
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Efficient Java™Monitors

Blomdell, Anders

2001

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Blomdell, A. (2001). Efficient Java™Monitors. (Technical Reports TFRT-7593). Department of Automatic
Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/f723cbee-8db9-41d4-ae31-2481a865da41

ISSN 0280-5316
ISRN LUTFD2/TFRT--7593--SE

Efficient Java TM Monitors

Anders Blomdell

Department of Automatic Control
Lund Institute of Technology

November 2001

Document name
INTERNAL REPORT
Date of issue
November 2001

Department of Automatic Control
Lund Institute of Technology
Box 118
SE-221 00 Lund Sweden Document Number

ISRN LUTFD2/TFRT--7593--SE
SupervisorAuthor(s)

Anders Blomdell

Sponsoring organization

Title and subtitle
Efficient Java TM Monitors. (Effektiva Java TM monitorer)

Abstract
In most real world systems, objects vastly outnumbers threads. This paper shows how this characteristic
can be used to implement efficient Java monitors in a way that reduces the number of needed monitors to
be equal to the number of threads, while fulfilling the Java synchronized semantics.
Some additional benefits related to priority inheritance and hierarchical resource locking will also be
briefly explored.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
10

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through:
University Library 2, Box 3, SE-221 00 Lund, Sweden
Fax +46 46 222 44 22 E-mail ub2@ub2.se

Efficient JavaTM Monitors

Anders Blomdell
Department of Automatic Control

Lund Institute of Technology
Box 118, SE-221 00 Lund, Sweden
anders.blomdell@control.lth.se

Abstract
In most real world systems, objects vastly out-
numbers threads. This paper shows how this
characteristic can be used to implement efficient
JavaTMmonitors in a way that reduces the num-
ber of needed monitors to be equal to the number
of threads, while fulfilling the JavaTMsynchronized
semantics. Some additional benefits related to prior-
ity inheritance and hierarchical resource locking will
also be briefly explored.

Keywords JavaTM, concurrent programming, hi-
erarchical resource locking, monitors, priority inher-
itance, real-time.

1. Introduction
In many embedded systems the memory is a scarce
resource and every saved byte is important, in
other the worst-case execution time is the limiting
factor. In this paper, the fact that in most real
world systems objects vastly outnumbers threads
will be the basis for an efficient implementation
of JavaTMmonitors that fulfills the requirements
of JavaTMsynchronized semantics. The solution is
probably near optimal when it comes to memory
consumption and it has a small runtime penalty for
systems where the number of objects locked by a
thread at any instant is reasonably low.

Finally some additional benefits with the proposed
implementation will be briefly mentioned.

2. Ordinary JVM monitors
According to ”The JavaTMVirtual Machine Specifica-
tion” [6], ”There is a lock associated with each ob-
ject”. This requirement together with the fact that
many important methods in the JavaTM runtime sys-
tem are synchronized, makes efficient monitor im-
plementation vital. The common way to implement
Java monitors, is to associate one monitor with each
object, see Figure 1, but there are some simple opti-

mizations to reduce the number of needed locks. As

Thread

...
Object

...
Lock lock
...

Lock

int count
Thread owner
ThreadQ blocked
ThreadQ waiting
...

Object

...
Lock lock
...

Lock

int count
Thread owner
ThreadQ blocked
ThreadQ waiting
...

Object

...
Lock lock
...

Lock

int count
Thread owner
ThreadQ blocked
ThreadQ waiting
...

Figure 1 Common JavaTM implementation with one
monitor per object.

a background to the new monitor implementation, a
quick overview of some of these techniques will be
given. Most JavaTMVirtual Machines (JVM) and the
associated monitors are not implemented in JavaTM,
but in this paper all code is written in JavaTM.

2.1 Simple implementation
The obvious implementation of locks is to create a
lock for each created object. The only problem with
this is that neither the locks nor their constituent
parts are allowed to have have locks or unbounded
recursion will occur, see Listing 1 . This makes it
hard to implement the Java runtime system entirely
in Java. To avoid this problem we have to check if the
Object about to be created is part of a Monitor or
not. Apart from that small quirk, implementation of

class Object {
Monitor lock;
static boolean creatingLock = false;
public Object() {

if (! creatingLock) {
// we have to avoid infinite recursion
creatingLock = true;
lock = new Monitor();
creatingLock = false;

}

Listing 1 Simple monitor.

the Monitor itself, and the JVM dispatching code
is straightforward, see Appendix A. Unfortunately
the resulting system fails to fulfill the requirement
that each object has an associated monitor (since
monitors doesn’t have monitors), but it is a minor

problem, since this fact is invisible for users of the
runtime system.

