

Processreglering - föreläsningsanteckningar 1997

Nilsson, Bernt

1997

Document Version: Förlagets slutgiltiga version

Link to publication

Citation for published version (APA): Nilsson, B. (1997). Processreglering - föreläsningsanteckningar 1997. (Technical Reports TFRT-7560). Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or recognise.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal

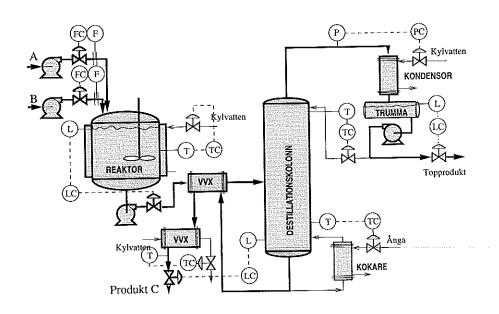
Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Processreglering — föreläsningsanteckningar 1997

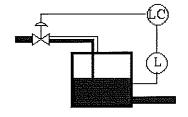
Bernt Nilsson



Department of Automatic Control Lund Institute of Technology June 1997

4			
Department of A		Document name TECHNICAL REPORT	
Lund Institute of T Box 118 S-221 00 Lund Sweden	Technology	Date of issue June 1997	
	en	Document Number ISRN LUTFD2/TFRT7	560SE
Author(s) Bernt Nilsson	4.	Supervisor	
Borns misson		Sponsoring organisation	
Title and subtitle Processreglering - föreläsn	ingsanteckningar 97 (Proces	s Control - lecture notes 97)	
Abstract			
	omarhetades under våren 19	997. Denna rapport är en sa	mmanetällning av kurgene
föreläsningar och de omar		bost Delina rapport ar en sa.	minanssamming av kursens
_	ontrol was modified during t	he spring 1997. This report	contains the lecture notes
	one.,		
Key words			
Classification system and/or ind	lex terms (if any)	<u> </u>	
,	, -,		
Supplementary bibliographical information			
ISSN and key title			ISBN
0280-5316			
Language Swedish	Number of pages	Recipient's notes	
Security classification		1	

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010, S-221 03 Lund, Sweden, Fax +46 46 110019, Telex: 33248 lubbis lund.



PROCESSREGLERING

Grundläggande kurs i Reglerteknik vid Kemiteknik-programmet. Valfri i K3 och K4. Se FRT 080 i studiehandboken. 4 poäng, läsperiod 3 och 4

(senast uppdaterad: 30 maj)

Innehåll::

Kommunikation | Veckoschema | Föreläsningar | Övningar | Lab | Tider och tenta | Litteratur | Övrigt

Målsättning:

Kursen skall ge en översikt av reglertekniska problem och metoder i kemitekniska tillämpningar. Kursen presenterar grundläggande begrepp, modellering av dynamik i processer, dynamisk analys av processer och återkopplade system. Design av enkla regulatorer, hela regulatorstrukturer samt processer med flera in- och utsignaler är viktiga moment. Logik- och sekvenstyrning samt styrning med hjälp av dator ingår i kursen.

Lärare och kommunikation:

namn	tel	email	Kommentarer på
Bernt Nilsson	222 8784	bernt@control.1th.se	föreläsningar
Jörgen Malmborg	222 8796	jorgen@control.lth.se	övningsgrupp 2
Martin Öhman	222 0362	martin@control.lth.se	övningsgrupp 1

Veckoschema:

- 1. Introduktion,
 - O Föreläsning 1, 13/1 mån K:G, kap 1, 2.1-3, LAB 1
 - O Övning 1: Grafiska representationer, LAB 1
- 2. Processmodeller,
 - O Föreläsning 2, **20/1 mån K:G**, *kap 2.4-8*
 - O Övning 2: Processmodellering
- 3. Processdynamik I verktyg,
 - O Föreläsning 3, **24/1 fre K:F**, *kap 3.1-5*
 - O Övning 3: Laplacetransform och överföringsfunktioner
 - O Laboration 1 (24 pers/grp: mån och ons)
- 4. Processdynamik II egenskaper,
 - O Föreläsning 4, 31/1 fre V:D,kap 3.5, 3.9, 2.7
 - O Övning 4: Transientsvar och linjärisering
- 5. Återkopplade system I verktyg,
 - O Föreläsning 5, 7/2 fre K:F, kap 3.7, 4.1-3
 - O Övning 5: Analys av återkopplade system
- 6. Återkopplade system II egenskaper,

- O Föreläsning 6, 14/2 fre K:C, kap 4.2-4
- O Övning 6: Egenskaper hos återkopplade system
- 7. PID-regulatorn och regulatorinställning,
 - O Föreläsning 7, 21/2 fre K:C, kap 5.2-5
 - O Övning 7: PID och regulatorinställning, LAB 2
- 8. Kopplade regulatorer och modellbaserade regulatorer,
 - O Föreläsning 8, 10/3 mån MA:3, kap 6 och 7
 - O Övning 8: Regulatorstrukturer
 - O Laboration 2 (24 pers/grp: ons eller tors)
- 9. Processreglersystem,
 - O Föreläsning 9, 17/3 mån K:E, Shinskey-kapitel, Tyreus-artikel
 - O Övning 9: Reglersystemstrukturer
- 10. Multivariabel reglering,
 - O Föreläsning 10, 24/3 mån K:E, kap 9
 - O Övning 10: Multivariabel reglering
- 11. Dator-, logik- och sekvensstyrning,
 - O Föreläsning 11, 14/4 mån K:G, kap 10, 5.6, 8
 - O Övning 11: Datorstyrning och GRAFCET
- 12. Analys och design i frekvensplanet,
 - O Föreläsning 12, 21/4 mån K:G, kap 3.8-9, 4.4 (122-124)
 - O Övning 12: Analys
 - O Laboration 3 (8 pers/grp: ons och tors)
- 13. Design av reglersystem,
 - O Övning 13: Design av reglersystem
 - O Laboration 3 (8 pers/grp: ons och tors)
- 14. Repetition,
 - O Föreläsning 13, 12/5 mån K:G
 - O Övning 14
 - O Laboration 3 (8 pers/grp: ons)

Föreläsningar och sidhänvisningar:

LP 4: måndagar 8-10; 10/3: MA:3 17/3, 24/3: K:E, 14/4, 21/4, 12/5: K:G,

Föreläsningsanteckningarna är i pdf-format och kan läsas av Acrobat Read, som du kan hämta på Adobes hemsida.

- 1. Introduktion,
 - O Vad är Processreglering?
 - O Vad är ett reglersystem? kap 1.1-2
 - O Kursprogram97
 - O Grafiska representationer, kap 2.1-3
 - O Reglertekniska principer, kap 1.3-4
 - O kap 1.5 läses översiktligt
 - O Matte rep: Analys i en variabel, kap 8.1-2 (321-332), 1:a ordn. diff.ekv.
- 2. Processmodeller,
 - O Matematisk modellering, kap 2.4

- O Modeller av enhetsoperationer, kap 2.5 (läs subexemplen översiktligt) O kap 2.6 läses översiktligt O Generella modeller, kap 2.7, läs ej linjärisering O Störningsmodeller, kap 2.8 O kap 2.9 läses översiktligt O Matte rep: Analys i en variabel, kap 8.5-7 (340-358), 2:a ordn. diff.ekv. 3. Processdynamik I - verktyg O Linjära tidsinvarianta system, kap 3.1-2 O Laplacetransform, kap 3.3 O Lösning av systemekvationen, kap 3.4 O Olika representationer, kap 3.5 (75-76) O läs kap 3.6 O Matte rep: Analys i en variabel, kap 5.2 (228-231), Part.bråksuppdeln. O Matte rep: Linjär algebra, kap 10.2-3 (223-241), Egenvärden 4. Processdynamik II - egenskaper O Insignal-utsignalmodeller, kap 3.5 O läs ej 3.7 och 3.8 O Transienter, *kap 3.9 (93-95)* O Olinjära modeller och linjärisering, kap 2.7 O Matte rep: Analys i en variabel, kap 9.2 (377), Taylors formel 5. Återkopplade system I - grunder och analys, O Blockdiagramalgebra, kap 3.7 O Enkel reglering, P och PI, kap 4.1 O Återkopplad reglering, kap 4.2
- O På/Av-reglering, kap 4.3 6. Återkopplade system II - stabilitet och egenskaper,
- O Stabilitet, *kap 4.4 (läs ej 119-124)*

 - O PID-reglering, kap 5.1
 - O Styrsignal- och robusthetsanalys
- 7. PID-regulatorn,
 - O PID-regulatorn, kap 5.2
 - O Uppvridning och moder, kap 5.3
 - O Parameterinställing, kap 5.4
 - O Design av ett återkopplat system, kap 5.5
 - O läs ej 5.6
- 8. Kopplade regulatorer och modellbaserade regulatorer,
 - O Kaskad-, kvot- och framkopplingar, kap 6.1-4
 - O kap 6.5-6 läses översiktligt
 - O Dödtidskompensering, kap 7.2
 - O kap 7.3-4 läses översiktligt
- 9. Processreglersystem,
 - O Multivariabel reglering med enkla regulatorer
 - O Metodik för reglerstrategier, Shinsky; kapitel 1
 - O Processreglersystem, Tyreus-artikel
- 10. Multivariabel reglering,
 - O Multivariabel interaction, kap 9.1-2
 - O Reglering och RGA, kap 9.3-4
 - O Särkoppling, kap 9.5
- 11. Dator-, logik- och sekvensstyrning,
 - O Digital reglering, kap 10.1-4, kap 10.6-7 läses översiktligt
 - O Digital PID-regulator, kap 5.6

- O Logik- och sekvensstyrning samt GRAFCET, kap 8
- 12. Frekvensbeskrivningar och reglerdesign,
 - O Frekvensplansmodeller, Transienter och frekvenser, kap 3.8-9
 - O Nyqvist och praktisk stabilitet, kap 4.4 (122-124)
 - O Parameterinställning igen, kap 5.4 (142-145)
- 13. Sammanfattning och repetition,
 - O Repetition av kursens viktigaste delar och deras sammanhang

Tillämpningar i föreläsningarna:

- Flödesreglering,
 - Återkopplade system I OH: Känslighet I-III
 - Kopplade regulatorer OH: Kvotreglering II-III
- Nivåreglering,
 - Processmodeller OH: Tankreaktor II-III
 - Processdynamik II OH: Stegsvar III, Manometer I-III och Linjärisering III-VII
 - Återkopplade system I OH: Stationära fel I-IV
 - PID-regulatorn OH: Nivåreglering I-III
 - Kopplade regulatorer OH: Kaskadreglering III-IV
 - Kopplade regulatorer OH: Framkoppling II
 - Frekvensbeskrivningar OH: Analys VI, Design VI-VIII
- Temperaturreglering,
 - Processmodeller OH: Tankreaktor VI-VII Värmeväxlare I-III
 - Återkopplade system I OH: Enkel reglering I-VIII
 - Återkopplade system II OH: VVX-reglering I-XI
 - PID-regulatorn OH: Temperaturreglering I-V
 - Kopplade regulatorer OH: Kaskadreglering V
- Koncentrationsreglering,
 - Introduktion OH: Reglertekniska principer I-V
 - Processmodeller OH: Tankreaktor IV-V Destillation II-VI
 - Processdynamik I OH: Systemekvationen III-V, Lösning med Laplace III och Överföringsfunktioner V
 - Processdynamik II OH: Stegsvar II,
 - Modellbaserade regulatorer OH: Dödtid
 - Modellbaserade regulatorer OH: Multiloop reglering I-II
- Reaktorreglering,
 - Processmodeller OH: Tankreaktor VIII
 - Modellbaserade regulatorer OH: Multiloop reglering I-II
 - Processreglersystem OH: Reaktor I-II
 - Dator- och sekvensstyrning OH: Logik III-IV, Sekvensstyrning II-IV
- Destillationsreglering,

- Processreglersystem OH: Destillation I-II, Destillationsreglering I-VI
- Processexempel,
 - Processreglersystem OH: Process I-VI

Veckans Quiz:

Dessa kräver Java för att fungera rätt! (dvs det klarar inte KC:s datorer)

- Ouiz 1
- Quiz 2
- Quiz 3

Övningar:

Grp 1, LP 4: onsdagar 8-10; K:L, Grp 2, LP 4: onsdagar 13-15; K:L

Övn	Område	Uppgifter	Hemuppgifter
1	Grunder	A.1, A.4, A.5, A.3, A.6	A.2, A.7
2	Processmodeller	A.9, 1.1, 1.2, 1.3 ab, 1.6	1.5, A.10, A.8
3	Processdynamik I	2.1, 2.2, 2.3, 3.4, 2.4	2.5, 3.9
4	Processdynamik II	3.6ab, 3.1, 3.2, 4.1	3.7, 3.8 4.2, 4.6
5	Återkopplade system I	4.3, 4.4, 5.3, 6.4ab	5.2, 5.4
6	Återkopplade system II	5.1, 6.1, 6.3	6.2
7	PID-regulatorn	7.1, 7.2, LAB 2	7.3, 7.4, 10.3, 10.4
8	Regulatorstrukturer	12.1, 12.2, 12.3	12.4
9	Processreglersystem	B.1, B.2, B.5, B.6	B.3, B.4, B.7
10	Multivariabel reglering	13.1, 13.2, 13.3	13.5, 13.4, B.8, B.10
11	Dator- och sekvensstyrning	11.1, 11.2, 11.3, 11.4, 11.5	11.9, 11.6, 11.7
12	Analys i frekvensplanet	8.1, 8.5, 8.6, 8.4, 9.2	3.5, 8.2
13	Design av reglersystem	C.1, C.2, C.3	10.4, 9.4, 9.5
14	Repetition	(gamla tal/X-tenta)	(eget val)

Kompletterande uppgifter: del A (några lösningar), del B (endast i pappersform) och del C (några lösningar).

MATLAB-kopiering: Studenter som läser Reglerteknik-kurser får kopiera MATLAB för att användas vid hemarbete på egen dator. Det går till på följande sätt:

- 1. Lämna lapp med namn och datoridentitet till Bernt, Jörgen eller Martin.
- 2. Ni får tillbaka ett avtal där ni godkänner villkoren.
- 3. När ni skrivit på avtalet kommer ni att registreras för kopiering.
- 4. Gå till Reglertekniks terminalrum (Lab C på Reglerteknik i M-huset, alltid öppet mellan 12-13)
- 5. Logga in med er identitet och "password" står på ert avtal.

6. Därefter sker kopiering automatiskt.

(MATLAB 4.2: Mac 4 disketter, PC-Windows 5 disketter) (MATLAB 3.5: Mac 1 diskett, PC-DOS 1 diskett)

(MATERIA 5.5. Mac I diskett, I C-DOS I diskett

Laborationer:

3 stycken obligatoriska laborationer. Inga laborationsredogörelser krävs utan laborationerna föregås av korta kunskapsprov och uppvisandet av lösta förberedelseuppgifter.

	Omgång 1	Omgång 2	storlek	ansvarig handledare
Lab 1	måndag, 27/1, 13-17	onsdag, 29/1, 13-17	24	Jörgen Malmborg
Lab 2	onsdag, 12/3, 13-17#	torsdag, 13/3, 13-17#	24	Martin Öhman
Lab 3	*	*	8	Mattias Grundelius

Lab 2 Anmälan på Reglertekniks anslagstavla. (1 vån M-huset)

* Lab 3 Anmälan på Reglertekniks anslagstavla: kl 13-17; 23/4, 24/4, 5/5, 6/5, 14/5

PLATS: Reglertekniks kurslab (Lab D) på 1:a våningen i M-husets södra del.

Tider och Tentamena:

	LP 3	LP 4
Föreläsningar	31/1 fre 10-12 V:D 7/2 fre 10-12 K:F	10/3 mån 8-10 MA:3 17/3, 24/3 mån 8-10 K:F 14/4, 21/4 mån 8-10 K:G 28/4, 5/5 inga föreläsn. 12/5 mån 8-10 K:G
Övningar: Grp 1	ons 8-10 K:P	ons 8-10 K:L
Övningar: Grp 2	ons 8-10 M:G1	ons 13-15 K:L

TENTAMEN: fredagen 30/5; 8-13; Plats: MA:9

Litteratur:

Kursböcker:

- Wittenmark, Åström, Jörgensen: "Process Control", KF-Sigma
- "Process Control Exercises", KF-Sigma
- "Processreglering Laborationer", KF-Sigma
- "Formelsamling i Reglerteknik", KF-Sigma
- Shinskey-kapitel och Tyreus-artikel

Andra böcker:

- I Reglerteknik AK används Glad, Ljung: Reglerteknik, Grundläggande teori, Studentlitteratur
- En helt ny och trevlig bok är *Marlin:* **Process Control**. Se bokinformation på Internet-bookshop.
- En något äldre men bredare bok är *Luyben:* **Process Modelling, Simulation, and Control for Chemical Engineers.** Bokinformation på Internet-bookshop.

X-tentor:

De senaste tentorna på "gamla" kursen (OBS! PostScript-format):

- Jun 95 med lösningar
- Jan 96 med lösningar
- Jun 96 med lösningar
- Aug 96 med lösningar
- Jan 97 med lösningar

Senaste tentan:

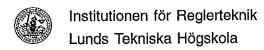
• Jun 97

Övrigt:

- Gamla kursen i processreglering (med extentor)
- Tänkbara fortsättningskurser i Reglerteknik;
 - O Digital reglering och sedan Processidentifiering, Adaptiv reglering
 - O Realtidssystem,
 - O Olinjär reglering och servosystem.
- Några kul reglerteknik länkar:
 - O Control Tutorial in MATLAB,
 - O Control Lab OnLine,
 - O Nuclear power plant demo,
 - O Reglerteknikkurs (Exeter),
 - O Picles.

