m,n) (See Eq. (9.1) for ade�nition). The widths of the Gaussian funtions omposing the GDFare motivated by setting the parameter σ suh that when a Gaussianfuntion is ropped at half its maximum height, the slie plane or ativearea (Wooding, 2002) spans the foveal region of an observer viewing thevideo at a distane d. If α denotes the visual angle, then σ is easily foundas
σ =

√

−
(

d tan(πα/360)
)2

2 loge(1/2)
(10.1)A GDF re�ets the likelihood of where future viewers will diret their gazesand ontains valuable information about where the ROIs are loated.Step (B)Using GDFs to predit ROIs, we address two heuristi design riteria.First, ROIs should be representative for viewers of the o�-line foveatedvideo and take into aount the unertainty of where new viewers will lookrelative to those originally reorded from. Obviously, there is a trade-o�between keeping the ROIs as small as possible (and thus maximizing thebitrate gain due to o�-line foveation), but large enough to enapsulate thegazes of as many new viewers as possible. Seond, besides the global peakof a GDF, loal peaks in gaze density may indiate potentially interestingregions and must therefore have the hane to be fully reognized as ROIs.To resolve the �rst issue, we ompute the inter-subjet gaze pointdispersion aross P viewers as

S =
1

P

∑

i=1,2,...,P

Gi′

max −G
i′ (mi, ni)

Gi′
max −G

i′
avg

(10.2)and use this as a measure of the unertainty of where new viewers willlook. Gi′ (m,n) denotes a GDF that has been generated by all gaze points



10.1 Creating VOIs From Gaze Positions 101exept that for viewer i; Gi′

max and Gi′

avg denote the maximum and averageof Gi′(m,n), respetively. Consequently, S equals zero when all viewersgaze toward exatly the same position. In this ase the likelihood thata new viewer will look elsewhere is low. The opposite is true when Sapproahes one; then it is di�ult to make quali�ed preditions of wherenew viewers will look, and foveation may have to be omitted to ensurea reliable, high subjetive quality. The unertainty is aounted for byomputing a saled σs

σs = f(σ, S), σs ≥ σ (10.3)and use this parameter to generate a new, saled GDF Gs(m,n). Notiethat σs does not diretly shape Gaussian funtions ontingent on theviewing setup (visual angle, et.), but instead re�ets and ompensatesfor the unertainty in ROI loation.Using the saled GDFs, positions and shapes of the ROIs are de�nedfor eah frame. We present a hierarhial approah to ROI seletion, whih�nds ROIs in order of dereasing salieny and prioritizes regions with highgaze density. Below we desribe the mapping from a set of gaze positions
X to the funtion Gs(m,n); it represents ROI pixels by unit values, andnon-ROI pixels are represented by values less than unity with Gaussian-type fall-o� toward the ROI edges. To emphasize that gaze points areproessed frame-wise, we borrow terminology from video ompression byreferring to Gs(m,n) as the intraframe ROI funtion.At the �rst hierarhial level ℓ1, a GDF generated from all gaze points
X in a frame is ropped at half its maximum height1. Eah gaze point islassi�ed as signi�ant or insigni�ant depending on whether it is loatedwithin or outside an ative area, and also labeled aording to whihative area it belongs. For example, if n ative areas are found, thegaze points in X are divided into the subsets {X (1)

ℓ1
,X

(2)
ℓ1
, . . . ,X

(n)
ℓ1

,Xℓ2},where the subset Xℓ2 ontains all gaze points outside of the ative areas.Additionally, the subsets are sorted in order of dereasing salieny, wheresalieny is de�ned by the number of gaze points ontained in a subset.Classi�ation into signi�ant and insigni�ant gaze points ontinues in thesame manner at the next hierarhial level ℓ2, but now with X ← Xℓ2 .The lassi�ation algorithm an run until all gaze points are alloated todi�erent hierarhial subsets,
{X
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, . . . ,X
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(1)
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(2)
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, . . . ,X

(m)
ℓ2

,X
(1)
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, . . .}or until gaze points no longer indiate interesting frame regions. The stopriterion an ultimately be left as a user option.1From this point on, we assume that all GDFs are generated with a saled sigma,

σs, as de�ned by Eq. (10.3)



102 O�-Line Foveated Compression IIPSfrag replaementsmsFirst FixationAll FixationImage numberFaial regions blurredNon-faial regions blurredExpeted at random (a)
PSfrag replaementsmsFirst FixationAll FixationImage numberFaial regions blurredNon-faial regions blurredExpeted at random (b)

PSfrag replaementsmsFirst FixationAll FixationImage numberFaial regions blurredNon-faial regions blurredExpeted at random ()Figure 10.1: A GDF (a) and the orresponding intraframe ROI funtionsbefore (b) and after () removal of temporal outliers. Gaze positions (onefor eah tested subjet) are represented by rosshairs.One the signi�ant lusters of gaze points have been identi�ed, eahsubset (Y) of gaze points is used to generate a new GDF GY(x, y), whihis ut o� at half its maximum height and normalized to unit height. Allsuh ropped and normalized GDF are then ombined into the intraframeROI funtion
Gs(m,n) = maxm,n {G
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m = {1, 2, . . . ,M}, n = {1, 2, . . . , N}Simulations with our data have shown that four or more ROIs rarelyemerge in Gs(m,n). Instead, mostly one and sometimes two and threeROIs aount for viewers' visual interest. Figure 10.1(a-b) show the rela-tionship between a GDF and the orresponding intraframe ROI funtion,whih was generated assuming a viewing distane d = 0.75m and α = 5degrees. The funtion f(·) was empirially de�ned as f(σ, S) = σ ·(1+2S)in order to ful�ll the riteria that ROIs should over the whole displayarea in ase of a spread out gaze point distribution. Only ative areasontaining two or more gaze points were onsidered as �interesting�. Inthe oming setions of this hapter, we will use these parameters in oursimulations.The method for lustering gaze-points into hierarhial subsets de-sribed above di�ers from most other lustering tehniques. First, itmakes no assumptions about the number of lusters (ROIs). Seond, theluster formation is driven by GDFs, naturally taking into aount thespatial oherene between di�erent points by modeling the resolution fall-o� by Gaussian funtions. Moreover, it takes the unertainty of whereinteresting frame regions reside into aount by introduing a measure



