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1. Introduction

Construction of digital control systems is done by iterations of the two distinct
phases design and implementation. The design phase, that consists of the three
tasks modeling, control design and simulation, has adequate computer support. The
second phase that includes coding, compilation, experimentation, debugging and
modification, still lack tool support for the control engineering concepts used in
the first phase. Several attempts has been done to remedy this. One possibility is
to base all work on a graphical system representation that is used for simulation
[MathWorks, 1996] and automatic generation of real time code. This works quite well
for simple control tasks consisting of a few loops but not so well for more complicated
tasks that also includes logic and sequencing. To implement a good real time system
it is also essential to have a more detailed representation of the interaction of the
real time tasks than can be provided by a block diagram for a control system.

A good experimental environment should also be interactive. It should thus be pos-
sible to change parameters and even structure on-line. This thesis describes the pal

language used in an attempt to develop a system that fulfills the goals above. The
idea has been to investigate if a flexible interactive environment can be implemented
with a reasonable effort.

1.1 Pålsjö

Pålsjö [Eker and Blomdell, 1996] is a software environment for development of real-
time control systems. It is a framework for construction and execution of control
applications which focus on rapid prototyping of control systems. It exploits the
traditional metaphor of control blocks connected to each other. The designer off-line
defines a set of blocks which later at run-time can be instantiated and connected
to form a control system. Since timing is critical in many control systems, special
effort has been made to help minimize computational delays of algorithms.

The Pålsjö system consists of two main parts; the compiler described in this thesis
and a run-time system. The compiler translates blocks written in PAL into C++-
code. The C++-code is then compiled and linked with the run-time system. The
run-time systems provides a text interface for the user and a network interface for
data exchange. This allows a configuration where the controller executes on one
machine and data presentation is executed on another machine. During runtime all
kinds of modifications to controller structure and parameters can be done without
stopping the system.

1.2 pal

During the initial phase of the Pålsjö design, algorithms were written in C++ [Lipp-
man, 1989], but it was soon apparent that high-level programming languages lacked
mechanisms to efficiently isolate algorithms from even minor architectural changes
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Chapter 1. Introduction

of the underlying run-time system, necessitating many rewrites of all algorithms as
the platform evolved.

To protect the investment in algorithms, the language pal (Pålsjö Algorithm Lan-
guage) was introduced. The main focus during the design of pal, has been that the
notation should be easy to read and make the semantic gap between control theory
and the implementation of algorithms as small as possible. It’s not intended to be
a full fledged language for everyday programming, which means that things like
pointers and bit manipulations are intentionally omitted from the language, while
polynomials, matrices and Grafcets are supported.

An added benefit of a specialized language, is that it’s relatively easy to create a
new back-end, so the same algorithm can be reused in a new framework.

1.3 Experiences so far

Pålsjö has now been used experimentally in several projects:

• Control of inverted pendulums.

• Integrated Control and Diagnostics Using Robust Control Methods [Åkesson,
1996].

• General adaptive regulators.

• Hybrid Control of a Double Tank System [Malmborg and Eker, 1997].

• Fuzzy control (laboratory exercise in Control System Synthesis).

• Auto-tuning of Robot Servo (course project in Adaptive Control/Real-Time pro-
gramming).

During the experiments it has been demonstrated that a specialized language tai-
lored for control engineers helps to focus the effort on control issues instead of low
level programming details. The system is useful after a very brief introduction, and
clearly shows that the introduction of yet another language helps to further improve
the control engineers productivity.

The Pålsjö system runs on Sun/Solaris, VME-m68k, and Windows NT. The compiler
is currently only available on Solaris.

1.4 Future enhancements

Since the main focus of pal is to transform algorithms to other representations, it’s
important that as much of the design as possible be propagated. Since comments
are often used to augment algorithms, they should preferably be preserved in the
transformation. Unfortunately this is currently not the case, since comments are
stripped off in the compiler’s initial lexical analyzer. The right way to go, is to make
comments an integral part of the pal language.
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1.5 Outline of this report

The analysis of Grafcets should be rewritten, since it currently doesn’t handle some
legal Grafcets (the code generation is believed to be correct though).

In an attempt to formally capture design constraints of algorithms, work is currently
in progress to add the notion of contracts [Helm et al., 1990] to the language.

