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1. INTRODUCTION

An automatic control problem consists of an analysis of the process to be
controlled followed by a design of a controller, based on the analysis. This
procedure is mostly carrled out repeatedly, i.e. the design is followed by a
new analysis of the received closed loop system leading to modifications of

the design, and so forth.

In the simplest control problems, the procedure is just a "trial and error"
procedure. A controller is inserted in the feedback loop, and the behaviour of
the control is analysed. The parameters of the controller are then adjusted
and the new behaviour analysed etc. This simple tuning procedure is
commonly used for PID control. It is suitable for processes which are rather
easy to control combined with controllers with no more than two or three

adjustable parameters.

The simple tuning procedure is however not adequate for more difficult
control problems. A more advanced analysis Is required, and often also a
more advanced controller design. Much progress have been made in creating
useful analysis tools and control design concepts during the last decades. The
analysis may e.g. contain a model building from physical considerations,

step-, impulse- or frequency response analysis or parameter estimation. The

design is then based on the obtained model. Among the design methods, pole
placement, linear quadratic gaussian and minimum variance control, Kalman

filtering combined with state feedback and robust control can be mentioned.

The effort made in the analysis and the design of a control loop does not only
depend on how difficult the loop is to control. The skill of the engineer,
time-schedules and economical realities are often causing serious constraints.
A thorough analysis and design is therefore nowadays made only in very
complicated control problems or in control loops which are produced in large
series.

Most progress in automatic control have been made concerning linear
time-invariant systems. Unfortunately, most difficult control problems arise

when the system is both nonlinear and time-varying.
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These are the main reasons why the concept of adaptive control has met such

interest in automatic control research. The idea of adaptive control is to
automate the analysis and the design. Hence, an adaptive controller does not
only control the process, but it also collects information about the process
behaviour from the control signals and the measured output signals. Based on

this information, or analysis, the controller parameters are adjusted on line.

The notion of adaptive control originated in the early fifties, but the main
research concerning modern types of adaptive controllers have been made in
the last decade. Several important theoretical results concerning stability
and convergence have been reported in the literature as well as successful

implementations. A résumé is given in Astrdm (1983).

Most of the theoretical work has been devoted to asymptotic properties such
as convergence, while much less attention has been pald to the transient
behaviours of the adaptive control system. The analysis is mostly carried out
under the assumption that the system parameters are constant, while the main
purpose of the adaptive controller is the abllity to adapt to time-varying
systems. The reason is, that the general adaptive control problem, being both
nonlinear, time-varying and stochastic, is so complicated. It has not yet been

possible to derive theoretical results apart from in rather restricted cases.

Neverthelesz, the abllity to handle time-varylng parameters {s a key
problem, which often shows up in the applications. It is therefore not
surpriging, that most attempts to solve the problem i3 found in the
application literature. These solutions are often based on heuristic

arguments.

This thesis is devoted to the adaptive control problem of time-variable
systems. In Chapter 2, the adaptive control concept is explained in more
detail, and basic notations are introduced. Special problems that arise due to
the time-variability are also stated. These problems occur in the part of the
controller which performs parameter estimation. In Chapter 3, the estimation
algorithm 1is therefore analysed. In Chapter 4, a special type of
time-variability is examined, namely large parameter changes, or faults, of
the process. A new fault detection procedure, which satisfies the special

requirements for adaptive control, is presented. Chapter 5 treats the general




11

problem of moderate variations of the process parameters as well as changes
in the excitation of the process. A new solution is presented and analysed.
Together, Chapters 4 and 5 capture a large class of time-variations.
Chapter 6 summarizes the new results of Chapters 4 and 5 by a simulation
study of an industrial robot. Conclusions and references are given in

Chapters 7 and 8 respectively.
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2. PRELIMINARIES

In this chapter, the adaptive control concept is further explained. The basic
notations and limitations of the problem treated in the thesis are given. The

special problems related to time-variable systems are discussed.

2.1 Principles of adaptive control

As waa sald in Chapter 1, an adaptive controller not only controls the
process, but it also collects information about the dynamics of the process
and the disturbances, and adjusts the controller parameters based on this
information. This can be done in many ways. So far, two schools have
dominated the adaptive control literature, namely the model reference
approach (MRAC) and the self-tuning regulator (STR). These and other
approaches are summarized in Astrdm (1983). It has been shown in Egardt
(1980), that the MRAC and STR are in principle just two ways of looking at the
same thing. An adaptive controller designed from an MRAC point of view can
be reformulated in STR concepts and vice versa. In this thesis, the STR

approach will be followed.