10.1 Creating VOIs From Gaze Positions 103of gaze-position dispersion. Finally, the shapes of the ROIs are deidedautomatially.The hierarhial searh for luster formations (and ROIs) an be ap-plied to other types of data. However, unless the data omprises point ofgaze oordinates, it is unlear how to hoose and motivate σ.Step (C)Even though the deteted intraframe ROIs make perfet sense when look-ing at the gaze point distributions frame-wise, an ROI an be temporallyextraneous if it laks neighboring ROIs adjaent in time. What appearsto be a distint formation of gaze positions in one frame an instead beeye-movements from di�erent subjets brie�y overlapping eah other intime. This must be aounted for when extending the ROIs into 3-Dvolumes of interest (VOIs).We let a new VOI appear only if it remains long enough for a viewer ofthe o�-line foveated video to plan and exeute a saade (∼200 ms) to thatpartiular region and to dwell for a typial �xation duration (∼300 ms).Therefore, only VOIs emerging and remaining for more than 500 ms areonsidered. In pratie, this is implemented by �nding the entroid of eahROI in the urrent frame and making sure that temporally adjaent ROIsexist at the same spatial loation(s) for ≥ 500 ms. Temporally extraneousgaze points are identi�ed as those ontained inside of an ROI not ful�llingthe above riteria. Remaining gaze points are used to generate a newintraframe ROI funtion G̃s(m,n), whih is depited in Figure 10.1().It is generated from the same distribution of gaze points as the GDF inFigure 10.1(a). Notie how the rightmost ative area is exluded sine itdoes not ful�ll the temporal riteria above.Step (D)In the �nal step, we de�ne an interframe ROI funtion, Gt
j(m,n) forframe j by onvolving a number of temporally adjaent intraframe ROIfuntions by a one-dimensional Gaussian kernel φ:

Gt
j(m,n) =

∑

k

φkG̃
s
j−k(m,n) (10.5)where ∑

k φk = 1.Temporal smoothing varies ontingent on the length and variane ofthe onvolution kernel. Figure 10.2 illustrates 29 adjaent interframe ROIswith a kernel length of 29 pixels and the variane set to 20 pixels. Wede�ne a volume of interest (VOI) as a olletion of interframe ROIs.
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tFigure 10.2: A VOI visualization.10.2 Using VOIs in Video CompressionTo maintain a pleasant viewing experiene, previous work on o�-linefoveation and its e�ets on subjetive quality and eye-movements em-phasized the importane of implementing smooth variations in quality,both spatially and temporally (Stelmah & Tam, 1994; Duhowski & M-Cormik, 1998; Nyström et al., 2004). We approahed this reommenda-tion by deriving volumes of interest (VOIs) from gaze positions olletedby previewers. In this setion, we will use the VOIs to manipulate andompress video frames suh that quality hanges ontingent on the VOI-shapes. An overview of the proposed system is shematially depited inFigure 10.3. As an be seen from the �gure, the video is proessed suhthat eah frame is o�-line foveated in the wavelet domain before beingfed to an H.264 enoder. At the deoder side, the bit stream is diretlydeoded. Sine o�-line foveation is generated independently of the videooder, no modi�ations of the H.264 implementation are required. In fat,H.264 an be replaed by any other video oder.10.2.1 Implementing wavelet foveationEarly tehniques for real-time degradation (foveation) of the image qualityaway from the position of gaze either inreased the pixel-size in the periph-ery (Kortum & Geisler, 1996) or used multi-resolution pyramids (Geisler& Perry, 1998). The shape of the foveation mask was derived from ex-perimental measurements of ontrast sensitivity. More reently, waveletshave beome popular to implement image foveation (Chang & Yap, 1997;Duhowski & MCormik, 1998; Wang & Bovik, 2001). If an observer'sposition of gaze and viewing distane from the sreen are known, waveletsubbands an be weighted suh that visually redundant (high-frequeny)
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PSfrag replaementsmsFirst FixationAll FixationImage numberFaial regions blurredNon-faial regions blurredExpeted at randomFigure 10.3: Overview of the proposed ompression system for o�-linefoveated video oding.information is removed from the peripheral regions in the reonstrutedimage (Wang & Bovik, 2001). Implementing o�-line foveation requiresdi�erent strategies for a number of reasons. Most importantly, gaze po-sitions of viewers wathing the o�-line foveated images/videos are notknown exatly. Furthermore, the viewing distanes and sreen param-eters (size, resolution) are not known and an di�er between observers.Therefore, there are no straightforward methods either to �nd the shapeof the ROI funtion or the mapping from an ROI funtion in the spatialdomain to the wavelet domain. Below, we address these issues.Interframe ROI funtions de�ne the visual salieny for di�erent frameregions in the spatial domain. To generate similar interframe ROI fun-tions in the wavelet domain we need a slightly di�erent strategy, bothin order to smoothly degrade the display resolution away from the ROIsand also to preserve the low frequeny subbands in the wavelet deom-position where most of the energy resides. For the �rst level (λ = 1) inthe wavelet deomposition, we use the intraframe ROI funtion G̃s
j(m,n),generated from gaze positions where temporal outliers have been removed.At eah of the subsequent levels in the wavelet deomposition, σj in Eq.(10.3) is inreased as σj ← σjλβ when reating the intraframe ROI fun-tion at level λ. β denotes a saling fator ontrolling the amount ofperipheral blurring. As with the intraframe ROI funtions in the spatialdomain, their wavelet adjusted ounterparts are as a last step smoothedwith the same kernel as in Eq. (10.5). Figure 10.4(d) shows an inter-frame ROI funtion adjusted to the wavelet domain when four levels ofdeomposition are used and Figure 10.4(e) illustrates a frame that hasbeen foveated by multiplying its wavelet deomposition with the mask inFigure 10.4(d). For wavelet �ltering, we used the bi-orthogonal 9/7 �lter(Cohen, Daubehies, & Feauveau, 1992) and periodi border extension.When using olor images, eah olor omponent (R,G and B) is foveated