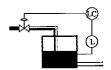
Antal besök: 0380

Denna sida har följande address: http://www.control.lth.se/~kurspr



PROCESSREGLERING

Introduktion



kursprogram: http://www.control.lth.se/~kurspr

Innehåll

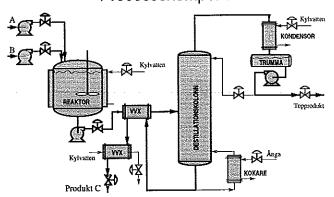
Dagens föreläsning

Föreläsning 1: Introduktion

- Vad är processreglering?
- Hur ser reglersystem ut och vad är en regulator?
- Kursprogram 97
- Grafiska representationer
 - Process och instrumentdiagram (P/I)
 - Blockschema
- · Reglertekniska principer

Reglering av kemiska processer I

Processexempel 1



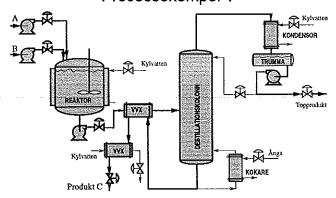
En enkel kemisk process

- Två reaktanter, A och B, blandas
- Antag följande reaktion, $A + B \rightarrow C$.
- Reaktorn är mantelkyld med kallvatten
- Separation av C och oreagerat
- Bottenprodukten förvärmer feeden

Alla delar är kända från andra kurser

Reglering av kemiska processer II

Processexempel 1



Hur kör man en process?

- Vilka processvariabler kan vi hålla under kontroll, mäta samt utnyttja för styrning?
- Hur beter sig processen och hur reglerar man?
- Hur startar man?

Detta är reglertekniska frågor!

Reglering av kemiska processer III

Processexempel 1

Kylvatten

Kylvatten

Kylvatten

Kylvatten

Kokare

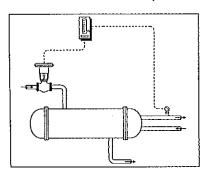
Produkt C

Vad måste man reglera i processen?

- 1. Produktion, flöden
- 2. Interna volymer, nivåer
- 3. Driftsbetingelser, temperatur och tryck
- 4. Produktkvalite, sammansättning och koncentration
- 5. Driftsekonomi
- 6. Säkerhet och miljö

Reglersystem I

Värmeväxlarexempel 1



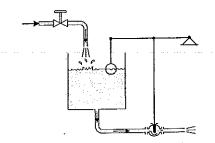
Reglersystemets delar.

- Mätning av temperatur i utflödet
- Regulator beräknar en styrsignal
- Reglerventil ändrar kylflödet
- Värmeväxlaren reagerar på det nya kylflödet

Regulatorn är ett "elektriskt instrument".

Reglersystem II

Flottörexempel



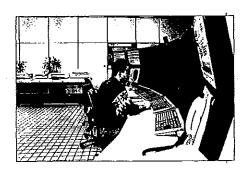
Reglersystemets delar.

- Mätning av nivån med en flottör
- Regulator är hävstången
- Reglerventil ändrar utflödet
- Tanken reagerar på det nya utflödet

Regulatorn är en "mekanisk konstruktion".

Regiersystem III

Processexempel



Reglersystemets delar.

- Mätningar görs ute i processen
- Regulatorer är programmerade i datorsystemet
- Styrdon ändrar styrvariablerna.
- Processen reagerar på styringreppen.

Regulatorn är ett "litet datorprogram".

PROCESSREGLERING

Kursprogram 97

Innehåll:

- Hur beter sig processer?
- Hur beter sig ett reglersystem?
- Att ställa in regulatorer.
- Processreglersystem!
- · Start, stopp och styrning med dator?
- Räkna på lite svårare reglerproblem.

Omfattning:

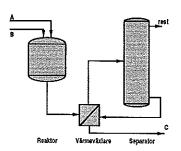
- 13 Föreläsningar
- 14 Övningar
- 3 Laborationer (oblig.)

Kursprogram:

http://www.control.lth.se/~kurspr

Grafiska representationer I

Processchema



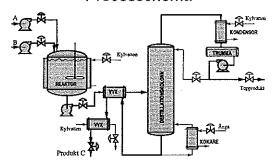
Principiellt processchema:

- Produktflöden
- Viktiga enhetsoperationer
- "Principiell" sekvens av operationer
- Inga detaljer skall visas

PC: kap 2.1-2, sid 14-18

Grafiska representationer II

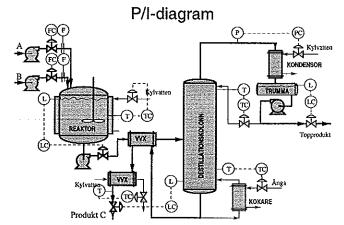
Processchema



Detaljerat processchema:

- Viktiga flöden
 - Produktflöden
 - Energiflöden
- Enhetsoperationer
 - "Alla" enheter, tex pumpar, ventiler
 - Viktiga delsteg, tex kokare, kondensor
- Visar ej stödprocesser (energisystem)

Grafiska representationer III

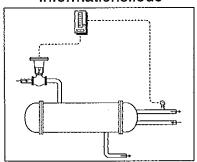


Process- och instrumentdiagram:

- Viktiga flöden
 - Produkt- och energiflöden
 - Signalflöden
- Enhetsoperationer och instrument
 - "Alla" enheter
 - Mätgivare, regulatorer och styrdon
- Visar ej uppstartsprocedurer

Grafiska representationer IV

Informationsflöde

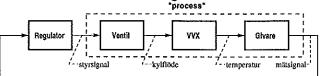


Informationsomvandling och signaler

- Temperaturen omvandlas till m\u00e4tsignal i givaren.
- Mätsignalen överförs till regulatorn
- Regulatorn beräknar en styrsignal
- Styrsignalen överförs till styrdonet
- Styrdonet ändrar flödet (ventilläget)
- · Flödet överförs till kylflöde
- Kylflödet påverkar temperaturen

Grafiska representationer V

Blockdiagram



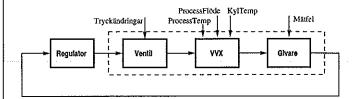
Blockdiagram och signaler

- Blocken omvandlar information
 - Block kan motsvara flera apparater
 - Apparat kan vara flera block
- Pilar överför information (signaler)
 - Pilar beskriver inte flöden
 - Helt ideal omedelbar överföring
 - Information kan gå till flera block
- Fysiska enheter slås ihop till en "process"

Blockdiagram kallas också blockschema

Grafiska representationer VI

Blockdiagram

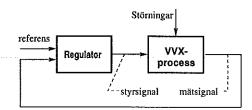


Störningar

- · Ventilen påverkas av trycket
- Värmeväxlaren påverkas av:
 - flöde och temperatur i procesströmmen
 - temperaturen i kylflödet
- Mätfel i mätgivaren
 - flödesvariationer
 - elektriska störningar

Grundläggande begrepp I

Blockdiagram

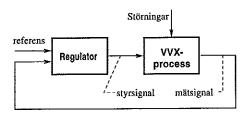


Abstraktion i blockdiagram

- Fysikaliska enheter bildar en "process"
- Processen påverkas av:
 - styrsignal, insignal, (u)
 - störningar, (d eller v)
- Regulatorn påverkas av:
 - referensvärde, börvärde, (y_{ref})
 - mätsignal, ärvärde, (y)

Grundläggande begrepp II

Återkoppling

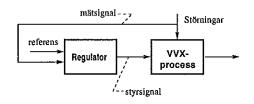


Återkoppling: Mätning av den reglerade variabeln

- Mätning av den reglerade variabeln
- · Reglersystemets egenskaper
 - + Alla typer av störningar kan regleras
 - Störningen måste "slå igenom processen"

Grundläggande begrepp III

Framkoppling

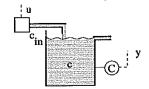


Återkoppling: Mätning av störningen

- Mätning av störning
- Reglersystemets egenskaper
 - Bara de mätbara störningen kan regleras
 - + Störningen regleras direkt och behöver ej "synas i processen"

Reglertekniska principer I

Tankexempel



Dynamisk modell:

Materialbalans över tanken för en kemisk komponent:

In +Produktion = Ut +Ackumulation
$$c_{in}q_{in}$$
 +0 = cq_{ut} + $\frac{d(Vc)}{dt}$

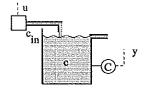
Antag

- ideal omblandning, $c = c_{ut}$
- konstant flöde, $q_{in} = q_{ut} = q$
- konstant volym, V

$$\frac{dc(t)}{dt} = \frac{q}{V}(c_{in}(t) - c(t))$$

Reglertekniska principer II

Tankexempel



Lösning av dynamisk modell:

Differentialekvation med begynnelsevärdet, $c(0) = c_0$. Antag konstant c_{in} .

$$e^{\frac{q}{V}t}\left(\frac{dc(t)}{dt} + \frac{q}{V}c(t)\right) = e^{\frac{q}{V}t}\frac{q}{V}c_{in}$$
$$\left[e^{\frac{q}{V}t}c(t)\right]_0^T = \int_0^T (e^{\frac{q}{V}t}\frac{q}{V}c_{in})dt$$
$$e^{\frac{q}{V}T}c(T) - e^{\frac{q}{V}0}c(0) = c_{in}(e^{\frac{q}{V}T} - 1)$$

Lösning

$$c(T) = e^{-\frac{q}{V}T}c_0 + c_{in}(1 - e^{-\frac{q}{V}T})$$

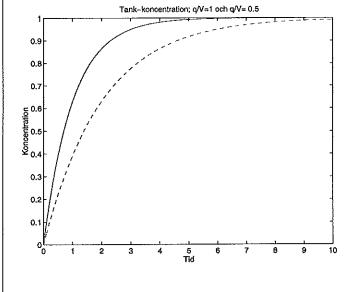
Rita
$$c(T)$$
 för $c_0 = 0$ och $c_{in} = 1$!

Reglertekniska principer III

Tankexempel

Lösning:

$$c(T) = (1 - e^{-\frac{\sigma}{V}T})$$



Reglertekniska principer IV

Tankexempel

Proportionell reglering:

Koppla in en enkel P-regulator, $u = K(y_{ref} - y)$. (OBS! $u = c_{in}$ och y = c)

$$\begin{aligned} \frac{dc}{dt} &= \frac{q}{V}(u-c) \\ \frac{dy}{dt} &= \frac{q}{V}(K(y_{ref}-y)-y) \\ \frac{dy}{dt} &= \frac{q}{V}(Ky_{ref}-(K+1)y) \\ \frac{dy}{dt} + (K+1)\frac{q}{V}y &= K\frac{q}{V}y_{ref} \end{aligned}$$

Utnyttja integrerande faktor igen

$$y(T) = e^{-(K+1)\frac{\sigma}{V}T}y(0) + \frac{K}{K+1}(1 - e^{-(K+1)\frac{\sigma}{V}T})y_{ref}$$

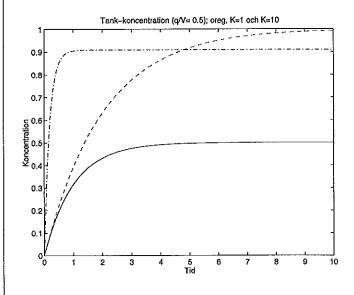
Rita
$$y(T)$$
 för $y_0 = 0$ och $y_{ref} = 1!$

Reglertekniska principer V

Tankexempel

Lösning:

$$y(T) = \frac{K}{K+1} (1 - e^{-(K+1)\frac{q}{V}T})$$



Reglertekniska principer VI

Sammanfattning

Öppet system: ingen regulator

- Insvängningshastigheten beroende av processparameter
- Slutvärdet det samma (i detta fall)

Slutet system: Återkoppling med en regulator

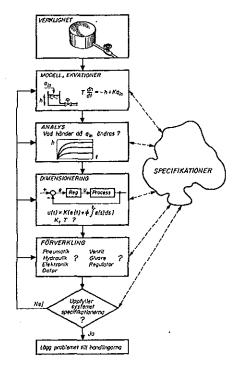
- Förändrar insvängningshastigheten
- Förändrar slutvärdet

Analys för att studera reglersystemets dynamiska beteende.

Design för att välja regulatortyp och parameterinställning för önskat dynamiska beteende.

Reglertekniska principer VII

Reglerteknisk arbetsmetodik

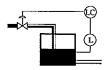


PROCESSREGLERING

Sammanfattning

Föreläsning 1: Introduktion

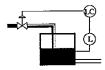
- Processreglering
- Vad är ett reglersystem?
- Kursprogram 97
- Grafiska representationer
 - P/I-diagram
 - Blockdiagram
- Reglertekniska principer
 - Fram- och Återkoppling
 - Analys och design av dynamik
- o PC: kap 1, kap 2.1-3, P&B: kap 8.1-2



Institutionen för Reglerteknik Lunds Tekniska Högskola

PROCESSREGLERING

Processmodeller



kursprogram: http://www.control.lth.se/~kurspr

Innehåll

Dagens föreläsning

Föreläsning 2: Processmodeller

- Dynamiska modeller
 - Behov och krav
 - Modellantaganden
- · Matematisk modellering
 - Mass- och komponentbalanser
 - Energibalanser
 - (Impulsbalanser)
- Modeller av enhetsoperationer
 - Tank och tankreaktor
 - Destillationskolonn
 - Värmeväxlare
- Systemrepresentationer
- Störningsmodeller

PC: kap 2.3-6, 2.7 sid 44-45, 2.8

Modellering av kemiska processer

Processexempel 1

Kylvatten Kondenson

Topprodukt

Kondane

Hur beter sig en kemisk process?

- Dynamisk modell
 - Vad skall beskrivas?
 - Antaganden
- Analytisk lösning och simulering
- Karaktäristiska egenskaper

Detta är vad följande 3 föreläsningar handlar om!

Dynamiska modeller I

Behov och krav

Dynamiska processmodeller:

- Processtekniska behov
 - dimensionering av buffert
 - design av satsvisa processer
- Reglertekniska behov
 - förståelse av dynamiska egenskaper
 - behövs vid val av regulator
 - behövs vid beräkning av parametrar
- Driftstekniska behov
 - förståelse av start och stopp
 - optimering av driftsförändringar
 - träning av operatörer

Låga krav på reglering kräver "bara" enkel modell

Reglering med *höga krav* kräver noggrann model

Dynamiska modeller II

Antaganden och val

Antaganden:

- Noggrannhet
 - Statistisk avvikelse
 - Fysikalisk tolkning
- Giltighet
 - Vilket processavsnitt
 - Vilka processvariabler
 - Vilket driftsfall
 - Vilka störningar
- Komplexitet
 - Antalet processvariabler
 - Antalet ekvationer
 - Antalet parametrar

Antaganden skall noggrant övervägas (styr modellens beteende)

Matematisk modellering I

Grunder

Oförstörbara kvantiteter:

Massa

- Totala massan oförändrad
- Massa kan övergå i olika former, dvs i olika kemiska komponenter

• Energi

- Totala energin oförändrad
- Energi kan övergå i olika former, t ex från termisk till mekanisk energi
- Impuls
 - (tas upp i undantagsfall)

Total massa, komponent och termisk energi är de vanligaste balanserna som utnyttjas vid reglerteknisk processmodellering.

Matematisk modellering II

Massbalanser

Antaganden:

1. Homogen kontrollvolym

Dynamisk balans över total massa

In +Produktion = Ut +Ackumulation
$$q_{in}\rho_{in}$$
 +0 = $q_{ut}\rho$ + $\frac{d(V\rho)}{dt}$

Dynamisk balans över komponent j (mol)

In +Produktion = Ut +Ackumulation
$$q_{in}c_{j_{in}} + r_{j}V = q_{ut}c_{j} + \frac{d(Vc_{j})}{dt}$$

PC: sid.20-21

Matematisk modellering III

Energibalanser

Dynamisk balans över total energi

In +Prod = Ut +Ack
$$e_{in} + Q_{tf} + Q_{prod} = e_{ut} + W_{uf} + \frac{dE}{dt}$$

Vanliga antagelser är:

- potentiell/kinetisk energi försummas, E=U och $e=q\rho H$
- i vätskefas antas $U \approx H$
- inget arbete W = 0

Dynamisk entalpibalans

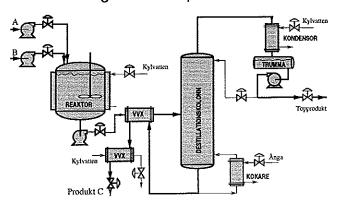
$$\frac{\ln + \text{Prod}}{q_{in}\rho_{in}H_{in} + Q_{tf}} + rV\Delta H_r = q_{ut}\rho H + \frac{d(V\rho H)}{dt}$$

Oftast antas också $H_j \approx C_{p_j}(T-T_0)$, dvs konstanta C_{p_m} .

PC sld.20-21

Processmodellering

Några enhetsoperationer



Modeller av enhetsoperationer

• (Tank), PC: 23-30

• Tankreaktor, PC: 36-39

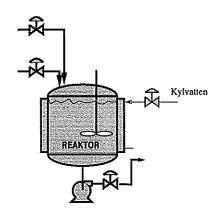
• Kokare, PC: 30-33

• Destillationskolonn, PC: 33-36

• (Tubvärmeväxlare, PC: 39-41)

Tankreaktor I

Dynamiska modeller



Vad vill vi beskriva?