The structure of a process controlled by a self-tuning regulator i{s shown in
Figure 2.1. The adaptive controller consists of three parts. The regulator (R)
together with the process forms the ordinary feedback loop. The input and the
output of the process are collected in a parameter estimator (E) which
performs an on-line estimation of the process parameters. These parameters
are used to modify the controller parameters via a design calculation (D).
The parameter estimator and the design calculation form the adaptation loop.

The different parts of the system will now be explored in more detail.

The process (P)

Throughout the thesis, it will be assumed that the process can be described

by the model

y(t) = 8(t-1)Tg(t) + e (t) (2. 1)
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Figure 2.1 - The structure of a process controlled by a self-tuning reqgulator.
The four blocks denote the process (P), the regulator (R), the
estimator (E) and the design calculation (D).

where y(t) is the measured output from the process, fp(t) is a vector
containing old inputs and outputs of the process, {en(t)) is a disturbance
sequence of independent random variables and 6(t) is a parameter vector.
Furthermore, it will be assumed that the disturbances (en(t)} have a

symmetrical probability distribution.

Figure 2.1 makes an Implicit assumption about separation of the process
variables {nto two categorles, parameters 6(t) and states ¢(t). In the area of
adaptive control, it is assumed that the parameters fulfil at least one of the
following requirements.

1. The parameters 68(t) are constant but unknown.

2. The parameters 68(t) vary slowly compared with the states ¢(t).

3. The parameters 6(t) are subject to sudden large changes, which are

infrequent compared with the time-constants of the system.
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If this separation between the parameters and the states cannot be made, the
control problem has to be solved using other nonlinear control methods. In
Chapter 3, the restrictions on the time-variability of the process parameters

8(t) will be further discussed. .

The model (2.1) assumes that the output is a linear combination of past {nputs
and outputs. The self-tuning regulator may however be suitable even for
processes with a not too strong nonlinearity, since the estimator may produce
a linearization of the nonlinear model at the actual operating point. The
assumption of white noise disturbances is not very restrictive. It is made just
for convenience. If the noise happens to be coloured, a modified estimation

procedure can be used as is described below.

The parameter estimator (E)

The parameter vector 6(t) in Equation (2.1) is to be estimated from past input
and output signals. It can be done in numerous ways, and a vast literature has
been devoted to this estimation problem. Some common methods are the least
squares, the maximum likelihood, the stochastic approximation and the
instrumental variables methods. A summary of different estimation methods is
given in Ljung and S&derstrdm (1983). In this thesis, the most common method,
the recursive least squares algorithm, will be considered. The results are
however in no way limited to this method. If e.g. the noise acting on the
process is coloured, another method such as the extended least squares, the

generalized least squares or the maximum likelihood method may be used.

In the original least squares algorithm, the parameter wvector 6(t) is

estimated by the following equations:

A A
B(t) = B(t-1) + P(t)op(tie(t) (2.2a)
P(t-1)o(t)o(t) P(t-1)
P(t) = P(t-1) ? T¢ (2.2b)
1+ @(t) P(t-1)g(t)
A A
e(t) = y(t) - y(t) = [8(t-1) - e(t—l)]Tw(t) te (1) 4

ne>

e(t—l)Tq)(t) + en(t) (2. 2¢)
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A A
Here 8(t) is the estimate of 8(t), y(t) is the prediction of y(t) made at time

t-1, and 9(t) is the estimation error at time t.

In case of time~variable parameters, the above -equations are however
useless. Equation (2.2b) has to be modified. This problem and other aspects of
the least squares algorithm will be discussed further in the next section and

especially in Chapter 3.

The design calculation (D)

The self-tuning regulator concept is not limited to any particular design
method, but any of the traditional methods may be used. It is desirable to
avoid making the design calculation on line, since it often has bad numerical
properties. This is possible by reformulating the process model in terms of
the controller parameters. The desired controller parameters are then

estimated directly. See Astrdm (1983).