1.5 Outline of this report

The report will start with a few simple control engineering examples, then a descrip-
tion of pal program structure is followed by a chapter about Grafcet. The appendices
covers compiler usage, syntax and the nitty-gritty details of the actual compiler im-
plementation.

1.6 Inspiration and acknowledgments

The pal language constructs has many different roots, some things that immedi-
ately comes to mind are: the module concept mimics the one in Modula-2 [Wirth,
1985], the way to return function results is borrowed from Eiffel [Meyer, 1988], the
way to express Grafcet [David, 1995] charts comes from the IEC 1131 [Int, 1992]
standard and the overall look has its roots in Algol [Rutishauser, 1967]. The com-
piler implementation has been greatly simplified by the use of the well integrated
cocktail suite of compiler-compiler tools [Grosch, 1991].

Special thanks go to Johan Eker and Anders Robertson that gave valuable critic
and suggestions during the initial design of pal.
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2. Examples

This section will present a few building blocks that shows how common control
engineering algorithms can be expressed in pal.

2.1 PID controller

A simple PID controller with anti-windup is implemented in the following pal mod-
ule.

module ExamplePID;

block PID

y, yref, v : input real;
u : output real;
K, Ti, Td, Tr, N : parameter real;
P, I, D, e, yold : real;
h : sampling interval;
d1 � Td / (Td + N ∗ h);
d2 � K ∗ N ∗ d1;
i1 � h ∗ K / Ti;
w1 � h / Tr;

forward begin

e :� yref − y;
P :� K ∗ e;
D :� d1 ∗ D + d2 ∗ (yold − y);
u :� P + I + D;

end forward;

backward begin

yold :� y;
I :� I + i1 ∗ e + w1 ∗ (v − u);

end backward;

end PID;

end ExamplePID.

2.2 Summing block

A summing block that can handle any number of inputs is shown in the following
pal code.

module ExampleSum;

block Sum

n : dimension;
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2.3 State-space controller

in : array [1..n] of input real;
out : output real;

forward

tmp : real;
i : integer;

begin

tmp :� 0.0;
for i :� 1 to n do

tmp :� tmp + in[i];
end for;
out :� tmp;

end forward;

end Sum;

end ExampleSum.

2.3 State-space controller

A single input single output (SISO) state-space controller can be implemented as
follows:

module ExampleStateSpace;

block StateSpace

n : dimension;
A : parameter matrix [1..n, 1..n] of real;
B : parameter matrix [1..n, 1..1] of real;
C : parameter matrix [1..1, 1..n] of real;
D : parameter matrix [1..1, 1..1] of real;
x : matrix [1..n, 1..1] of real;
u : input real;
y : output matrix [1..1, 1..1] of real;

forward begin

y :� C ∗ x + D ∗ u;
end forward;

backward begin

x :� A ∗ x + B ∗ u;
end backward;

end StateSpace;

end ExampleStateSpace.
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3. Program structure

3.1 Data

Data is the common name of all the items that an algorithm operates on. Every
piece of data has an associated type that determines what can be done with that
specific item. In addition to the type, an item may have associated modifiers that
affect what can be done with it.

Scalar types

Boolean A boolean value is one of the logical truth values true or false. A boolean
value is returned by:

• The predefined identifiers true or false.

• The logical operators and, or or not applied to boolean operands.

• The relational operators < (less than), <� (less than or equal to), <> (not
equal to), � (equal to), >� (greater than or equal to) or > (greater than)
applied to integer, real or polynomial operands.

• A call to a boolean function.

• Reference to a boolean variable.

Integer An integer value is a natural number that falls within some implemen-
tation imposed limits. An integer value is returned by:

• The operators ∗, div, mod, + or − applied to integer operands.

• A call to an integer function.

• Reference to an integer variable.

Real A real value is a real number that falls within some implementation imposed
limits. An real value is returned by:

• The operators ∗, /, + or − applied to real operands.

• A call to a real function.

• Reference to a real variable.