1. Volym och flöden

2. Koncentration och omblandning

3. Temperaturer och värmeöverföring

Tankreaktor II

Volymsdynamik

Antaganden: delmodell 1

1. Vätskefas

2. Konstant tvärsnittsarea, V = Ah

3. Konstant densitet, $\rho = \rho_{in} = \rho_{ut}$

Dynamisk balans över total massa

Total massbalans ger differentialekvation för tanknivån

$$\frac{dh}{dt} = \frac{1}{A}(q_{in} - q_{ut})$$

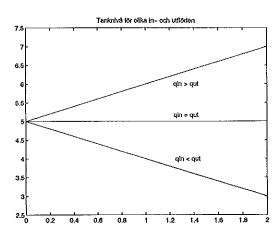
PC: exempel 2.1, sid 23

Tankreaktor III

Volymsdynamik

Total massbalans ger differentialekvation för tanknivån

$$\frac{dh}{dt} = \frac{1}{A}(q_{in} - q_{ut})$$



Tankreaktor IV

Koncentrationsdynamik

Antaganden: delmodell 2

- 1. Vätskefas
- 2. 1:a ordningens reaktion $r = kc_B$
- 3. Ideal omblandning
- 4. Isoterm
- 5. Konstant flöde och volym

Dynamisk komponentbalans över reaktant j:

ger följande differentialekvationer för A och B:

$$\frac{dc_A}{dt} = -\frac{q}{V}c_A - kc_B + \frac{q}{V}c_{A,in}$$

$$\frac{dc_B}{dt} = -(\frac{q}{V} + k)c_B + \frac{q}{V}c_{B,in}$$

Tankreaktor V

Koncentrationsdynamik

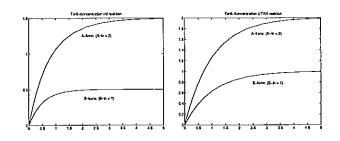
Speciellt antaganden för en tank

1. Ingen reaktion r = 0

$$\frac{dc_A}{dt} = -\frac{q}{V}c_A + \frac{q}{V}c_{A,in}$$

$$\frac{dc_B}{dt} = -\frac{q}{V}c_B + \frac{q}{V}c_{B,in}$$

(ekvationena oberoende av varandra.)



Tankreaktor VI

Temperaturdynamik

Antaganden: delmodell 3

- 1. Vätskefas
- 2. Ideal omblandning
- 3. Konstant uppehållstid och densitet
- 4. Konstant värmekapacivitet, $H = C_{p_m}(T T_{ref})$

In
$$+ \text{Prod} = \text{Ut} + \text{Ack}$$

$$q\rho C_p T_{in} + Q_{tf} + rV\Delta H_r = q\rho C_p T + \rho V C_p \frac{dT}{dt}$$

Energibalansen ger differentialekvation för tanktemperaturen

$$\frac{dT}{dt} = \frac{q}{V}(T_{in} - T) + \frac{1}{\rho V C_p} Q_{tf} + \frac{\Delta H_r}{\rho C_p} r$$

Tankreaktor VII

Temperaturdynamik i tank

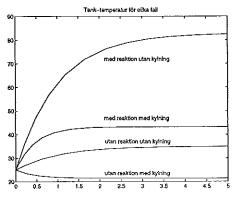
Speciella antaganden:

1. Ingen reaktion

$$\frac{dT}{dt} = \frac{q}{V}(T_{in} - T) + \frac{1}{\rho V C_{p_m}} Q_{tf}$$

2. Ingen värmeöverföring

$$\frac{dT}{dt} = \frac{q}{V}(T_{in} - T)$$



Tankreaktor VIII

Sammanfattning av modell

Tankreaktorn i *processexempel 1* kan beskrivas med 4 differentialekvationer.

Nivåvariationer:

$$\frac{dh}{dt} = \frac{1}{A}(q_{in} - q_{ut})$$

Koncentrationsvariationer:

$$\frac{dc_A}{dt} = \frac{q}{Ah}(c_{A,in} - c_A) - kc_B$$

$$\frac{dc_B}{dt} = \frac{q}{Ah}(c_{B,in} - c_B) - kc_B$$

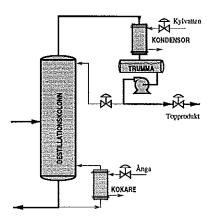
Temperaturvariationer:

$$\frac{dT}{dt} = \frac{q}{Ah}(T_{in} - T) + \frac{1}{\rho V C_{p_m}} Q_{tf} - \frac{\Delta H_r}{\rho C_p} k c_B$$

(Notera $k=k_0e^{-\frac{E_0}{RT}}$ och att $\Delta H_r<0$ för exoterma reaktioner)

Destillation I

Dynamiska modeller



Vad vill vi beskriva?

- 1. Volym och flöden
- 2. Sammansättningar

Destillation II

Bottenmodell

Antaganden:

- 1. Ideal botten, (jämvikt T = f(x))
- 2. Isobar
- 3. Relativ flyktighet $y = \frac{\alpha x}{1 + x(1 \alpha)}$
- 4. Förångning är lika med kondensering
- 5. Ingen ackumulering av ånga

Total- och komponentbalans över botten (extra term för inflödesbotten)

$$\begin{array}{ccccc} \text{In} & +\text{Prod} & = \text{Ut} & +\text{Ack} \\ L_{i+1} & +0 & = L_i & +\frac{dM_i}{dt} \\ L_{i+1}x_{i+1} + Vy_{i-1} & +0 & = L_ix_i + Vy_i & +\frac{d(M_ix_i)}{dt} \end{array}$$

Sätt in totalbalansen i andra Ack-termen

$$\frac{dM_i}{dt} = L_{i+1} - L_i
\frac{dx_i}{dt} = \frac{L_{i+1}}{M_i} (x_{i+1} - x_i) + \frac{V}{M_i} (y_{i-1} - y_i)$$

PC: sid 33 - 36

Destillation IV

Kokare och Trumma

Antaganden:

1. Ingen ackumulering av ånga

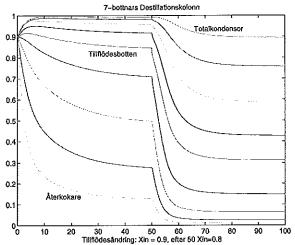
Total-och komponentbalans över kokaren

2. Ideal kondensor

Total- och komponentbalans över återflödestrumma (med kondensor)

Destillation V

Simulering



Sammansättningen i tillflödet ändras från 0.9 till 0.8 vid tiden 50.

OBS! Bara sammansättningsdynamik! (konstanta flöden och ingen reglering)

Destillation VI

Sammanfattning av modell

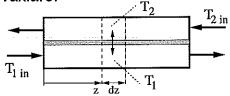
Dynamisk modell av en destillationskolonn

- 1. 2(N + 2) differentialekvationer beskriver (N = antal bottnar)
 - (a) total mängd
 - (b) molfraktion i vätskan
- 2. Temperatur är funktion av molfraktion ingen explicit energibalans över botten
- 3. Energibalanser krävs för beräkning av V och kondensering av L_n

Värmeväxlare I

Enkel beskrivning

Förenklad beskrivning av en motströms värmeväxlare.



Antaganden:

- 1. Vätskefas
- 2. Konstant uppehållstid och densitet
- 3. Konstant värmekapacivitet, $H = C_{p_m}(T T_{ref})$
- 4. Enkel värmeöverföringsmodell, $Q = kA(T_1 T_2)$

PC: kap 2.6

Värmeväxlare II

Förenklad modell

Antaganden för enkel modell:

Ideal omblandning på varje sida
 Dynamiska energibalanser över sida 1 och
 2.

$$\begin{array}{lll} & \text{ln} & = \text{Ut} & +\text{Ack} \\ \hline q_1 \rho_1 C_{p_1} T_{1,in} & = q_1 \rho_1 C_{p_1} T_1 + kA(T_1 - T_2) & +\rho_1 V_1 C_{p_1} \frac{dT_1}{dt} \\ q_2 \rho_2 C_{p_2} T_{2,in} & = q_2 \rho_2 C_{p_2} T_2 - kA(T_1 - T_2) & +\rho_2 V_2 C_{p_2} \frac{dT_2}{dt} \end{array}$$

Två kopplade differentialekvationer för de båda temperaturerna.

$$\begin{array}{lcl} \frac{dT_1}{dt} & = & \frac{q_1}{V_1}(T_{1,in}-T_1)-\frac{kA}{\rho_1V_1C_{p_1}}(T_1-T_2)\\ \frac{dT_2}{dt} & = & \frac{q_2}{V_2}(T_{2,in}-T_2)+\frac{kA}{\rho_2V_2C_{p_2}}(T_1-T_2) \end{array}$$

Värmeväxlare III

Modell med rumsberoende

Antaganden för rumsberoende:

- 1. Volym $V = A_z dz$ (A_z är kanalens tvärsnittsarea)
- 2. Överföringsyta $A=L_zdz$ (L_z är överföringsytans bredd)

$$\begin{array}{lcl} \frac{dT_1}{dt} & = & \frac{q_1}{A_{1,z}dz}(T_{1,z}-T_1) - \frac{kL_{1,z}dz}{\rho_1A_{1,z}dzC_{p_1}}(T_1-T_2) \\ \frac{dT_2}{dt} & = & \frac{q_2}{A_{2,z}dz}(T_{2,z+dz}-T_2) + \frac{kL_{2,z}dz}{\rho_2A_{2,z}dzC_{p_2}}(T_1-T_2) \end{array}$$

Låt $dz \rightarrow 0$ och vi får 2 partiella differentialekvationer.

$$\begin{array}{lcl} \frac{\partial T_{1}}{\partial t} & = & -\frac{q_{1}}{A_{1,z}} \frac{\partial T_{1}}{\partial z} - \frac{kL_{1,z}}{\rho_{1}A_{1,z}C_{p_{1}}} (T_{1} - T_{2}) \\ \frac{\partial T_{2}}{\partial t} & = & \frac{q_{2}}{A_{2,z}} \frac{\partial T_{2}}{\partial z} + \frac{kL_{2,z}}{\rho_{2}A_{2,z}C_{p_{2}}} (T_{1} - T_{2}) \end{array}$$

Systemrepresentationer II

Linjära system

I vissa fall resulterar modellerna i en linjär tillståndsform (i detta fall med "bara" en insignal)

$$\frac{dx_1}{dt} = a_{11}x_1 + \dots + a_{1n}x_n + b_1u$$

$$\vdots$$

$$\frac{dx_n}{dt} = a_{n1}x_1 + \dots + a_{nn}x_n + b_nu$$

Detta kan skrivas med vektorer och matriser

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} u$$

och på matrisform

$$\frac{d\mathbf{x}}{dt} = A\mathbf{x} + B\mathbf{u}$$

Systemrepresentationer I

Tillståndsform

Alla modellerna ovan kan i princip uttryckas på **tillståndsform** med explicita högerled:

$$\frac{dx_1}{dt} = f_1(x_1, \dots, x_n, u_1, \dots, u_m)$$

$$\vdots$$

$$\frac{dx_n}{dt} = f_n(x_1, \dots, x_n, u_1, \dots, u_m)$$

Variablerna x_i kallas **tillstånd**. Variablerna u_j kallas **insignaler**.

Exempel på olika tillstånd är

- tanknivå h
- koncentaration c
- temperatur T
- molfraktion x_i

Systemrepresentationer III

Linjära system

Mätsignaler kan i det generella fallet uttryckas

$$y_1 = h_1(x_1, \dots, x_n, u_1, \dots, u_m)$$

$$\vdots$$

$$y_p = h_p(x_1, \dots, x_n, u_1, \dots, u_m)$$

Specialfall: linjära h, $y = [c_1 \dots c_n]x + d \cdot u$

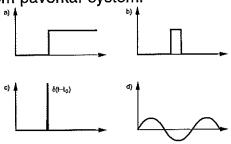
För ett linjärt system av differentialekvationer kan relationen mellan mätsignal y och insignal u skrivas på matrisform enligt

$$\frac{d\mathbf{x}}{dt} = A\mathbf{x} + B\mathbf{u}$$
$$\mathbf{y} = C\mathbf{x} + D\mathbf{u}$$

Störningsmodeller I

Enkla beskrivningar

Dynamiskt beteende relateras till de störnignar som påverkar system.



Exempel på enkla störningsbeskrivningar:

- Steg
- Puls (med utbredning)
- Impuls ("ingen" utbredning)
- Sinussignal

"Riktiga" processtörningar ser inte ut så här. Dom är oftast "snällare".

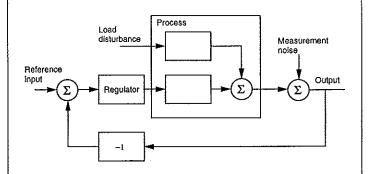
PC: kap 2.8

Störningsmodeller II

Applicering

Störningar påverkar det reglerade systemet på två sätt:

- Processtörningar som påverkar processvariablerna
- Mätstörningar som skapas vid mätning.

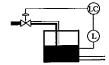


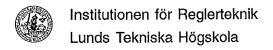
PROCESSREGLERING

Sammanfattning

Föreläsning 2: Processmodeller

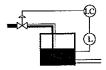
- Behov och krav på modeller
- Matematisk modellering
- Modeller av några enhetsoperationer
 - Tank och tankreaktor
 - Destillationskolonn
 - Värmeväxlare
- Systemrepresentationer
- Störningsmodeller





PROCESSREGLERING

Processdynamik I



kursprogram: http://www.control.lth.se/~kurspr

Innehåll

Dagens föreläsning

Föreläsning 3: Processdynamik Matematiska verktyg

- · Lösning av ordinära differentialekvationer(ODE)
 - 1:a ordningens ODE
 - Lösning av systemekvationen
 - Tidskonstant och egenvärde
- Laplacetransform
 - Lösning av ODE
- Överföringsfunktion
 - Poler och nollställe
 - Singuläritetsdiagram

PC: kap 3.1-5, sid. 57-70

Dynamik i kemiska processer

Processexempel 1

Hur beter sig en kemisk process?

- Dynamisk modell
 - Vad skall beskrivas?
 - Antaganden och noggrannhet
- · Analytisk lösning eller simulering
- Karaktäristiska egenskaper

Detta är vad följande föreläsning 2, 3 och 4 handlar om

Processdynamik I

Matematiska verktyg

Lösnings- och analysmetoder

- · Analytiska metoder
 - Direkt lösning av ODE (Analys B)
 - Systemekvationen
 - Laplacetransform
 - Analys av ODE (utan att lösa)
 - Insignal-utsignalmodeller
 - Frekvensanalytiska metoder
 - (det finns fler metoder)
- Simulering

Direkt lösning av ODE i

1:a ordningens ODE

Första ordningens linjär tidsinvariant ordinär differentialekvation

$$\frac{dx(t)}{dt} = ax(t) + bu(t)$$

Hur ser lösningen ut för olika insignaler? Matematikkurser ger oss lösningen

$$x(t) = e^{at}x(0) + \int_0^t e^{a(t-\tau)}bu(\tau) d\tau$$

Lösningen består av:

- Inverkan av initialvärde
- Insignalens inverkan över intervallet [0, t]

P&B: kap 8.2

Direkt lösning av ODE II

1:a ordningens ODE

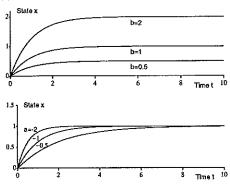
Generell lösning

$$x(t) = e^{at}x(0) + \int_0^t e^{a(t-\tau)}bu(\tau) d\tau$$

Låt insignalen vara konstant u_0

$$x(t) = e^{at}x(0) + \frac{b}{a}(e^{at} - 1)u_0$$

Simulera differentialekvationen



Direkt lösning av ODE III

Stationär förstärkning

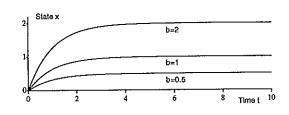
$$x(t) = e^{at}x(0) + \frac{b}{a}(e^{at} - 1)u_0$$

Vi ser direkt på lösningen att

•
$$x \to \infty$$
 då $t \to \infty$ om $a > 0$

•
$$x \to \frac{b}{-a}u_0$$
 då $t \to \infty$ om $a < 0$

Om x konvergerar mot ett stationärt värde så kallas $\frac{b}{-a}$, stationär förstärkning



(a = -1)

Direkt lösning av ODE IV

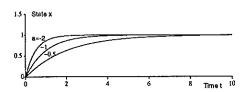
Tidskonstant

$$x(t) = e^{at}x(0) + \frac{b}{a}(e^{at} - 1)u_0$$

Vi ser direkt på lösningen att

- Om a > 0 "exploderar" lösningen
- Om a < 0 "försvinner" exponentialtermerna för stora t
 - Om |a| är stort försvinner det fort
 - Om |a| går det långsamt

$-\frac{1}{a}$ kallas för **tidskonstant**



$$(b=1)$$

Systemekvationen I

Lösning

Ett linjärt system av differentialekvationer kan skrivas på matrisform som

$$\frac{d\mathbf{x}}{dt} = A\mathbf{x} + B\mathbf{u}$$

och har följande lösning

$$\mathbf{x}(t) = e^{At}\mathbf{x}(0) + \int_0^t e^{A(t-\tau)}\mathbf{u}(\tau) d\tau$$

 ${f x}$ och ${f u}$ är vektorer och A och B är matriser.

PC: kap 3.4, sats 3.5

Systemekvationen II

Egenvärden

Lösning av systemekvationen

$$\mathbf{x}(t) = e^{At}\mathbf{x}(0) + \int_0^t e^{A(t-\tau)}\mathbf{u}(\tau) d\tau$$

Motsvarigheten till tidskonstanten är **egen**värdena till A.

Följande gäller (då A kan diagonaliseras)

$$e^{At} = e^{T^{-1}\Lambda Tt} = T^{-1}e^{\Lambda t}T$$

där Λ är en diagonalmatris med egenvärden.