The requlator (R)

No particular regulator structure is assumed in this thesis. The control signal
is supposed to be a causal function of the estimated parameters and their

covariances, and of the input and output signals, i.e.

A
ult)y = £ B(t), P(t), y(t), y(t=1), ..., ult-1), ult-2),...

(2.3)

2.2 Difflculties in time-varving systems

The estimator derives a model of the plant from input-output data. The least
squares estimate given by Equation (2.2), can be interpreted as the estimate

which minimizes the loss function
t
A A
J(g) = Z [y(i) - 6T<p(i)]2 (2.4)
i=1

It follows from this interpretation that the same weight is put on every

measurement. This i{s reasonable if both the parameters to be estimated and
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the variance of the measurement disturbances are constant. If the plant to be
identified is time-varying, old input-output pairs may however not be
relevant for the actual model. Their influence on the estimate should
therefore be reduced. If the wvariance of the measurement disturbances is
varying, a weight inversely proportional to the variance should ideally be

put on the measurements.

A common way of discounting old data is to use a forgetting factor (A).

Equation (2.2b) is then modified to

1 P(t-l)(p(t)(p(t)TP(t-l)
X P(t-1) - T
A+ (b)) P(t-1l)e(t)

P(t) =

(2.5)

This corresponds to exponential weighting of past data, since a measurement
received n samples ago has a weight proportional to

Al = N intA) 0 <A <1 (2.6)
The choice of A is a trade-off between fast adaptation and long term quality
of the estimates. This trade-off can sometimes be unsatisfactory. It may be
desirable to discount quickly when the model is changing rapidly, and to

discounting slowly when the parameters are constant or the excitation is

poor. The problem is illustrated in Example 2.1.

Example 2.1: Consider the process model
y{t+l) = a(t)-y(t) + e(t+l) (2.7)

where y(t) is the output signal and {e(t)} is a white noise sequence. The
parameter a(t) is estimated according to Equations (2.2a), (2.2¢) and ’(2.5).
Three different values of the forgetting factor A are used, namely A = 0.95,
A =0.99 and A = 0.995. The results are shown in Figure 2.2. At time t = 100,
the parameter «(t) changes from -0.9 to -0.3. The trade-off in the choice of A

is obvious.




18

A= 0.95
0 A
-1
0 500 1000
0
A=z 0299
/a f\n}“\'m-
‘\(\-.a'\f"
A
04
"J—”-.
-1 T T T T T T T 1 T
0 500 1000
0
A=03995
&
A
o
-1 T T T T T T T T 7
0 500 1000

-

Figure 2.2 - Estimation of the parameter o(t) in Example 2.1. Different
forgetting factors are used in the different simulations.
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Estimator wind-up i3 another problem that may occur when a constant
forgetting factor less than one is used. The method of exponential weighting
of the incoming data may work well if the incoming information {s uniformly
distributed both in time and in space. Especially in the servo problem, when
the major excitation comes from the variations of the command signal, this is
seldom the case. (This may be one reason why most adaptive control
applications are devoted to the regulator problem.) Discounting during times
of poor excitation may then lead to uncertain estimates and numerical
difficulties.

In order to avoid these problems, it has been attempted to use time-variable
forgetting factors. Fortesque et al (1981) and Wellstead and Sanoff (1981)
suggest the use of a forgetting factor which depends on the magnitude of the
residuals e(t). When the magnitude of the residuals is large, the model is
supposed to be changing. The forgetting factor is therefore decreased to
discount old data more rapidly. The method is further discussed in the

following chapters.

Irving (1979) proposed the use of a forgetting factor that keeps the trace of
the P-matrix constant. The estimator wind-up problem is then eliminated, but
the other problems caused by nonuniform excitation in the parameter space

still remain unsolved.

The estimation can also be restarted repeatedly, instead of using a forgetting
factor. This method is successfully practiced by Evans and Betz (1982), where

the P-matrix is reset to a large matrix repeatedly.

In all the suggestions above, little is assumed about the nature of the
parameter variations. When more a priori information is present, more
sophisticated solutions are possible. If the parameters e.g. can be modeled by

stochastic difference equations
8(t) = AB(t-1) + v(t) (2.8)

“where A and the statistics of v(t) are known, the Extended Kalman filter is
suitable. In Astrdm (1980), the problem of estimating parameters which are a
sum of an ARMA signal and a plece-wise deterministic signal is considered.