Dimension A dimension variable is an integer which gets its value when an
instance of a block is created. Inside algorithms it is used as a constant integer.

n : dimension;
. . .
for i :� 1 to n do
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3.1 Data

Sampling interval The sampling interval (in seconds) of a specific block can be
accessed by declaring a sampling interval variable and use it as a real.

h : sampling interval;
. . .
i :� i + h ∗ K ∗ e / Ti;

Aggregate types

Array An array is a bounded sequence of elements of some type. The bounds can
be any integer expression that can be evaluated where the array is declared. The
only operations supported on arrays are assignment and subscripting.

in : array [1..n] of input real;
. . .
tmp :� in[1];
for i :� 2 to n do

tmp :� tmp + in[i];
end for;

Matrix A matrix is a two-dimensional array of reals. A matrix value is returned
by:

• The operators ∗, + or − applied to matrix operands.

• The operator ∗ applied to a scalar and a matrix operand.

• Reference to a matrix variable.

x : matrix [1..n, 1..1] of real;
A : parameter matrix [1..n, 1..n] of real;
B : parameter matrix [1..n, 1..1] of real;
. . .
x :� A ∗ x + B ∗ u;

Polynomial A polynomial is a one-dimensional array of reals. A polynomial value
is returned by:

• The operators ∗, div, mod, + or − applied to polynomial operands.

• The operator ∗ applied to a scalar and a polynomial operand.

• Reference to a polynomial variable.

A polynomial can be evaluated in a specific point by treating it as a function of a
single real argument.

T, Am, Ao, B : polynomial [n] of real;
. . .
T :� Am(1.0) / B(1.0) ∗ Ao;
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Chapter 3. Program structure

Modifiers

Input The input modifier is used in block or procedure declarations to indicate
that a variable is an input. An input variable may not be assigned a value.

in : input real;

Output The output modifier is used in block or procedure declarations to indicate
that a variable is an output.

out : output real;

Parameter The parametermodifier is used in block declarations to indicate that
a variable is a parameter. A parameter is a variable that only changes when the
system is reconfigured.

par : parameter real;

Derived parameter

Derived parameters are named expressions that only depends on parameters, con-
stants and the sampling interval. They are reevaluated every time a parameter or
the sampling interval of the block changes. Since they are calculated only when
necessary, use of them can lower the total workload on the system. Their type is
deduced from the expression and should not be declared.

K, Ti : parameter real;
h : sampling interval;
. . .
bi � h ∗ K / Ti;

3.2 Expressions

Expressions describe how the calculation of new data values should be performed.
What calculations can be done with a specific item, depend on its type and modifiers.

Unary expressions

Unary expressions only involve one operand (either an expression or an item of
data). In pal three kinds of unary expressions are possible:

• Referencing a data item.

• Arithmetic negation (e.g. −pi).

• Boolean negation (e.g. not bad).

Binary expressions

Binary expressions involve two operands. There are three distinct kinds of binary
expressions:
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3.3 Statements

• Arithmetic expressions (i.e. +, −, ∗, /, mod or div), that returns an arithmetic
result.

• Relational expressions (i.e. <, <�, <>, �, >� or >), that returns a boolean
result.

• Polynomial evaluation, that returns the value of the polynomial when evalu-
ated in a specific point.

Other expressions

Other expressions involves a variable number of operands.

• Subscripting (e.g. x[i]), that returns a specific part of an array, matrix or poly-
nomial.

• Functions calls, that return a result of the kind specified in the function dec-
laration.

3.3 Statements

Every useful algorithm generate output values that eventually influence the envi-
ronment. The values are generated by the execution of one or more actions described
by statements. Statements are either simple (e.g. assignment) or compound.

Simple statements

Assignment The most fundamental statement is the assignment statement. It
specifies that a variable should assigned the value of an expression.

in : input real;
out : output real;
K : parameter real;
. . .
out :� K ∗ in;

Procedure call To make algorithms easier to understand and maintain, pal has
the concept of procedures. A procedure is called by a statement containing the
name of the procedure followed by a parenthesized list of its actual arguments.
How parameters are passed, depend on what modifiers (input or output) are used
in the procedure declaration.

P();

Compound statements

If statement The if statement is used to select between a number of disjoint
statement sequences (branches). At most one of its branches can be selected each
time the if statement is executed. The statements in the first branch that satisfies
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Chapter 3. Program structure

its condition will be executed. If no condition is satisfied, the else branch will be
chosen.

if value < min then

result :� min;
elsif value > max then

result :� max;
else

result :� value;
end if;

For statement The for statement is used to execute a sequence of statements a
specified number of times. Often the bounds of the loop variable are determined by
block dimension variables.

n : dimension;
in : array [1..n] of input real;
out : output real;
. . .
for i :� 1 to n do

out :� out + in[i];
end for;

3.4 Procedures and functions

Procedures

Procedures are used to group together statements in the algorithm. Their objective
is twofold:

• The statements can be given a descriptive name.