106 O�-Line Foveated Compression IIQuality fatorVideo Lowest Low Medium High Highest M±SDAlte 0.13 0.29 0.52 0.45 0.33 0.34±0.15Dolphin 0.19 0.27 0.34 0.35 0.29 0.29±0.06Fish 0.14 0.24 0.32 0.29 0.21 0.24±0.07Aikyo 0.02 0.01 0.01 0.06 0.16 0.05±0.06Football 0.13 0.15 0.16 0.16 0.19 0.16±0.02Hall 0.03 0.03 0.06 0.20 0.18 0.10±0.08all 0.11 0.16 0.24 0.25 0.23 0.20±0.13Table 10.1: Bitrate gain due to o�-line foveation before video enodingwith H.264 for di�erent quality fators. Results are presented for the sixvideo lips in Figure 10.5.using the same method. Through pilot testing we found that β = 2.3introdued a level of peripheral blurring that, when looking at regions ofhigh gaze density, was very hard to notie.10.2.2 Compression gain due to o�-line foveationUsing the above method, we omputed the ompression gain due to o�-line foveation on six video lips. A representative frame from eah videois shown in Figure 10.5. The three videos in the upper row in Figure10.5 were eight seonds long with resolution 720×576 and those in thebottom row 352×288 pixels (CIF format) and of durations �ve, three andfour seonds, ounting from the left. Eye-movements had been olletedfrom these videos as desribed in (Nyström et al., 2004; Johannesson,2005). Eah of the videos was enoded before and after o�-line foveationusing H.264 (Quiktime 7.3 Pro. implementation) at �ve di�erent qualitysettings: Lowest, Low, Medium, High and Highest. Table 10.1 summarizesthe results where the bitrate gain due to foveation is de�ned asGain =
FileSizeUnfoveated − FileSizeO�-line foveatedFileSizeUnfoveated (10.6)The table reveals that o�-line foveation dereases the �le size by 20% onaverage. However, the variations are large. Videos ontaining muh highfrequeny ontent in regions where people do not look an be reduedby as muh as 52%. In ontrast, o�-line foveation barely ontributes toadditional ompression when the bakground is stati and out of fous,as in 'Aikyo'.
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PSfrag replaementsmsFirst FixationAll FixationImage numberFaial regions blurredNon-faial regions blurredExpeted at random(a) Original frame with super-imposed gaze positions
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PSfrag replaementsmsFirst FixationAll FixationImage numberFaial regions blurredNon-faial regions blurredExpeted at randomPSfrag replaementsmsFirst FixationAll FixationImage numberFaial regions blurredNon-faial regions blurredExpeted at random(d) VOI slie in the wavelet do-mainPSfrag replaementsmsFirst FixationAll FixationImage numberFaial regions blurredNon-faial regions blurredExpeted at random (e) O�-line foveated frame

PSfrag replaementsmsFirst FixationAll FixationImage numberFaial regions blurredNon-faial regions blurredExpeted at random
PSfrag replaementsmsFirst FixationAll FixationImage numberFaial regions blurredNon-faial regions blurredExpeted at randomFigure 10.4: Implementing o�-line foveation. The wavelet representation ofeah frame is multiplied by a VOI slie suh as the one illustrated in Figure10.4(d). Figure 10.4(e) shows the same frame after o�-line foveation. Tomore learly visualize the di�erene in quality between the attended andunattended regions, boxed parts of the original and foveated frames arezoomed in.
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PSfrag replaementsmsFirst FixationAll FixationImage numberFaial regions blurredNon-faial regions blurredExpeted at randomFigure 10.5: Representative frame from eah of the tested video lips Alte,Dolphin, Fish, Aikyo, Football and Hall.10.3 Subjetive EvaluationsO�-line foveation learly redues the number of bits needed to representa video digitally. Of ourse, the redutions are of no value unless thesubjetive quality remains high. In the remainder of this hapter, wewill present a number of new methods to assess how o�-line foveationa�ets subjetive quality and gazing behavior. Results from three subje-tive evaluations are presented. In Evaluation I, we let subjets omparethe quality of unfoveated and o�-line foveated videos ompressed withthe same quality fator. Evaluations II and III extend the methodol-ogy used in the �rst evaluation; we use, for example, eye-traking dataolleted during di�erent task instrutions and over repeated viewingsto obtain diret and indiret measurements of how viewers pereive theo�-line foveated videos.10.3.1 Evaluation ISubjets and Video materialTo investigate how viewers experiene the quality of o�-line foveated videolips, we let 12 subjets (�ve women, 28.4±6.3 (M±SD)) wath one un-foveated and one o�-line foveated version of three di�erent, eight seondvideo lips. All subjets had normal or orreted-to-normal vision.As stimuli, we use the videos depited on the �rst row in Figure 10.5.These videos are all shorter parts of the videos used in last hapter, andwere hosen to depit di�erent types of senes; one with several peoplemoving around in the display, another with a few main objets of interest,and the last ontaining one main objet of interest. Before being presentedto the subjets, both versions of all three lips were ompressed with the