Several papers have also been devoted to the problem when the parameters
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awitch between a limited number of sets. See e.g. Sorenson and Alspach
(1971, Lo (1972), Wittenmark (1979) and Millnert (1982).

Obviously, the major problems originating from the\ time~variability of an
adaptive control system arise in the parameter estimator, (E) in Figure 2.1.
The least squares algorithm will be analysed in more detail in the next
chapter. This analysis will serve as a basis for a discussion of modified

algorithms.
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3. ESTIMATION OF TIME-VARYING PARAMETERS

In this chapter, estimation of time-varying parameters is discussed. The
recursive least squares method iz examined, and earller suggestions for

modifications to treat time-varying parameters are investigated.

3.1 The recursive least squares algorithm

The recuraive least squares (LS) algorithm will now be explored in more
detail. As mentioned before, the LS algorithm is the most common way of
estimating parameters from input and output data. For a thorough description
of the LS method, see Kendall and Stuart (1961) and Ljung and SBderstrdm
(1983).

A
In the (weighted) LS estimation procedure, the vector 8(1) which minimizes

the loss function

t
A } 1 A T 02
Jee(t)) = Z: e D [yeir - 8ct) o] (3. 1)
i=1

i{s selected. A desirable choice of the weights w(t,i) would be the variances of
the corresponding measurements. Compare with the minimum variance
estimator in case of known regression vectors {@(t)}. A key problem in
identification of time-varying systems is, however, the lack of knowledge

about these variances.

At each time instant t, the parameters ©(t) are estimated based on
measurements in the period [0,t]. From Equation (2.1), the relation between

the measurement received at time i and the parameters 8(t) can be derived as

y (i) e(i-l)T(p(i) + en(i)

Ll
ne>

O(t-1) To(i) + (e¢i-1) - e(t—l)]Tw(i) + e (1)
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4 e(t—l)Tq)(i) + em(t,i) + en(i) (3.2)

A comparison between Equations (3.2) and (2.1) shows that the error can be

interpreted as being composed of two terms, the measurement noige e and
the model error em. The model error em is zero if the parameters»are
constant. It reflects the nature of the time-variations of the parameters. This
model error may be caused by a change of the operating point in a nonlinear
system, by changes in the process depending on temperature variations, wear

or aging, by falling sensors or actuators etc.

In the LS method, each measurement is weighted depending on its uncertainty,
see Equation (3.1). As seen above, this uncertainty can be interpreted as
composed of two independent components, namely the measurement noise e

and the model error ®n with the corresponding variances
ott, 1% = o (t,1)% + o_(1)7 (3.3)

Here dm(t,i)2 is the model error variance, and c‘n(i)2 is the noise variance at

time i. As mentioned above, it would be desirable to choose the weights w(t,i)

A
in the loss function J(8(1)) equal to o(t,i)z.

Some examples of models for the parameter variations will now be

elaborated.
Example 3.1: Constant parameters and constant noise level.
When the parameters are constant, it follows from Equation (3.2) that

[eci-1) - ect-1))Tgcir = O (3. 4)

e (t,i)
m

Hence

o (t,1i) 0 (3.5)
m ,

The total error variance therefore becomes equal to the noise variance, i.e.

o(t,i)2 = on(i)2 = 02 (3.6)
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All the measurements then have the same uncertalnty. This is the situation
presumed in the original least squares procedure given by Equation (2.2).

N m}

Example 3.2: Exponentlally increasing model error wvariance and constant

noise varlance.

If the error variances are glven by

o (t,1)°% = (( % Jt -1 )6? on(i)z o° (3.7)

ott, 1) = | o (3.8)
The uncertainty of the measurements thus increases exponentially with time.
This case corresponds to discounting with a constant forgetting factor as was

described in Chapter 2.

o
The weighted LS estimate of 8(t) is given by
A - - -
B(t) = [<b(t)TV(t) 1<l>(t)] l¢i>(’(:)TV(t) lY(t) (3.9)
where
(e T ] [ y(1)
<4><2>T y(2)
$(t) = : ,  Y(t) = : , V(t) = diag(w(t,i))
| <p<t)T ] | y(t)

See Kendall and Stuart (1961). Here, and throughout the thesis, it is assumed
that the columns of ¢(t) are linearly independent, and that V(i) is invertible.