• Statements can be reused in more than one place in the algorithm.

procedure MinMax(
min : output array [1..n : integer] of real;
max : output array [1..n] of real;
a1 : input array [1..n] of real;
a2 : input array [1..n] of real

);
i : integer;

begin

for i :� 1 to n do

if a1[i] < a2[i] then
min[i] :� a1[i];
max[i] :� a2[i];

else
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3.5 Forward and backward

min[i] :� a2[i];
max[i] :� a1[i];

end if;
end for;

end MinMax;

Functions

Functions are like procedures, but in addition they return a value. In every function
there is a reserved variable result that is of the same type as the function return
type. The result variable can be used as any other variable of its type.

function Min(
a1 : input array [1..n : integer] of real

) : real;
i : integer;

begin

result :� a1[1];
for i :� 2 to n do

if result < a1[i] then
result :� a1[i];

end if;
end for;

end Min;

3.5 Forward and backward

To accommodate control engineering requirements [Åström and Wittenmark, 1990],
there are two predeclared block procedures, the forward procedure to calculate
outputs and the backward procedure to update internal states after all other blocks
have run their forward procedures. A typical example is a simple PI-controller with
anti-windup.

block PI

y, yref, v : input real;
u : output real;
K, Ti, Tr : parameter real;
P :� 0.0, I :� 0.0, e : real;
h : sampling interval;

forward begin

e :� yref − y;
P :� K ∗ e;
u :� P + I;

end forward;

backward begin

I :� I + h ∗ K / Ti ∗ e + h / Tr ∗ (v − u);
end backward;

13



Chapter 3. Program structure

end PI;

3.6 Modules and blocks

Modules

Modules is the top-level structuring concept in pal. Inside a module blocks, pro-
cedures and functions are declared. Modules are used to package blocks that are
somehow related to each other. Things declared in one module are not visible in
other modules unless they are explicitly imported.

Blocks

Blocks correspond to the black boxes that control engineers uses as their main
abstraction view. A block’s main characteristic is that it has inputs and outputs.
It may also have parameters that reflects the parameters used in algorithms (e.g.
the gain K), dimensions and derived parameters.

module PController;

block P

y, yref : input real;
u : output real;
K : parameter real;

forward begin

u :� (yref − y) ∗ K;
end forward;

end P;

end PController.
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4. Grafcet

Grafcet is a convenient way to express sequences and in pal they can be used to
ensure the proper sequencing of algorithms as well as sequence control of external
systems.

4.1 Steps

Steps represent a particular state of a sequence, and are roughly equivalent to a
state of a state-machine, except that more than one step may be active at the same
time. A sequence always starts in its mandatory initial step.

initial step Init;
pulse activate V2off;

end Init;
step HeatOn;

activate Qon;
end HeatOn;

step HeatOff;
pulse activate Qoff;

end HeatOff;

As long as a step is active, its action associations are evaluated to determine if
the action should be run. The associations to actions can be of nine different kinds,
namely:

• activate 〈〈identifier〉〉 – the action is run while the step is active.

• pulse activate 〈〈identifier〉〉 – the action is run once.

• limit 〈〈expression〉〉 activate 〈〈identifier〉〉 – the action is run while the step is
active, until the specified time has elapsed.

• delay 〈〈expression〉〉 activate 〈〈identifier〉〉 – the action is delayed until the spec-
ified time has elapsed, and is then run while the step is active.

• store activate 〈〈identifier〉〉 – the action is run until explicitly reset.

• store limit 〈〈expression〉〉 activate 〈〈identifier〉〉 – the action is run until the
specified time has elapsed, and then has to be explicitly reset until any other
timed association can be legally activated.

• store delay 〈〈expression〉〉 activate 〈〈identifier〉〉 – the action is delayed until the
specified time has elapsed, and is then run until explicitly reset.

• delay 〈〈expression〉〉 store activate 〈〈identifier〉〉 – if the step is still active after
the specified delay has elapsed, the action is run until explicitly reset.