10.3 Subjetive Evaluations 109+ 3 A muh better than B+ 2 A better than B+ 1 A slightly better than B0 The same- 1 A slightly worse than B- 2 A worse than B- 3 A muh worse than BTable 10.2: Sale for quality ratings.Quiktime 7.3 Pro H.264 enoder with the quality fator set to 'medium'.Sine the objetive video quality of the unfoveated and o�-line foveatedvideos is the same within the VOIs before enoding, it is essentially thesame also after ompression. However, variations an our along the VOIboundaries.ProedureSubjets were instruted that they would be wathing three di�erent eightseond video lips, eah ompressed by two di�erent algorithms in an ABtrial. A and B denoted either the unfoveated and ompressed or the o�-line foveated and ompressed version of the same video lip, and werepresented one by one in full sreen.After eah viewing, subjets were asked to evaluate the video qualityof A relative to B aording to the quality ratings in Table 10.2.In order to see the e�ets of multiple viewings on o�-line foveated videoquality, subjets were presented to eah of the three video lips anothertwo times (ABAB). After all three viewings, most subjets felt that theyhad a lear piture of the di�erene in video quality between A and B. Ifnot, they ould wath the lips again until they felt on�dent of givingan aurate vote. Only two of the subjets used this option. Subjetswere not informed in advane about the possibility to assess the videosadditional times.The reason for allowing multiple viewing was twofold. First, as intraditional methods for quality evaluations, subjets are given additionalviewings to get a learer piture of the di�erene in quality. Seond,sine the videos are stored in subjets' memory after the initial viewing,it is likely that inreasing top-down knowledge a�ets viewing behaviorsuh that gaze positions between the �rst and later viewings are loatedat slightly di�erent video regions. To get an indiation of whether thisourred, subjets were asked to estimate their viewing behavior duringthe trials on a sale reahing from 5 (I was atively searhing for qualityimpairments) down to 1 (Just like I wath video at home; my naturalviewing behavior). Although people may be quite poor at estimating
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Figure 10.6: Results of the subjetive quality evaluation. The x-axis showswhih of the three video lips that was tested. Given on the y-axis isthe di�erene (aording to Table 10.2) in subjetive quality between theunfoveated video and the o�-line foveated video. A value larger than zeromeans that subjets preferred the unfoveated video quality. Bars span onestandard error around the mean.where they look relative to where they atually look as measured by aneye-traker, we believe that this will give some valuable insight regardingthe onnetion between subjetive quality and viewing behavior.Before a session started, subjets were informed about the quality rat-ing sales, arefully introdued to the testing methodology and also guidedthrough a test session. Subjets were free to ask questions if anything wasunlear. None of the subjets was familiar with o�-line foveated ompres-sion. All data was gathered, to the extent it was possible, under the sameonditions as when the eye-movements were olleted. The presentationorder of the di�erent video lips and the order of the unfoveated and o�-line foveated versions were randomized. Hene, six di�erent onstellationsof the video lips were used.ResultsFigure 10.6 shows the results from the subjetive quality evaluation wheresubjets were asked to ompare an unfoveated and an o�-line foveatedversion of the same video after ompression with H.264 (medium qualityfator). The �rst three olumns show the average quality votes for eah



10.3 Subjetive Evaluations 111of the three tested video lips after one AB viewing, whereas the threerightmost olumns show similar votes after two (or more) additional ABviewings required for the subjet to feel on�dent about the judgment.A positive value of the quality vote means that the subjet preferredthe quality of the unfoveated over the o�-line foveated version, while anegative vote means the opposite. Error bars span one standard erroraround the mean.For the �rst two tested lips, we see the rather surprising e�et thatsubjets judge the o�-line foveated video quality as better. Similar �nd-ings have been reported for real-time gaze-ontingent, multi-resolutionstill images (L. Loshky, MConkie, Yang, & Miller, 2001). However,as in this paper, the e�ets were not signi�ant. Overall, no signi�ante�ets on the di�erene in video quality were found exept for the se-ond video after multiple viewings, where the unfoveated version reeivedslightly better ratings.After ompleting the evaluations, subjets were asked to estimate theirviewing behavior during the quality evaluations on a sale {5, 4, 3, 2, 1},where 5 implied that a viewer atively was searhing for video qualityimpairments while a 1 re�eted a viewer's natural viewing pattern whilewathing video. The average value for the answers was 3.17 with a stan-dard deviation of 0.71. Notieable, however, was that most of the subjetsmentioned that during the �rst AB trial, their viewing pattern was loseto a 1, whereas later in the tests more toward a 5. This suggests that aquality evaluation task does not alter the viewing pattern of subjets fromtheir normal, task neutral viewing pattern, at least not during �rst timeviewing of previously unknown video material. This argument is furtherstrengthened by the observation that peripheral degradations in the o�-line foveated videos were di�ult to detet during �rst time viewing asshown by the quality votes. This indiates that viewers indeed looked atthe regions of high resolution.10.3.2 Evaluation IIIn order to investigate how o�-line foveation hanges the gazing behaviorduring free-viewing, we measure how eye-movements are a�eted in termsof spatial and temporal distribution in addition to repeated viewings.Without expliitly asking subjets for their subjetive opinion about thevideo quality, the olleted gaze data will help us understand how o�-line foveated videos are pereived during task neutral, �normal� viewingonditions. The measures we ompute in this evaluation will then beompared to those from Evaluation III, where subjets view the samevideos while evaluating the subjetive quality.



