

LUND UNIVERSITY

Minimal Time Problem for an Inverted Pendulum. Maximun Principle and Phase Plane Discussion

Hagander, Per

1969

Document Version: Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

Hagander, P. (1969). *Minimal Time Problem for an Inverted Pendulum. Maximun Principle and Phase Plane Discussion*. (Technical Reports TFRT-7009). Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors: 1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study

or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117 221 00 Lund +46 46-222 00 00

MINIMAL TIME PROBLEM FOR AN INVERTED PENDULUM. MAXIMUM PRINCIPLE AND PHASE PLANE DISCUSSION.

PER HAGANDER

REPORT 6921 OCTOBER 1969 LUND INSTITUTE OF TECHNOLOGY DIVISION OF AUTOMATIC CONTROL MINIMAL TIME PROBLEM FOR AN INVERTED PENDULUM. MAXIMUM PRINCIPLE AND PHASE PLANE DISCUSSION. ⁺ Per Hagander

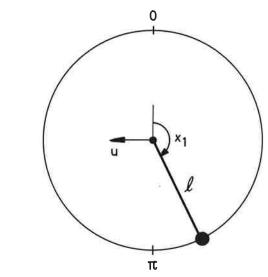
ABSTRACT

The problem of raising a mathematical pendulum from the stable equilibrium to the unstable equilibrium using horizontal acceleration of the pivot point is discussed. A minimum time strategy is investigated both by means of the Maximum Principle and by phase plane argumentation.

[†]This work has been supported by the Swedish Board of Technical Development under Contract \$9-6317U489

TABLE OF CONTENTS

Page


1,	INTRODUCTION - SYSTEM EQUATIONS AND PROBLEM	
	FORMULATION	l
2.	THE MAXIMUM PRINCIPLE ATTACK	3
	2.1. Determination of the necessary conditions	3
	2.2. The system forced by the proposed control	5
	2.3. Verification of stated conditions	8
	2.4. Conclusions	13
З.	THE PENDULUM PROBLEM ATTACKED WITH PHASE PLANE	
	ANALYSIS	13
	3.1. Analytical expressions for the phase plane	
	trajectories	14
	3.2. Two switching points	15
	3.3. Limited validity	18
	3.4. Three switching points	18
	3.5. Simulation	20
	3.6. Final remarks	22

4

REFERENCES

APPENDIX

1. INTRODUCTION - SYSTEM EQUATIONS AND PROBLEM FORMULATION Consider a mathematical pendulum which is controlled by the

horizontal acceleration of the pivot point:

<u>Fig. 1</u>

The system is described by these equations:

$$\begin{cases} \frac{d}{dt} x_1 = x_2 \\ \frac{d}{dt} x_2 = \sin x_1 + u \cdot \cos x_2 \end{cases}$$
(1)

where "time" t is normalized by $\omega = \sqrt{g/l}$, l is the length of the pendulum, thus t = $\omega \times$ real time. The acceleration of the pivot point, u, is normalized by g. x_1 is the angle to the unstable equilibrium point.

The control is supposed to be done by a servo, and it is therefore natural to have u constrained:

$$|\mathbf{u}| < \mathbf{u}_{\mathrm{m}} \tag{2}$$

(with $u_m = 3$, for instance, i.e. maximum acceleration ~30 m/s²).

Determine now the strategy u = u(t), to go from x(0) = $\begin{pmatrix} \pi \\ 0 \end{pmatrix}$ (the stable equilibrium point)

to

$$x(T) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 (the unstable equilibrium point)

in shortest possible time under the constraint:

|u| < u_m !

Choose first $u_m = 3$.

The solution to this problem is the control law (intuitively derived in [4]):

$$u^{\star} = \begin{cases} +3 & x_{1} \epsilon(0, \alpha) \text{ or } x_{1} \epsilon(\pi/2, \pi) \\ -3 & x_{1} \epsilon(\alpha, \pi/2) \end{cases}$$
(3)

with α = arc sin 2/3.

In the next section the formulation of the Maximum Principle is written down and applied to the problem. The necessary conditions on an optimal strategy are stated and simplified. By means of some theorems on second order differential equations it is then found that the proposed u^{*} fulfils the conditions.

In the second section the problem is discussed from another point of view. By arguments in the phase plane it is possible to obtain (3) strictly, and it is also possible to generalize to other values of u_m .

2. THE MAXIMUM PRINCIPLE ATTACK.

2.1. Determination of the necessary conditions.

Introduce the Hamiltonian H and the adjoint vector p for the problem to bring the state vector of the system:

$$\begin{cases} x = f(x,y) \\ x(0) = c \end{cases}$$

to a target set S, minimizing the functional:

With

$$f(x,u) = \begin{pmatrix} x_2 \\ \sin x_1 + u \cos x_1 \end{pmatrix}, L(x,u) = 1$$

and
$$S = \begin{cases} 0 \\ 0 \\ 0 \end{cases}$$

we get

$$\begin{cases} \dot{x}_{1} = x_{2} \\ \dot{x}_{2} = \sin x_{1} + u \cdot \cos x_{1} \end{cases}$$

$$\begin{cases} \dot{p}_{1} = -p_{2}(\cos x_{1} - u \sin x_{1}) \\ \dot{p}_{2} = -p_{1} \end{cases}$$

$$\begin{cases} x_{1}(0) = \pi \\ x_{2}(0) = 0 \end{cases}$$
(6)

$$\begin{cases} x_1(T) = 0 \\ x_2(T) = 0 \end{cases}$$
(7)

$$H = 1 + p_1 x_2 + p_2(\sin x_1 + u \cos x_1)$$
(8)

The admissible controls are restricted by:

$$U = \{ |u| \le 3 \}$$
(2)

u piecewise continuous.

Define:

 $M(x,p) = \min H(x,p,u)$ ueU

The Pontryagin maximum principle now says:

"Let u = u(t), $0 \le t \le T$ be an admissible control that transforms the state from x(0) = c to a point in the target set S, and let x = x(t) be the associated trajectory! A necessary condition for u = u(t) to be an optimal strategy is, that there exists a to u = u(t) and x = x(t) belonging **costate** vector p = p(t), not identically zero, which satisfies:

- A) H(x,p,u) = M(x,p) $t_{\varepsilon}(0,T)$
- B) H(x,p,u) = 0 $t_{\varepsilon}(0,T)$
- C) x(T) is on the boundary of the target set S, and P(T), in this point normal to S. If S consists of only one point, no restrictions are made on the costate vector from this reason (Athans & Falb [1]).

The implications of these conditions on the particular case will now be discussed.

(9)

Apply A) to (8):

$$u = -3 \operatorname{sign}(p_2 \cdot \cos x_1)$$

Condition B) results in:

$$1 + p_1 x_2 + p_2(\sin x_1 + u \cos x_1) = 0$$
 (10)

It is easy to prove (ref. Leondes, [5]) that if A) is fulfilled and (10) holds for t = T then it holds for all t $\epsilon(0,T)$. Thus

$$1 + p_{1}(T)x_{2}(T) + p_{2}(T)\left(\sin x_{1}(T) + U(T) \cos x_{1}(T)\right) = 0 \quad (10')$$

As mentioned above, C) does not introduce any restriction in this case.

2.2. The system forced by the proposed control.

The next step is to prove that the suggested control u^* (defined by (3)) fulfils the condition (9) and (10').

From the construction of u^* it is clear that the associated state variable $x = x^*(t)$ must follow the equation (4) from the point (6) to the point (7). The function $x = x^*(t)$ is easy to obtain for instance by Runge Kutta integration of (4):

Time optimal Trajectory

Startpoint	З.	.1416 0.0000 Ti				estep 0.000		
Time			Positi	on		Used	U	
0.2000		3.	08180	-0.595	79	3.	0	
0.4000		2.	90522	-1.161	66	3.	0	
0.6000		2.	62242	-1.647	24	3.	0	
0.8000		2.	25668	-1.977	34	3.	0	
1.0000		1.	84690	-2.077	97	3.	0	
1.1347		1.	57095	-2.000	07	3.	0	
1.1348		1.	57075	-1.999	98	3.	0	
1.1349		1.	57055	-1.999	88	-3.	0	
1.2000		1.	44220	-1.947	58	-3.	0	
1.4000		1.	05675	-1.947	31	-3.	0	
1.5616		0.	72994	-2.123	35	-3.	0	
1.5617		0.	72973	-2.123	51	-3.	0	
1.5618		0.	72951	-2.123	22	3.	0	
1.6000		0.	65055	-2.010	53	3.	0	
1.8000		Ο.	31015	-1.388	03	3.	0	
2.0000		0.	09542	-0.762	80	3.	0	
2.2000		0.	00399	-0.154	85	3.	0	
2.2500		-0.	00000	-0.004	78	3.	0	

Table I

Of special interest are the switching points t_{α} and $t_{\pi/2},$ the points where u^{\bigstar} changes the sign:

$$t_{\pi/2} = 1.1348$$
 $(x_1^{*}(t_{\pi/2}) = \pi/2)$
 $t_{\alpha} = 1.5617$ $(x_1^{*}(t_{\alpha}) = \alpha)$

It remains to prove that there exists a function $p = p^{*}(t)$ following (5), and that (9) and (10') are satisfied by the functions $u^{*}(t)$, $x^{*}(t)$ and $p^{*}(t)$.

Equation (5) can be rewritten:

where a(t) can be obtained from $u^{*}(t)$ and $x_{1}^{*}(t)$. Condition (9) results in:

$$u^{*}(t) = -3 \cdot sign[p_{2}^{*}(t) \cdot cos x_{1}^{*}(t)]$$
 (12)

and condition (10'):

$$1 + p_{1}^{*}(T)x_{2}^{*}(T) + p_{2}^{*}(T)\left[\sin x_{1}^{*}(T) + u^{*}(T) \cdot \cos x_{1}^{*}(T)\right] = 0$$

or simplified with account to $x_{1}^{*}(T) = x_{2}^{*}(T) = 0, u^{*}(T^{-}) = 3$:

$$1 + p_2^{\star}(T) \cdot 3 = 0$$
 (13)

It is convenient to convert (12) into a condition only on p_2^{\bigstar} by taking the sign of cos x_1 into consideration:

 $\begin{cases} \cos x_{1} > 0 & x_{1} \varepsilon(0, \pi/2) \\ \cos x_{1} < 0 & x_{1} \varepsilon(\pi/2, \pi) \end{cases}$

Thus

$$\begin{cases} p_2^* > 0 & x_1 \varepsilon(\alpha, \pi) \quad (\sin \alpha = 2/3) \\ p_2^* = 0 & x_1 = \alpha \\ p_2^* < 0 & x_1 \varepsilon(0, \alpha) \end{cases}$$
(14)

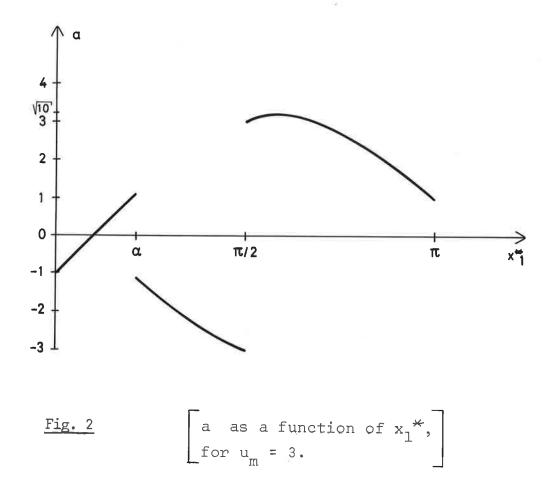
is required if p_2 should belong to an optimal control u^* . Summing up:

We want to show that there exists boundary conditions to (11) consistent with (13) and (14).