Egenvärden fås ur karatäristiska polynomet

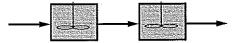
$$det(\lambda I - A) = 0$$

PC: kap 3.4, sats 3.5. Sparr: 10.2 sid 227

Systemekvationen III

Tankserie-exempel

Antag konstant flöde och konstanta volymer.



Ställ upp 2 komponentbalanser (1 för varje tank)

$$\begin{array}{c|cccc} & \text{In} & +\text{Prod} & = & \text{Ut} & +\text{Ack} \\ \hline qc_0 & +0 & = & qc_1 & +\frac{d(V_1c_1)}{dt} \\ qc_1 & +0 & = & qc_2 & +\frac{d(V_2c_2)}{dt} \\ \end{array}$$

Lös ut på tillståndsform

$$\frac{dc_1}{dt} = -\frac{q}{V_1}c_1 + \frac{q}{V_1}c_0$$

$$\frac{dc_2}{dt} = -\frac{q}{V_2}c_2 + \frac{q}{V_2}c_1$$

och sedan med hjälp av matriser

$$\frac{d}{dt} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} -\frac{q}{V_1} & 0 \\ \frac{q}{V_2} & -\frac{q}{V_2} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + \begin{bmatrix} \frac{q}{V_1} \\ 0 \end{bmatrix} c_0$$

OBS! inflödets koncentration är insignal

Systemekvationen III

Tankserie-exempel

Antag
$$\frac{q}{V_1} = 1$$
 och $\frac{q}{V_2} = 2$.

$$\frac{dc}{dt} = \begin{bmatrix} -1 & 0 \\ 2 & -2 \end{bmatrix} c + \begin{bmatrix} 1 \\ 0 \end{bmatrix} c_0$$

Karatäristiskt polynom

$$det(\lambda I - A) = \begin{vmatrix} \lambda + 1 & 0 \\ -2 & \lambda + 2 \end{vmatrix}$$
$$= (\lambda + 1)(\lambda + 2) - (-2)(0)$$
$$= (\lambda + 1)(\lambda + 2) = 0$$

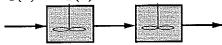
Egenvärden är

$$\lambda_1 = -1$$
 $\lambda_2 = -2$

Systemekvationen IV

Tankserie-exempel

Antag $c_1(0) = c_2(0) = 0$ och $c_0 = 1$.



Lös $c_2(t)!$

Första tanken är enkel!

$$c_1(t) = e^{-t}c_1(0) - (e^{-t} - 1)c_0 = 1 - e^{-t}$$

Detta blir insignal till den andra tanken.

$$c_2(t) = e^{-2t}c_2(0) + \int_0^t e^{-2(t-\tau)}2(1 - e^{-\tau}) d\tau$$

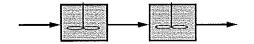
Initialvärdet är noll och integralen blir

$$c_2(t) = 1 - 2e^{-t} + e^{-2t}$$

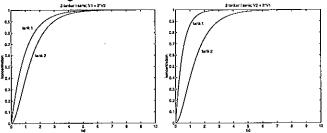
Notera att egenvärdena ses i exponentialtermerna.

Systemekvationen V

Tankserie-exempel



Simulering av 2 tankar i serie.



- höger: Stor tank (2V) liten tank (V)
- vänster: Liten tank (V) stor tank (2V)

Utflödet oberoende av ordning.

Laplacetransform I

Ett första exempel

$$\frac{dx(t)}{dt} = -a_1x(t) + b_1u(t)$$

- u(t) = 1 för $t \ge 0$
- x(0) = 0

Laplacetransformera (ur tabell)

$$sX(s) = -a_1X(s) + b_1U(s)$$

$$(s + a_1)X(s) = b_1U(s)$$

$$X(s) = \frac{b_1}{(s + a_1)}U(s)$$

$$X(s) = \frac{b_1}{(s + a_1)}\frac{1}{s}$$

Invers Laplacetransform (ur tabell)

$$x(t) = \frac{b_1}{a_1}(1 - e^{-a_1 t})$$

OBS! Vi löser ekvationen utan att integrera!

Laplacetransform II

Definition

Begrepp:

- f(t) tidsfunktion
- -F(s) funktion av komplex variabel s

Laplacetransformen

$$F(s) = \mathcal{L}\lbrace f(t)\rbrace = \int_{0-}^{\infty} e^{-st} f(t) dt$$

Inversa Laplacetransformen

$$f(t) = \mathcal{L}^{-1}{F(s)} = \frac{1}{2\pi i} \int_{\gamma - i\infty}^{\gamma + i\infty} e^{st} F(s) ds$$

PC: kap 3.3

Laplacetransform III

Exempel 1: stegfunktion

f(t) ett **steg**, dvs

$$f(t) = \begin{cases} 0, & t < 0; \\ 1, & t \ge 0; \end{cases}$$

Laplacetransformen blir

$$F(s) = \int_{0-}^{\infty} e^{-st} dt = \left[-\frac{e^{-st}}{s} \right]_{0}^{\infty} = \frac{1}{s}$$

Laplacetransform IV

Exempel 2: sinusfunktion

f(t) är en **sinus**-funktion

$$f(t) = \sin(\omega t)$$

Laplacetransformen blir

$$F(s) = \int_{0-}^{\infty} \sin(\omega t) e^{-st} dt$$

$$= \int_{0-}^{\infty} \frac{e^{i\omega t} - e^{-i\omega t}}{2i} e^{-st} dt$$

$$= \frac{1}{2i} \left[-\frac{e^{-(s-i\omega)t}}{s-i\omega} + \frac{e^{-(s+i\omega)t}}{s+i\omega} \right]_{0}^{\infty}$$

$$= \frac{\omega}{s^{2} + \omega^{2}}$$

Laplacetransform V

Tabellexempel

Många transformer och inverser finns i tabeller

Tidsfunktion	Transform
$f(t)=1, t\geq 0$	$F(s) = \frac{1}{s}$
$f(t) = \delta(t)$	F(s) = 1
$f(t)=e^{at}$	$F(s) = \frac{1}{s-a}$
$f(t) = \sin\left(\omega t\right)$	$F(s) = \frac{\omega}{s^2 + \omega^2}$ $F(s) = [sI - A]^{-1}$
$f(t)=e^{At}$	$F(s) = [sI - A]^{-1}$

Formelsamling: sid. 7-10. PC: app. A

Laplacetransform VI

Egenskaper

• Linjäritet

$$\mathcal{L}\{a_1f_1(t) + a_2f_2(t)\} = a_1F_1(s) + a_2F_2(s)$$

Faltning

$$\mathcal{L}\left\{\int_0^t f_1(\tau)f_2(t-\tau)\,d\tau\right\} = F_1(s)F_2(s)$$

Tidsderivata

$$\mathcal{L}\left\{\frac{df(t)}{dt}\right\} = sF(s) - f(0)$$

Laplacetransform VII

Egenskaper forts.

Slutvärdesteoremet

$$\lim_{t\to\infty}f(t)=\lim_{s\to 0}sF(s)$$

Om gränsvärdet på vänster hand existerar

• Begynnelsevärdesteoremet

$$\lim_{t\to 0} f(t) = \lim_{s\to \infty} sF(s)$$

Om gränsvärdet på vänster hand existerar

PC: sats 3.2 och 3.3, sid 63

Lösning med Laplace II

Metod

Insignalens Laplacetransform

$$U(s) = \frac{B_f(s)}{A_f(s)}$$

$$Y(s) = \frac{B(s)}{A(s)}U(s) = \frac{B(s)}{A(s)} \cdot \frac{B_f(s)}{A_f(s)}$$

Partialbråksuppdela

$$Y(s) = \frac{c_1}{s - p_1} + \cdots + \frac{c_n}{s - p_n} + \frac{d_1}{s - r_1} + \cdots + \frac{d_r}{s - r_r}$$

Inverstransformera

$$y(t) = c_1 e^{p_1 t} + \dots + c_n e^{p_n t} + d_1 e^{r_1 t} + \dots + d_r e^{r_r t}$$

Multipla rötter

$$P_{k_i-1}(t)e^{p_it}$$

Lösning med Laplace I

Metod

n-ordningens ODE

$$\frac{d^{n}y}{dt^{n}} + a_{1}\frac{d^{n-1}y}{dt^{n-1}} + \dots + a_{n}y
= b_{0}\frac{d^{m}u}{dt^{m}} + b_{1}\frac{d^{m-1}u}{dt^{m-1}} + \dots + b_{m}u$$

- u(t) känd tidsfunktion u(t) = 0 för t < 0
- Alla initialvärden noll

Laplacetransformera

$$(s^{n} + a_{1}s^{n-1} + \dots + a_{n}) Y(s) = A(s)Y(s)$$

= $(b_{0}s^{m} + b_{1}s^{m-1} + \dots + b_{m})U(s) = B(s)U(s)$

Lös ut Y(s)

$$Y(s) = \frac{B(s)}{A(s)}U(s) = G(s)U(s)$$

G(s) kallas överföringsfunktion

Lösning med Laplace III

Tankserie-exempel

Antag initialvärdena $c_1(0) = c_2(0) = 0$

$$\frac{dc_1}{dt} = -c_1 + c_0$$

$$\frac{dc_2}{dt} = -2c_2 + 2c_1$$

Laplacetransformera

$$sC_1(s) = -C_1(s) + C_0(s)$$

 $sC_2(s) = -2C_2(s) + 2C_1(s)$

Lös ut $C_1(s)$ och sätt in $C_0(s) = \frac{1}{s}$ i $C_2(s)$

$$C_2(s) = \frac{2}{s+2}C_1(s) = \frac{2}{(s+2)(s+1)}\frac{1}{s}$$

Partialbråksuppdela:

$$\frac{2}{s(s+1)(s+2)} = \frac{A}{s} + \frac{B}{s+1} + \frac{C}{s+2}$$

ger A = 1, B = -2 och C = 1. Invers Laplacetransform (ur tabell)

$$c_2(t) = 1 - 2e^{-t} + e^{-2t}$$

Överföringsfunktioner I

Analys

• Överföringsfunktionen

$$G(s) = \frac{B(s)}{A(s)}$$

 Rötterna till karakteristiska polynomet A(s) ger ingående tidsfunktioner

Kan dra slutsatser om

- "stabilitet" rötter i vänstra halvplanet
- Tidsskala
- Svängningar eller rent exponentiella förlopp
- Stationära värden
- $x(t) \rightarrow 0$?

Överföringsfunktioner II

Poler och nollställe

$$G(s) = \frac{B(s)}{A(s)}$$

- Rötter till A(s) kallas poler
- Rötter till B(s) kallas nollställen

G(s) är oändligt stor vid poler och noll vid nollställen

Tankserie-exemplet:

överföringen från c_0 till c_2

$$\frac{C_2(s)}{C_0(s)} = \frac{2}{(s+2)(s+1)}$$

poler: $p_1 = -1$ och $p_2 = -2$ nollställe: saknas

Överföringsfunktioner III

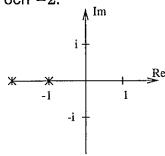
Singuläritetsdiagram

Poler och nollställen ritas i singuläritetsdiagram.

Poler är kryss och nollställen ringar.

Tankserie-exempel:

Poler i -1 och -2.



Överföringsfunktioner IV

Linjära system

För ett linjärt system av differentialekvationer kan relationen mellan mätsignal y och insignal u skrivas på matrisform enligt

$$\frac{d\mathbf{x}}{dt} = A\mathbf{x} + B\mathbf{u}$$
$$\mathbf{y} = C\mathbf{x} + D\mathbf{u}$$

Vi kan finna överföringsfunktionen genom att Laplacetransformera (antag x(0) = 0).

$$sX(s) = AX(s) + BU(s)$$

 $y(s) = CX(s) + DU(s)$

Detta ger $X(s) = [sI - A]^{-1} B U(s)$ som sätts in i Y(s).

7

$$\frac{Y(s)}{U(s)} = G(s) = C [sI - A]^{-1} B + D$$

Överföringsfunktioner V

Linjära system

Tankserie-exempel:

$$\frac{dc}{dt} = \begin{bmatrix} -1 & 0 \\ 2 & -2 \end{bmatrix} c + \begin{bmatrix} 1 \\ 0 \end{bmatrix} c_0$$
$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} c$$

Överföringsfunktion:

$$G(s) = C [sI - A]^{-1} B + D$$

$$= \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} s+1 & 0 \\ -2 & s+2 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$= \frac{\begin{bmatrix} 0 & 1 \end{bmatrix}}{(s+1)(s+2)} \begin{bmatrix} s+2 & 0 \\ 2 & s+1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$= \frac{\begin{bmatrix} 0 & 1 \end{bmatrix}}{(s+1)(s+2)} \begin{bmatrix} s+2 \\ 2 \end{bmatrix}$$

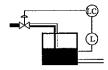
$$= \frac{2}{(s+1)(s+2)}$$

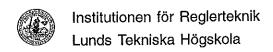
PROCESSREGLERING

Sammanfattning

Föreläsning 3: Processdynamik

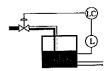
- Direct lösning av ODE
- Tidskonstant
- Systemekvationen och egenvärden
- Laplacetransform
- Analys utan att lösa ODE
- Överföringsfunktion
- Poler och nollställe





PROCESSREGLERING

Processdynamik II



kursprogram: http://www.control.lth.se/~kurspr

Innehåll

Dagens föreläsning

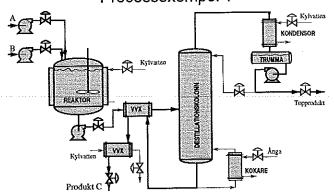
Föreläsning 4: Processdynamik II **Transienter och dynamiska egenskaper**

- Analys av överföringsfunktioner
- Insignal-utsignalmodeller
- Transientsvar
- Manometerexempel
- Linjärisering

PC: kap 3.5-6, 3.9 sid. 93-95 PC: kap 2.7 sid. 47-51

Dynamik i kemiska processer

Processexempel 1



Hur beter sig en kemisk process?

- Dynamisk modell
 - Vad skall beskrivas?
 - Antaganden och noggrannhet
- Analytisk lösning eller simulering
- Karaktäristiska egenskaper

Detta är vad föreläsning 2,3 och 4 handlar om

Överföringsfunktioner

Analys utan att lösa ODE

• Överföringsfunktionen

$$G(s) = \frac{B(s)}{A(s)}$$

 Rötterna till karakteristiska polynomet A(s) ger ingående tidsfunktioner

Kan dra slutsatser om

- "stabilitet" rötter i vänstra halvplanet
- Tidsskala
- Svängningar eller rent exponentiella förlopp
- Stationära värden
- $x(t) \rightarrow 0$?

Insignal-utsignal modeller

Transientsvar

Titta på uppförandet vid speciella insignaler

- Impuls
- Steg
- Sinussignaler

Räcker teoretiskt att bara studera inverkan av en typ av signaler

Tankmodell

1:a ordningens ODE

Ställ upp komponentbalans över en väl omrörd tank. Antag konstant $\frac{q}{V}=1$

$$\begin{array}{c|cccc} & \text{In} & +\text{Prod} & = \text{Ut} & +\text{Ack} \\ \hline qc_0 & +0 & = qc & +\frac{d(Vc)}{dt} \\ \end{array}$$

Lös ut på tillståndsform

$$\frac{dc}{dt} = -\frac{q}{V}c + \frac{q}{V}c_0$$

• Ansätt $a = \frac{q}{V}$ och $b = \frac{q}{V}$

$$\dot{c}(t) = -ac(t) + bc_0(t) \Rightarrow G(s) = \frac{b}{s+a}$$

• Ansätt $T=\frac{1}{a}=\frac{V}{q}$ och $K=\frac{b}{a}=1$

$$T\dot{c}(t) = -c(t) + Kc_0(t) \Rightarrow G(s) = \frac{K}{Ts+1}$$

Impulssvar I

1:a ordningens ODE

Laplacetransformen av en impuls

$$\mathcal{L}\{\delta(t)\}=1$$

Impulssvaret för 1:a ordningens ODE

$$Y(s) = G(s)U(s) = \frac{K}{Ts+1} \cdot 1$$

Invers Laplacetransform (ur tabell)

$$y(t) = \frac{K}{T}e^{-t/T}$$

Rita impulssvaret!

Stegsvar I

1:a ordningens ODE

Första ordningens system

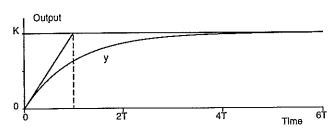
$$G(s) = \frac{K}{Ts+1}$$

Utsignalens Laplacetransform

$$Y(s) = \frac{K}{Ts+1} \frac{1}{s} = \frac{K}{s} - \frac{KT}{Ts+1}$$

Tidsfunktion

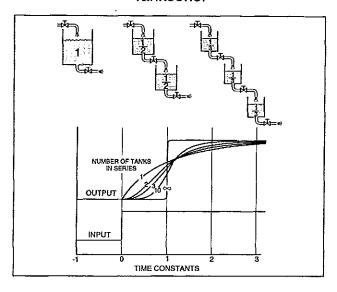
$$y(t) = K \left(1 - e^{-t/T} \right)$$



Tolkning av K och T

Stegsvar II

Tankserier



Koncentrationsdynamik i tankserier.

Oändligt många och små tankar är en beskrivning av ett rörl Det som kommer in kommer ut en tid senare (hur lång tid?)

Stegsvar III

Integrator

Antag att högerledet är oberoende av tillståndet, x:

$$\frac{dx}{dt} = Ku$$

Exempel: Tanknivå med styrda in- och utflöden.

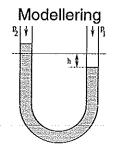
Laplace av denna ger sH(s)=KU(s) dvs $G(s)=K\frac{1}{s}$ (pol i origo).