112 O�-Line Foveated Compression IISubjets and video material15 naive subjets (nine women) of ages 30.2±16.1 (M ± SD) years volun-teered to take part in the experiment. They all had normal or orreted-to-normal vision. Stimuli onsisted of six original video lips shown inFigure 10.5 and six o�-line foveated versions of these, thus 12 videos intotal. The three videos in the upper row in Figure 10.5 were eight seondslong with resolution 720×576 and those in the bottom row 352×288 (CIFformat) pixels and of durations �ve, three and four seonds, ounting fromthe left. All videos were displayed in olor at 25 fps and ompressed withH.264 (in Quiktime 7.3 Pro.) at high bit rates (quality fator 'High')suh to no ompression artifats were visible to the bare eye. No soundwas used.ProedureSubjets were asked to view the stimuli as they normally would. Toprevent subjets from trying to guess the purpose of the experiment, theywere told that the study would investigate mental workload by measuringthe pupil size. This way, attention was drawn away from the fat thatgaze positions were reorded. Subjets were further informed that thesame video lip ould our more than one during one presentation.Eah subjet was plaed at a viewing distane of 76.5 m in front ofa 19 inh omputer sreen with resolution 1280×1024 and update rate75 Hz. The ative sreen area subtended a visual angle of 28 degreeshorizontally and 23 degrees vertially. A hin rest was used to restrithead movements.Prior to eah reording, a 13-point spatial alibration was performed.During data reording, all 12 videos were presented one after the otheron the sreen, separated in time by a mid gray image displayed for oneseond. Videos were displayed in full sreen while maintaining their as-pet ratio. No pre�xation ross was used to restrit subjets' initial gazeposition. The order was randomized with the restrition that two ver-sions (unfoveated and o�-line foveated) of the same video ould not bedisplayed diretly after eah other. To see how repeated viewing a�etseye-movement behavior, all 12 videos were presented twie more in thesame manner. In total, eah video was viewed three times by eah subjet.Eye-movements were reorded monoularly with an SMI iViewX Hi-Speed eye-traker, sampling gaze positions at 240 Hz with position a-uray 0.2◦. On average, 9.6 gaze oordinates were reorded for eahdisplayed frame. A Matlab sript was developed to ollet data about thesubjets, ommuniate with the eye-traker, display the videos in Quik-time player and ontrol the auray in timing during the experiments.
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Correlation(b) Correlation between gaze positionsolleted from the unfoveated and o�-line foveated versions of the samevideos. Error bars span one standarddeviation.Figure 10.7: Eye-movement behavior during free-viewing before and aftero�-line foveation.Analysis and resultsThe pereptual e�ets of o�-line foveation toward video are assessed byomparing gaze positions of viewers wathing the tested videos before andafter o�-line foveation. More preisely, we measure how o�-line foveationin�uenes inter-subjet dispersion, i.e., how well (or poorly) viewers' gazepositions oinide. This is done both for the initial and later viewings.The inter-subjet dispersion, St at time t is alulated aording to Eq.(10.2). When generating the GDFs in this equation, σ equals 10% of thehorizontal video dimension, i.e., σ = 0.10M pixels. We tested slightlydi�erent parameter values, and the all gave largely similar results.Figure 10.7(a) illustrates the inter-subjet dispersion after one, twoand tree viewings of the unfoveated (white bars) and o�-line foveated(blak bars) videos. It an be seen that o�-line foveation has no or littlee�et on the inter-subjet dispersion. However, during �rst time viewing,there is a tendeny (p = 0.10, two-sample t-test) that the dispersiondereases due to o�-line foveation. Arguably, this e�et is present sinesubjets avoid the blurred regions in the o�-line foveated videos suhthat gaze positions luster in the high quality regions. Another leare�et is that the dispersion inreases signi�antly after repeated viewings,both for unfoveated and o�-line foveated videos. This type of behavioris little surprising sine additional viewings enourage more individualviewing strategies, whih are likely to re�et an inrease in top-downontrol originating, for example, from memory e�ets.To estimate the similarity between two sets of gaze positions A and B