To simplify the writing, the notation

v(t) = w(t, t) (3.10)
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will be uszed. Since cm(t,t) = 0, see Equation (3.2), It i3 desirable to choose
v(t) equal to the nolse variance on(t)z.
In case of constant parameters, i.e. om(t,i) =0 for all i, the weights

w(t,i) = v(i) are used, and the recursive version of the LS algorithm becomes

A A l
B(t) = B(t-1) + = P(L)p(t)e(t)
T A
E(t) = y(t) - @(t) 8(t-1) (3.11)
P(t-1)g(t)(t) P(t-1)
P(t) = P(t-1) B
Vit) + (t) P(t-1)g(t)
where
Pet) = (o) vy tece)? (3.12)

P(t) is the covariance matrix of the parameter estimates. In case of normal
distribution of the data, P(t)_1 is an estimate of Fisher’s information matrix,
see Goodwin and Payne (1977). Throughout the thesis, P(t)“1 will be used as a

measure of the information available at time t.

The recursive version of the LS algorithm in case of time-varying parameters
is mostly not as simple as Equations (3.11). In some restrictive cases, it is
however possible to get falrly compact expressions. A familiar example is

given below.

Example 3.3: If om(t,,i)2=((1/}\)t—1—1)c52 and orn(i)2 = 02, the recursive

version of the LS algorithm becomes

A A l
B(t) = B(t-1) + == P(t)g(t)e(t)
(o]
TA
e(t) = y(t) - ¢(t) 8(t-1) (3.13)
1 P(t-1)(t)o(t) \P(t-1)
P(t) = & | P(t-1) - —= VAR

AoT o+ (p(t)TP(t—l)(p(t)
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The P(t)-matrices are normally scaled with 02. It is then not necessary to

know the value of 02. Compare with Equation (2.5).

3.2 The welghting problem

The purpose of LS estimation is to find the parameters 6(t) which minimize
the loss function J(é\(t)), where the weighting coefficients are equal to the
corresponding variances. In case of known variances 02, the solution is
simply given by Equation (3.9). The problem is however, that o is normally
not known, neither is Om nor on. Therefore, o is estimated or hypothesized in

some way.

First of all, some assumptions on om and on must be stated. The problem is
meaningless if S is varying as much as the states ¢. The notation of
variance also becomes meaningless if the variance is varying as much as the

stochastic variable itself. The following assumption is therefore made.

Assumption 3.1: If the parameters to be estimated or the nolse level wvary,

they vary slowly and/or seldom compared with the time constants of the

system.

The asgsumption means e.g. that large step changes {n the parameters may not
occur frequently. The assumption should not be any limitation, but rather a
check that the problem is well formulated. As was mentioned in Chapter 2, the
adaptive control concept is based on the assumption that the above
separation between the parameters and the states can be made. If this is not
possible, the control problem has to be solved using other nonlinear control

methods.

Some of the heuristic schemes for discounting old information will now be
Pinterpreted using the concept of model error variance. The proposed methods
for choosing o can be grouped according to the additional assumptions made
on om and dn apart from Assumption 3.1. Each method belongs to one of the

four cases shown in Table 3.1.
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Constant Time-varying
parameters parameters
om(t,i) =0

Constant noise level
on(i) = g 1 2

Time-varying noise level 3 4

Table 3.1: Assumptions made in a time-variable adaptive system.

Case 1. This case corresponds to the parameters being unknown but constant.
It will be referred to as the tuning case. Since the noise level also i3 azsumed
to be constant, the LS algorithm is independent of the noise level o. The
original LS method without discounting of past data, see Equation (2.2), or

e.g. A =1 - exp(-t/T) to eliminate erroneous initial values, can be used.

Case 2. Thizg is also a common assumption. It is often also assumed that the
parameters change slowly, and a forgetting factor less than one is used, i.e.
om(t,i)2=((1/>\)t_i—1)02. If A is constant, it is at least implicitly also

assumed that the parameters are changing all the time at a regular rate.