Stegsvar:

$$\mathcal{L}^{-1}\{H(s)\} = \mathcal{L}^{-1}\{K\frac{1}{s}\frac{1}{s}\} = Kt$$

Rita stegsvaret! (kan du även rita impulssvaret?)

Manometer I



Antaganden:

- Isoterm och inkompressibel vätska
- Tryck-volym effekt: $W = (p_1 p_2)Av$
- Skjuvningsförluster: $E = -8LA\mu v^2 \frac{1}{R^2}$
- Kinetisk ackumulering: $\frac{dK}{dt} = \frac{4}{3}\rho LAv\frac{dv}{dt}$
- Potentiell ackumulering: $\frac{dP}{dt} = 2\rho gAh\frac{dh}{dt}$
- Höjdderivata är hastighet: $\frac{dh}{dt} = v$

Mekanisk energibalans över vätskepelaren

$$\begin{array}{cccc} Ack & = & & & -Ut \\ \hline \frac{d(K+\Phi)}{dt} & = & W & -E \\ \frac{4\rho LA}{3}v\frac{dv}{dt} + 2\rho gAhv & = & (p_1 - p_2)Av & + \frac{8LA\mu}{R^2}v^2 \end{array}$$

Manometer II

Systembeskrivning

Differentialekvationen som beskriver höjdvariationerna blir

$$\frac{d^{2}h}{dt^{2}}+\frac{6\mu}{R^{2}\rho}\frac{dh}{dt}+2\frac{3g}{4L}h=\frac{3}{4}\frac{(p_{a}-p_{b})}{\rho L}$$

Vid ett val av parametrar och skalning erhålls följande ODE

$$\frac{d^2h}{dt^2} + 4\frac{dh}{dt} + 8h = 16u$$

OBS! $u = \Delta p$

3

Laplacetransformera (initialvärden = noll)

$$s^2H(s) + 4sH(s) + 8H(s) = 16U(S)$$

och överföringsfunktionen

$$\frac{H(s)}{U(s)} = G(s) = \frac{16}{s^2 + 4s + 8}$$

Manometer III

Stegsvar

Stegsvaret blir

$$H(s) = \frac{16}{s^2 + 4s + 8}U(s) = \frac{16}{s^2 + 4s + 8}\frac{1}{s}$$

Partialbråksuppdela

$$H(s) = \frac{2}{s} - \frac{2s}{s^2 + 4s + 8} - \frac{8}{s^2 + 4s + 8}$$

och ta invers Laplacetransformen av varje term

$$h(t) = 2(1 - 2e^{-2t} \quad (2\sin(2t) + \sqrt{2}\sin(2t - \arctan(\sqrt{2}))))$$

Formelsamling sid 8-9: transform 2, 20 och 21.

Stegsvar IV

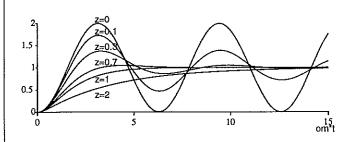
2:a ordningens ODE

Systemet

$$G(s) = \frac{\omega_0^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2}$$

har det allmänna stegsvaret ($\zeta < 1$)

$$y(t) = 1 - \frac{2\zeta}{\sqrt{1-\zeta^2}} e^{-\zeta \omega_0 t} \sin(w\sqrt{1-\zeta^2}t) - \frac{1}{\sqrt{1-\zeta^2}} e^{-\zeta \omega_0 t} \sin(w\sqrt{1-\zeta^2}t - \arctan(\frac{w\sqrt{1-\zeta^2}}{-\zeta\omega_0}t))$$



Stegsvar V

2:a ordningens ODE

Överföringsfunktionen

$$G(s) = \frac{\omega_0^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2}$$

har poler i

$$p_i = -\frac{2\zeta\omega_0}{2} \pm \sqrt{(\frac{2\zeta\omega_0}{2})^2 - \omega_0^2}$$
$$= \omega_0(-\zeta \pm \sqrt{\zeta^2 - 1})$$

- ζ kallas relativ dämpning
- $\zeta < 1$ ger komplexa poler

$$p_{1,2} = \omega_0(-\zeta \pm i\sqrt{1-\zeta^2})$$

• $\zeta > 1$ ger reella poler

$$p_{1,2} = \omega_0(-\zeta \pm \sqrt{\zeta^2 - 1})$$

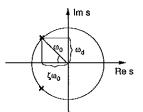
- ω_0 är "bara" en skalfaktor
- ω_0 kallas odämpad egenfrekvens

Stegsvar VI

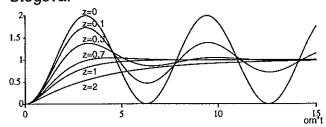
2:a ordningens ODE

$$G(s) = \frac{\omega_0^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2}$$

Singularitetsdiagram



Stegsvar



Impulssvar II

2:a ordningens ODE

Överföringsfunktion

$$G(s) = \frac{\omega_0^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2}$$

Impulssvaret för denna är ($\zeta < 1$)

$$\mathcal{L}\{G(s)\cdot 1\} = \frac{\omega_0}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_0 t}\sin(\omega_0\sqrt{1-\zeta^2}t)$$

Rita impulssvartet för manometern $G(s) = \frac{16}{s^2+4s+8}$

Noliställe I

2:a ordningens ODE

Överföringsfunktion

$$\frac{Y(s)}{U(s)} = G(s) = \frac{\omega_0^2 (1 + bs)}{s^2 + 2\zeta \omega_0 s + \omega_0^2}$$

ett nollställe, $z_1 = -b$

Motsvarande differentialekvation är

$$\ddot{y}(t) + 2\zeta\omega_0\dot{y}(t) + \omega_0^2y(t) = \omega_0^2(u(t) + b\dot{u}(t))$$

b förstärker derivatan på insignalen

- b ≪ 1 derivatan kan försummas
- $b \gg 1$ derivatan dominerande
- b < 0 derivatan motarbetar insignalen (Systemet kan "gå åt fel håll" i början av en transient)
- nollställe i origo innebär högerledet = $\omega_0^2 b \dot{u}(t)$ (konstant insignal har derivatan noll)

Olika representationer

Överföringsfunktioner

$$G(s) = \frac{b_0 s^m + b_1 s^{m-1} + \dots + b_m}{s^n + a_1 s^{n-1} + \dots + a_n} = \frac{B(s)}{A(s)}$$

$$= K_0 \frac{(s - z_1)(s - z_2) \dots (s - z_m)}{(s - p_1)(s - p_2) \dots (s - p_n)}$$

$$= K' \frac{s^l (1 + T_{z1}s) \dots (1 + T_{zm'}s)}{s^k (1 + T_{p1}s) \dots (1 + T_{pn'}s)}$$

$$= \frac{c_1}{s - p_1} + \dots + \frac{c_n}{s - p_n}$$

Viktiga begrepp:

- Poler pi
- Nollställen z_i
- Tidskonstanter T_{pi}
- Stationär förstärkning K = G(0)

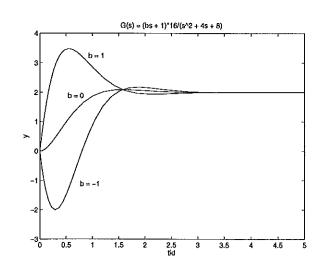
Nollställe II

2:a ordningens ODE

Stegsvar för

$$G(s) = \frac{16(bs+1)}{s^2+4s+8}$$

med tre olika b = 0, 1, -1



Olinjära modeller

Varför linjärisering?

Olinjära modeller

- All denna teori gäller bara linjära system
- Motsvarande "enkla" teori finns ej för olinjära system
- Processmodeller är nästan alltid olinjära!

Olinjära modeller linjäriseras

- Runt en driftpunkt kan vi alltid approximera en olinjär modell med en linjär
- I nästan alla fall duger en *linjäriserad* modell för reglering

Linjärisering l

Taylorutveckling

Linjärisering = Taylorutveckling

$$\begin{aligned} \frac{dx_i}{dt} &= f_i(x, u) \\ &= f_i(x^0, u^0) \\ &+ \frac{\partial f_i}{\partial x_1} \Big|_0 (x_1 - x_1^0) + \dots + \frac{\partial f_i}{\partial x_n} \Big|_0 (x_n - x_n^0) \\ &+ \frac{\partial f_i}{\partial u_1} \Big|_0 (u_1 - u_1^0) + \dots + \frac{\partial f_i}{\partial u_m} \Big|_0 (u_m - u_m^0) \\ &+ \text{higher order terms} \\ &\cong \frac{\partial f_i}{\partial x_1} \Big|_0 (x_1 - x_1^0) + \dots + \frac{\partial f_i}{\partial x_n} \Big|_0 (x_n - x_n^0) \\ &+ \frac{\partial f_i}{\partial u_1} \Big|_0 (u_1 - u_1^0) + \dots + \frac{\partial f_i}{\partial u_m} \Big|_0 (u_m - u_m^0) \end{aligned}$$

Linjäriseringspunkten är vid stationäritet, $f_i(x^0, u^0) = 0$

Linjärisering II

Linjäriserade systemet

Inför avvikelserna (variabelbyte)

$$\overline{x}_j = x_j - x_j^0;$$
 $j = 1, ..., n$
 $\overline{u}_i = u_i - u_i^0;$ $j = 1, ..., m$

Linjärt system

$$\frac{dx_i}{dt} = \frac{d\overline{x}_i}{dt}
= \frac{\partial f_i}{\partial x_1} \Big|_{0} \overline{x}_1 + \dots + \frac{\partial f_i}{\partial x_n} \Big|_{0} \overline{x}_n
+ \frac{\partial f_i}{\partial u_1} \Big|_{0} \overline{u}_1 + \dots + \frac{\partial f_i}{\partial u_m} \Big|_{0} \overline{u}_m
= a_{i1} \overline{x}_1 + \dots + a_{in} \overline{x}_n + b_{i1} \overline{u}_1 + \dots + b_{im} \overline{u}_m$$

där

$$a_{ij} = \frac{\partial f_i}{\partial x_j} \bigg|_{0}$$
 and $b_{ij} = \frac{\partial f_i}{\partial u_j} \bigg|_{0}$

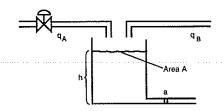
På samma sätt för utsignalerna ger

$$\frac{d\overline{x}}{dt} = A\overline{x} + B\overline{u}$$

$$\overline{y} = C\overline{x} + D\overline{u}$$

Linjärisering III

Tankexempel



Massbalans

$$A\frac{dh}{dt} = -q_{out} + q_A + q_B$$

Bernoulli's ekvation, turbulent utflöde, $q_{out} = av$

$$\rho gh = \frac{\rho v^2}{2} \Rightarrow q_{out} = a\sqrt{2gh}$$

Linjärisering IV

Tankexempel

Antag konstanta inflöden

$$q_A = q_A^0$$

$$q_B = q_B^0$$

Nivån blir också konstant h^0 och utflödet blir $q_{out} = q_A^0 + q_B^0$

I stationäritet gäller $\frac{dh}{dt} = 0$.

Lös ut

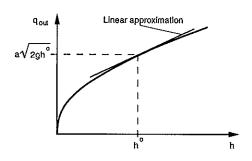
$$h^0 = \frac{(q_A^0 + q_B^0)^2}{2ga^2}$$

Enligt definitionen på stationäritet gäller alltså

$$f(h^0, q^0_A, q^0_B) = 0$$

Linjärisering V

Tankexempel



Approximera den olinjära utflödesbeskrivningen med tangenten

$$\begin{array}{lcl} q_{out} & = & a\sqrt{2gh} \approx a\sqrt{2gh^0} + a\sqrt{\frac{g}{2h^0}}(h-h^0) \\ \\ & = & q_{out}^0 + a\sqrt{\frac{g}{2h^0}}(h-h^0) \end{array}$$

Linjärisering VI

Tankexempel

Inför avvikelserna (variabelbyte)

$$x = h - h^{0}$$

$$u = q_{A} - q_{A}^{0}$$

$$v = q_{B} - q_{B}^{0}$$

$$y = h - h^{0}$$

Systemet blir nu

$$\begin{array}{rcl} \frac{dx}{dt} & = & -\alpha x + \beta u + \beta v \\ y & = & x \end{array}$$

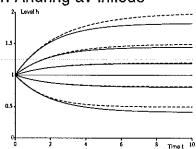
där

$$\begin{array}{rcl} \alpha & = & a2A\sqrt{2g/h^0} = \frac{a\sqrt{2gh^0}}{2Ah^0} = \frac{q_{out}^0}{2V^0} \\ \beta & = & 1/A \end{array}$$

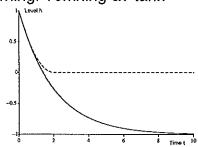
Linjärisering VII

Tankexempel

Stegsvar: Ändring av inflöde



Stor störning: Tömning av tank

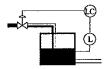


PROCESSREGLERING Sammanfattning Föreläsning 4: Processdynamik II • Analys utan att lösa ODE • Insignal-utsignalmodeller • Stegsvar och impulssvar - 1:a ordningens ODE - 2:a ordningens ODE med oscillationer • Manometerexempel • Poler och nollställe • Linjärisering

Institutionen för Reglerteknik Lunds Tekniska Högskola

PROCESSREGLERING

Återkopplade system I



kursprogram: http://www.control.lth.se/~kurspr

Innehåll

Dagens föreläsning

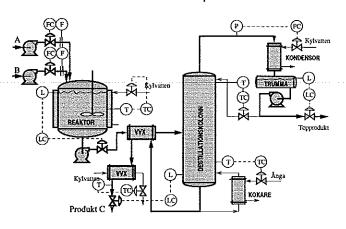
Föreläsning 5: Återkopplade system I Grunder och analys

- Blockdiagramalgebra
- Enkel reglering
 - Proportionell
 - Proportionell-Integrerande
- Analys av återkopplade system
 - Stationära fel
 - Känslighet
- På/Av-reglering

PC: kap 3.7, 4.1-3

Dynamik i kemiska processer

Processexempel 1



Hur beter sig reglersystemen?

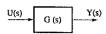
- Temperaturreglering
- Nivåreglering
- Flödesreglering

Detta är vad föreläsning 5 och 6 handlar om

Kopplade system I

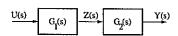
Blockdiagramalgebra

Grunder: Y(s) = G(s)U(s)



- Block representerar överföringsfunktion
- Pil representerar en signal

Seriekoppling:



$$Y(s) = G_2(s)Z(s) = G_2(s)(G_1(s)U(s))$$

= $G_{tot}(s)U(s)$

överföringsfunktionen från u(t) till y(t) är

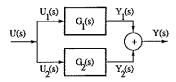
$$G_{tot}(s) = G_2(s)G_1(s)$$

• Seriekoppling är produkten av blocken

Kopplade system II

Blockdiagramalgebra

Parallellkoppling:



$$Y(s) = Y_1(s) + Y_2(s) = G_1(s)U_1(s) + G_2(s)U_2(s)$$

= $G_1(s)U(s) + G_2(s)U(s) = G_{tot}(s)U(s)$

överföringsfunktionen från u(t) till y(t) är

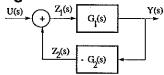
$$G_{tot}(s) = G_1(s) + G_2(s)$$

Parallellkoppling är summan av blocken

Kopplade system III

Blockdiagramalgebra

Återkoppling:



$$Y(s) = G_1(s)Z_1(s) = G_1(s)(U(s) + Z_2(s))$$

= $G_1(s)(U(s) - G_2(s)Y(s))$

Lös ut Y(s)!

$$(1 + G_1(s)G_2(s))Y(s) = G_1(s)U(s)$$

$$\Rightarrow Y(s) = \frac{G_1(s)}{1 + G_1(s)G_2(s)}U(s)$$

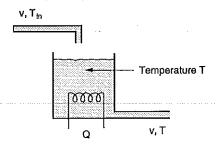
överföringsfunktionen från u(t) till y(t) är

$$G_{tot}(s) = \frac{G_1(s)}{1 + G_1(s)G_2(s)}$$

Detta kalias "baklångesmetoden" (se example 3.16)

Enkel reglering I

Tank med värmare



Energibalans över en ideal tank.

(se föreläsning 2: OH-tankreaktor IV)

In +Prod = Ut +Ack
$$q\rho C_p T_{in} + Q +0 = q\rho C_p T +\rho V C_p \frac{dT}{dt}$$

skriv balansen på tillståndform

$$\frac{dT}{dt} = \frac{q}{V}(T_{in} - T) + \frac{1}{\rho V C_n} Q$$

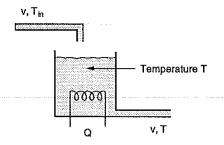
eller som i boken sidan 102

$$T_1 \frac{dT(t)}{dt} + T(t) = KQ(t) + T_{in}$$

dãr
$$T_1 = rac{V}{q}$$
 och $K = rac{1}{
ho q C_p}$

Enkel reglering II

Tank med värmare

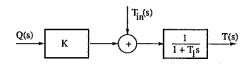


Differentialekvationen för tanktemperaturen

$$T_1 \frac{dT(t)}{dt} + T(t) = KQ(t) + T_{in}(t)$$

(dår $T_1 = \frac{V}{q}$ och $K = \frac{1}{\rho q C_p}$) har följande överföringsfunktion

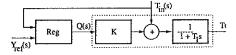
$$T(s) = \frac{1}{T_1s+1}(KQ(s) + T_{in}(s))$$



Enkel reglering III

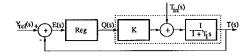
Fram- och återkoppling

Framkoppling:



- mätning av störning, T_{in} .
- kompensering av störning i Q(s)

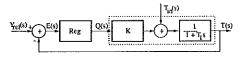
Återkoppling:



- mätning av reglerad variabel, T.
- reglering till önskat värde

Enkel reglering V

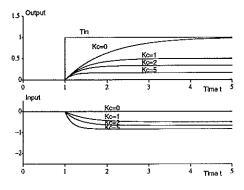
Proportionell reglering



Lös ut T!

$$T(s) = \frac{KK_c}{T_1s + 1 + KK_c} Y_{ref}(s) + \frac{1}{T_1s + 1 + KK_c} T_{in}(s)$$

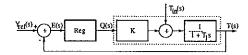
- 1:a ordnings system från y_{ref} till T(t)
- 1:a ordnings system från T_{in} till T(t)



 $(K=1 \text{ och } T_1=1)$

Enkel reglering IV

Proportionell reglering



P-reglering:

$$u(t) = K_c e(t) = K_c (y_{ref}(t) - y(t))$$

i vårt fall är Q(t) = u(t) och y(t) = T(t). OBS! K_c är regulatorns förstärkning.

$$T(s) = \frac{K}{T_1 s + 1} K_c (Y_{ref}(s) - T(s)) + \frac{1}{T_1 s + 1} T_{in}(s)$$

Alla T på vänster hand!