114 O�-Line Foveated Compression IIat time t, we ompute the orrelation oe�ient
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t (m,n) generated from A and B, re-spetively. Figure 10.7(b) shows how gaze positions reorded from viewerswathing the unfoveated video orrelate with those wathing the o�-linefoveated video after the �rst, seond and third viewing. It an be seenthat the orrelation is high in all three ases, indiating that subjets'gaze positions have similar distributions.10.3.3 Evaluation IIIIt is well known that a task instrution may hange where people look(Yarbus, 1967). In o�-line foveated video oding, a task that hangesviewers' gazing behavior from their 'normal' behavior may have a stronge�et on the pereived quality. One that, for example, direts peoples'gazes toward regions unattended by previewers will most ertainly de-rease the subjetive quality. In this setion, we will perform subjetivequality assessments of o�-line foveated video and investigate the e�et aquality evaluation task has on eye-movements. Moreover, we will quantifyhow subjets' viewing behavior orrelates with their pereption of qual-ity. The stimuli and experimental setup are the same as in Evaluation II;proedural hanges are explained below.17 naive subjets (six women) of ages 23.8±4.2 (M ± SD) years wereasked to estimate the di�erene in quality between two versions, A andB, of the same video in an AB trial. They were told that the two ver-sions resulted from di�erent ompression algorithms being applied to theoriginal video. To enourage subjets to do their best and maintain fousduring the evaluation, they were told that quality assessment is a di�ulttask and the di�erenes in quality would sometimes be hard to notie. Asin Evaluation II, subjets were informed that the study would investigatemental workload during quality assessment by measuring the pupil size.The videos were assessed as follows. Eah AB trial started by displayinga uniform mid-gray image with a large, entered blak apital A, followedby version A of the stimulus. Diretly after A had been shown followedthe same proedure for version B. Then a pop-up window ontaining aslider bar and a button appeared on the sreen (see Figure 10.8). On theslider bar, three di�erent levels of quality were given: A better than B, Aequal to B, B better than A. Subjets ould freely adjust the slider to aposition re�eting their experiened quality, and then press the button toontinue with the next AB trial. For subsequent data analysis, the sliderposition was quantized to an integer value between -5 and +5. The pre-
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PSfrag replaementsmsFirst FixationAll FixationImage numberFaial regions blurredNon-faial regions blurredExpeted at randomDispersionViewing #unfoveatedO�-line foveatedA better than B A equal to B B better than AView nextFigure 10.8: Pop-up window for quality assessment.sentation order of the video (AB) pairs was randomized. A and B denotedthe original and o�-line foveated versions of a video lip.In standardized methods for quality evaluation, subjets are usuallyallowed to view the videos to be assessed several times before giving theatual judgment. Therefore, to see the e�et a quality evaluation taskhas on repeated viewings, the above video pairs were shown another twotimes after whih a seond quality vote was taken. Subjets did not knowin advane that further hanes to evaluate the quality would be given.ResultsFigure 10.9 ompares the dispersion of, and the orrelation between gazepositions olleted before and after o�-line foveation during �rst, seondand third time viewing. For omparison, similar measures from the seondevaluation are given as bars with smaller width. As an be seen from the�gure, the results are similar to those from the seond evaluation withthe di�erene that the dispersions are signi�antly larger (p < 0.01, two-sample t-test) during quality evaluation. Supposedly, the more ativetask of quality evaluation enourages individual viewing strategies, andexplains why subjets' gaze positions spatially are less similar to eahother. During �rst time viewing, the dispersion during quality assessmentis rather lose, although signi�antly di�erent (p < 0.01, two-sample t-test), to the baseline value (�rst time free-viewing), and it an be assumedthat subjets look within the non-degraded regions in the o�-line foveatedvideo. The further pursue this assumption, Figure 10.10 ompares thepereived quality of the six tested video lips before and after o�-linefoveation and how it is a�eted by repeated viewings.The white bars in Figure 10.10 show the average subjetive qualityof the videos after the �rst viewing. Error bars extend one standarderror. A value larger than zero indiates that subjets prefer the quality
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10.4 Summary 117of the unfoveated video whereas the opposite is true for values belowzero. O�-line foveation resulted in dereased quality in one of the testedvideos, Football. The reason for this is most likely that eye-data usedto implement o�-line foveation was slightly inaurate temporally, suhthat foveation was performed with a slight lag in time. It is therefore nosurprise that the video ontaining the fastest movements gets a loweredsubjetive quality. The rest of the o�-line foveated videos were essentiallyindistinguishable from the unfoveated videos in terms of subjetive quality.However, as a result of repeated viewings subjets hanged their viewingpattern and gazed diretly at degraded parts of the o�-line foveated videos.The onsequene of repeated viewings in terms of subjetive quality isillustrated by the blak bars in Figure 10.10, where subjets strongly preferthe quality of the unfoveated versions. An interesting observation is thelarge hange in subjetive quality between the �rst and later viewings ofAikyo. Most likely, the faial region is suh a strong visual attrator thatit is initially hard to not gaze at. However, when looking outside the faialregion, whih happens after repeated viewings, it is rather easy to see theintrodued blurring e�ets.10.4 SummaryThe work in this hapter extends our initial approah to o�-line foveationand its appliability in ompression. We have proposed a mapping fromgaze positions into volumes of interest (VOI), whih are use to implemento�-line foveation in video. VOI based o�-line foveation prior to ompres-sion dereased the bitrate signi�antly. In disagreement with previousworks, o�-line foveation neither dereased the subjetive quality nor didit hange the eye-movement behavior.
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Chapter 11Disussion of Part II
IN ontrast to known methods for real-time foveated video oding, wepropose that o�-line foveation an be used for improved video om-pression. Using gaze positions olleted from a number of previewers,o�-line foveation is implemented by reduing the quality in regions wherefew or none of the previewers look. Suh quality redutions an give riseto signi�ant bit rate redutions when ombined with traditional methodsfor ompression.In this part of the thesis we reviewed previous tehniques for foveatedoding, investigated the rationales behind o�-line foveation, and imple-mented and evaluated systems for o�-line foveation. The highlights of ourresults show that:
• Viewers' gaze positions oinide when looking at video.
• O�-line foveation prior to ompression redues the bitrate with upto 50% ompared to ompressing the same, unfoveated video.Contrary to previous work (Stelmah & Tam, 1994; Duhowski & M-Cormik, 1998), we report that:
• The bitrate gain is ahieved without dereasing the subjetive qual-ity.
• During initial free-viewing of a video, o�-line foveation has littlee�et on subjets' eye-movement behavior.We onlude that o�-line video foveation ombined with ompression anindeed be suessful to inrease the e�ieny of today's state-of-the-artmethods. On the videos we tested, the average additional ompressiongain due to o�-line foveation was 20%. There are some reasons why thisnumber should be regarded a lower bound. First, the methods we used for