Another view of the problem:

Vary the initial condition to (5) and consider the state equation (4) and its initial condition (6) (i.e. drop the end point condition (7)). Then (9) and (10') generate a family of controls u(t) and associated trajectories x(t), which are extremals leading different end points in the state space. Now pick out of these controls the one leading to the end point specified by (7), and prove that it is possible to find one! This is necessarily a rather involved procedure. The method to **circumvent** the difficulties can from this point of view be formulated:

Guess a control $u = u^*$. Then prove that for certain boundary conditions to (5) the control generated by (9) is the suggested $u = u^*$. By the way is then obtained that the extremal leads to the desired end point. 2.3. Verification of stated conditions.


Considering the above relations it is now by means of some rather simple theorems (ref. Burkhill, [2]) on the second order linear differential equation:

$$\frac{d^2}{dt^2} x(t) + q(t)x(t) = 0$$

possible to show that there exists a solution to (11) fulfilling (13) and (14).

For the given $u^* x_1^*(t)$ is a monotonous function of t. Thus t can be represented as a function of x_1^* . The function a(t) is hard to determine explicitly, but $a(t(x_1^*))$ is much easier to obtain:

 $a = \pm 3 \cdot \sin x_1^* - \cos x_1^*$

a is a piecewise continuous function (of both x_1^* and t), so there exists a solution to the second order, linear differential equation (11), if its two boundary values are specified at one instant of time (initial value problem). Considering (14) choose this point to be t_{α} , i.e.

$$\begin{cases} p_2^*(t_{\alpha}) = 0\\ \frac{d}{dt} p_2^*(t_{\alpha}) = d \end{cases}$$

We now have to prove that $p_2^*(t)$ has no other zeroes, that the sign of p_2^* is correct, i.e. d must be < 0, and that it is possible to choose d so that (13) is fulfilled, i.e. $p_2^*(T) = -1/3$. It is natural to do this investigation separately in the three x_1^* intervals: $(0, \alpha)$, $(\alpha, \pi/2)$, $(\pi/2, \pi)$.

(i) $t_{\alpha} < t < T$

In this interval (the last one) a(t) < 1.3. Compare (11) with the equation:

$$\begin{cases} q'' + 1.3 q = 0 \\ q(t_{\alpha}) = 0 \\ q'(t_{\alpha}) = d \end{cases}$$

that has the solution:

$$q(t) = \frac{c}{\sqrt{1.3}} \sin \sqrt{1.3}(t-t_{\alpha})$$
 (15)

Because of the continuity and because we suppose that d is < 0, there exists $\epsilon > 0$ for which $p_2^{\star}(t) < 0$ in $(t_{\alpha}, t_{\alpha} + \epsilon)$. A theorem about the oscillator equation now states (Burkhill, [2]):

$$p_2^{\star}(t) < q(t) < 0$$
, for $t > t_{\alpha}$ as long as $q(t) < 0$

Equation (15) implies that $q(t_{\alpha}) = 0$ and q(t) < 0 for $t_{\epsilon}(t_{\alpha}, t_{\gamma})$, where $t_{\gamma} = t_{\alpha} + \pi/\sqrt{1.3} > t_{\alpha} + 2.5$. According to Table I: $T = t_{\alpha} + 0.69$. We have thus proved that:

 $p_2^{\star}(t) < 0$ in the whole interval (t_{α}, T) ,

and especially that:

$$p_2^{*}(T) < q(T) = \frac{d}{\sqrt{1.3}} \sin \sqrt{1.3} \cdot 0.69 \approx d \cdot 0.6$$

Note, that d = 0 gives the solution:

 $p_2^{\star}(t) \equiv 0$

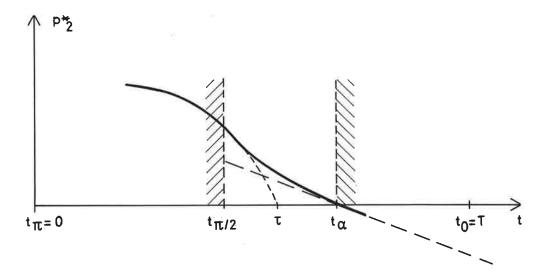
to equation (11), and also:

$$p_2^{*}(T) = 0$$

As the solution $p_2^*(t)$ to (11) depends continuously on the initial value $\frac{d}{dt} p_2^*(t_{\alpha}) = d$, it must be possible to find d < 0 so that $p_2^*(T) = -1/3$. And condition (13) is fulfilled.

 $\frac{(\text{ii}) t_{\pi/2} < t < t_{\alpha}}{\frac{d}{dt} p_2^*(t) \text{ is continuous and } c < 0. \text{ Thus there exists } \epsilon > 0 \text{ so that}}$

$$\frac{d}{dt} p_2^{\star}(t) < 0 \text{ for } t < (t_{\alpha} - \varepsilon, t_{\alpha})$$


consequently, since

$$\frac{d^2}{dt^2} p_2^{*}(t) = - a(t) p_2^{*}(t),$$

$$\frac{d^2}{dt^2} p_2^{*}(t) > 0 \text{ for } t \varepsilon(t_{\alpha} - \varepsilon, t_{\alpha})$$

and ε can be extended as long as a(t) < 0. Conclusion:

$$\begin{array}{c} p_{2}^{*}(t) > 0 \\ \frac{d}{dt} p_{2}^{*}(t) < 0 \\ \frac{d^{2}}{dt^{2}} p_{2}^{*}(t) > 0 \end{array} \right\} \qquad \forall t \ \varepsilon(t_{\pi/2}, t_{\alpha})$$

(iii) $0 = t_{\pi} < t < t_{\pi/2}$

a(t) > 0 in this interval.

If during the interval $(t_{\pi/2}, t_{\alpha}) a(t)$ were positive, then p_2^{\star} (with the same boundary values at $t_{\pi/2}$) would be zero for some time τ , with $\tau \epsilon (t_{\pi/2}, t_{\alpha})$, because

$$\frac{d^2}{dt^2} p_2^* < 0$$

Consider now the equation:

$$\frac{d^2}{dt^2} q + \tilde{a}(t) q = 0$$

with boundary values at $t_{\pi/2}$ given. In the interval $t\epsilon(0,\tau)$ we have

$$0 < \tilde{a}(t) < \sqrt{10}$$

and

$$q(\tau) = 0$$

The properties of the oscillator equation says that the distance in time between two zeroes of q is greater than:

 $\frac{\pi}{\sqrt{\max a(t)}} = \frac{\pi}{\frac{4}{\sqrt{10}}} = 1.767$

According to Table I t_a = 1.5617 (< 1.767), which proves that q(t) > 0 in $(0,\tau)$ and since $p_2^{*}(t) = q(t)$ in $(0,t_{\pi/2})$:

$$p_2^*(t) > 0$$
 $t \in (0, t_{\pi/2})$

and this completes the verification of the conditions (13) and (14).

2.4. Conclusions

We have now found such boundary conditions to (5)

$$\begin{cases} p_2(t_{\alpha}) = 0 \\ p_2(T) = -1/3 \end{cases}$$

that among the controls generated by (9) and (10') u^* is the one leading to the end point

$$\begin{cases} x_1(T) = 0 \\ x_2(T) = 0 \end{cases}$$

We can therefore state that u^{*} fulfils the Pontryagin necessary conditions for optimality.

3. THE PENDULUM PROBLEM ATTACKED WITH PHASE PLANE ANALYSIS.

Consider again our problem stated on p. 1, and let u_{m} be arbitrary.

From the Maximum Principle (chapter 2) we know that an optimal control must be "bang-bang", i.e.

$$u(t) = t u_m \quad 0 < t < T$$

This immense reduction of suitable controls, only the switching times and the sign remains to be determined, makes it possible to that the problem analytically by arguments in the phase plane. Another fundamental property of the system equations is, that for the two values of u in question ($u = t u_m$) the phase plane curves can be obtained explicitly.

$$\dot{x}_1 \ddot{x}_1 = [\sin x_1 + u_m \cos x_1]\dot{x}_1$$

Define:

$$\begin{cases} k = \sqrt{1 + u_m^2} \\ \gamma = \operatorname{arc} tg u_m \end{cases}$$

This leads to

$$\frac{d}{dt} \left(\dot{x}_{1} \right)^{2} = 2 \left[k \cdot \sin(x_{1} \pm \gamma) \right] \cdot \dot{x}_{1}$$

or

$$x_2 = \pm \sqrt{-2k \cos(x_1 \pm \gamma) + 2c}$$
 (16)

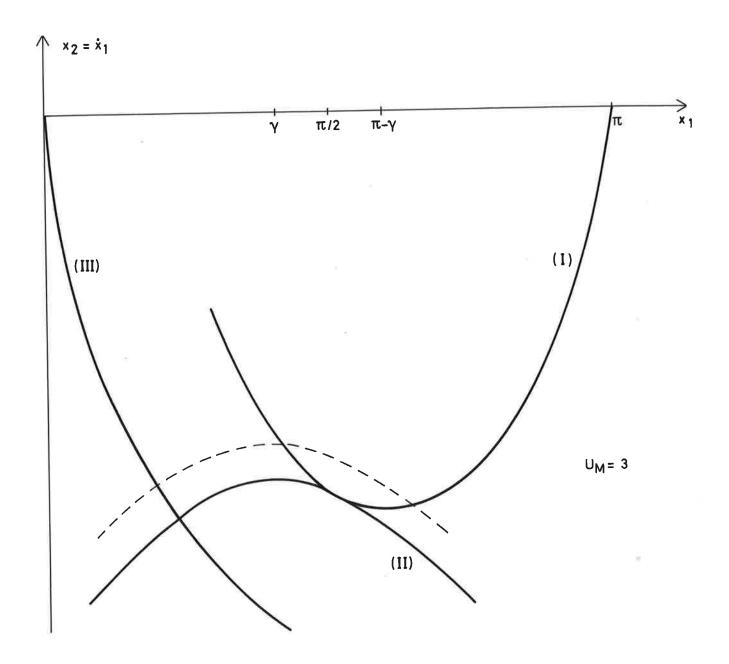
i.e. a field of phase plane trajectories with one arbitrary constant c, which can be specified by one point on the trajectory. Our problem is to combine these (16) trajectories from $(\pi, 0)$ to (0,0) in an optimal way.