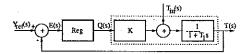
$$(1 + \frac{KK_c}{T_1s+1})T(s) = \frac{KK_c}{T_1s+1}Y_{ref}(s) + \frac{1}{T_1s+1}T_{in}(s)$$

Ta bort alla nämnare!

$$(T_1s + 1 + KK_c)T(s) = KK_cY_{ref}(s) + T_{in}(s)$$

Enkel reglering VI

Proportionell-Integrerande reglering



PI-reglering:

$$u(t) = K_c(e(t) + \frac{1}{T_i} \int_{-\tau}^{t} e(\tau) d\tau)$$

i vårt fall är Q(t) = u(t) och $e(t) = T_r(t) - T(t)$.

Laplacetransformen av PI-regulatorn:

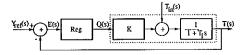
$$U(s) = K_c(1 + \frac{1}{T_i s})E(s) = K_c \frac{T_i s + 1}{T_i s}E(s)$$

Räkna ut det återkopplade systemet

$$T(s) = \frac{K}{T_1 s + 1} K_c \frac{T_i s + 1}{T_i s} (Y_{ref}(s) - T(s)) + \frac{1}{T_1 s + 1} T_{in}(s)$$

Enkel reglering VII

Proportionell-Integrerande reglering



Alla T på vänster hand!

$$(1 + \frac{KK_c}{T_1s + 1} \frac{T_is + 1}{T_is})T(s) = \frac{KK_c}{T_1s + 1} \frac{T_is + 1}{T_is} Y_{ref}(s) + \frac{1}{T_1s + 1} T_{in}(s)$$

Ta bort alla nämnare!

$$(T_i s(T_1 s + 1) + KK_c)T(s) = KK_c Y_{ref}(s) + (T_i s)T_{in}(s)$$

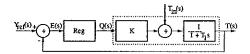
Lös ut T!

$$T(s) = \frac{KK_c}{T_i T_1 s^2 + T_i s + KK_c} Y_{ref}(s) + \frac{T_i s}{T_i T_1 s^2 + T_i s + KK_c} T_{in}(s)$$

• 2:a ordnings system från y_{ref} till T(t) och från T_{in} till T(t)

Enkel reglering VIII

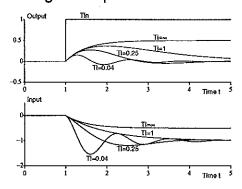
Proportionell-Integrerande reglering



Återkopplat system med PI-reglering

$$T(s) = \frac{KK_{c}}{T_{i}T_{1}s^{2} + T_{i}s + KK_{c}}Y_{ref}(s) + \frac{T_{i}s}{T_{i}T_{1}s^{2} + T_{i}s + KK_{c}}T_{in}(s)$$

- Temperaturen ställer in sig på yref
- Störningar kompenseras



$$(K = 1 \text{ och } T_1 = 1 \text{ samt } K_c = 1)$$

Enkel reglering IX

Sammanfattning

P-reglering:

- Minska störningars inverkan
- Insvängningshastigheten ändras
- Stationära fel

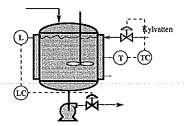
PI-reglering:

- Tar bort stationära fel
- Insvängningen kan börja oscillera

(gäller för detta fall)

Stationära fel I

Nivåreglering



Nivådynamik. (se föreläsning2: OH-Tankreaktor II)

$$\frac{dh}{dt} = \frac{1}{A}(q_{in} - q)$$

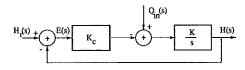
Laplacetransform

$$H(s) = \frac{K}{s}(Q_{in}(s) - Q(s))$$

 $(d ilde{a} ilde{r} ilde{K} = rac{1}{A})$ Överföringsfunktionen $G_{Q o H} = rac{-K}{s}$ "Processen" är en integrator!

Stationära fel II

Nivåreglering



Nivådynamik med P-regulator.

$$H(s) = \frac{K}{s}(Q_{in}(s) - K_c(H_r(s) - H(s)))$$

Lös ut H(s)

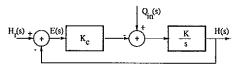
$$H(s) = \frac{1}{s - KK_c}(KQ_{in}(s) - KK_cH_r(s))$$

- Pol i KKc. Vad betyder det?
- $K_c < 0$. Varför då?
- Inget stationärt fel vid ändringar av H_r
- Stationärt fel vid ändringar av Q_{in}

(Vad är tidskonstant och statisk förstärkning i de olika överföringsfunktionerna)

Stationära fel III

Nivåreglering



Vi kan även uttrycka

• reglerfelet, $E(s) = H_r(s) - H(s)$

$$E(s) = (1 + \frac{KK_c}{s - KK_c})H_r(s) + \frac{K}{s - KK_c}Q_{in}(s)$$

$$= \frac{s}{s - KK_c}H_r(s) + \frac{K}{s - KK_c}Q_{in}(s)$$

• styrsignal, $U(s) = K_c E(s)$

$$U(s) = \frac{K_c s}{s - K K_c} H_r(s) + \frac{K_c K}{s - K K_c} Q_{in}(s)$$

(Vad är tidskonstant och statisk förstärkning i de olika överföringsfunktionerna)

Stationära fel IV

Nivåreglering

Slutvärdesteoremet säger:

$$\lim_{t\to\infty}e(t)=\lim_{s\to 0}sE(s)$$

Reglerfelet: $E(s) = \frac{s}{s-KK_c}H_r(s) + \frac{K}{s-KK_c}Q_{in}$

H_r är ett steg

$$\lim_{s\to 0} \frac{s\cdot s}{s-KK_c} H_r(s) = \lim_{s\to 0} \frac{s\cdot s}{s-KK_c} \frac{1}{s} = 0$$

• H_r är en ramp

$$\lim_{s\to 0} \frac{s\cdot s}{s-KK_c} H_r(s) = \lim_{s\to 0} \frac{s\cdot s}{s-KK_c} \frac{1}{s^2} = \frac{1}{-KK_c}$$

• Qin är ett steg

$$\lim_{s\to 0}\frac{s\cdot K}{s-KK_c}Q_{in}(s)=\lim_{s\to 0}\frac{s\cdot K}{s-KK_c}\frac{1}{s}=\frac{1}{-K_c}$$

Q_{in} är en ramp

$$\lim_{s\to 0}\frac{s\cdot K}{s-KK_c}Q_{in}(s)=\lim_{s\to 0}\frac{s\cdot K}{s-KK_c}\frac{1}{s^2}\to \infty$$

(Tolka!!!)

Stationära fel V

Sammanfattning

Integratorns placering

- Integrator i regulator eller process tar bort stationära fel map referenssignal
- Integrator i regulatorn tar bort stationära fel map störningar
- (se diskussion sid 108-110)

Nivåreglering mha utflödet

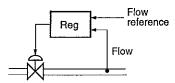
- Negativ förstärkning
- · Reverserad verkan

Nivåreglering mha inflödet

- Positiv förstärkning
- Direkt verkan
- (samma analys som ovan)

Känslighet I

Reglerventil



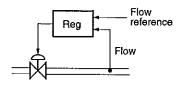
En enkel modell för reglerventilen

$$q = C_v f(z) \sqrt{\frac{\Delta p_v}{g}}$$

- Δp_v , tryckdifferens över ventil
- ullet C_{v} bestämmer storleken på ventilen
- f(z) bestäms av ventilkonstruktionen
- Ventilpositionering, $u \rightarrow z$, görs
 - pneumatiskt (tryckluft)
 - motor (elektisk)

Känslighet II

Flödesreglering



Antag:

- För en ventil gäller $q = K_v f(z)$
- Ventilens konstruktionen ger $f(z) = z^2$
- $K_v = 1$
- Studera stationäritet, z = u

Example 4.2: P-reglering

$$y_r = e + y = \frac{u}{K} + y = \frac{\sqrt{y}}{K} + y = f_1(y)$$

Linjärisering

$$\Delta y = (\frac{\partial f_1}{\partial y})^{-1} \Delta y_r = \frac{1}{\frac{1}{2K\sqrt{y}} + 1} \Delta y_r = \frac{2K\sqrt{y}}{1 + 2K\sqrt{y}} \Delta y_r$$

Om K är stort är överföring nästan 1 Okänslig för ventilkaraktäristik!

Känslighet III

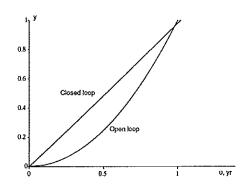
Flödesreglering

• Bara ventil (öppet system)

$$\Delta y = 2K\Delta u$$

• P-reglering (slutet system)

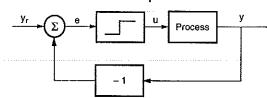
$$\Delta y = \frac{2Ku}{1+2Ku} \Delta y_r$$



Återkoppling gör systemet okänsligt för ventilkaraktäristik!

På/Av-reglering I

Principer



Mycket enkel form av reglering

· Regulator:

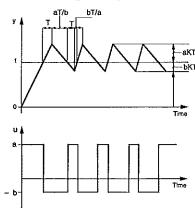
6

$$u = \begin{cases} u_{max} & ; e > 0 \\ u_{min} & ; e < 0 \end{cases}$$

- Styrdonet är ett relä eller strömbrytare
- Ex: Temperaturreglering med termostat

På/Av-reglering II

Egenskper



Ex: integrator med tidsfördröjning

$$\frac{dy(t)}{dt} = Ku(t-T)$$

- Oscillerar alltid
- Periodtid $T_p = T(2 + \frac{a}{b} + \frac{b}{a})$ (där $a = u_{max}$ och $b = -u_{min}$)
- Top-till-top värde (" \propto amplitud") A = (a + b)KT

På/Av-reglering III

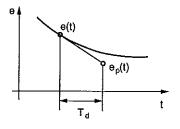
Modifieringar

Integrator med tidsfördröjning

$$\frac{dy(t)}{dt} = Ku(t-T)$$

- Oscillerar alltid
- Top-till-top värde (" \propto amplitud") A = (a + b)KT
- "Tröga" system (stora T) ger stora A.
 Stora svängningar!
- ⇒ Åtgärd: Prediktion av reglerfel

$$e_p(t) = e(t) + T_d \frac{de(t)}{dt}$$



På/Av-reglering IV

Modifieringar

Integrator med tidsfördröjning

$$\frac{dy(t)}{dt} = Ku(t-T)$$

- Oscillerar alltid
- Periodtid $T_p = T(2 + \frac{a}{b} + \frac{b}{a})$ (där $a = u_{max}$ och $b = -u_{min}$)
- "Snabba" system (små T) ger kort periodtid. Knatter!
- ⇒ Åtgärd: Relä med hysteres

$$u = \begin{cases} u_{max} & ; e > e_0 \\ u_0 + \frac{e}{2e_0}(u_{max} - u_{min}) & ; |e| \le e_0 \\ u_{min} & ; e < -e_0 \end{cases}$$

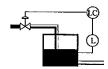
➤ 2e₀ <

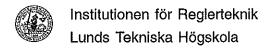
PROCESSREGLERING

Sammanfattning

Föreläsning 5: Återkopplade system I

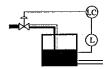
- Blockdiagramalgebra
- Enkla regulatorer
 - P- och PI-reglering
 - På/Av-reglering
- Analys av återkopplade system
 - I-del i regulator tar bort stationära fel
 - Känsligheten minskar vid återkoppling
 - Direkt och reverserad reglerverkan
- Reglerexempel
 - Temperatur, nivå, flöde





PROCESSREGLERING

Återkopplade system II



kursprogram: http://www.control.lth.se/~kurspr

Innehåll

Dagens föreläsning

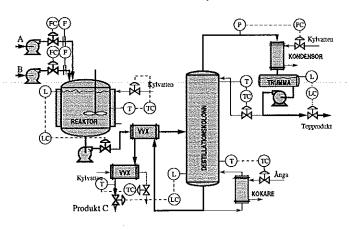
Föreläsning 6: Återkopplade system II Stabilitet och egenskaper

- Stabilitet
- PID-reglering
- Analys av ett återkopplat system
 - dynamik
 - störningsreduktion
 - robusthet

PC: kap 4.4 p 117-122

Dynamik i kemiska processer

Processexempel 1



Egenskaper hos ett reglersystem?

- Dynamik
- Störningsreduktion och stationära fel
- Stabilitet och robusthet

Detta är vad denna föreläsning handlar om

Stabilitet I

Definitioner

Definition 1 - Asymptotisk stabilitet Ett system är asymptotiskt stabilt om $y(t) \to 0$ då $t \to \infty$ för alla initialvärden då u(t) = 0.

Definition 2 - Stabilitet

Ett system är stabilt om y(t) är begränsad för alla initialvärden då u(t) = 0.

Definition 3 - Instabilitet

Ett system är instabilt om det finns något initialvärde som ger en obegränsad utsignal även om u(t) = 0.

Definition 4 - Insignal-utsignal stabilitet Ett system är insignal-utsignal stabilt om en begränsad insignal ger en begränsad utsignal för alla initialvärden.

Tolka!!!

Stabilitet II

Definitioner

Linjära system:

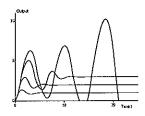
- Stabilitet år en systemegenskap
- · Asymptotisk stabilitet starkaste

I fortsättningen:

"Stabilitet" = Asymptotisk stabilitet

Olinjära system:

- Stabilitet gäller bara en lösning
- Ingen systemegenskap



Stabilitetstester I

Metoder

Kategorisering:

- Direkta metoder
 - Lösning av karakteristiska ekvationens rötter
- Indirekta metoder
 - Routh's algoritm
 - Nyquistkriteriet (föreläsning 12)

Två problem:

- Är det slutna systemet stabilt?
- Vad kan jag göra om det är instabilt?

Stabilitetstester II

Direkta metoder

1:a ordningens system:

$$G(s) = \frac{b}{s+a}$$

Asymptotiskt stabilt för alla a > 0.

2:a ordningens system:

$$G(s) = \frac{b_1 s + b_2}{s^2 + a_1 s + a_2}$$

Asymptotiskt stabilt för alla $a_i > 0$.

3:e ordningens system:

$$G(s) = \frac{b_1 s^2 + b_2 s + b_3}{s^3 + a_1 s^2 + a_2 s + a_3}$$

Asymptotiskt stabilt om $a_i > 0$ och $a_1a_2 > a_3$.

Stabilitetstester III

Routh's algoritm

Routh 1875

2

$$A(s) = a_0 s^n + b_0 s^{n-1} + a_1 s^{n-2} + b_1 s^{n-3} + \cdots$$

= 0

- Koefficienterna reella samt $a_0 > 0$
- Faktorera A(s) i $s + \alpha$ eller $s^2 + \beta s + \gamma$ Varje faktor stabil om koefficienterna positiva
- Nödvändigt villkor (men ej tillräckligt): Alla koefficienter i A(s) måste vara positiva

Stabilitetstester IV

Routh's algoritm

$$A(s) = a_0 s^n + b_0 s^{n-1} + a_1 s^{n-2} + b_1 s^{n-3} + \cdots$$

= 0

1. Bilda tabellen

2. Nya raden ur de två föregående

$$c_0 = a_1 - a_0b_1/b_0$$

$$c_1 = a_2 - a_0b_2/b_0$$

$$\vdots$$

$$c_i = a_{i+1} - a_0b_{i+1}/b_0$$

$$\vdots$$

3. Bilda n+1 rader

Stabilitetstester V

Routh's algoritm

Teorem 1 - Routh's stabilitetstest Antalet teckenväxlingar i a_0 , b_0 , c_0 , d_0 , ... (dvs i första kolumnen i tabellen) är lika med antalet rötter till A(s) som ligger i högra halvplanet.

Formelsamlingen sid 14 eller PC: sid 119-121

Stabilitetstester VI

Exempel 4.6

Hur många rötter har polynomet A(s) i HHP?

$$A(s) = s^5 + 2s^4 + 10s^3 + 30s^2 + 100s + 360 = 0$$

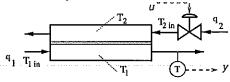
Tabellen blir

a: 1 10 100
b: 2 30 360
c:
$$10 - 1\frac{30}{2} = -5$$
 $100 - 1\frac{360}{2} = -80$ 0
d: $30 - 2\frac{-80}{-5} = -2$ $360 - 2\frac{0}{-5} = 360$
e: $-80 - (-5)\frac{360}{-2} = -980$ $0 - (-5)\frac{0}{-2} = 0$
f: $360 - (-2)\frac{0}{-980} = 360$

- 6 rader (n+1)
- första kolonnen: 1, 2, -5, -2, -980, 360
- Två teckenbyten ⇒ Två rötter i HHP

Värmeväxlar-reglering I

Fysikalisk modell



En förenklad modell diskuteras i föreläsning 2 - *OH-Värmeväxlare II*. Antag att varje sida är en väl omrörd kontrollvolym med konstant volym.