120 Disussion of Part IIompression are in no way optimized to enode o�-line foveated videos.Using methods that better take advantage of the properties of an o�-linefoveated image sequene will yield even better ompression gains. Forexample, improvements an inlude oding the motion vetors with un-equal importane, suh that fewer bits are given to motion vetors innon-attended regions. Seond, the degree of peripheral blurring is ex-perimentally tuned, and it is therefore not lear how muh additionalblurring ould be introdued without degrading the subjetive quality. Inreal-world situations, the optimal amount of blurring depends on fatorsthat an only be approximated, suh as the sreen size, sreen resolu-tion, and viewing distane of an observer. Third, it an be seen fromTable 10.1 that o�-line foveation is less bene�ial when the video qual-ity is poor. In this ase, foveation ould probably have been inreasedfurther. Finally, the tested videos were assessed in a lab environmentand presented without sound. Using a more engaging viewing setup, it islikely that the oherene between subjets' gaze positions would inreaseeven further. In addition to yielding large bitrate gains, o�-line foveationallows for omplexity redutions where omputational resoures an befoused toward high quality regions.Clearly, bitrate redutions due to o�-line foveation would be of littleinterest without onserving subjetive quality. We estimated the qualityby quantifying hanges in gazing behavior between unfoveated and o�-linefoveated videos and by performing modi�ed versions of standard tests forsubjetive quality assessment. Moreover, we alulated the e�ets thesemeasures had over repeated viewings. Results show that o�-line foveationhad no or very slight e�ets on both gazing behavior and subjetive qual-ity during �rst time viewing. However, both gaze loations and subjetivequality were a�eted as a result of multiple viewings. As we expeted, theresults also showed that traditional methods for video quality assessmentwere not diretly appliable to o�-line foveated video. In standards out-lined in, e.g., (VQEG, 2003), it is advised to show the video to be assessedseveral times to the subjet before a quality vote is taken. However, asseen by our results, repeated viewings make subjets' gazing behavior de-viate from normal, �rst time free-viewing, thus shifting visual attentiontoward regions where viewers normally would not look. In view of this,traditional methods would all give very poor results in judged quality foro�-line foveated videos (as was found in Stelmah & Tam, 1994). To ourknowledge, these issues have not been onsidered in standard quality as-sessment using 'normal', unfoveated stimuli. It is therefore not lear howmultiple viewings a�et subjetive quality in these ases. Sine gazingbehavior hanges over multiple viewings, and therefore inreasingly moredeviates from typial 'free-viewing', do standardized methods for videoquality assessment produe results that re�et 'typial' viewing? This isindeed an interesting question for future researh.



Part IIIGeneral Disussion andConlusions





Chapter 12Conlusions and Outlook
WE found o�-line foveation prior to ompression to derease thevideo bitrate without neither dereasing the subjetive qualitynor hanging subjets' eye-movement behavior. Investigatingthe prerequisites for using low-level algorithmi gaze predition, insteadof eye-traking, for the purpose of o�-line foveation gave few promisinganswers; using ontrast manipulated still images, we showed that low-level features suh as ontrast and edge density an easily be overriddenby higher ognitive fators, both early after image onset and later inviewing.Today, there are some pratial issues making it umbersome to ef-fetively utilize o�-line foveated systems for video ompression. The onemet with most skeptiism is that eye-traking reordings require expensiveequipment and are time onsuming, and therefore would be a bottlenekin a real-world appliation. We see two future solutions to this prob-lem. First, it is by many envisioned that eye-trakers will be embedded inweb ameras, and that other low ost, simple-to-use eye-traking equip-ment will be available for pratial use in a near future. Already today,suh systems have been suggested and implemented (Hansen, MaKay,Hansen, & Nielsen, 2004; Pedersen & Spivey, 2006). This would makeeye-traking reordings more autonomous and less time onsuming, sineindividual viewers themselves ould download videos and reord gaze po-sitions through self-paed experiments. Sine eye-movements would nothave to be measured in real-time, the lak of tehnial sophistiation awebamera o�ers ompared to a state-of-the-art eye-traking system anbe ompensated for by �rst reording the eye-movements, and then let ahigh-omplexity algorithm alulate gaze positions o�-line. One interest-ing appliation where webamera based eye-traking ould have a hugeimpat is streaming video over the Internet. For example, around 13 hours



124 Conlusions and Outlookof video are uploaded to YouTube every minute, and the estimated dailyost of bandwidth utilization for YouTube is approximately $1 million(Wikipedia, 2008). Consequently, o�-line foveated ompression ouldsave millions of dollars every year or provide better video quality for thesame ost. Seond, there is no doubt that o�-line foveation greatly wouldbene�t from algorithms that automatially and aurately predit wheresubjets will look, given only the raw video as input. Suh algorithmswould inrease the pratial usability of o�-line foveation for video odingsine eye-traking olletions with human observers would be unnees-sary. Sine dynami features suh as motion and �iker seem to attratattention more robustly than stati features (Itti, 2005), models inludinga dynami feature hannel appear even more promising to aount forhuman eye-movements.To this date, there have been some implementations aiming to pre-dit human gaze positions in dynami senes (Osberger & Rohaly, 2001;Böhme, Dorr, Krausea, Martinetz, & Barth, 2006; Le Meur et al., 2007).A few of these diretly target foveated video ompression appliations(Wang, Sheikh, & Bovik, 2003; Itti, 2004; Agra�otis et al., 2006). Wang,Sheikh, and Bovik (2003) use the heuristi rule of always hoosing fae re-gions as foveation points and, to minimize the predition error, foveationpoints are also positioned where the residual error is large. Agra�otis etal. (2006) exploit o�-line foveation to optimize the quality of video odedfor sign-language; they use eye-traking to measure where people lookduring sign-language omprehension, and ode the videos aording towhere the people looked. The only method using a general purpose algo-rithm (without a spei� appliation in mind) at the gaze predition stageis the one by Itti (2004), and even though he showed that a substantialamount of ompression an be obtained by using this algorithm to foveatean image sequene, it was left as future researh to measure whether ithanges viewers' subjetive quality and eye-movement behavior. A reentabstrat o�ers some empirial support that the subjetive quality remainshigh also after foveated ompression (Li & Itti, 2008). Overall, however,there is no doubt that several issues still need to be addressed and empir-ially investigated regarding bottom-up algorithms for gaze predition inboth stati and dynami senes.Using ontrast manipulated images we showed some limitations ofbottom-up preditors. In partiular, the two urrent state-of-the-art al-gorithms we tested were far from robust in �nding �xations omparableto those found by human viewers. To improve algorithms based on thesepriniples, a trend in urrent researh is to endow purely bottom-up mod-els with top-down knowledge (e.g., Navalpakkam & Itti, 2005; Torralba,Oliva, Castelhano, & Henderson, 2006; Cerf, Harel, Einhäuser, & Koh,2007). The model by Navalpakkam and Itti (2005) provides keywordsdesribing a searh target and uses prior, learned information about the