Instead of using a forgetting factor, a positive matrix R1 is sometimes added
to the right hand side of the ﬁpdatlng equation of the P-matrix, Equation
(2.2b). This corresponds to the parameters ©6(t) being corrupted by

independent disturbances with the covariance matrix Rl'

Experiments with different forgetting factors in different elements of the
P-matrix have been made. The reascn is then a priorl knowledge about
differences concerning rates of changes or amount of incoming information of

the different parameters.
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Sometimes, a time-varying forgetting factor is used, combined with some
technique to estimate variations in o See e.g. Fortesque et al (1981). It is
then no longer assumed that the parameters are changing slowly or at a

regular rate. .

Case 3, This problem is very seldom treated, if treated at all.

Case 4. This problem is also seldom treated. This thesis is devoted to case 4.

(m}

With the additional assumptions given above, the recursive LS algorithm f{s
quite simple, see e.g. Equations (3.13). The corresponding adaptive
controllers usually work well, if the assumptions are fulfilled. It is however
also well-known that the algorithms can behave badly if the assumptions are
violated. The consequences of bad modeling of om and Gn are exemplified

below for the cases 1 and 2 in Table 3.1.

Case 1. Assume that both the parameters and the noise level are constant. If
the parameters would vary, a very slow adaptation will result. The
controller will behave almost like a constant regulator, since the adaptation

ability is gradually turned off.

Case 2. If the parameters are varylng at a slower rate than assumed, the
uncertainty of the estimates will be unnecessarily large. A remarkable
situation is the estimator wind-up when the P-matrix "explodes", though the
parameters are constant. If on the other hand the parameters are varying
faster than assumed, the convergence will be slow. These problems were

{llustrated in Figure 2.2.

The value of the forgetting factor is chosen as a trade-off between fast
. adaptation and high stationary accuracy of the estimates. An increasing noise
level will mostly cause an increased uncertainty of the parameter estimates.

The old value of the forgetting factor is then often a bad choice.
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The use of variable forgetting factors is often even more dependent on the
assumptions. An increase of the nolse level cn will in most algorithms be
interpreted as a variation of the parameters, i.e. an increase of o This is a
serious mistake. It means that the algorithm "believes! that old measurements
are more uncertain than the new ones, while the situation is the opposite. The
result is, that old information is forgotten, when the algorithm instead should
take extra care of those measurements, bearing in mind the poor information

that will come in the future. The situation is exemplified in Chapter 6.

The remaining part of the theslis iz concerned with the welghting problem
discussed above, and new proposals will be given. The different types of
time-variability mentioned in Assumption 3.1 will be treated separately. In
the next chapter, large parameter changes, which occur infrequently, are
discussed and handled in a special way. Slow parameter changes and changes

of the excitation are then treated in Chapter 5.
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4. LARGE PARAMETER CHANGES

This chapter iz concerned with parameter estimation in the case of large
parameter changes. The problem can be divided into two parts: Detection of
parameter changes and modification of the estimation algorithm. The first
part is related to fault detection. The éhapter therefore begins with a short
review of earlier fault detection methods, and a discussion of requirements on
a fault detection procedure which is suitable for adaptive control. A new
fault detection approach is then presented in Sections 4.3 and 4.4. How to
modify the estimation procedure when a fault is detected iz treated in Section
4.5. Finally, the new fault detection procedure is illustrated by a simulation
example in Section 4.6 and an application to level estimation in tankers in

Section 4.7.

4.1 Earlier work

It should first of all be mentioned that the notation "fault" {n this thesis
means a change in the process model, more precisely in the parameters 6(t),
which does not necessarily originate from a physical fault in the process, It
" can just as well be a parameter change due to a shift of the operating point in

a nonlinear system.

A great variety of methods for fault detection has appeared in recent years.
Some of them are general, while others are devoted to special applications or
concerned with voting between some known models. The problem described in
the previous chapter requires a general method. The following discussion is

therefore restricted to such approaches.

Research on fault detection has taken place in many different disciplines, e.q.
automatic control, information theory, signal processing and statistics. The
reason is probably the wide applicability of such methods. Successful use of
fault detection has been reported in medicine (electrocardiograms), image
Pprocessing (edge detection), geophysics and speech processing. Surveys of
fault detection methods and references to applications are given in

Basseville (1982) and in Willsky (1976).
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A fault detectlon procedure consists in forming a teat sequence which is
sensitive to faults, i.e. which has significantly different properties before
and after a fault. This sequence iz then analysed and decision theory is

applied to decide if and when a fault occurs. .