2.2 Lazy creation
If not all objects are expected to be subject to
locking, it’s an improvement to postpone the monitor
creation until the monitor is really needed, see
Listing 2. There are two slight disadvantages with

case monitorenter: {
Object o = stack.pop()
if (o.lock == null) {

o.lock = new Monitor(o);
}
o.lock.enter(currentThread);

Listing 2 Lazy creation.

this solution; the JVM has check if the monitor
exists before trying to lock the object and hence
the first locking of an object takes longer time than
the subsequent ones, since the monitor has to be
created at the first locking. In a real-time system
the delayed monitor creation have an adverse affect
on the schedulability of the system since monitor
creation time has to be taken into account when
synchronized is used.

2.3 Eager destruction

If there is a fair chance of monitors to be used only a
few times, immediate destruction of free monitors
might be useful, see Listing 3. If this continuous
create/destroy proves too costly, a pool of monitors

class Monitor {
...

if (count == 0 &&
blocked.empty() &&
waiting.empty()) {

// Delete lock
object.lock = null;

Listing 3 Eager destruction.

and some bookkeeping of recently freed monitors
might be useful. For real-time purposes, this means
worse performance since processing power is used to
keep memory consumption down, and if a monitor
pool is not used, the worst case execution time
is probably increased since load on the garbage
collector is increased.

3. One monitor per thread
However, we can do better than in Section 2. Since
a thread can lock arbitrarily many objects, but an

object only can be locked by one thread at a time,
we can keep the information of locked objects in one
monitor that is associated with the thread instead
of one monitor for each locked object. With this
approach we reduce the overhead for each locked
object from one separate [monitor] object to two equal
sized arrays; one containing references to locked
objects, and the other the associated counts for
the locked objects, see Figure 2 and Appendix C.
The size of these arrays can either be variable to
accommodate any program, or of a constant size that
can be determined by a global analysis provided that
no unbounded recursive locking is done.

Lock

int count
Thread owner
ThreadQ blocked
ThreadQ waiting
Object object[]
int count[]
...

Thread

Lock theLock
...

obj1
obj2
obj3
...

object count

count1
count2
count3
...

Object

...
Lock lock
...

Object

...
Lock lock
...

Object

...
Lock lock
...

Figure 2 One monitor per thread.

The obvious implementation of blocking is to make
the blocked queue a list of object-thread pairs, but
as will be shown in Section 5 omitting the object
reference will save some memory and gain an ad-
ditional advantage at the same time. JavaTM wait
and notify poses a greater challenge since a wait
implies that the object is unlocked, leaving the ob-
ject without a natural place to keep the wait queue.
The solution to this dilemma is to let wait keep the
reference to the waiting monitor in the object and let
threads trying to lock the object check if the moni-
tor is active or waiting. If the monitor was in the
waiting state, the queue of waiting objects is moved
to the new monitor. When unlocking an object, the
lock is set to point at the first monitor waiting for
the object and the waiting queue is moved to that
monitor. This will effectively mean that the waiting
queue is passed between different threads as objects
are locked and unlocked. Since each object can have
its own waiting queue, and multiple objects could be
locked simultaneously by a monitor, another array
of the same size as the count and object arrays is
needed to hold these queues.

Unless the ”eager destruction” scheme is chosen,
this gives a space saving if a thread ever locks

four different objects, since the overhead of three
arrays in this implementation is less or equal than
the overhead of the four monitors needed in the
implementations in Section 2. Compared to ”eager
destruction” there is still a time saving, and also a
space saving if a thread locks more than four objects
at the same time.

For threads that has deeply nested locking of the
same object, the linear search through the array of
locked objects adds to the running time, but first
time locking of a previously free object takes constant
time. From a scheduling perspective, it is beneficial
that the monitor is created at the same time as the
thread is created, and not at some later time when
the thread locks an object for the first time.

...
case monitorenter: {

currentThread.enter(stack.pop());
} break;
case monitorexit: {

currentThread.leave(stack.pop());
} break;
...