125features of this target to bias the searh. Torralba et al. (2006) extend abottom-up algorithm by feeding it with ontextual information. An exam-ple ould be to inform the algorithm searhing for pedestrians to look onlyat the sidewalk, and not in the sky (where loud edges ould introduepeaks in a salieny map). Searhing for people in real world photographs,another suggested top-down modi�ation simply adds a fae detetor tothe bottom-up preditor (Cerf et al., 2007). Although this type of addi-tional knowledge an improve the performane of a preditor under er-tain onditions and well de�ned tasks, it is still an open question whether(and what type of) top-down knowledge improves the performane duringa free-viewing task.A reent study found the entral bias inherent in video viewing toaount for eye-movements better than a state-of-the-art model for gazepredition (Le Meur et al., 2007). Given the strong in�uene on bothtop-down fators and systemati tendenies (suh as the entral bias) invideo viewing, it seems very optimisti to believe that bottom-up drivenalgorithms an ompletely aount for human eye-movements during free-viewing, and therefore be suessful for the purpose of o�-line foveatedvideo oding. On the good side, we know that semantially informativeregions generally oinide with peaks in bottom-up salieny (Hendersonet al., 2007), and that salieny often is biased toward the enter of the dis-play. As a onsequene, a bottom-up algorithm has the potential to �ndloations �xated by human viewers, even though the raw video featuresdo not ausally ontribute to gaze seletion. From this optimisti pointof view, thus, a bottom-up algorithm may at times provide gaze predi-tions aurate enough to enable suessful o�-line foveated ompression.A severe limitation is that, sooner or later, the predition a bottom-upalgorithm makes will deviate from the positions attended by humans. Interms of subjetive video quality this deviation is likely to a�et the qual-ity negatively sine the frames with the poorest quality dominantly deidethe overall video quality (ompare with paket losses) (Liu, Wang, Boye,Wu, & Yang, 2007). However, using a moderate degree of foveation it ispossible that these preditive errors may pass unnotied by the viewers.When the problems of aurately prediting foveation points or gazedensities are solved, we predit that o�-line foveation will be an interestingtehnology for future appliations in video ommuniations. In partiu-lar, is would be bene�ial in bandwidth onstrained appliations suh aswireless ommuniations in mobile devies, and for video streamed overInternet. For example, prioritizing regions with high gaze density an beuseful to failitate interpretation, reognition and subjetive quality ofimage and video data, espeially at low bit rates.To resolve the question how image features are related to �xationloations we believe that, using a �xed task instrution, a range of featuresmust be manipulated using an experimental paradigm similar the one



126 Conlusions and Outlookused in this thesis. By systematially reduing and inreasing featureslike ontrast, olor, and luminane in a sene, we are more likely to eliitthe ausal ontribution for eah of these features. Our results show thatwhen studying gaze ontrol in images, the hoie of stimuli is ruial.Obviously, a gaze predition algorithm trained on images with neutralsemantis may perform poorly when tested on images ontaining objetswith high semanti importane, whih we know an override bottom-upfeatures ognitively.
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Appendix AWavelet Transform
AN image is ommonly desribed in either the time or frequenydomain, where eah representation emphasizes di�erent informa-tion about the image. For the purpose of analysis, it would bedesirable to have a representation that simultaneously desribes the im-age in both time and frequeny; this is where wavelets ome in. For anintrodution to wavelets and their appliation to image oding, see e.g.,Antoni, Barlaud, Mathieu, and Daubehies (1992) and Sayood (2000).Wavelets are mathematial funtions that are generated from saledand translated versions of a single funtion ψ

ψa,b(t) = |a|−1/2ψ
( t− b

a

) (A.1)
ψ is usually alled the mother wavelet. The wavelet transform W{f(t)}of a signal f(t) an then be desribed by a superposition of wavelets

W{f(t)} =

∫ ∞

−∞

ψa,b(t)f(t)dt. (A.2)In pratial implementations, wavelets are de�ned by disrete �lters,and the disrete wavelet transform (DWT) takes an input signal andpasses it through these �lters to reate a wavelet based representation.Figure A.1 illustrates a 1-level wavelet deomposition of an image. Theimage is initially passed through either of two 1-dimensional �lters: h0and h1. The former �lter is of lowpass nature and the latter of highpassnature. Initially, the �lters operate in the vertial diretion, and �lter-ing is followed by downsampling by a fator of two in the same diretionas the �lter operated. These �ltering and downsampling proedures arerepeated in the horizontal diretion and result in four wavelet subbands:Lowpass-Lowpass (LL), Lowpass-Highpass (LH), Highpass-Lowpass (HL),
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