3.2. Two switching points.

For large values of u a strategy with two switching points (rather near each other) must be time optimal. The phase plane trajectory then consists of three parts, of which two have a fixed equation (through the start point and the end point). There only remains to calculate the switching. points or the constant of the intermediate part.

The starting curve has the equation:

$$x_{2} = -\sqrt{2\{-k\cos(x+\gamma) - 1\}}$$
 (I)


the final curve:

$$x_{2} = -\sqrt{2\{-k\cos(x+\gamma)+1\}}$$
 (III)

and the intermediate one:

$$x_{2} = -\sqrt{2\{-k\cos(x-\gamma) + c\}}$$
 (II)

where c is not yet determined.

Curve II has, independent of c, maximum for $x_1 = \gamma$ and an increase in c causes, for every x_1 , an increase in $|x_2|$.

Consider:

$$x_2 = \frac{dx_1}{dt}$$
, $t = \int_0^{x_1(t)} \frac{dx_1}{x_2}$

In order to minimize time we shall subsequently choose c as large as possible, i.e. so that curve I is tangent to curve II. Thus we have:

$$\begin{cases} \sqrt{2\{-k\cos(x_{1} + \gamma) - 1\}} = \sqrt{2\{-k\cos(x_{1} - \gamma) + c\}} \\ -k\sin(x_{1} + \gamma) = k\sin(x_{1} - \gamma) \end{cases}$$

and

$$\begin{cases} x_1 = \pi/2 \\ c = 2u_m - 1 \end{cases}$$

We have proved that it is optimal to choose the first switching point at $x_1 = \pi/2$. The second switching point can be calculated from the intersection between the two curves I and II:

$$x_1 = \arcsin (1 - 1/u_m)$$
 (= α)

For more examples of this way of solving time optimal trajectories see Tsien [6].

S.

3.3. Limited validity.

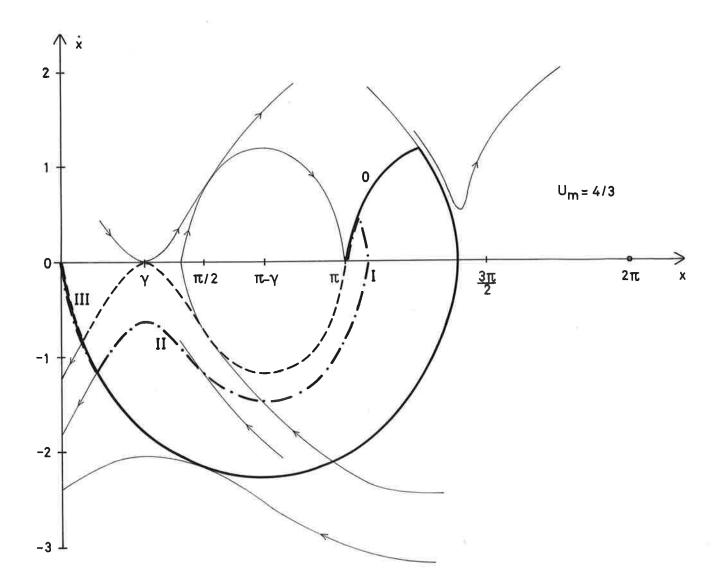
In order that curve II should bring the pendulum point $x_1 = \pi/2$ to the point $x_1 = \arcsin (1 - \frac{1}{u_m})$ we must in the equation for curve II stipulate that the expression under the root sign is positive. This gives the condition:

$$c > k$$
 or
 $u_m > 4/3$

If $u_m = 4/3$ the x_1 axis is tangent to curve II at $x_1 = \gamma$. The pendulum would stop in this unstable equilibrium point! For lower u_m values the pendulum never reaches $x_1 = \gamma$. It turns back towards $x_1 = \pi$ again. For those u_m values we must start in the "wrong" direction and give the pendulum more energy before it goes up. It will be necessary to use three or more switching points. For u_m values just above 4/3 it is probable that the optimal strategy has three switching points, although it is possible to control with only two. In fig. 5 the phase plane for $u_m = 4/3$ is shown with both 2 and 3 switchings.

3.4. Three switching points.

The four parts of the trajectory are called from the start to the end: 0, I, II, III.


The switching between I and II is also in this case at $x_1 = \pi/2$ according to an argumentation analogue to that of two switchings in chapter 3.2. It is still optimal to choose part I to be tangent to part II.

The equations of the curves are:

- $x_{2} = \pm \sqrt{2(-k \cos(x_{1} \gamma) 1)}$ $x_{2} = \pm \sqrt{2(-k \cos(x_{1} + \gamma) + C_{1})}$ $x_{3} = -\sqrt{2(-k \cos(x_{1} \gamma) + C_{1})}$ 0:
- Ι: TT.

$$x_2 = -\sqrt{2}(-k\cos(x_1 - \gamma) + C_{II})$$

III: $x_2 = -\sqrt{2}(-k\cos(x_1 + \gamma) + 1)$

<u>Fig. 5</u> - Theoretical trajectories for $u_m = 4/3$.

If we have the first switching for $x_1 = \pi + \epsilon$, we get:

$$\sqrt{2(-k\cos(\pi + \epsilon - \gamma) - 1)} = \sqrt{2(-k\cos(\pi + \epsilon + \gamma) + C_{I})}$$

The second switching at $x_1 = \pi/2$ gives:

$$-\sqrt{2(-k\cos(\frac{\pi}{2} + \gamma) + C_{I})} = -\sqrt{2(-k\cos(\frac{\pi}{2} - \gamma) + C_{II})}$$

and

$$C_{II} = -1 + 2u_m(1 + \sin \epsilon)$$

The third switching point is the intersection between curves II and III:

$$x_{1} = (C_{II} - 1)/2u_{m} = \arcsin(1 - \frac{1}{u_{m}} + \sin \varepsilon)$$
 (17)

The realizability of part II gives the condition C_{II} > k, or

$$u_{m} > \frac{4 + 4 \sin \varepsilon}{3 + 8 \sin \varepsilon + 4 \sin^{2} \varepsilon}$$
(18)

A corresponding condition on part I gives an upper limit of ε . The velocity in the wrong direction must not become too large, or it cannot be retardated and not change of direction can be possible. It implies $C_I \leq 1$ or

$$\sin \epsilon \leq 1/u_{\rm m}$$
 (19)

This condition can also be seen from (17). Equality in (19) makes the last switching point be $x_1 = \pi/2$, the same as the second one and thus there would be only one for the whole trajectory. The choice of an optimal ε in the interval

 $0 \leq \varepsilon \leq \arcsin 1/u_m$

is not easy, since x_1 no longer varies monotonously with time and

and the integral

$$\int \frac{dx_1}{x_2}$$

thus is not geometrically obvious. It is possible to determine expressions for the time in the different parts of the trajectory and then to take the derivative with respect to ϵ . The resulting equations are, however, not solvable analytically. One possible way to evaluate the optimal ϵ easier is to simulate the equations for some values of ϵ .

3.5. Simulation

The equations above are easy to code for Runge-Kutta integration. Table II shows the result for a few values of u_m both for 2 switching points, i.e. $\varepsilon = 0$, and 3 switchings and various ε values. The shortest end point times T and corresponding ε is noted for every u_m .

The trajectories, for $u_m = 3$ and $u_m = 4/3$, are drawn in fig. 6 and fig. 7, and the most relevant output from the program is reprinted in appendix. It is notable how difficult it is to come exactly to the end point (0,0). Small variations in the last switching point, and that is a necessity since we have to use finite step length in the Runge-Kutta integration, induces rather large errors in the final velocity (and the final time).

u _M	^e min	^c rel.min.	^Τ ε=0	^T rel.min.
3.0	0	_	2.251	3 0
2.0	0	_	2.95	0
1.5	0	0.075	4.04	4.19
1.4	0.1	60	4.75	4.44
4/3	0.2	05	00	4.61
1.2	0.3	00	00	4.97

CTT 1 -1	
Tante	

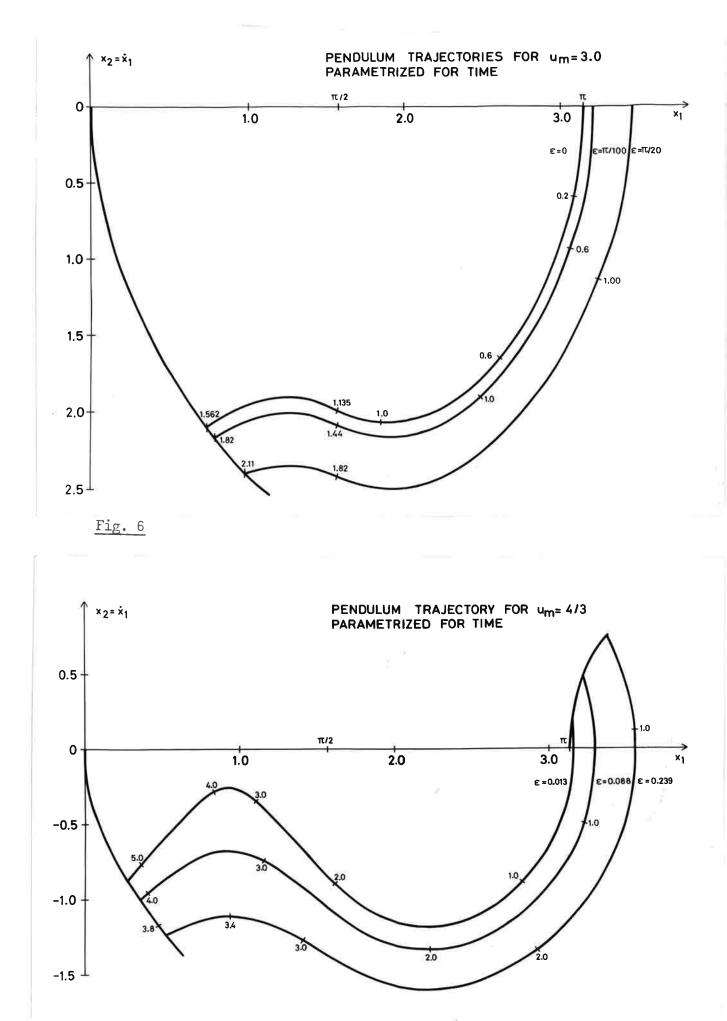


Fig. 7

3.6. Final remarks

Notice the relative minimum for T in the simulations with $u_m = 1.5$. It is probably so that we have one for $u_m = 2.0$ and $u_m = 3.0$ as well, but less **distinct** and closer to $\varepsilon = 0$. When u_m decreases the well is moved towards larger ε values and grows deeper and deeper.