(OBSI en ganska grov approximation för "vanliga" vvx)

Två kopplade differentialekvationer för de båda temperaturerna.

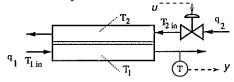
$$\frac{dT_1}{dt} = \frac{q_1}{V_1}(T_{1,in} - T_1) - \frac{kA}{\rho_1 V_1 C_{p_1}}(T_1 - T_2)$$

$$dT_2 = q_2 \qquad kA$$

$$\frac{dT_2}{dt} = \frac{q_2}{V_2}(T_{2,in} - T_2) + \frac{kA}{\rho_2 V_2 C_{p_2}}(T_1 - T_2)$$

VVX-reglering II

Linjär tillståndsform



Låt oss regler T_1 genom att styra q_2 . Viktiga störningar är $T_{1,in}$ och q_1 .

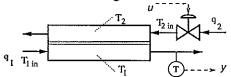
Linjärisera och gör variabelbyte:

$$x_1 = T_1 - T_1^0;$$
 $x_2 = T_2 - T_2^0;$ $u = q_2 - q_2^0$
 $v_1 = q_1 - q_1^0$ och $v_2 = T_{1,in} - T_{1,in}^0.$

$$\begin{array}{lcl} \frac{dx_1}{dt} & = & -(\frac{q_1}{V_1} + \frac{kA}{\rho_1 V_1 C_{p_1}}) x_1 + \frac{kA}{\rho_1 V_1 C_{p_1}} x_2 \\ & & + \frac{(T_{1,in}^0 - T_1^0)}{V_1} v_1 + \frac{q_1}{V_1} v_2 \\ \frac{dx_2}{dt} & = & \frac{kA}{\rho_2 V_2 C_{p_2}} x_1 - (\frac{q_2}{V_2} + \frac{kA}{\rho_2 V_2 C_{p_2}}) x_2 \\ & & + \frac{(T_{2,in}^0 - T_2^0)}{V_2} u \end{array}$$

VVX-reglering III

Överföringsfunktion



Antag att en värmeväxlare har följande parametrar

$$\frac{dx}{dt} = \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u + \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} v$$
$$y = \begin{bmatrix} 1 & 0 \\ x \end{bmatrix} x$$

Överföringsfunktion:

$$G_{vvx}(s) = C[sI - A]^{-1}B + D$$

= $\frac{1}{(s+2)(s+2)-1} = \frac{1}{(s^2+4s+3)}$

Poler i:

$$p_i = -2 \pm \sqrt{2^2 - 3} \Rightarrow p_1 = -3; \quad p_2 = -1$$

VVX-reglering IV

PI-reglering

$$G_{tot} = \frac{G_r G_{vvx}}{1 + G_r G_{vvx}}$$

$$G_{tot} = \frac{K_c \frac{s+1/T_i}{s} \frac{1}{(s^2+4s+3)}}{1 + K_c \frac{s+1/T_i}{s} \frac{1}{(s^2+4s+3)}}$$
$$= \frac{K_c (s+1/T_i)}{s(s^2+4s+3) + K_c (s+1/T_i)}$$

Nämnarpolynomet blir nu

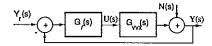
$$A(s) = s^3 + 4s^2 + (3 + K_c)s + K_c/T_i$$

Stabilt om (3:e ordn. syst. $a_1a_2 > a_3$)

$$3 + K_c > 0; \quad 4(3 + K_c) > K_c/T_i$$

VVX-reglering V

Stabilitet med PI



Stabilitetskravet är

$$4(3+K_c) > K_c/T_i$$

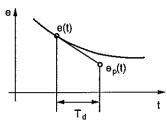
Vilket ger:

- PI-regulatorn $K_c = 1$ och $T_i = 0.1$ gör det återkopplade systemet **stabilt**
- Pl-regulatorn $K_c = 10$ och $T_i = 0.1$ gör det återkopplade systemet **instabilt**
- Pl-regulatorn $K_c = 1$ och $T_i = 0.05$ gör det återkopplade systemet **instabilt**

Olämpligt val av regulatorparametrar kan göra en stabil "process" instabil vid återkoppling.

PID-reglering I

Deriverande reglering



Deriverande del (prediktion)

$$D(t) = T_d \frac{de(t)}{dt}$$

D-del förekommer i PD och PID

PD-reglering

$$u(t) = K_c(e(t) + T_d \frac{de(t)}{dt})$$

PID-reglering

$$u(t) = K_c(e(t) + \frac{1}{T_i} \int_0^t e(\tau) d\tau + T_d \frac{de(t)}{dt})$$

(PD-regulatorer är inte så vanliga i processtillämpningar)

PID-reglering II

Överföringsfunktion

PID-reglering

$$u(t) = K_c(e(t) + \frac{1}{T_i} \int_0^t e(\tau) d\tau + T_d \frac{de(t)}{dt})$$

Överföringsfunktionen från E till U

$$\begin{split} \frac{U(s)}{E(s)} &= G_{PID} &= K_c (1 + \frac{1}{T_i s} + T_d s) \\ &= K_c \frac{T_i s + 1 + T_i T_d s^2}{T_i s} \\ &= K_c T_d \frac{s^2 + \frac{1}{T_d} s + 1 + \frac{1}{T_i T_d}}{s^2} \end{split}$$

- pol i origo, $p_1 = 0$, (integrator)
- nollställe i $z_{1,2}=rac{1}{T_d}(-rac{1}{2}\pm\sqrt{rac{1}{4}-rac{T_d}{T_i}})$
- \circ ($T_i < 4T_d$ ger reella nollställen)
- Fler nollställe än poler.

VVX-reglering Vi

PID-reglering

$$G_{tot} = \frac{G_r G_{vvx}}{1 + G_r G_{vvx}}$$

$$G_{tot} = \frac{K_c T_d \frac{s^2 + \frac{1}{T_d} s + \frac{1}{T_d T_i}}{s} \frac{1}{(s^2 + 4s + 3)}}{1 + K_c T_d \frac{s^2 + \frac{1}{T_d} s + \frac{1}{T_d T_i}}{s} \frac{1}{(s^2 + 4s + 3)}}$$

$$= \frac{K_c T_d (s^2 + \frac{1}{T_d} s + \frac{1}{T_d T_i})}{s(s^2 + 4s + 3) + K_c T_d (s^2 + \frac{1}{T_d} s + \frac{1}{T_d T_i})}$$

Nämnarpolynomet blir nu

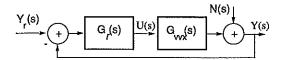
$$A(s) = s^{3} + (4 + K_{c}T_{d})s^{2} + (3 + K_{c})s + K_{c}/T_{i}$$

Stabilt om

$$(4 + K_c T_d)(3 + K_c) > K_c/T_i$$

VVX-reglering VII

Stabilitet med PID



- PI-regulatorn $K_c = 10$ och $T_i = 0.1$ gör det återkopplade systemet **instabilt**
- PID-regulatorn $K_c=10$, $T_i=0.1$ med $T_d>\frac{48}{120}=0.4$ gör det återkopplade systemet **stabilt**

D-delen förbättrar "stabiliteten"!

VVX-reglering VIII

Styrsignalanalys

Styrsignalens egenskaper för olika insignaler

$$U = G_r(Y_{ref} - (N + G_{vvx}(V + U)))$$

Lös ut U!

$$U = \frac{G_r}{1 + G_r G_{vvx}} (Y_{ref} - N) - \frac{G_r G_{vvx}}{1 + G_r G_{vvx}} V$$

Vilket ger 3 överföringsfunktioner

$$U = \frac{K_c T_d(s^2 + \frac{1}{T_d}s + \frac{1}{T_d T_i})(s^2 + 4s + 3)}{s(s^2 + 4s + 3) + K_c T_d(s^2 + \frac{1}{T_d}s + \frac{1}{T_d T_i})} Y_{ref}$$

$$- \frac{K_c T_d(s^2 + \frac{1}{T_d}s + \frac{1}{T_d T_i})(s^2 + 4s + 3)}{s(s^2 + 4s + 3) + K_c T_d(s^2 + \frac{1}{T_d}s + \frac{1}{T_d T_i})} N$$

$$- \frac{K_c T_d(s^2 + \frac{1}{T_d}s + \frac{1}{T_d T_i})}{s(s^2 + 4s + 3) + K_c T_d(s^2 + \frac{1}{T_d}s + \frac{1}{T_d T_i})} V$$

VVX-reglering IX

Styrsignalanalys

Styrsignalens egenskaper för laststörning V

$$U = -\frac{K_c T_d(s^2 + \frac{1}{T_d} s + \frac{1}{T_d T_i})}{s(s^2 + 4s + 3) + K_c T_d(s^2 + \frac{1}{T_d} s + \frac{1}{T_d T_i})} V$$

Slutvärdesteoremet säger för $V = \frac{1}{s}$

$$\begin{split} &\lim_{t\to\infty} u(t) = \lim_{s\to 0} s U(s) \\ &= \lim_{s\to 0} -\frac{K_c T_d(s^2 + \frac{1}{T_d}s + \frac{1}{T_dT_i})}{s(s^2 + 4s + 3) + K_c T_d(s^2 + \frac{1}{T_d}s + \frac{1}{T_dT_i})} \\ &= -\frac{K_c T_d \frac{1}{T_dT_i}}{K_c T_d \frac{1}{T_dT_i}} = -1 \end{split}$$

Styrsignalen eliminerar störningen V om systemet ställer in sig.

Detta påstående gäller BARA om regulatorparametrarna ger ett stabilt system! (se stabilitetstester ovan)

VVX-reglering X

Styrsignalanalys

Styrsignalens egenskaper för mätbrus N

$$U = -\frac{K_c T_d(s^2 + \frac{1}{T_d}s + \frac{1}{T_d T_i})(s^2 + 4s + 3)}{s(s^2 + 4s + 3) + K_c T_d(s^2 + \frac{1}{T_d}s + \frac{1}{T_d T_i})}N$$

Begynnelsevärdesteoremet säger för N=1

$$\begin{split} &\lim_{t\to 0} u(t) = \lim_{s\to \infty} sU(s) \\ &= \lim_{s\to \infty} -s \frac{K_c T_d(s^2 + \frac{1}{T_d}s + \frac{1}{T_dT_i})(s^2 + 4s + 3)}{s(s^2 + 4s + 3) + K_c T_d(s^2 + \frac{1}{T_d}s + \frac{1}{T_dT_i})} \\ &= \lim_{s\to \infty} -s \frac{K_c T_d s^2 s^2}{sc^2} = -\infty \end{split}$$

Styrsignalen är mycket känslig för mätbrus. D-del gör styrsignalen känsligare för mätbrus

VVX-reglering XI

Robusthetsanalys

Robusthet innebär att systemet bibehåller egenskaper vid störningar och parameter-variationer.

- Reglera vvx:en med en PID med $K_c=10, T_i=0.1, T_d=0.5$ (stabilt enligt ovan)
- Antag att q_1 halveras, tex $G_{vvx} = \frac{1}{c^2+3c+1}$
- Nytt $A(s) = s(s^2 + 3s + 1) + K_c T_d(s^2 + \frac{1}{T_d}s + \frac{1}{T_dT_i})$
- Parametervariationen pga q₁ gör systemet instabilt!
 Det är inte robust för denna typ av störning.

Enkel reglering

Sammanfattning

På/Av-reglering

- mycket enkel, "strömbrytare" kan vara styrdon
- oscillerar alltid

• PID-reglering

- P-del: ökar snabbhet, minskar fel
- I-del: eliminerar stationära fel, minskar "stabiliteten"
- D-del: ökar "stabiliteten", gör styrsignalen känslig

Analys av reglersystem

Sammanfattning

Analys av reglersystem görs för att avgöra

• Störningsreduktion

Om och hur snabbt störningar behandlas i reglersystemet

Stabilitet

För vilka parametrar är systemet stabilt

• Dynamik

Vilket dynamiskt beteende får det återkopplade systemet

• Känslighet och robusthet

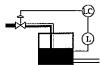
Hur ändras dynamik och stabilitet för stora störningar och parametervariationer.

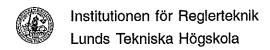
PROCESSREGLERING

Sammanfattning

Föreläsning 6: Återkopplade system II

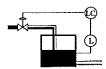
- Stabilitet
 - 1:a, 2:a och 3:e ordn. system
 - Routh's algoritm för högre ordn
- D-del i PID-regulatorn
- Analys av återkopplade system
 - Stabilitet
 - Styrsignalanalys
 - Robusthet
- Reglerexempel
 - Värmeväxlarreglering





PROCESSREGLERING

PID-regulatorn



kursprogram: http://www.control.lth.se/~kurspr

Innehåll

Dagens föreläsning

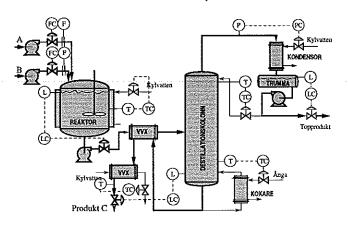
Föreläsning 7: PID-regulatorn Förverkligande och inställning

- PID-reglering
- Praktiska modifieringar
 - Proportionalband och β
 - Derivering av filtrerad mätning
 - Integratoruppvridning
- Inställningsmetoder
 - Empiriska
 - Modellbaserade
 - Automatiska

PC: kap 5.1-5 p 126-150

Reglering av kemiska processer

Processexempel 1



Processen regleras med 10 regulatorer

- PI- och PID-regulatorer
- Praktiska modifieringar av PID
- Inställningsmetoder av PID

Detta är vad denna föreläsning handlar om

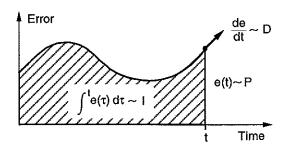
PID-regulatorn

Läroboksformen

"Läroboksformen" av en PID-regulator

$$u(t) = K_c \left[e(t) + \frac{1}{T_i} \int_{-\tau}^{t} e(\tau) d\tau + T_d \frac{de(t)}{dt} \right]$$
$$= P + I + D$$

- Dominerande typen av regulator
- 90 95 % är PID-regulatorer
- D-del ofta urkopplad



Praktiska modifieringar I

Proportionaldel

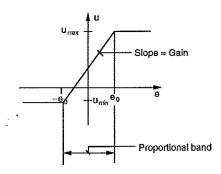
P-regulator:

• Bias (nollägesjustering): ub

$$u_p = K_c(u_c - y) + u_b = K_c e + u_b$$

Proportionalband: p_B

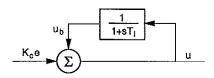
$$K_c = \frac{u_{max} - u_{min}}{p_B}$$



Praktiska modifieringar II

Integraldel

Automatisk nollägesjustering



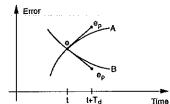
$$U = K_c E + \frac{1}{1 + sT_i} U \implies U = K_c (1 + \frac{1}{sT_i}) E$$

- Ti integration time or reset time
- Flytande reglering bara I-del

Praktiska modifieringar III

Derivatadel

Prediktion



- Maximal derivataförstärkning, N
- ullet Derivera bara på mätsignalen y

D-del med filtrering av mätsignal

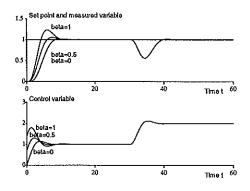
$$sT_dE(s) \approx \frac{sT_d}{1+sT_d/N}Y(s)$$

Praktiska modifieringar IV

Referensvärdesändringar

- ullet P-delen med viktad U_c , $(eta\,U_c-Y)$
- ullet D-delen med viktad U_c , $(\gamma U_c Y)$
- Två nya parametrar, β och γ för att ställa in servo-beteende

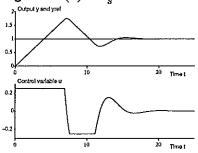
$$U = K_c \quad \left[\quad (\beta U_c - Y) + \frac{1}{sT_i}(U_c - Y) + \frac{sT_d}{1 + sT_d/N}(\gamma U_c - Y) \right]$$



Praktiska modifieringar V

Integratoruppvridning

PI-reglering av $G(s) = \frac{1}{s}$



Orsak:

- Styrsignalen är begränsad men det vet inte regulatorn om.
- I-delen integrerar fel orsakad av fel styrsignal (och inte av "processen")

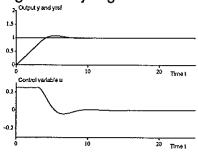
Åtgärd:

 I-delen måste modifieras då styrsignalen är begränsad ("mättad")

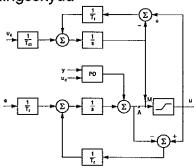
Praktiska modifieringar VI

I-del med följning

PI-reglering med följning



PID-regulator med manuell mode och uppvridningsskydd



Praktiska modifieringar VII

Stötfri övergång

Problem: Stötar i styrsignalen

Orsak:

- 1. Manuellt inställd styrsignal är skiljd ifrån regulatorns styrsignal vid inkoppling.
- 2. Nya regulatorparametrar ger en ny styrsignal vid parameterbyte

Åtgärder:

- I manuell mode är I-delen i följning (som vid styrsignalbegränsning)
- Vid parameterbyte måste I-del korrigeras för att inte ge styrsignalstöt

Praktisk PID-regulator

Sammanfattning

- PID:n 3 parametrar, K_c, T_i, T_d
- Nya parametrar
 - Proportionalband, p_B, u_{min}, u_{max}
 - Maximal derivataförstärkning, ${\it N}$
 - Viktade referenser, β , γ
 - (Reverserad verkan, R)
- Praktiska krav
 - Integratoruppvridningsskydd, T_r
 - Stötfria övergångar, T_m
- Implementationsformer
 - Parallell och seriell
 - Inkrementell
- Praktisk PID har 15-20 parametrar