Listing 4 One monitor per thread

Since there is a one to one correspondence between
threads and locks, we can further reduce the memory
usage by merging the lock with the thread, i.e. place
the data and methods in the thread instead of a
separate lock object, see Listing 4. Such a merge
also has a slight runtime advantage, since there is
a reduction of the number of references that need to
be followed at runtime.

4. Deadlocks

static Resource A, B;
void f() {

synchronized (A) {
try { A.wait(100); } catch (Exception e) {}

...
public void run() {

synchronized (A) {
synchronized (B) {

f();

Listing 5 Possible deadlock

A common way to avoid deadlocks, is to assign every
resource a unique number, and then always claim
the resources in ascending order [3]. Unfortunately
JavaTM programs that seem to follow this paradigm
may still deadlock, see Listing 5. In this program
the intention was to always claim resource A before

resource B, but while coding the method f() it was
not realized that resources might already have been
locked somewhere else, so when f() gets called from
the run() method, resource A is released while the
thread is still holding resource B. The net effect is
that if more than one copy of this code executes
at the same time, the program will (somewhat
unexpectedly) deadlock on resource B.

In the case of ”ordinary JavaTM monitors”, there is
not much to do about this problem, but with the
”monitor per thread” approach there are a number
of possible approaches that can be used. Each of
these have their advantages and drawbacks, which
we will come back to after a brief overview of possible
deadlock avoidance methods.

1. Throw an exception if the object waited on is
not the last acquired one, this is easily checked
by ensuring that the object waited on matches
the last object in the list of locked objects.

2. Release all objects that were locked after the
object waited on were locked, this is easily done
by releasing the lock of the object waited for
and all objects located after it in the list of
locked objects.

3. Detect deadlocks by traversing the blocking
chain when blocking on an object, to ensure
that the thread holding the object we are
waiting for is not blocked waiting for some
object that is held by the thread just about to
block. If a deadlock is detected, an exception is
thrown.

Combinations of (1) and (3) or (2) and (3) are also
possible.

Throwing an exception (1)when we try to wait for an
object that was not the last one acquired is simple to
implement, and if we put the additional requirement
that the locking counter should be equal to one, we
will also be able to detect potential problems like the
one in Listing 6. The disadvantages are that it only
prevents deadlocks if objects are locked in the same
order everywhere and it will break perfectly legal
JavaTM code. Together with (3) it is a good way to
ensure that deadlocks are always detected and that
coding follows a stricter set of programming rules
that make sense for critical real-time systems.

Releasing all objects (2) locked after the one waited
for, is also easy to implement and it will reduce

int attribute;
void g() {

synchronized(A) {
try { A.wait(); } catch (Exception e) {}

}
}
void f() {

synchronized(A) {
int tmp = attribute;
g();
attribute = tmp + 1;

}
}

Listing 6 Dubious caching

blocking in the running system. The disadvantage
is that it breaks JavaTM semantics, even though the
kind of problems that are exposed by this breaking
can just as well occur in normal JVM’s, see Listing 6,
although not as frequently. If it is combined with
(3) it will probably give good performance and still
detect all true deadlocks.

Detecting deadlocks (3) does not break any correct
JavaTM programs, but will throw exceptions when
deadlocks occur, regardless of what policy is used
for resource locking. A possible drawback is that
traversing the locking chain may be time consuming,
neither does it give any hints about dangerous
constructs that might give problems in the future.

5. Priority inheritance
When unlocking an object, it is natural to assume
that only the threads blocked on that object should
be released, leading to a blocking queue that is a list
of object–thread pairs. But by releasing all threads
waiting for any of the held objects (not only those
waiting for the unlocked one), we will only need
half the amount of memory for the blocking queue
and gain an additional implementation advantage,
namely priority inheritance. This is so because the
threads waiting for the current thread falls in four
categories:

1. Lower priority threads waiting for the released
lock.

2. Higher priority threads waiting for the released
lock.

3. Lower priority threads waiting for some other
lock held by the current thread.

4. Higher priority threads waiting for some other
lock held by the current thread.

Higher priority threads (2) that are no longer
blocked by this thread should start execution imme-
diately and will not affect the current thread any
more (unless it gets blocked again). Lower priority
threads (2) no longer blocked should eventually run.
Releasing any higher priority threads (4) that will
immediately start execution just to be blocked again
on the same object might seem like a bad idea, but if
the current thread’s effective priority is reset to its
base priority before rescheduling, the higher priority
thread will re-raise priority of the current thread be-
fore it blocks again, and the net effect is that we have
painlessly implemented priority inheritance. Lower
priority threads (3) may just as well be released
since they should eventually run, and won’t affect
the current thread unless they become subject to pri-
ority inheritance, which will then be propagated to
the current thread.