For still smaller u_m the alternative with four switching points is getting relevant. Condition (18) must not be violated and that makes it perhaps impossible with only three switchings. If u_m is very small it might be necessary with even more switchings, which means that the pendulum must be wagged for quite a while until it receives the required energy to be raised.

In these cases we have the freedom to vary 2 or more switching points, which makes it almost impossible to minimize with the simulation technique above. Other methods have to be applied.

A theoretically simpler variant of the pendulum problem, namely

$$\begin{cases} \ddot{x} + \sin x = u \\ |u| \leq U_{m} \end{cases}$$

(i.e. the applied control is the torque of the pendulum) has been treated independently by Flügge-Lotz [3]. It is then possible to show that the time optimal trajectory has at most two switchings, and the switching curves are rather easily established. She also introduces the concept of "indifference curves", the points in the phase plane from which it is possible to go to the end point along different trajectories at the same time.

It could be valuable for the problem of this report to use the indifference curves, but no attempt is done. The difficulty of very small u_m values would still remain.

REFERENCES

- [1] Athans & Falb: Optimal Control, McGraw Hill, 1966
- [2] Burkhill: The Theory of Ordinary Differential Equations, 1956
- [3] Flügge-Lotz: Discontinuous and Optimal Control, McGraw Hill, 1968
- [4] Hagander: Minimaltidsproblemet för ett olinjärt system, undersökt med dynamisk programmering, RE33, Regleringsteknik, LTH, 1968
- [5] Leondes: Modern Control Theory, McGraw Hill, 1965
- [6] Tsien: Engineering Cybernetics, McGraw Hill, 1954

APPENDIX

Output from the simulations in 3.5. EPS indicates first switching for $x_1 = \pi + EPS$ A second $x_1 = A (= \pi/2)$ B third $x_1 = B (= \arcsin (1 - \frac{1}{u_m} + \sin \epsilon))$

u _m	Ξ	1.2	ΡP	Al - A4
um	Ξ	4/3	ΡP	A5 - All
um	=	1.4	РP	Al2 - Al3
um	Ξ	1.5	ΡP	Al4 - A20

TRAJECTORY

								A 70 / D	-	044400
		3.1416 0.	0000	TIMESTE	P 0.001	0 A	= 1.57	0/96 8	= 0 •	244420
EPS=	0.0753		-		o =					
	TIME		ITION		SEDU					
	0.147	3.154	+		-1.2					
	0+148	3.1547			-1+2					
	ú.200	3.1655			-1.2		×			
	0.299	3-1940			-1+2			211		
	0.300	3.195:			-1.2	55. 				
	0.400	3.234		6408	1.2					
	0.000	3.280		0185	1.2					
	0.800	3.274	59 -0•1	6380	1.2					
	1.000	3.215	65 -0.4	2390	1.2					
	1.200	3.106	07 -0.6	6838	1+2					
	1.400	2.950:	17 -0.8	8478	1.2					
	1.562	2.7940	69 -1.0	2936	1.2					
\sim	1.563	2.7930	56 -1.0	3015	1.2					
)	1.600	2.755	02 -1.0	5831	1.2	12				
	1.800	2.530		7373	1.2					
	1.823	2.5030		8268	1.2					Ф
	1.824	2.5024		8304	1.2					
- Py	2+000	2.290		1898	1.2					
- k	2.200	2.048:		8884	1.2 ~	÷				
	2.230	2.0120		7793	1.2		10 A			
	2.231	2.011		7754	1.2		×.,			
	2.400	1.819		8683	1.2		8			
	2.600	1.6175		2388	1.2					
	2.300	1.451			-1.2					
	3.000	1.320			-1.2					
	3.200	1.2158	-		-1.2			*		
	3,400	1.132			-1.2		<u>`</u>			
		1.064			-1.2					
	3.600	1.008	-	-	-1.2		24			
	3.800				-1.2					
	4.000	0.960			-1.2	~				2 N
	4.200	0.918:			-1.2					
	4.400	0.878			-1.+2		~			
	4.600	0.838			-1.2		11 ¹²			
l.	4.800		63 -0+2		-1.2					
	5.000	0.749								
	5.200	0.694			-1.2	54				
	5.400	0.628			-1.2					
	5.600	0.546			-1.2					
- N	5.800	0-444			-1.2					
0	6.000	0.3168			-1.2					
	6.200	0.168:		5804	1.2					
	6.400	0.062		9744	1.2					
	6.600	0.0083		5130	1.2					
	6.680	-0+0000	05 -0•0	5502	1.2					

TRAJECTORY

					(e						
STAR	TPOINT	3.1416	0.00	00 T	IMESTEP	0.0010	А	= 1.57	0796	B =	0.4686
EPS=	0.28902	7									
	TIME		POSITI	ON s	USE	ÐU					
	0.147	3.	15453	0.1757	6 -1	• 5					
	0 • 1 4 8	3.	15471	0.1769	5 -1	•2		2.4			
	0-200	3.	16551	0.2383	9 -1	- 2					
	0.299		19493	0.3533	8 -1	• 2					
	0.300	3.	19518	0.3545	2 -1	• 2			¥1		
	0.400	3.	23629	0.4668	8 -1	*5					
	0.600	3.	35088	0.6745	3 -1	•2					
	0.800	3.	49465	0.6445	1 1	•2		20			
8	1-000	3.	59375	0.3450	1. 1	•5					
	1.200	3.	63229	0.0400	3 1	• 2					
	1.400	3.	60972	-0.2654	9 1	• 2		2			
	1.562	3.	54683	-0.5103	4 1	• 2					
)	1.563	3.	54632	-0.5118	4 1	• 5					
	1.600	3 • 1	52635	-0.5670	5 1	•5				Å	
	1.800	3.	38364	-0.8573		• 2					
	1.823	3.	36355	-0.8894	8 1	• 5					
	1.824	3.3	36266	-0.8908	7 1	• 2					
	2.000	3.	18501	-1.1236	3 1	•5					
	2.200	2.0	93704	-1.3470	0 1	• 2					
	2.230	. 2.0	89620	-1.3754	0 1	• 5					
	2.231	2.0	89483	-1.3763	2 1	• 2					
	2.400	2.0	65059	-1.5046		• 5					
	2.600	2.5	34096	-1.5760	1 1	• 5					
	2.800	2.1	02668	-1.5504	8 1.	• 2					×
	3.000	1.	72700	-1.4319	6 1	• 2					
	3.200	1.	45866	-1.2489	4 -1	• 5					
	3.400	1.4	22388	-1.1097	6 -1	• 2					
	3.600	1.	01041	-1.0356	8 -1	• 2				23	
	3.800		80533	-1.0258	2 -1	• 2		0			
	4.000		59582	-1.0799	8 -1	• 2	<u>a</u>	- 6			
	4.200		37687	-1.0126	1 1	• 5					
	4.400		20333	-0.7263		• 2					
	4.600	-	08491	-0.4610		• 2					
	4.800		01783	-0.2119		•2					
	4.941		00002	-0.0417		• 2					(e
		0		0.40.71							

A 2.

865

NOTE WAR TRAJECTORY

.

ST	ARTPOINT	3.1416 0.0	000 TIME	STEP 0.0010	A = 1.570796 B =	0.48217
	S= 0.30159					
	TIME	POSIT	ION	USED U		
	0.147	3.15453	0+17576	-1.2		
	0.148	3.15471	0.17695	-1.2		
	0.200	3.16551	0.23839	-1-2		
	0.299	3.19483	0.35338	-1-2		
	0.300	3.19518	0.35452	-1.2	(#2) 1	
	0 • 400	3.23629	0.46688	-1-2		
	0.600	3.35088	0.67453	-1.2		
	0.800	3.49766	0.68118	1.2		
	1.000	3.60404	0.38112	1.2		
	1.200	3.64973	0.07523	1.2		
	1.400	3.63407	-0.23159	1 - 2		
	1.562	3.57655	-0.47808	1.2		
ì	1.563	3.57607	-0.47959	1.2		
	1.600	3.55729	-0.53530	1.2		
	1.800	3.42059	-0.82933	1.2		
	1.823	3.40114	-0.86206	1.2		
	1.824	3.40027	-0.86347	1.2		
()	2.000	3.22698	-1.10186	1.2		
/	2.200	2.98249	-1.33456	1.2		
	2.230	2.94200	-1.36463	1.2		
	2.231	2.94063	-1.36561	1.2		
	2.400	2.69734	-1.50446	1.2		
	2.600	2.38636	-1.58978	1.2		
	2.500	2.06795	-1.57778	1.2		
	3.000	1.76165	-1.47033	1.2		
	3.200	1.48501	-1-28978	-1.2		
	3.400	1.24271	-1.14438	-1.2		
	3.600	1.02281	-1.06562	-1.2		
	3.800	0.81207	-1.05278	-1+2		
	4.000	0.59732	-1.10568	-1+2		
	4.200	0.37578	-1.01059	1.2		
	4.400	0.20263	-0.72447	1.2		
	4.600	0.08458	-0.45920	1.2		
	4.800	0.01786	-0.21010.	1.2		
)	4.949	-0.00002	-0.03031	1.2		

АЗ.