Inställningsmetoder I

PID-inställning

- Manuella inställningsregler
- Empiriska regler baserade på enkla experiment
 - Ziegler-Nichols stegsvarmetod
 - Ziegler-Nichols självsvängningsmetod
 - det finns fler enkla metoder
- Modellbaserade metoder
 - Polplacering
 - Faskompensering (föreläsning 12)
 - det finns fler modellbaserade metoder
- Automatiska metoder

Inställningsmetoder II

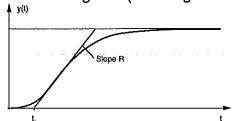
Manuell inställning

- Snabbhet:
 - P: Ökar med högre K_c
 - l: Ökar med *lägre* T_i
 - D: Ökar med högre T_i
- Laststörningsreduktion:
 - P: Mindre fel och fortare med högre K_c
 - l: Fel tas bort, fortare med lägre T_i
 - D: (relativt små effekter)
- Stabilitet:
 - P: Mindre med högre K_c
 - I: Mycket mindre med lägre T_i
 - D: Större med högre T_d
- Mätbruskänslighet:
 - P: Högre med högre K_c
 - I: (relativt små effekter)
 - D: Mycket högre med högre T_d

Inställningsmetoder III

Stegsvarsmetod

"Processens" stegsvar (utan regulator)



Ziegler-Nichols inställningsregler

Regulator type	K_c	T_i	T_d
P	1/a		
PI	0.9/a	3L	
PID	1.2/a	2L	0.5L

- Ur stegsvar fås: a = RL
- ullet Användbart om 0.15 < L/T < 0.6

Inställningsmetoder IV

Självsvängningsmetod

Självsvängningsexperiment:

- 1. Koppla in en P-regulator
- 2. Vrid upp K_c till självsvängning
- 3. Bestäm regulatorns förstärkning K_u och självsvängningsperioden T_u
- 4. Använd tabellen

Ziegler-Nichols inställningsregler

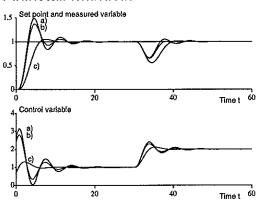
Regulator type	K_{c}	T_i	T_d
P	$0.5K_u$		
Pl	$0.45K_u$	$T_u/1.2$	
PID	$0.6K_u$	$T_u/2$	$T_u/8$

Inställningsmetoder V

Praktisk PID inställning

Praktisk regulatorinställning:

- 1. Gör Z-N stegsvarsmetod
- 2. Fininställ manuellt



"Process": $G(s) = \frac{1}{(s+1)^4}$

- a) Stegsvarsmetoden;
- b) Självsvängningsmetoden;
- c) Manuell

Inställningsmetoder VI

Polplacering

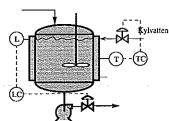
- Tag fram en linjär modell av "processen"
- Välj en regulatortyp
- Bestäm det återkopplade systemets karaktäristiska polynom via

$$G = \frac{G_{reg} G_{proc}}{1 + G_{reg} G_{proc}}$$

- Välj önskad polplacering (önskat beteende)
- Beräkna regulators parametrar
 - Lika många parametrar som poler
 entydigt ekvationssystem
 - Färre parametrar ⇒ ej godtycklig polplacering

Nivåreglering l

Fysikalisk modell



Nivådynamik. (se föreläsning2: OH-Tankreaktor II)

$$\frac{dh}{dt} = \frac{1}{A}(q_{in} - q)$$

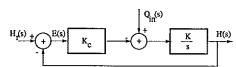
Laplacetransform

$$H(s) = \frac{K}{s}(Q_{in}(s) - Q(s))$$

 $(d ilde{a}r\ K=rac{1}{A})$ Överföringsfunktionen $G_{Q o H}=rac{-K}{s}$

Nivåreglering II

Polplacering med P-regulator



• Återkoppla med en P-regulator.

$$H(s) = -\frac{K}{s}K_c(H_r(s) - H(s))$$

• Slutna systemets överföringsfunktion från H_r till H med **P-regulator**.

$$G_{tot}(s) = -\frac{KK_c}{s - KK_c}$$

- Välj pol; $p_1 = -1$
- Detta ger

5

$$K_c = \frac{-1}{K} \qquad (= -A)$$

Nivåreglering III

Polplacering med PI-regulator

Återkoppla med en Pi-regulator.

$$H(s) = -\frac{K}{s}K_c\frac{s+1/T_i}{s}(H_r(s) - H(s))$$

 Slutna systemets överföringsfunktion från H_r till H med PI-regulator.

$$G_{tot}(s) = -\frac{KK_c(s+1/T_i)}{s^2 - KK_c(s+1/T_i)}$$

- Välj poler; $p_i = \omega_0(-\zeta \pm i\sqrt{1-\zeta^2})$ tex $\zeta = 0.7$ och $\omega_0 = 2K$
- Detta ger

$$K_c = 2\zeta \omega_0/(-K) \quad (= -4\zeta = 2.8)$$
 $T_i = \frac{-KK_c}{\omega_0^2} \quad (= \frac{2\zeta}{\omega_0} = 0.7A)$

Temperaturreglering II

Linjär tillståndsform

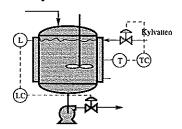
Låt oss reglera T_r genom att styra q_j . Linjärisera och gör variabelbyte:

$$x_1 = T_r - T_r^0; \quad x_2 = T_j - T_j^0; \quad u = q_j - q_j^0$$

$$\begin{array}{lcl} \frac{dx_{1}}{dt} & = & -(\frac{q_{r}}{V_{r}} + \frac{kA}{\rho_{r}V_{r}C_{p_{r}}})x_{1} + \frac{kA}{\rho_{r}V_{r}C_{p_{r}}}x_{2} \\ \frac{dx_{2}}{dt} & = & \frac{kA}{\rho_{j}V_{j}C_{p_{j}}}x_{1} - (\frac{q_{j}^{0}}{V_{j}} + \frac{kA}{\rho_{j}V_{j}C_{p_{j}}})x_{2} \\ & + \frac{(T_{j,in}^{0} - T_{j}^{0})}{V_{j}}u \end{array}$$

Temperaturreglering I

Fysikalisk modell



En förenklad modell är en modifierad vvx-modell (föreläsning 2 och 6).

Antag att varje sida är en väl omrörd kontrollvolym med konstant volym.

Två kopplade differentialekvationer för de båda temperaturerna.

$$\begin{array}{lcl} \frac{dT_r}{dt} & = & \frac{q_r}{V_r} (T_{in} - T_r) - \frac{kA}{\rho_r V_r C_{p_r}} (T_r - T_j) \\ \frac{dT_j}{dt} & = & \frac{q_j}{V_j} (T_{j,in} - T_j) + \frac{kA}{\rho_j V_j C_{p_j}} (T_r - T_j) \end{array}$$

reaktor - index r; mantel - index j.

Temperaturreglering III

Överföringsfunktion

Antag att en tank har följande parametrar

$$\frac{dx}{dt} = \begin{bmatrix} -0.1 & 0.02 \\ 0.1 & -0.5 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0.11 \end{bmatrix} u$$
$$y = \begin{bmatrix} 0.5 & 0 \end{bmatrix} x$$

Överföringsfunktion:

$$G_{tank}(s) = C [sI - A]^{-1} B + D$$

$$= \frac{1}{(s+0.1)(s+0.5) - 0.002}$$

$$= \frac{0.05}{(s^2 + 0.6s + 0.048)}$$

Poler i:

$$p_1 \approx -0.5; \quad p_2 \approx -0.1$$

Temperaturreglering IV

Polplacering med PID

• Återkoppla med en PID-regulator.

$$G_{tot}(s) = \frac{G_{reg}G_{proc}}{1 + G_{reg}G_{proc}}$$

• Slutna systemets överföringsfunktion från T_{ref} till T_r med **PID-regulator**.

$$\begin{split} G_{tot} &= \frac{K_c T_d \frac{s^2 + \frac{1}{T_d} s + \frac{1}{T_d T_l}}{s} \frac{1}{(s^2 + 0.6s + 0.048)}}{1 + K_c T_d \frac{s^2 + \frac{1}{T_d} s + \frac{1}{T_d T_l}}{s} \frac{1}{(s^2 + 0.6s + 0.048)}} \\ &= \frac{K_c T_d (s^2 + \frac{1}{T_d} s + \frac{1}{T_d T_l})}{s(s^2 + 0.6s + 0.048) + K_c T_d (s^2 + \frac{1}{T_d} s + \frac{1}{T_d T_l})} \end{split}$$

Nämnarpolynomet blir nu

$$A(s) = s^3 + (0.6 + K_c T_d)s^2 + (0.048 + K_c)s + K_c/T_i$$

Temperaturreglering V

Polplacering med PID

- Välj poler; $p_1 = \alpha \omega_0$ och $p_{2,3} = \omega_0(-\zeta \pm i\sqrt{1-\zeta^2})$
- Detta ger det önskade karaktäristiska polynomet:

$$A(s) = (s + \alpha \omega_0)(s^2 + 2\zeta \omega_0 s + \omega_0^2)$$

Vilket resulterar i ekvationssystemet

$$0.6 + K_c T_d = \alpha \omega_0 + 2\zeta \omega_0$$

$$(0.048 + K_c) = \omega_0^2 + 2\alpha \zeta \omega_0^2$$

$$K_c / T_i = \alpha \omega_0^3$$

• Regulatorparametrar:

$$K_c = \omega_0^2 (1 + 2\alpha \zeta) - 0.048$$

$$T_i = \frac{1}{\alpha \omega_0} (1 + 2\alpha \zeta) - \frac{0.048}{\alpha \omega_0^3}$$

$$T_d = \frac{(\alpha + 2\zeta)\omega_0 - 0.6}{\omega_0^2 (1 + 2\alpha\zeta) - 0.048}$$

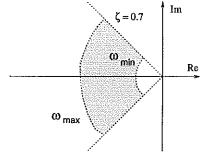
• Exempel: $\alpha = 1, \zeta = 0.7$ och $\omega_0 = 1$ $K_c = 2.35$; $T_i = 2.35$ och $T_d = 0.76$

Inställningsmetoder VII

Polplacering

Var skall man placera polerna?

- Krav på dämpning ger $\zeta > 0.7$
- Alla poler ungefär lika snabba $\alpha=1$
- Tillåten snabbhet kan begränsas av
 - robusthet (tröga högre ordn.)
 - mätsignal (snabba lägre ordn.)
 - styrsignal

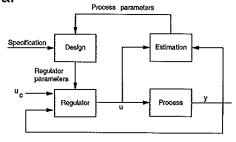


Inställningsmetoder VIII

Självinställande regulator

Adaptiv reglering bygger på iden att hela tiden göra modellbaserad inställning av regulatorn.

- Estimering av "processens" parametrar
- Design av regulator och dess parametrar



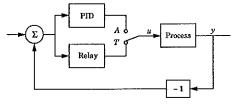
Regulatorn kan adaptera sig för att klara "processer" med varierande beteende.

Inställningsmetoder IX

Automatinställning

Automatinställning bygger på Ziegler-Nichols ide med ett enkelt experiment som bas för regulorinställning

- Operatören bestämmer när ett reglerexperiment skall göras
- Regulatorn skapar självsvängning med ett relä
- Regulatorn beräknar därefter nya parametrar



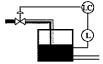
Regulatorn beräknar sina parametrar på order av operatören.

PROCESSREGLERING

Sammanfattning

Föreläsning 7: PID-regulatorn

- Förverkligande
 - Proportionalband
 - Integratoruppvridningsskydd
 - Derivering av mätsignal med filter
- Inställningsmetoder
 - Manuella metoder
 - Enkla empiriska metoder
 - Modellbaserade metoder
 - Automatisk inställning
- Reglerexempel
 - Nivå- och temperaturreglering av tank

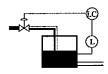


Institutionen för Reglerteknik Lunds Tekniska Högskola

PROCESSREGLERING

Kopplade regulatorer och

Modellbaserade regulatorer



kursprogram: http://www.control.lth.se/~kurspr

Repetition I

Processdynamik

 Processmodellering resulterar oftast i ett system med olinjär ODE:er

$$\dot{z}=f(z,u)$$

• **Linjärisering** approximerar den olinjära modellen (variabelbyte $x = z - z^0$)

$$\dot{x} = Ax + Bu$$

 Överföringsfunktion är Laplacetransformen av en linjär ODE

$$G(s) = C[sI - A]^{-1}B + D = \frac{B(s)}{A(s)}$$

Poler avgör systemets dynamisk egenskaper. (poler är rötter till A(s)) Nollställe avgör hur insignalen, U(s), påverkar systemet. (nollställe är rötter till B(s))

Innehåll

Dagens föreläsning

Föreläsning 8: Kopplade regulatorer och Modellbaserade regulatorer

- Kort repetition av LP3
- Schema f
 ör LP4
- Kopplade regulatorer, (kap 6)
 - Kaskadreglering
 - Kvotreglering
 - Framkoppling
 - Parameterstyrning
- Modellbaserade regulatorer, (kap 7)
 - Dödtidskompensering
 - IMC och Tillståndsåterkoppling

PC: kap 6 och 7 (7.3 och 7.4 läses översiktligt)

Repetition II

Analys av återkopplade system

• Återkoppling

$$G_{tot} = \frac{G_{reg}G_{proc}}{1 + G_{reg}G_{proc}}$$

- Återkopplade systemets dynamik
 Poler och nollställe hos G_{tot}
- Reglerfel och Styrsignaldynamik

$$E = \frac{1}{1 + G_{reg}G_{proc}}Y_{ref} + \frac{-G_{proc}}{1 + G_{reg}G_{proc}}V$$

Slutvärdesteoremet.

Stabilitet

Repetition III

Regulatorinställning

• Empiriska inställningsregler

- Manuella inställningsregler
- Ziegler-Nichols

Polplacering

- Ta fram en överföringsfunktion, G_p
- Återkoppla, $G_{tot} = \frac{G_r G_p}{1 + G_r G_p}$
- Välj polplacering
- Jämför koefficienterna ger K_c, T_i, T_d

• Designkrav:

- Robusthet, variationer i G_p
- Styrsignalbegränsningar
- Mätbrus

Processreglering

Schema för LP4

Kursavsnitt före påsk:

Processreglersystem:

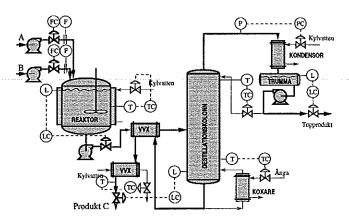
- 8 Kopplade regulatorer (kap 6-7)
- 9 Processreglersystem (utdelat mtrl)
- 10 Multivariabel reglering (kap 9)

Kursavsnitt efter påsk:

- 11 Dator- och sekvensstyrning (kap 8, 10)
- 12 Frekvensmodeller (kap 3.8-9, 4.4)
- 13 Repetition

Reglering av kemiska processer

Processexempel 1



Processen regleras med 10 enkla regulatorer

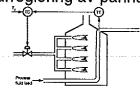
- Bättre reglering med fler mätsignaler?
- Hur kopplar vi ihop regulatorer?

Detta är vad denna föreläsning handlar om

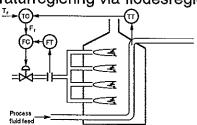
Kaskadreglering I

Extra mätsignal

• Temperaturreglering av panna.

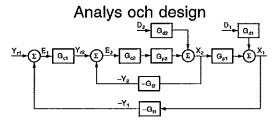


• Temperaturreglering via flödesreglering.



- Flödesregleringen kallas inre krets eller sekundärkrets
- Temperaturregleringen kallas yttre krets eller primärkrets

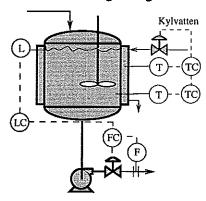
Kaskadreglering II



- Analys: antag snabb inre krets
 - Inre krets eliminerar D_2
 - Okänslig mot variationer i G_{p2}
 - Yttre krets används för D_1 och Y_{r1}
- Design:
 - Inre krets snabbare är yttre
 - Inre krets P(D)-regulator
- När är kaskad onödig
 - Tidsfördröjningar eller nollställe i HHP i inre kretsen
 - Viktigaste störningarna i yttre loopen

Kaskadreglering III

Nivåreglering



Viktiga störningar på nivån i reaktor

- Inre krets flödesreglering
 - Tryckvariationer över ventil
 - Olinjär ventil
- Yttre krets nivåreglering
 - Inflödesvariationer

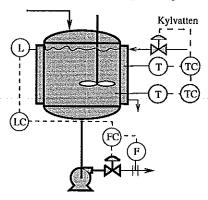
Kaskadreglering IV

Design av nivåreglering

- 1. Ventil: $G_v = \frac{K_v}{T_v s + 1}$
- 2. Nivå: $G_t = -\frac{K_t}{s}$
- 3. Rita blockschema
- 4. Polplacering av inre loop (P-reg)
- 5. Antag mycket snabb inre loop
- 6. Polplacering av yttre loop (PI-reg)

Kaskadreglering V

Temperaturreglering



Viktiga störningar på reaktortemperatur

- Inre krets kylreglering
 - Temperaturvariationer i kylvatten
 - Kylflödesvariationer
 - Olinjär ventil
- Yttre krets reaktorreglering
 - Inflödesvariationer
 - Reaktionsvärmevariationer