In a uni-processor the worst case behavior is that
one higher priority thread is woken up and then
immediately blocked again. In a multi-processor ev-
ery processor may run threads that are immediately
blocked, but since the entire monitor implementation
is aimed at small embedded systems, this is [cur-
rently] not a major drawback.

6. Related work
Many JavaTMimplementations have spent efforts on
keeping monitor overhead as low as possible when
there is no lock contention, among these are Electric
Fire [4], Kaffe [1], Latte [7], [2], but when contention
occurs they all fall back to hash-based allocation of
one monitor per object.

7. Conclusions and future work
A characteristic of most JavaTM programs has been
used to implement monitors more space efficiently
than is usually done. Apart from the space savings,
the new monitor model is easy to implement and
makes deadlock detection and priority inheritance
easy to implement. The presented model is meant to
be used as part of an experimental real-time virtual
machine [5], where most of the run-time system will
be implemented in JavaTM. The feasabilty of the
proposed scheme for multi-processor systems also
needs investigation.

8. Acknowledgments
This work has been supported by Lucas – Center for
Applied Software (http://www.lucas.lth.se/).

References
[1] “Kaffe: Java Virtual Machine .” http://www.

transvirtual.com/.

[2] “LaTTe : An Open-Source Java Virtual Machine
and Just-in-Time Compiler.” http://latte.snu.
ac.kr/.

[3] A. Burns and A. Wellings. Real–Time Systems
and Their Programming Languages. Addison–
Wesley, 1997.

[4] S. Furman. “Electrical Fire.” http://www.
mozilla.org.

[5] A. Ive. Implementation of an embedded real-time
Java virtual machine prototype. licenciate thesis,
Department of Computer Science, Lund Institute
of Technology, 2001.

[6] T. Lindholm and F. Yellin. The JavaTMVirtual
Machine Specification, Second Edition. Addison–
Wesley, 1999.

[7] B.-S. Yang, J. Lee, J. Park, S.-M. Moon,
K. Ebcioglu, and E. Altman. “Lightweight Mon-
itor for Java VM.” ACM SIGARCH Computer
Architecture News, March, March 1999.

Appendices

A. A straightforward monitor
implementation

class Object {
Monitor lock;
static boolean creatingLock = false;
public Object() {

if (! creatingLock) {
// we have to avoid infinite recursion
creatingLock = true;
lock = new Monitor();
creatingLock = false;

}
}

}
class Thread {

final int running = 0;
final int ready = 1;
final int blocked = 2;
int state;

}
class ThreadQueue {
/** Put thread in queue */
void add(Thread thread);
/** Remove a thread from queue */
Thread remove();
/** Check if the queue is empty */
boolean empty();

}
class Monitor {

Thread owner;
int count;
ThreadQueue blocked;
ThreadQueue waiting;
Monitor() {

owner = null;
count = 0;
blocked = new ThreadQueue();
waiting = new ThreadQueue();

}
void enter(Thread thread) {

disableScheduling();
while (true) {

if (owner == null hh owner == thread) {
owner = thread;
count++;
break;

} else {
thread.state = Thread.blocked;
blocked.add(thread);
reschedule();

}
}
enableScheduling();

}
void leave() {

disableScheduling();
count– –;
if (count == 0) {

owner = null;
Thread next = blocked.remove();
next.state = Thread.ready;
reschedule();

}
enableScheduling();

}
void wait() {

disableScheduling();
waiting.add(owner);
int oldCount = count;
Thread oldOwner = owner;
count = 0;
owner = null;
while (owner != null) {

oldOwner.state = Thread.blocked;
reschedule();

}
count = oldCount;
owner = oldOwner;
enableScheduling();

}
void notify() {

disableScheduling();
Thread toBeNotified = waiting.remove();
toBeNotified.state = Thread.ready;
reschedule();
enableScheduling();

}
void notifyAll() {

while (!waiting.empty()) {
notify();

}
}

}

class JVM {
void interpret() {

...
switch (bytecode) {

...
case monitorenter: {

stack.pop().lock.enter(currentThread);
} break;
case monitorexit: {

stack.pop().lock.leave();
} break;
...