STAR	TPOINT	3.1416	0.000	10 T	IMESTEP	0.0010	А	= 1.570796	8 =	0 • 4957
EPS=	0.31415	59								
	TIME	5	POSITIO) N	USE	DU				
	0.147	3	•15453	0.17570	5 -1	• 5				
	0.148	3	.15471	0.17695	5 -1	• 5				
	0.200	3	.16551	0.2383	9 -1	• 5				
	0.299	3	.19483	0.3533	8 -1	•2				
	0.300	3	.19518	0.3545	2 -1	•5				
	0.400	3	•23629	0.4668	8 -1	• 2				
	0.600	3	.35088	0.6745	3 -1	•2				
	0.800	3	.50007	0.7177		• 2		2		
	1.000	3	•61372 [°]	0.4171	7 1	• 2				
	1.200	3	.66654	0.1104	8 1	• 5		2. I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I		
-	1.400	3	.65783	-0.1974	8 1	•2				
	1.562	3	•60572 s	-0.4454	0 1	• 2				
)	1.563	3	.60528	-0.4469	2 1	• 2				
	1.600		.58770	-0.50300	6 1	•2				
	1.800	3	.45714	-0.8004	7 1	• 2				
	1.823	3	43835	-0.8337		• 2				
	1.824	3	.43751	-0.8351		• 2				
)	2.000	3	.26878	-1.0787	7 1	.2				
	2.200	3	.02307	-1.3203		• 2				
	2.230	5	.98798	-1.3520		• 2				
	2.231	2	.98663	-1.3530		• 5				
	2.400	5	.74462	-1.5022		• 2				
	2.600	2	.43270	-1.6015		• 2		л — Э.		
	2.800	2	•11054	-1.6034		• 2				
	3.000	1	•79788	-1.5076		• 2				
	3.200	1	.51301	-1.3314						
	3.400	1	.26305	-1+1795:		• 5				
	3.600	1	.03667	-1.0956						
	3.800	0	.82029	-1.0793		• 2				
	4.000	0	.60042	-1.1305		• 2				
	4.200		.37636	-1.0118		• 2				
	4.400	0	.20297	-0.7256		• 2				
	4.600	0	.08469	-0.4603		•2				
1	4.800	0	.01774	-0.2112	6 1	• 5			J.	
/	4.941		.00003	-0.0411	0 1	•2				
	_	-			*					

	RTPhINT 3 = 0.012566	.1416 0.00	00 TIME	STEP 0.0	010	A = 1	570796 B	= 0.26508
EFS	TIME	POSITI	<u>ÔN</u>	USED U				
	0.147	3.15586	0.17129	1.3			s	
	0.148	3.15604	0.16995	1.3				
	0.200	3+16305	0.09968	1+3				5
	0.299	3.16627	-0.03468	1+3				
	0.300	3.16623	-0.03604	1.3				
	0.400	3.15585	-0.17140	13				
	0.600	3.09494	-0.43565	1.3				
	0.800 -	2.98283	-0.08120	1.3				
	1.000	2.82464	-0.89392	1 • 3				
	1.200	2.62852	-1.05785	1.3				
	1.400	2.40579	-1.15759	1.3				
	1.562	2.21547	-1.18361	1.3				
204	1,563	2.21428	-1.18361	1.3				
)	1.600	2.17051	-1.18226	1.3				
	1.800	1.93811	-1.12899	1.3				
	1.823	1.91226	-1.11806	1.3				
	1.824	1.91115	-1.11756	1.3				
- D	2.000	1.72372	-1.00389	1.3				
- <i>b</i>	2.200	1.54046	-0.82148	-1.3				
	2.230	1.51624	-0.79321	-1.3				
	2,231	1.51545	-0.79228	-1.3				
	2.400	1.39390	-0.65110	-1 + 3				
	2,600	1.27743	-0.51947	-1-3				
	2.800	1.18394	-0.42045	-1.3				
	3.000	1.10744	-0.34863	-1.3 -1.3				
	3.200	1.04296	-0.29979	-1.3				
	3.400	0.98620 0.93339	-0.26012	-1+3			8.	
	3,600	0.88099	-0.26679	-1.3				
	3.800	0.82549	-0.29131	-1.3				
	4.000	0.76318	-0.33525	-1.3				
	4.200	0.68991	-0.40135	-1.3				
	4.400	0.60090	-0.49355	-1.3				
	4,600	0.49042	-0.61699	-1.3				
<i>V</i> .	4.300	0.35162	-0.77773	-1.3				
2	5.000	0.18838	-0.73189	1.3				
	5,200	0.07126	-0.44253	1.3				
	5.400	0.01031	-0.16884	1.3				
	5.000	-0.00000	-0.02977	1.3			14	5
	5.704	0.00000	0 + 0 - 7 / /	~ ~ ~ ~				