• reset 〈〈identifier〉〉 – a previously stored, store delayed, delay stored or store

limited action is reset.
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Chapter 4. Grafcet

4.2 Actions

Actions contain the code that should be executed when it has been activated by some
step. As long as it is active, the action executes once every sampling period.

action Qon;
begin

Heater :� Low;
end Qon;

action Qoff;
begin

Heater :� false;
end Qoff;

4.3 Transitions

Transitions control the activation and deactivation of steps. A transition is fired if
all the steps leading into it are active and the associated condition is fulfilled. When
a transition is fired, the steps preceding it are deactivated, and the steps following
it are activated.

transition from HeatOn to HeatOff when T >� Tref;

transition from HeatOff to HeatOn when T < Tref;

4.4 Example: A boiler process

The following pal code implements a grafcet for the control of a simple boiler.

module Boiler;

block Boiler

Start, Low, High : input boolean;
Heater, V1, V2 : output boolean;
T : input real;
Tref : parameter real;

initial step Init;
pulse activate V2off;

end Init;

step HeatOn;
activate Qon;

end HeatOn;

step HeatOff;
pulse activate Qoff;

end HeatOff;

step Fill;

16



4.4 Example: A boiler process

Init

Start

Fill

High

Full

HeatOn

T >= Tref

HeatOff

T < Tref

true

Empty

not Low

V2off

V1on

V1off

Qon

Qoff

V2on

Figure 4.1 Grafcet describing control of a simple boiler

pulse activate V1on;
end Fill;

step Full;
pulse activate V1off;

end Full;

step Empty;
activate V2on;

end Empty;

action V1on;
begin

V1 :� true;
end V1on;
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Chapter 4. Grafcet

action V1off;
begin

V1 :� false;
end V1off;

action V2on;
begin

V2 :� true;
end V2on;

action V2off;
begin

V2 :� false;
end V2off;

action Qon;
begin

Heater :� Low;
end Qon;

action Qoff;
begin

Heater :� false;
end Qoff;

transition from Init to Fill, HeatOn when Start;

transition from HeatOn to HeatOff when T >� Tref;

transition from HeatOff to HeatOn when T < Tref;

transition from Fill to Full when High;

transition from HeatOff, Full to Empty when true;

transition from Empty to Init when not Low;

end Boiler;

end Boiler.
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A. Using the compiler

After a control algorithm has successfully been translated to a pal module, it is
time to compile it. The compilation can be considered to be done in two distinct
steps; analysis and code generation. The compiler is invoked by the command
pal <options> <files>. The supported options are:

• -pretty generate a pretty printed text-version of the module.

• -palsjo generate C-files that can be compiled and linked into the pålsjö run-
time system.

• -html generate a pretty printed version of the module with HTML markup
commands embedded.

• -tex generate a pretty printed version of the module with TeX markup com-
mands embedded.

• -fig generate a fig version of all grafcets in a module.

To invoke the analysis step only a filename is necessary, but to generate any useful
output at least one of the code-generation options above has to be given.
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B. Reserved words and syntax

B.1 Reserved words

The reserved symbols and words in PAL are:

( � dimension initial pulse

) > div input real

∗ >� do integer reset

+ [ downto interval sampling

, ] else limit step

− action elsif matrix store

. activate end mod then

.. and external module to

/ array false not transition

: backward for of true

:� begin forward or when

; block from output while

< boolean function parameter

<� declare if polynomial

<> delay import procedure

B.2 Syntax

Typographical notation

In the following Extended Backus-Naur Form (EBNF) syntax diagrams the follow-
ing typographical elements are used:

• Terminal symbols (e.g. end).

• Non-terminal symbols (e.g. 〈〈module〉〉).

• Grouping (e.g. [[ , 〈〈identifier〉〉 ]]).

• Optional parts (e.g. 〈〈actuals〉〉? ).

• Selection (e.g. [[ 〈〈expression〉〉 tt 〈〈identifier〉〉 : integer ]]).

• Repetition zero or more times (e.g. [[ , 〈〈identifier〉〉 ]]∗ ).