}
}

B. Lazy creation and eager
destruction

class Object {
Monitor lock = null;

}
class Monitor {

Object object;
Monitor(Object object) {

this.object = object;
}
...
void enter(Thread thread) {

disableScheduling();
while (true) {

if (owner == null hh owner == thread) {
owner = thread;
count++;
break;

} else {
thread.state = Thread.blocked;
blocked.add(thread);
reschedule();

}
}
enableScheduling();

}
void leave() {

disableScheduling();
count– –;
if (count == 0) {

owner = null;
Thread next = o.lock.blocked.remove();
next.state = Thread.ready;
if (count == 0 &&

blocked.empty() &&
waiting.empty()) {

// Delete lock
object.lock = null;

reschedule();
}
enableScheduling();

}
...

}
class JVM {

...
case monitorenter: {

Object o = stack.pop()

if (o.lock == null) {
o.lock = new Monitor(o);

}
o.lock.enter(currentThread);

} break;
case monitorexit: {

stack.pop.leave();
} break;
...

}

C. One monitor per thread
class Object {

Thread lock = null;
}
class Thread {

private Thread nextBlocked;
private Thread nextWaiting;
private Object waitingFor;
private int last;
private int count[];
private Object object[];
private Thread waiting[];
private int state;
private int assignedPri;
private int effectivePri;
final int running = 0;
final int ready = 1;
final int blocked = 2;
final int waiting = 3;
public Thread() {

waitingFor = null;
last = 0;
count = new int[initialSize];
object = new Object[initialSize];
waiting = new Thread[initialSize];

}
final int objectPos(Object o) {

int pos;
for (pos = 0 ; pos < last ; pos++) {

if (object[pos] == o) {
break;

}
}
return pos;

}
void enter(Object o) {

disableScheduling();
int pos = objectPos(o);
object[pos] = o;
if (pos >= last) {

count[pos] = 0;
last++;

}
while (true) {

if (o.lock == null hh o.lock == this) {
break;

} else if (o.lock.waitingFor == o) {
// Grab the waiting queue
waiting[pos] = o.lock;
break;

} else {
if (o.lock.effectivePri < effectivePri) {

o.lock.effectivePri = effectivePri;
if (o.lock.state == blocked) {

o.lock.state = ready;
}

}
// Put thread in the blocked queue
nextBlocked = o.lock.nextBlocked;
o.lock.nextBlocked = this;
state = Thread.blocked;
reschedule();

}
}
o.lock = this;
count[pos]++;
enableScheduling();

}
void leave(Object o) {

disableScheduling();
int pos = objectPos(o);
count[pos]– –;
if (count[pos] == 0) {
// Transfer waiting threads to
// one of the waiting threads.
o.lock = waiting[pos];
// Wake up all blocked threads
effectivePriority = assignedPriority;
last– –;
object[pos] = null;
while (nextBlocked != null) {

nextBlocked.state = Thread.ready;
nextBlocked = nextBlocked.nextBlocked;

}
reschedule();

}
enableScheduling();

}
void wait(Object o) {

disableScheduling();
waitingFor = o;
int pos = objectPos(o);
int oldCount = count[pos];
count[pos] = 0;
state = Thread.waiting;
reschedule();
waitingFor = null;
while (true) {

if (o.lock == null) {
break;

} else if (o.lock.waitingFor == o) {
// Grab the waiting queue
waiting[pos] = o.lock;
break;

} else {
if (o.lock.effectivePri < effectivePri) {

o.lock.effectivePri = effectivePri;
if (o.lock.state == blocked) {

o.lock.state = ready;
}

}
// Put thread in the blocked queue
nextBlocked = o.lock.nextBlocked;
o.lock.nextBlocked = this;
state = Thread.blocked;
reschedule();

}
}
o.lock = this;
count[pos] = oldCount;
enableScheduling();

}
void notify(Object o) {

disableScheduling();
int pos = objectPos(o);
if (waiting[pos] != null) {

Thread toBeNotified = waiting[pos];
waiting[pos] = waiting[pos].nextWaiting;
toBeNotified.state = Thread.ready;
reschedule();

}
enableScheduling();

}
}
class JVM {

...
case monitorenter: {

currentThread.enter(stack.pop());
} break;
case monitorexit: {

currentThread.leave(stack.pop());
} break;
...