$ EPS = 0.050265 \\ T [ME] POSITION USED U \\ 0.147 3.15597 0.19529 1.3 \\ 0.148 3.15617 0.19661 1.3 \\ 0.200 3.16817 0.26487 1.3 \\ 0.209 3.20004 0.33138 1.3 \\ 0.300 3.20037 0.32999 1.3 \\ 0.400 3.22638 0.18973 1.3 \\ 0.600 3.23592 - 0.09459 1.3 \\ 0.800 3.18876 - 0.37554 1.3 \\ 1.000 3.08665 - 0.64220 1.3 \\ 1.200 2.93373 - 0.88106 1.3 \\ 1.400 2.73717 - 1.07562 1.3 \\ 1.663 2.55198 - 1.18860 1.3 \\ 1.663 2.55198 - 1.18915 1.3 \\ 1.600 2.50761 - 1.20829 1.3 \\ 1.800 2.25897 - 1.26452 1.3 \\ 1.824 2.22861 - 1.26567 1.3 \\ 1.824 2.22861 - 1.26567 1.3 \\ 1.824 2.22861 - 1.26567 1.3 \\ 2.200 1.76935 - 1.13039 1.3 \\ 2.200 1.76935 - 1.13039 1.3 \\ 2.200 1.75975 - 0.9588 - 1.3 \\ 2.200 1.75975 - 0.9588 - 1.3 \\ 3.000 1.20739 - 1.23743 1.3 \\ 2.200 1.75975 - 0.9589 - 1.3 \\ 3.000 1.20739 - 1.23743 1.3 \\ 2.200 1.75975 - 0.9589 - 1.3 \\ 3.000 1.24308 - 0.65865 - 1.3 \\ 3.000 1.12035 - 0.57526 - 1.3 \\ 3.000 1.12035 - 0.57526 - 1.3 \\ 3.000 1.61046 - 0.52964 - 1.3 \\ 3.000 1.12035 - 0.57526 - 1.3 \\ 3.000 1.61046 - 0.52964 - 1.3 \\ 3.000 0.68040 - 0.54387 - 1.3 \\ 3.000 0.68040 - 0.54387 - 1.3 \\ 3.000 0.68040 - 0.54387 - 1.3 \\ 3.000 0.68040 - 0.54387 - 1.3 \\ 3.000 0.68040 - 0.54387 - 1.3 \\ 3.000 0.68040 - 0.54387 - 1.3 \\ 3.000 0.68040 - 0.52964 - 1.3 \\ 3.400 0.90614 - 0.52964 - 1.3 \\ 3.400 0.90614 - 0.52964 - 1.3 \\ 3.400 0.90614 - 0.52964 - 1.3 \\ 3.400 0.90614 - 0.52964 - 1.3 \\ 3.400 0.090614 - 0.52964 - 1.3 \\ 3.400 0.090614 - 0.52964 - 1.3 \\ 3.400 0.090614 - 0.52964 - 1.3 \\ 3.400 0.090614 - 0.52964 - 1.3 \\ 3.400 0.090614 - 0.52964 - 1.3 \\ 3.400 0.090614 - 0.52964 - 1.3 \\ 3.400 0.08040 - 0.54387 - 1.3 \\ 3.400 0.08040 - 0.54387 - 1.3 \\ 3.400 0.08040 - 0.54387 - 1.3 \\ 3.400 0.08040 - 0.52964 - 1.3 \\ 3.400 0.090614 - 0.52964 - 1.3 \\ 3.400 0.090614 - 0.52964 - 1.3 \\ 3.400 0.090614 - 0.52964 - 1.3 \\ 3.400 0.090614 - 0.52964 - 1.3 \\ 3.400 0.08040 - 0.54387 - 1.3 \\ 3.400 0.08040 - 0.54387 - 1.3 \\ 3.400 0.08040 - 0.54387 - 1.3 \\ 3.400 0.090614 - 0.52964 - 1.3 \\ 3.400 0.090614 - 0.52964 - 1.3 \\ 3.400 0.090614 - 0.52971 - 1.3 \\ 3.400 0.090614 - 0.52971 - 1.3 \\$	STARTPOINT	3.1410	0.0000	TIMESTEP	0.0010	А	н
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	EPS= 0.05026	5					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TIME	P	OSITION	USE	U_U_		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.147	3.1	5597 0•1	9529 -1	• 3		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3.1	5617 8•1	9661 -1	• 3		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3.1					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.299	3.2					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.300	3.2					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.400						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.000						
1.200 2.93373 -0.88106 1.3 1.400 2.73717 -1.07562 1.3 1.562 2.55316 -1.18860 1.3 1.563 2.55198 -1.18915 1.3 1.600 2.50761 -1.20829 1.3 1.800 2.25897 -1.26567 1.3 1.823 2.22987 -1.26567 1.3 2.000 2.00739 -1.23743 1.3 2.200 1.76935 -1.13039 1.3 2.230 1.73577 -1.10811 1.3 2.231 1.73466 -1.0734 1.3 2.000 1.24308 -0.65865 -1.3 2.000 1.24308 -0.65865 -1.3 3.000 1.24308 -0.65865 -1.3 3.000 1.01046 -0.52964 -1.3 3.000 0.80040 -0.54387 -1.3 3.400 0.90614 -0.51937 -1.3 3.400 0.90614 -0.54387 -1.3 3.400 0.80040 -0.60449 -1.3 4.000 0.55599 -0.70438 -1.3 4.000 0.22437 -0.80330 1.3 4.000 0.9345 -0.50932 1.3	0.800						
1.400 2.73717 -1.07562 1.3 1.562 2.55316 -1.18860 1.3 1.563 2.55198 -1.18915 1.3 1.600 2.50761 -1.20829 1.3 1.800 2.25897 -1.26452 1.3 1.823 2.22987 -1.26567 1.3 1.824 2.22861 -1.26570 1.3 2.000 2.00739 -1.23743 1.3 2.200 1.76935 -1.13039 1.3 2.230 1.73577 -1.10811 1.3 2.230 1.73577 -1.10811 1.3 2.230 1.73577 -1.10811 1.3 2.200 1.55975 -0.95589 -1.3 2.000 1.83659 -0.78387 -1.3 2.000 1.24308 -0.65865 -1.3 3.000 1.24308 -0.65865 -1.3 3.000 1.01046 -0.51937 -1.3 3.000 0.80040 -0.54387 -1.3 3.000 0.80040 -0.54387 -1.3 3.000 0.80040 -0.60449 -1.3 4.000 0.55599 -0.70438 -1.3 4.000 0.22437 -0.80330 1.3 4.000 0.09345 -0.50932 1.3	1.000						
1.562 2.55316 -1.18860 1.3 1.563 2.55198 -1.18915 1.3 1.600 2.50761 -1.20829 1.3 1.800 2.25897 -1.26452 1.3 1.823 2.22987 -1.26567 1.3 1.824 2.22861 -1.26570 1.3 2.000 2.00739 -1.23743 1.3 2.200 1.76935 -1.13039 1.3 2.230 1.73577 -1.10811 1.3 2.231 1.73466 -1.10734 1.3 2.400 1.55975 -0.95589 -1.3 2.000 1.24308 -0.65865 -1.3 3.000 1.2235 -0.57526 -1.3 3.000 1.2035 -0.57526 -1.3 3.000 0.80040 -0.54387 -1.3 3.000 0.80040 -0.54387 -1.3 3.000 0.80040 -0.54387 -1.3 3.000 0.80040 -0.60449 -1.3 4.000 0.55599 -0.70438 -1.3 4.000 0.22437 -0.80330 1.3 4.600 0.09345 -0.50932 1.3 4.600 0.01948 -0.23271 1.3	1.200						
1.563 2.55198 -1.18915 1.3 1.600 2.50761 -1.20829 1.3 1.800 2.25897 -1.26452 1.3 1.823 2.22987 -1.26567 1.3 1.824 2.22861 -1.26570 1.3 2.000 2.00739 -1.23743 1.3 2.200 1.76935 -1.13039 1.3 2.230 1.73577 -1.10811 1.3 2.231 1.73577 -1.10811 1.3 2.230 1.73577 -1.78387 -1.3 2.400 1.55975 -0.95589 -1.3 2.500 1.24308 -0.65865 -1.3 2.500 1.24308 -0.55964 -1.3 2.500 1.01046 -0.52964 -1.3 3.000 1.01046 -0.52964 -1.3 3.000 0.80040 -0.54387 -1.3 3.000 0.80040 -0.54387 -1.3 3.000 0.68619 -0.60449 -1.3 4.000 0.55599 -0.70438 -1.3 4.000 0.22437 -0.80330 1.3 4.000 0.09345 -0.50932 1.3 4.600 0.01948 -0.23271 1.3	1.400	2.7					
1.600 2.50761 -1.20829 1.3 1.800 2.25897 -1.26452 1.3 1.823 2.22987 -1.26567 1.3 1.824 2.22861 -1.26570 1.3 2.000 2.00739 -1.23743 1.3 2.200 1.76935 -1.13039 1.3 2.230 1.73577 -1.10811 1.3 2.231 1.73466 -1.10734 1.3 2.400 1.55975 -0.95589 -1.3 2.500 1.38659 -0.78387 -1.3 2.500 1.24308 -0.65865 -1.3 3.000 1.12035 -0.57526 -1.3 3.200 1.01046 -0.52964 -1.3 3.400 0.90614 -0.51937 -1.3 3.600 0.68619 -0.60449 -1.3 4.000 0.55599 -0.70438 -1.3 4.000 0.22437 -0.80330 1.3 4.600 0.09345 -0.50932 1.3 4.600 0.01948 -0.23271 1.3	1.562			14			
1.800 $2 \cdot 25897$ $-1 \cdot 26452$ $1 \cdot 3$ 1.823 $2 \cdot 22987$ $-1 \cdot 26567$ $1 \cdot 3$ 1.824 $2 \cdot 22861$ $-1 \cdot 26570$ $1 \cdot 3$ 2.000 $2 \cdot 00739$ $-1 \cdot 23743$ $1 \cdot 3$ 2.200 $1 \cdot 76935$ $-1 \cdot 13039$ $1 \cdot 3$ 2.230 $1 \cdot 73577$ $-1 \cdot 10811$ $1 \cdot 3$ 2.231 $1 \cdot 73466$ $-1 \cdot 10734$ $1 \cdot 3$ 2.400 $1 \cdot 55975$ $-0 \cdot 95589$ $-1 \cdot 3$ 2.500 $1 \cdot 38659$ $-0 \cdot 78387$ $-1 \cdot 3$ 2.500 $1 \cdot 24308$ $-0 \cdot 65865$ $-1 \cdot 3$ 3.000 $1 \cdot 12035$ $-0 \cdot 57526$ $-1 \cdot 3$ 3.200 $1 \cdot 01046$ $-0 \cdot 52964$ $-1 \cdot 3$ 3.400 $0 \cdot 90614$ $-0 \cdot 51937$ $-1 \cdot 3$ 3.500 $0 \cdot 68619$ $-0 \cdot 60449$ $-1 \cdot 3$ 4.000 $0 \cdot 55599$ $-0 \cdot 70438$ $-1 \cdot 3$ 4.000 $0 \cdot 22437$ $-0 \cdot 84806$ $-1 \cdot 3$ 4.600 $0 \cdot 09345$ $-0 \cdot 50932$ $1 \cdot 3$ 4.600 $0 \cdot 01948$ $-0 \cdot 23271$ $1 \cdot 3$	1.563						
1. $\delta 23$ 2. 22987 -1. 26567 1. 3 1. $\delta 24$ 2. 22861 -1. 26570 1. 3 2. 000 2. 00739 -1. 23743 1. 3 2. 200 1. 76935 -1. 13039 1. 3 2. 230 1. 73577 -1. 10811 1. 3 2. 231 1. 73466 -1. 10734 1. 3 2. 400 1. 55975 -0. 95589 -1. 3 2. 400 1. 24308 -0. 65865 -1. 3 2. 600 1. 24308 -0. 65865 -1. 3 3. 000 1. 12035 -0. 57526 -1. 3 3. 200 1. 01046 -0. 52964 -1. 3 3. 400 0. 90614 -0. 51937 -1. 3 3. 600 0. 68619 -0. 60449 -1. 3 4. 000 0. 55599 -0. 70438 -1. 3 4. 200 0. 40152 -0. 84806 -1. 3 4. 400 0. 22437 -0. 80330 1. 3 4. 600 0. 09345 -0. 50932 1. 3 4. 600 0. 01948 -0. 23271 1. 3	1.600			*			
1.824 2.22861 -1.26570 1.3 2.000 2.00739 -1.23743 1.3 2.200 1.76935 -1.13039 1.3 2.230 1.73577 -1.10811 1.3 2.231 1.73466 -1.10734 1.3 2.231 1.73466 -1.10734 1.3 2.400 1.55975 -0.95589 -1.3 2.500 1.38659 -0.78387 -1.3 2.600 1.24308 -0.65865 -1.3 3.000 1.12035 -0.57526 -1.3 3.000 1.01046 -0.52964 -1.3 3.400 0.90614 -0.51937 -1.3 3.600 0.80040 -0.54387 -1.3 3.600 0.68619 -0.60449 -1.3 4.000 0.55599 -0.70438 -1.3 4.000 0.22437 -0.80330 1.3 4.600 0.09345 -0.50932 1.3 4.600 0.01948 -0.23271 1.3	1.800	2.2					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.823						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.824						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.000	2•0					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2,200						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.230			-			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.231						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2,400						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2,000	1.3					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.000	1.2					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.1					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3,200	1.0					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.9					
4,000 0.55599 -0.70438 -1.3 $4,200$ 0.40152 -0.84806 -1.3 $4,400$ 0.22437 -0.80330 1.3 4.600 0.09345 -0.50932 1.3 4.600 0.01948 -0.23271 1.3	3,000	0.8					
4.200 0.40152 -0.84806 -1.3 4.400 0.22437 -0.80330 1.3 4.600 0.09345 -0.50932 1.3 4.800 0.01948 -0.23271 1.3	3.000						
4,400 0.22437 -0.80330 1.3 $4,600$ 0.09345 -0.50932 1.3 $4,600$ 0.01948 -0.23271 1.3	4,000	0.5	5599 -0.7	-			
4,400 0.22437 -0.80330 1.3 $4,600$ 0.09345 -0.50932 1.3 $4,800$ 0.01948 -0.23271 1.3	4,200	0.4	0152 -0.8				
4.600 0.09345 -0.50932 1.3 4.800 0.01948 -0.23271 1.3	-	0.2	2437 -0.8	0330 1			
4.800 0.01948 -0.23271 1.3	*						
		0.0	1948 -0.2	3271 1	. • 3		
				4232 1	3	8	

Α6.

= 1.570796 B = 0.304949

STAR	TPAINT	3.1410	0.0000	ΤI	MESTEP	0.001	0	А	= 1
EPS≠	0,12560	4				si -			
	TTME		OSITION		USE	Ú Ú			
	0.147	3.1	5597	0.19529	-1	• 3			2
	0.148	3 • 1	5017	0.19661		• 3			
	0,200	3.1	6817	0.26487	-1	• 3			
	0 299	3.2	0074	8.39261	· <u>-1</u>	• 3			
	0,300	3.2	0114	0.39389	-1	• 3			
	0 400			0.51864		• 3			
	0.000	3 • 3	3957	0.32.496	· 1	• 3	87		
	0.800	3.3		0.02104		• 3	÷		
	1,000	3.3	4794 -	0.28346	1	.3			
	1,200	3.2	0140 -	0.57973	1	• 3			
	1,400	3.1	1736 -	0.85626	1	• 3			
	1 562	2.9	6217 -	1.05497	1	.3			
	1 503	2.9	6111 -	1.05610	1	• 3			
)	1 600	2.9	2127 -	1.09708	1	• 3			
	1.800	2.6	8553 -	1.28225	1	.3			
	1.023	2.6	5255 -	1.29903	1	• 3			
	1.824	2.0	5125 -	1.29973		• 3			
	2 000	2.4	1344 -	1.39162		• 3			
)	2,200	2.1	3161 -	1.41106		• 3			
	2 230	* 5*0	8935 -	1.40588		• 3			
	2 231	2.0	8794 -	1.40567		• 3			
	2 400	1.8	5522 -	1.33787		• 3			
	2 000	1.0	0200 -	1.18191		• 3			
	2 300	1.3	8418 -	1.00551		• 3			
	3 000	- 1.1	9580 -	0.88803		<u>.</u> ک			
	3,200		2516 -	0.82771		• 3			
	3 400	U = 8	6105 -	0.82247		• 3			
	3 000	Ü.6	9251 -	0.87212		• 3			
	3 300	0.5	0843 -	0.97843		• 3			
	4.000			0.94569		• 3			
	4,200	U•i	4056 -	0.64203		• 3			
	4,400			0.35824	1	•3 '			
	4 000			0.08763	1	• 3			
	4 639	-0.0		0.03559	1	. 3			