The residual sequence {&(t)}, i.e. the differences between the true output
signals and the expected output signals of the system, is the predominantly
used test sequence. The expected output signals are mostly derived from a
Kalman filter or an estimation algerithm as in Equation (2.2). When the
statistics of {e(t)} differs considerably from the measurement noise sequence

(en(t)}, a fault is concluded.

There are two great dlsadvantages with such tests. First, the statistics of the
noise sequence {en(t)} must be known to enable any decision about faults.
This is easily seen in Equation (2.2¢), where a registered change of the
statistical properties of {e(t)} obviously can originate from either a fault or
a change in the noise sequence {en(t)}. The assumption of known disturbance

statistics is further discussed in the next section.

The second disadvantage is that only faults that have a large influence on the
output signal can be expected to be detected. In processes with reasonable
noise levels, large faults may often occur without any immediate large effects
on the output signals. An example is given In Section 4.6. It should be
possible to detect such successive effects in the output signal by a suitable

nonlinear dynamic manipulation of the measurement sequence.

There iz a third drawback when using the magnitude of the residuals as a
fault indication in least squares estimation, since this method is based.on a
minimization of a quadratic loss function. See Equation (3.1). The quadratic
loss is motivated by the assumption that the noise acting on the system has a
Gaussian distribution. The assumption of Gaussian distribution can to some
extent be motivated by the central limit theorem. However, a deviation from
the Gaussian distribution may result in drastically changed properties of the
Pestimator. Thus such robustness considerations often suggest to pay less
attention to large values of le(t) | compared with the quadratic loss. See e.g.
Huber (1964) and Poulsen and Holst (1982).
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Here is a conflict. From robustness considerations, the galn in the estimator
should be small for large wvalues of 1e(t)!. The methods that use the
magnitude of £(t) as a measure of parameter changes want to have a high gain

-

for large values of Ie(t) 1.

As mentioned above, more advanced fault detection methods can be derived
from a more sophisticated fiiltering of the residual sequence. The least
squares estimator is such a filter, and it produces estimates of the parameter
vector 8(t). Since the problem of fault detection is concerned with changes in
this wvector, it seems natural to use the estimate sequence {é(t)} as a
starting point for detection. This has also been suggested for some time in
the literature. The second disadvantage of the preceding test sequence is
then avoided, but these methods are still based on the assumption of known

noise statistics.

In spite of the drawbacks of using the residuals e£(t) as a test sequence, this
use 1s seldom questioned in the literature. Far more interest |{s payed to the
choice of decision method. All variants from the Sequential Probability Ratio
Test, see Wald (1947), to simple cumulative sum tests have been suggested. It
would lead too far from the theme of this thesis to discuss these methods in
detail, but the reader is refered to the references, Basszeville (1982) and

Willsky (1976), which give extensive reviews with many references.

4.2 Requirements on the fault detection

Many techniques have been proposed for the detectlon of faults in dynamic
systems. Some of them are general, while others use more a pﬁriori
information. To facilitate the choice of method, some natural requirements for

this special application will be stated here.
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(R1) The times when the faults occur are not known.

(R2) The nature of the faults is not known.

Since the transformation between the physical parameters in the
process and the parameters in the model (2.1) is usually quite involved,

~this is a natural requirement.

(R3) It must be possible to repeat the detection from the new modes of

operation,

This means e.g. that there does not exist any "normal mode". As soon as
a change in 8(t) is accepted, the old parameters are forgotten. This
requirement is considered to give a general method. In some

applications it can be relaxed.

(R4) A change in the noise level must not disturb the detection,

The only assumption made on the noise sequence {e(t)} {s that it
consists of independent symmetrically distributed random variables.
Therefore, a change in the noise level does not effect the parameters
6(t). This is an important requirement, since a change in the noise
level is often much more likely than a change in the process

parameters.