• Repetition one or more times (e.g. 〈〈digit〉〉+ ).
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Chapter B. Reserved words and syntax

EBNF syntax

letter >
a tt b tt c tt d tt e tt f tt g tt h tt i tt j tt k tt l tt m tt n tt o tt p tt
q tt r tt s tt t tt u tt v tt w tt x tt y tt z tt
A tt B tt C tt D tt E tt F tt G tt H tt I tt J tt K tt L tt M tt N tt O tt P tt
Q tt R tt S tt T tt U tt V tt W tt X tt Y tt Z

digit > 0 tt 1 tt 2 tt 3 tt 4 tt 5 tt 6 tt 7 tt 8 tt 9

identifier > 〈〈letter〉〉 [[ 〈〈letter〉〉 tt 〈〈digit〉〉 ]]∗
module > module 〈〈identifier〉〉 〈〈import〉〉∗ 〈〈declaration〉〉∗ end 〈〈identifier〉〉 .

import > [[ import 〈〈identifier〉〉 [[ , 〈〈identifier〉〉 ]]∗ ]]? ;

declaration >
[[ block 〈〈identifier〉〉 〈〈declaration〉〉∗ end 〈〈identifier〉〉

tt procedure 〈〈identifier〉〉 ( 〈〈formals〉〉 ) ; 〈〈body〉〉 end 〈〈identifier〉〉

tt function 〈〈identifier〉〉 ( 〈〈formals〉〉 ) : 〈〈type〉〉 ; 〈〈body〉〉 end 〈〈identifier〉〉

tt forward ; 〈〈body〉〉 end forward

tt backward ; 〈〈body〉〉 end backward
tt 〈〈variables〉〉 : 〈〈type〉〉

tt 〈〈identifier〉〉 � 〈〈expression〉〉

tt [[ initial ]]? step 〈〈identifier〉〉 ; 〈〈action〉〉∗ end 〈〈identifier〉〉

tt transition from 〈〈steps〉〉 to 〈〈steps〉〉 when 〈〈expression〉〉

tt action 〈〈identifier〉〉 ; 〈〈body〉〉 end 〈〈identifier〉〉

]]? ;

body > 〈〈declaration〉〉∗ begin 〈〈statement〉〉∗
formals > [[ 〈〈identifier〉〉 : 〈〈type〉〉 [[ ; 〈〈identifier〉〉 : 〈〈type〉〉 ]]∗ ]]?

action >
[[ activate 〈〈identifier〉〉

tt reset 〈〈identifier〉〉

tt store activate 〈〈identifier〉〉

tt limit 〈〈expression〉〉 activate 〈〈identifier〉〉

tt delay 〈〈expression〉〉 activate 〈〈identifier〉〉

tt pulse activate 〈〈identifier〉〉

tt store delay 〈〈expression〉〉 activate 〈〈identifier〉〉

tt delay 〈〈expression〉〉 store activate 〈〈identifier〉〉

tt store limit 〈〈expression〉〉 activate 〈〈identifier〉〉

]]? ;

steps > 〈〈identifier〉〉 [[ , 〈〈identifier〉〉 ]]∗
variables >

〈〈identifier〉〉 [[ :� 〈〈expression〉〉 ]]? [[ , 〈〈identifier〉〉 [[ :� 〈〈expression〉〉 ]]? ]]∗
type >

boolean
tt dimension

tt integer
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B.2 Syntax

tt real
tt sampling interval

tt array [ 〈〈range〉〉 [[ , 〈〈range〉〉 ]]∗ ] of [type]
tt matrix [ 〈〈range〉〉 , 〈〈range〉〉 ] of real

tt polynomial [ 〈〈limit〉〉 ] of real
tt input 〈〈type〉〉

tt output 〈〈type〉〉

tt parameter 〈〈type〉〉

range > 〈〈limit〉〉 .. 〈〈limit〉〉

limit > [[ 〈〈expression〉〉 tt 〈〈identifier〉〉 : integer ]]

statement >
[[ [[ declare 〈〈declaration〉〉∗ ]]? begin 〈〈statement〉〉∗ end

tt 〈〈identifier〉〉 :� 〈〈expression〉〉

tt 〈〈identifier〉〉 [ 〈〈actuals〉〉 ] :� 〈〈expression〉〉

tt 〈〈identifier〉〉 ( 〈〈actuals〉〉? )

tt if 〈〈expression〉〉 then 〈〈statement〉〉∗
[[ elsif 〈〈expression〉〉 then 〈〈statement〉〉∗ ]]∗
[[ else 〈〈statement〉〉∗ ]]?
end if