= 1.570796 B = 0.384750

		FPOINT	3.1416	0.00	00	TIME	STEP	0.001	0	A	=]	1.5707	796	8 =	0.45
	EPS=	0.188490	6					•							
		TIME	10	POSITI			USE								
		0.147		15597	0 • 1 9 5		-1								
	*	0.148		3 <u>.1</u> 5617	0.190		-1								
		0 • 200		5.16817	0.264		-1								
		0.299		.20074	0.392		-1.								
<i>.</i>		0.300		.20114	0.393		-1.								-1
		0+400		.24681	0.518		-1		5						
		0.600		.36919	0.580			• 3							
		0.800		.45620	0.278			• 3				8		÷.	
1.0		1.000		48025	+0+038			3							
		1.200		44081	-0.355			.3							
		1.400	3	.33877	-0.663			• 3							
		1.562		21199	-0.899			• 3							
)	1.563		.21109	-0.900			.3		60					
		1.600		.17682	-0.951			.3	2	1					
		1.800		•96050	-1.203			.3							
		1.823		•93252	-1+229	-		3							
		1.824		•93129	-1.23(3							
)	2.000		.69932	-1.396			3		-					
		2.200		.40741	-1.507			.3							
		2.230		.36205	-1.515			.3							
		2.231		.36054	-1.516			3				10			
		2.400		.10287	-1.521			.3			38				
		2.600		.80565	-1.435			3							
		2.000		•53459	-1.263		-1								×.
		3.000		•29855	-1.108		-1.								
		3.200	1	.08672	-1-021	41	-1.								
		3.400		.88550	-1-001	196	-14				,ŵ				
		3.600		.68149	-1+049		-1.								
		3.800	0	.46122	-1.164		-1.				10				
		4.000		.25674	-0.864			• 3							
		4.200		.11389	-0.567	701	1	. 3							
		4.400	Q	.02868	-0.287	771	1.	. 3							
		4.559	-	.00001	-0.073	390 -	1.	3							
			-												

TIMEOPTIMAL TRAJECTORY

STAR	TPOINT	3.1416	0.00	0 0	TIMES	TEP	0.0010		Α =	1.57	70796	В	=	0.46	6441
EPS=	0.20106														
	TIME		POSITI			USE									
	0 • 1 47		15597	0.195		-1									
	0.148		15617	0.196		-1									
	0.200		16817	0.264		-1									
	0 • 299		20074	0.392		=1									
	0.300		20114	0.393		-1									
	0.400		24681	0.518		-1		14 H.							
	0.600		37164	0.636			• 3								
	0.800		46799	0.324			• 3	<u> </u>							
	1.000		50113	0.005			• 3								
	1.200		47038	-0.313			.3								
	1.400		37637	-0.625			• 3								
	1.562		25535	-0.866			• 3								
	1.563	3.	25448	-0.867			• 3								
/	1.000	3.	22139	-0.920	45		.3	n (* 1							
	1.800	3.	01039	-1.182	30		.3								
	1.823	2.	98289	-1.209	33		3								
	1.824	2.	98168	-1.210	49	1	• 3								
	2.000	2.	75216	-1.388	84		• 3								
	2.200	2.	46014	-1.516		1	, 3			ж.					
	2.230	2.	41448	-1.527	40	1.	• 3								
	2.231	2.	41295	-1.527	73	1	• 3								
	2.400	2.	15211	-1.546	95	1	• 3								
	2.600	1.	84817	-1.476	00	1.	• 3								
	2.800		56780	-1.314	110	-1	• 3	14						0	
	3.000	1.	32254	-1.150	29	-1		20							
	3.200		10297	-1.057	11	-1.	• 3								
	3.400		89507	-1.033	\$39	-1	• 3								
	3.600		68502	-1.078	67	-1	• 3								
	3.800		45899	-1-179	146	1	• 3								
3	4.000		25529	-0.860)76	1	.3								
	4.200		11327	-0.562		1	• 3 -								
	4.480	-	02886	-0.283		1	• 3					1			
	4.573		00003	-0.051			• 3								
	२०७७ इ.स.		~~~~												
	6						¥.								

4.611

STAR	TPOINT	3.1416	0.00	00 TI	MEST	EP 0.	0010		A	=	1.5707	96	B =	0.480257
EPS=	0.21362	8												
	TIME		POSITI	ON	l	USED U	Ļ	44						
	0.147	3.	15597	0.19529)	-1.3								
	0.148		15617	0.19661		-1.3								
	0.200	3.	16817	0.26487		-1.3								
	0.299	3.	20074	0.39261		-1.3								
	0.300		20114	0.39389		-1.3								
	0-400		24681	0.51864		-1.3								
	0.00		37324	0.68368		1.3					2			
	0.800		47892	0.37113		1.3								
	1.000		52118	0.05078		1.3							2	2
	1+200		49917	-0.27051		1.3	ġ	0).e		3	
	1.400		41333	-0.58645		1.3	,					2		
	1.562		29824	-0.83218		1.3								
	1.563		29741	-0.83365		1.3								
,	1.600		26556	-0.88767		1.3			a lu					
	1.800		06024	-1.15893		1.3			3					
	1.823		03326	-1.18728		1.3			8					
	1.824		03207	-1.18850		1.3								
)	2.000		80542	-1.37868		1.3								
	2.200		51384	-1.52248		1.3				8		1		
	2.230		46796	-1.53613		1.3								
	2.231		46642	-1.53655		1.3								
	2.400		20235	-1.57040		1.3								
	2.600		89260	-1.51505		1.3			-22					
	2.800		60317	-1.36494		1.3								
	3.000		34844	-1.19344		-1+3								<i>.</i>
	3.200		12097	-1.09333		-1.3								
	3.400		90634	-1.06479		-1-3								
	3.600		69032	-1.10734		-1.3								
	3.800		45897	-1.18123		1.3								
	4.000		25491	-0.86255		1.3								
	4.200		11253	-0.56482		1.3								
	4.400		02773	-0.28573		1.3								
	4.551	-0 •	00004	-0.08271		1.3								

62 4.1.13

STAR	TPOINT	3.1416	0 • 0 0	00 TI	MEST	EP 0.	0010	А	= 1.57079	6 B =	0.494136
	0.22619										
210-	TIME		POSITI	QN		USED U	J				
	0 • 1 47	3	•15597	0 • 19529)	-1.3					
	0.148		.15617	0.19661		-1.3					
	0.200		.16817	0.26487		-1.3					2
	0 • 299		20074	0.39261		-1.3					
	0.300		.20114	0.39389		-1.3					
	0.400		.24681	0.51864	1	-1.3	101				
	0.600	3	37397	0.72791		1.3					
	0.800	3	•48846	0.41480		1.3					
	1.000	3	\$53933	0.09321		1.3					
	1.200		•52564	-0.22998		1.3					
	1.400	3	.44761	-0.54901		1.3					
	1.562		.33829	-0.79874		1.3					
)	1.563		.33749	-0.80024		1.3					
	1.600		30686	-0.85542		1.3	-				
	1.800		.10722	-1.13498		1.3	÷				•
	1.823		•08077	-1.16452		1.3					
	1.824		07961	-1.16579		1.3	2	100			~ ×
	2.000		.85605	-1.36670		1.3					
	2.200		.56539	-1.52568		1.3					
	2.230		•51938	-1.54179		1.3					
	2.231		•51784	-1.54229		1.3					
	2.400		.25210	-1.59018		1.3					
	2.600		•93633	-1.55019		1.3		27.8			
	2.800		•63861	-1.41201		1.3		1.2			
	3.000		.37474	-1.23525		-1.3		×5			
	3.200		•13964	-1.12808		-1.3					
	3.400		•91860	-1.09446		-1.3					
	3.600	-	•69698	-1.13390		-1.3					
	3.800		.46100	-1.18298		1.3			5 		
	4.000		.25661	-0.86412		1.3					
	4.200		.11393	-0.56617		1.3					
	4.400		•02889	-0.28684		1.3					
	4.564	-0	•00001	-0.06632		1.3					

STAR	TPOINT	3.1416	0.00	00	TIMESTEP		Α =	1.570	796	в =	0.2	8975
	TIME	1	POSITI	ON	USE	ED U	EPS:	- 0				
	0.200	3.	11369	-0.278	12 1	1•4		-				
	0.400	3.	03112	-0.544	51 1	L.4						
	0.600	2.	89756	-0.785	67 1	1•4						5.
	0.800	2.	71960	-0.985	58 1	1•4						
	1.000		50722	-1.127		1.4						
	1.200		27365	-1.195		1•4						
	1.400		03446	-1.182		1.4						
	1.600	1.	80589	-1.090		1.4						
	1.000	_	60294	-0.928		1.4						
	1.821		58365	-0.908		1.4						
	1.822		58274	-0.907		1.4						
	1.823		58183	-0.906		i •4						
	1.824		58092	-0.905		1.4						
	1.825		58002	-0.904	_	1.4						
	1.826		57912	-0.903		1.4						
	2.000		43610	-0.746		1.4						
	2.200		30146	-0.607		1.4						
	2.400		19058	-0.507		1.4						
)	2.600		09613	-0.442	_	1.4						
	2.800		01172	-0.406		1.4						
	3.000		93153	-0.399	-	1.4						
	3.200		85003	-0.420	-	1.4						
	3.400		76159	-0.469		1.4						
	3.600		66016	-0.550		1.4						
	3.800		53894	-0.668	_	1.4					21.53	
	4.000		39008	-0.827		1.4						
	4.200		21455	-0.802		1.4						
	4.400		08501	-0.496		1 • 4						
	4.600		01478	-0.207		1.4						
	4.720	-0+	00003	-0.039	22 :	1.4						

U

TIMEOPTIMAL TRAJECTORY

1										
STAR	TPOINT 3.14	116 0.00	00 TIM	1ESTEP 0.0010	1	Α =	1.570796	B =	0 • 46	4920
EPS=	0.163363			t: •						
	TIME	POSITI	0 N	USED U						
	0.147	3.15669	0.20505	-1.4						
	0•148 -	3.15690	0.20644	-1 • 4						
	0+200	3.16950	0.27812	-1.4						
	0.299	3.20370	0.41223	-1.4						
	0.300	3.20411	0.41357	-1.4						1
	0.400	3.25206	0.54451	-1.4						
	0.600	3.36870	0.48174	.1.4	-					
	0.800	3.43293	0.15924	1 • 4						
	1.000	3,43215	-0.16697	1.4						
	1.200	3.36640	-0.48928	1-4						
	1.400	3.23732	-0.79818	1 • 4						
	1.562	3.08903	-1.02870	1.4						
-)	1.563	3.08800	-1.03004	1.4						
	1.600	3.04898	-1.07900	1.4	8					
5	1.800	2.80897	-1.31092	1 • 4						
	1.823	2.77856	-1.33336	1.4						
	1.824	2.77723	-1.33431	1.4						
)	2.000	2.52951	-1.46956	1.4						
	2.200	2.22747	-1.53380	1.4						
	2.230	2.18144	-1.53449	1.4						
	2.231	2.17991	-1.53447	1.4						
	2.400	1.92296	-1.49396	1.4				10		
	2.600	1.63645	-1.35612	1.4						
	2.800	1.38376	-1.17933	-1.4						1
	3.000	1.15989	-1.07148	-1.4						1
	3.200	0.95035	-1.03583	-1.4						1
	3.400	0.74080	-1.07162	-1.4		1				×
	3.600	0.51689	-1.17960	-1.4						
	3.800	0.29544	-0.95304	1•4						
	4.000	0.13672	-0.63772	1.4						
	4.200	0.03901	-0.34223	1.4						
	4.386	-0.00005	-0.07902	1.4						

A 13.

T

TIMEOPTIMAL TRAJECTORY

STARTPOINT	3.1416 0.00		STEP 0.0	010	A = 1.570796 EPS = 0.	B = 0.339837
TIME	POSITI		1.5			
0.200	3.11169	-0.29798			÷	
0 • 400	3.02324	-0.58330	1.5			
0.600	2.88021	-0.84103	1.5			
0.08.0	2.68987	-1.05306	1.5			
1.000	2.46334	-1.19985	1.5			
1.200	2.21540	-1.26482	1.5			
1.400	1.96344	-1.23974	1.5			
1.600	1.72532	-1.12786	1.5			
1.800	1.51711	-0.94710	-1.5			
1.821	1.49742	-0.92815	-1.5			
1.822	1.49650	-0.92726	- 1+5		1	
1.823	1.49557	-0.92638	-1.5	(*)		
1.824	1.49464	-0.92549	-1.5			
) 1.825	1.49372	-0.92461	-1.5	22		
1.826	1.49279	-0.92373	-1.5			
2.000	1.34414	-0.79201	-1.5		° 2	
2.200	1.19674	-0.69040	-1.5		- /	
2.400	1.06473	-0.63761	-1.5			
) 2.600	0.93864	-0.63084	-1.5			
2.800	0.80935	-0.66973	-1.5			
3.000	0.66756	-0.75638	~1.5			
	0.50334	-0.89498	-1.5			
3.200	0.30712	-1.00253	1.5			
3:400	0.14056	-0.66673	1.5			
3.600		-0.35105	1.5	2 III		
3.800	0.03907		1.5			
3.988	-0.00004	-0.06627	1+7	~		

ST	ARTPOINT	3.1410 0.	0000 TI	MESTEP U	•0010	A = :	1.570796	8 = 0.3000
	S= 0.02513							
L	TIME	POSI	TION	USED	U			
	0.147	3.1577		-1.5				
	0.148	3.1579		-1.5				
	0.200	3.1711		1.5				
	0.299	3.1883		1.5				
	0.300	3.1884		1.5				
	0.400	3.1903		1.5				
	0.600	3.1478		1.5				
	0.300	3.0453		1.5				
	1.000	2.8872		1.5		9		
	1,200	2.6815	0 -1.12961	1.5				
	1,400	2.4401		1.5				
	1.562	2.2292	1 -1.32232	1.5				
	1,563	2.2278		1.5				
C	1.000	2.1788		1.5				
	1.000	1.9162		1.5	÷			
	1.823	1.8868:		1.5				
	1.824	1.8855		1.5				
	2,000	1.6707		1.5				
	2,200	1.4580		-1.5				
	2,230	1.4292		-1.5				
	2,231	1.4282	6 -0.94774	-1.5				
	2.400	1.2779	6 -0.83802	-15				
	2,000	1-1189	5 -0.76139	-1+5				
	2.800	0.9697		-1.5				
	3.000	0.8196	4 -0.77086	-1.5				
	3,200	0.6577	6 -0.85740	-1.5				
	3,400	0.4727		-1.5				
	3,000	0.2661		1.5				
	3,800	0.1135:		1.5				
	4.000	0.0251:		1.5				
	4.137	-0.00004		1.5				
	•							

TRAJECIORY

					-					
STAR	TPAINT	3.1410 0.	0000	TIMESTEP	0.0010	Д	= 1.570	790 E	3 = 0	420986
EPS=	0_07539	8						2		
	TIME	POSI	TIGN	USI	ED U					
	0,147	3.1577	7 0.21	L970 -:	1.7					
	<u>0.148</u>	3.1579	9 0+22	2118 -:	1.0					
	0 200	3.1714	9 0.•24	798 -:	1.5					
	0.299	3.2081	4 0.44	4105 -:	1.5					
	0.300	8 3.2035	8 6.44	4308 -:	1.5					
	0.400	3.2501	5 6.34	1166	1.5					
	0.00	3.2803			1.0					
	0.000	3.2573			L + 5					
- T	1,000	3.1643			1.5					
	1.200	3.0108			1.5					
	1.400	2.8033			1.5					
	1.562	2.6031			1.0					
	1.503	2.0018			1.5					
)	1_000	2.5529			1.0					
	1.000	2.2752			1.5					
	1.823	2.2423			1.0					
	1.024	2.2409			1.5					
	2,000	1.9891			1.5					
)	2,200	1.7151			L.5					
	2.230	1.6762			1.0					
	2.231	1.0744			1.5					
	2,400	1.4713			1.5					
	2.500	1.2605			1.5		P.C.			
9	2,800	1.0095			1.7					
	3.000	Û•8848			1.5					1
1	3,200	Ú.693D			1.0					1
	3,400	U.4805			1.2					
	3,600	0.2641			1.5					
	3.300	0.1122			L.5					
	4_000	0.0246			L+5					
	4.138	-0.000	-0.07	513 1	L.5					

A 16.

			× .						
STAR	TPOINT	3.1416 0.00	00 TIN	ESTEP	0.0010	А	= 1.570796	в =	0.562193
EPS=	0.201062								
	TIME	POSITI	ON	USE				21	
	0.147	3.15777	0.21970	-1					9.18
	0 • 1 48	3.15799	0.22118	-1					
	0.200	3.17149	0.29798	-1					
	0.299	3.20814	0.44165	-1			e1		
	0.300	3.20858	0.44308	-1	•5				
	0.400	3.25995	0.58330	-1					
,	0.600	3.39475	0.62216		•5				
	0.800	3.48474	0.27618		• 5				
	1.000	3.50489	-0.07497		• 5				
	1.200	3.45484	-0.42481		•5				
	1.400	3.33554	-0.76586		•5				
	1.562	3.19007	-1.02689		•5				-
	1.563	3.18904	-1.02344		•5				
	1.600	3.14994	-1.08495		•5				
	1.800	2.90444	-1.36054		• 5				
	1.823	2.87283	-1.38818		• 5				
	1.824	2.87144	-1.38936		•5				
)	2.000	2.61053	-1.56401		•5				
	2.200	2.28556	-1.66699		• 5				
	2.230	2.23546	-1.67248		•5				
	2.231	2.23379	-1.67261		•5				
	2.400	1.95161	-1.65247		•5				
	2.600	1.63228	-1.52297		•5				
	2.800	1.34582	-1.35339	-1					4
	3.000	1.08491	-1.27100	-1					
	3.200	0.83134	-1.27982	-1					
	3.400	0.56689	-1.37987	-1					
	3.600	0.32470	-1.03427		•5				
	3.800	0.15196	-0.69666		•5				
	4.000	0.04465	-0.37953		•5				
	4.191	-0.00003	-0.08972	1	•5				

TIMEOPTIMAL TRAJECTORY

ane cleath,

		8				= 7 0 7 0 4	1. 2.9	0 700706
STARTPOINT	3,1416 0,00	00 TIME	STEP 0.0	001	A = .	570796	3 🖷	0.729728
TIME	POSITI	0 N	USED U					
0.2000	5.08180	-0.59579	3.0	1	i.			
0.4000	2.90500	-1.10166	3.0					
0.0000	2.62242	-1.64724	3 . u					
0.000	2.25668	-1.97734	3.0		G			15
1.0000	1.84620	-2.07797	3.0				2	
1.1347	1.57025	-2.00007	3.3					
1.1348	1.57075	-1.99998	- 3 . 0					2
1 • 1349	1.57055	-1.99988	-3-0					
1.2000	1.44220	-1.94758	-3.0					
1.4000	1.05675	-1.94731	-3+0					
1.0616	0.72994	-2.12335	-3.0					
1.5617	0.70973	-2.12351	-3.0					· · · ·
1.5018	0.72951	-2.12322	3.0					
1.0000	0.65055	-2.01053	3.0	20				
1.5000	0.31015	-1.38803	3.0					
2.0000	0.09542	-0.76208	3.0					
2.2000	0.00399	-0.15485	3.9					
2.2500	-0.00000	-0.00478	3.0					

STARTPOINT	3.1416 0.	1T 0000	MESTEP 0.001	LO A	
EPS= 0.01256					
TIME	POSI	TION	USED U		
0,147		8 0.10961			
0.148		8 0.10658			
0.200	3.1664				
0.299	3.1466				
0.300		7 -0.35234			
0.400	3.0960				
0.000	2.9083	-			
0.800	2.6141				
1.000	2.2378		3.0		
1 200		5 -2.11188	3.0		
1,400	1.4095				
1,562	1.0915	2 -1.97636	-3.0		
1.563	1.0895		-3.0		
1.600	1.0160:	1 -1.99966	-3.0		
1.800	0.6043	0 -1.94308	3.0		
1.823	0.5604	1 -1.87280	3.0		
1.824	0.5585	4 -1.86973	3.0		
2.000	0.2778	9 -1.31716	3.0		
2,200	0.0771	6 -0.69331	3.0		
2,230	0.0577	4 -0.60150	3.0		
2,231	0.0571	4 -0.59844	3.0		
2,393	-0.0000	o -0.10908	3.0		
-		~			

A = 1.570796 B = 0.746717

 (\cdot)

U

	STARTPFINT	3.1416 0.0	000 TI	MESTEP	0.0010	A =	= 1.57079	ю ы.=	1.0237:8
	EPS= 0 18849	0							
	TIME	POSIT	IŪN	USEL) U				
	0-147	3.17345	0.43937	-3.	0				
	0 ± 148	3.17439	0.44233	-3.	0				
	0 200	3.20139	0.59579	-3.	0				
	0 299	3.27462	0.88212	-3.	0				
	0-300	3.27550	0.88496	-3.	0				
	0 400	3.37253	0.90949	3.	0				
	0 600	3.49127	0.27756	° 3.	0	<			
	0 0 8 0	3.48358	-0.35451	··· 3.	0				
	1 = 000	3.34946	-0.98007	3.	0			8	
	1 200	3.09024	-1.59967	3.	U				
	1+400	2.71469	-2.13506	3.	0				5÷
	1 562	2.34211	-2.43921	З.	0				
	1 563	2.33967	-2.44059	3.	Û	4			
	1 000	2.24849	-2.48631	3.	0				
	1 000	1.73951	-2.55035	3.	Ü				
	1+823	1.68100	-2.53716	3.	0				
	1.824	1.67846	-2.53650	3.	Ú				
) 2 000	1.24341	-2.43499	-3.	0			,	
	21200	U.76741	-2.17583	3.	U				
	2+230	0.70344	-2.08897	3.	U				
	2 231	U.70135	-2.08603	3.	0				
	2-400	0.39222	-1.56630	3.	U				
	2+000	0.14207	-0.93683	3.	0				
	2 800	0.01622	-0.32489	3,	0				
Ļ	2+379	-0.00006	-0.08738	3.	Ŭ				

A 20.