tt while 〈〈expression〉〉 do 〈〈statement〉〉∗ end while .
tt for 〈〈identifier〉〉 :� 〈〈expression〉〉 to 〈〈expression〉〉

do 〈〈statement〉〉∗ end for
tt for 〈〈identifier〉〉 :� 〈〈expression〉〉 downto 〈〈expression〉〉

do 〈〈statement〉〉∗ end for

]]? ;

expression >
( 〈〈expression〉〉 )

tt 〈〈identifier〉〉

tt 〈〈identifier〉〉 ( 〈〈actuals〉〉? )

tt 〈〈identifier〉〉 [ 〈〈actuals〉〉 ]
tt 〈〈constant〉〉

tt not 〈〈expression〉〉

tt - 〈〈expression〉〉

tt 〈〈expression〉〉 〈〈operator〉〉 〈〈expression〉〉

operator > and tt or tt � tt <> tt < tt <� tt >� tt > tt + tt - tt ∗ tt / tt mod tt div

actuals > 〈〈expression〉〉 [[ , 〈〈expression〉〉 ]]∗
constant >

true
tt false

tt 〈〈digit〉〉+
tt 〈〈digit〉〉+ . 〈〈digit〉〉∗ 〈〈exponent〉〉?
tt 〈〈duration〉〉

exponent > [[ e tt E ]] [[ + tt - ]]? 〈〈digit〉〉+

duration > Under construction
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C. Compiler implementation

This section is suggested reading for anyone who wants to write or modify a code
generator to the pal compiler.

The pal compiler is implemented using the cocktail compiler-compiler tools. Cock-
tail consists of a number of tools that reads specifications in a number of specialized
languages and generates C or Modula-2 code according to those specifications. The
cocktail toolkit was originally developed at the Karlsruhe subsidiary of the German
National Research Center. The reason for using these tools instead of yacc and lex,
is that the cocktail suite is more powerful, better integrated and generates faster
code.

C.1 Scanner

The scanner is the part of the compiler that reads pal programs and translates them
into a sequence of tokens that are passed on to later stages of the compiler. This
is useful since many syntactic elements in pal consists of more than one character.
The scanner specification is found in two different files:

• pal.rex that specifies the syntax of identifiers, strings, comments and numer-
ical constants.

• parser.cg that specifies the concrete syntax of everything not specified in
pal.rex.

The specifications in parser.cg are then processed by the cg program generating
output which is merged with the hand-written syntax rules from pal.rex. The final
result is processed by the rex program, thereby generating a lexical analyzer, which
is later compiled and linked into the compiler.

C.2 Parser

The parser reads the tokens produced by the scanner and uses them to construct
a representation of the program that is later used for semantic analysis and code
generation. The parser specification is located in the file parser.cg.

In the parser, care has been taken to make all recursive rules left recursive, since in
this way the parser can build the syntax tree without stacking up a lot of symbols.
After the (left-recursive) rule is finished, the resulting syntax tree is reversed, which
can be done in linear time with a constant amount of stack. An example is the if
statement, whose concrete syntax is declared as:

If = 'if' Expr 'then' then:Stats Elsifs Else 'end' 'if' .

Elsifs = <
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C.2 Parser

Elsifs0 = .
Elsifs2 = Elsifs 'elsif' Expr 'then' Stats .

> .

The semantic actions for the if and the elsif part of the if statement are:

If = {

Tree := mIf(

Expr:Tree,
ReverseTree(then:Tree),

ReverseTree(Elsifs:Tree),

Else:Tree);

} .
Elsifs0 = {

Tree := mElsifs0();

} .

Elsifs2 = {

Tree := mElsifs1(
Elsifs:Tree,

mElsif(Expr:Tree, ReverseTree(Stats:Tree))

);

} .

Now let’s consider what happens when the compiler finds the following pal state-
ments:

if e1 then

elsif e2 then

elsif e3 then

elsif e4 then

end if;

After scanning the if and its associated statements (none in this particular example)
by the If rule, the Elsifs rules are tried, and the first elsif is encountered. The
only rule that matches is the Elsifs0, so we get this situation:

Remaining tokens Syntax tree

elsif e2 then elsif e3 then elsif e4 then end if Elsifs0

In the next three step the Elsifs2 rule matches, and we get:

Remaining tokens Syntax tree

elsif e3 then elsif e4 then end if Elsifs2(e2);Elsifs0

elsif e4 end if Elsifs2(e3);Elsifs2(e2);Elsifs0

end if Elsifs2(e4);Elsifs2(e3);Elsifs2(e2);Elsifs0

After this we return to the If rule, and the tree is reversed by the call to ReverseTree,
giving the desired result:
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Chapter C. Compiler implementation

Remaining tokens Syntax tree

end if Elsifs2(e2);Elsifs2(e3);Elsifs2(e4);Elsifs0

C.3 Semantic analysis

If the pal module is successfully parsed (i.e. no syntax errors are found), the se-
mantic analysis starts by propagating type information to all variables and creating
lists of all entities visible in different parts of the module. The specifications how
this should be done are given by rules in the file pal.cg, these specifications are
then processed by the cg program to generate code to traverse the syntax tree and
generate data structures for this information. The rules in pal.cg are dependency
checked, so the ordering of rules is not important. For a procedure the visibility
calculations are handled by the following rules:

(1) Formals:ObjectsIn :� mObjects1(mObjects0(), Object);

(2) Body:ObjectsIn :� Formals:ObjectsOut;

(3) ObjectsOut :� mObjects1(ObjectsIn, Object);

(4) Formals:Env :� mEnv1(Env, Formals:ObjectsOut);

(5) Body:Env :� mLocalEnv(Formals:Env, Body:ObjectsOut);

Let’s analyze what these rules does when presented the following example module:

module M;

block Sample

r : real;

procedure P(
s : real;
t : real

);
u : real;

begin

end P;

end Sample;

end M.

At first rule 3 will be executed, where ObjectsIn will be a list containing the objects
Sample and r, later denoted as Objects(r, Sample). The result of this rule will be
that ObjectsOut is assigned the list Objects(P,r,Sample). The next rule will be
number 1, where Formals:ObjectsIn will be assigned the list Objects(P). After
this the rules for Formals can be evaluated, and they will set Formals:ObjectsOut

to Objects(t,s,P), this result is then propagated to the procedure body by rule 2.

After the object lists have been constructed by rules 1-3, the environment for the
formal parameters and the procedure body are constructed by rules 4 and 5, yielding:

Formals:Env Env(Objects(t,s,P))
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C.4 Code generation

Env(Objects(P,r,Sample))
Env(Objects(Sample,M))

Body:Env LocalEnv(Objects(Objects(u,t,s,P))

Env(Objects(Objects(t,s,P))

Env(Objects(P,r,Sample))
Env(Objects(Sample,M))

It may seem strange that some objects exists in more than one environment, but
that is done to simplify the detection of illegal redeclarations of variables.

When all the rules in pal.cg have been evaluated, the resulting syntax tree is
traversed by rules given in analysis.puma to ensure that variables are declared,
expressions are of the proper type, actual arguments matches formal arguments,
etcetera. As an example, if statements are checked by these rules:

PROCEDURE Check(Tree)

...

If(cond, then, elsifs, else) :-

Check(cond); Check(then); Check(elsifs); Check(else);
CheckCondition(cond);

.

...

PREDICATE CheckCondition(Tree)

condition :- (EqualType(GetType(condition), gBooleanType)); .
condition :- Report(Error, eIncompatibleTypes, condition); .

C.4 Code generation

The last phase in the compiler is to generate code for some target system. The
compiler also has some unusual options to generate pretty-printed versions of the
code that is easier to read than a plain text version. Each code generator is defined
in a .puma files that starts with code followed by some suitable name indicating the
target. As an example we can take the rules for if statements from codePalsjo.puma.

If(condition, then, elsifs, else) :-

? @if (@ Expr(condition); @) {$
?i Proc(then); ?d

Proc(elsifs);

? @} else {$

?i Proc(else); ?d

? @}$
.
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Chapter C. Compiler implementation

For the following example, it will generate C++ code that fits nicely in the pålsjö

runtime, but would be very error prone if coded by hand.

ramp : input boolean;
out : output real;
. . .
if not ramp then

out :� 0.0;
else

out :� out + 1.0;
end if;

void Ramp::CalculateOutput() {
if (!(*(ramp_->value))) {

(*(out_->value)) = 0.0E+0;

out_->Mark();

} else {
(*(out_->value)) = (*(out_->value)) + 1.0E+0;

out_->Mark();

}

}
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