Requirement (R4) is 1mportént, not only for the reason given above. In real
processes, disturbances are often entering at several points, and not only
additively to the input or output signals. In the process model, the different
disturbance sources are represented by one equivalent disturbance source
entering at one point, see Astrdm (1970). The characteristics of these
equivalent disturbances depend on the process parameters. This means that a
Pchange in the parameter vector usually also causes a change in the equivalent
output noise level. Under these circumstances, it does not seem very realistic
to detect faults under the assumption that the noise level in the output is

constant.
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According to the previous section, the requirement (R4) unfortunately rules
out most of the existing fault detection procedures. A new fault detection
procedure which satisfies the above requirements is presented in the next

section. It was first described in Hagglund (1982). .

4.3 A new f{ault detection method

A new fault detection method will now be discussed. The least squares
parameter estimation method with constant forgetting factor will be used as a
starting point. This is done in spite of the fact that the use of a forgetting
factor is proposed to be replaced by another discounting principle in the next
chapter. There are two reasons for this. First of all, the new fault detection
method will not be restricted to any particular estimation scheme, so the
conversion to the new discounting principle in Chapter 5 is trivial. Secondly,
the least squares method with forgetting factor is still the most common

estimation scheme in adaptive control.

The real problem ls to detect changes in the parameter vector 6(t). The

vector 6(1) is not known, and neither is 6(t). However, the difference between

~

two successive estimation errors A8(1) is known for 8(t) constant, since

ne>

~ ~ ~ A A
AB(L) 8(t) - B(t-1) = B(t) - B(Lt) - B(L-1) + B(t-1) =

&

N A A
- 8(t) + B6(t-1) - AB (L) (4. 1)

in this case. These differences will give the information needed for the fault

A
detection. To be able to extract this information, the statistics of {A6(t)}
will first be investigated. ’

From Equation (2.2) the differences between two successive estimates are

given by
A T~
AB(L) = P(t)w(t)[¢(t) 8(t-1) + en(t)] (4.2)

At time t, the estimates are thus updated in the direction of the vector

P(t)p(t). The probabilities of positive and negative direction are almost the
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same in normal operation when no fault has occurred, i.e. when the estimated
parameters are close to the true ones. This is intuitively seen from the

following arguments.

When A =1, the estimation procedure is the ordinary recursive least squares
algorithm without any discounting of past data. It is known to be the best
linear unbiased estimator, see e.g. Goodwin and Payne (1977). This implies
that there is no correlation between the increments of the parameter
estimates in normal operation. If there were a correlation, it would be
possible to modify the algorithm so that a smaller variance of the estimates
were obtained. (If there is any information at time t about how the estimates
will be changed at time t+1, all information given at time t is not used, and it -
is possible to derive a better estimate). This contradicts the fact that the
least squares algorithm is the best linear unbiased estimator. Hence, when
A =1 the probabilities for the estimate increments to have positive and

negative P(t)¢(t) direction are the same, 0.5.

When A <1, a negative correlation between two successive estimate
increments is expected. If a forgetting factor less than one ig used, the gain
in the parameter estimator is greater than it should be for A = 1. Intuitively
this means that the algorithm in each updating of the estimates has to
compensate for the large step taken previously. Hence the expected
correlation is negative. However, from continuity arguments this correlation
is small when A is close to one, and the probabilities of positive and negative
P(L)p(t) direction of the estimate increments are approximately the same.

This is illustrated in Example 4.1 below.

The arguments above imply that under normal operation

T T

A A A A
P(aB(t) AB(t-1) > 0] =~ P[a6(t) A8(t-1) < 0] (4.3)

where P denotes the probability measure.

“When 6(t) is not close to its true value, i.e. when a fault has occurred, the
approximations used in the heuristic arguments above are no longer wvalid.
Since the estimated parameters then will be driven towards the new wvalues,

the following inequality holds
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T T A

PlagctrTag(e-1) > 0] > P(a6ct)TaB(t-1) < 0] (4.4)
The intuitive arguments above are illustrated in Figure 4.1, where the
trajectories of the estimated parameters of a two parameter model are shown
in the parameter plane, both in case of stationarity and when a fault has
occurred. Figure 4.1 shows the first 200 points from the simulation given in
Figure 6.6a. The difference described by equations (4.3) and (4.4) will be used

in the sequel to derive the fault detection method.

The intuitive way of arguing that the correlation between successive estimate
increments is small in case of constant parameters may be unappealing to
readers familiar with more strict mathematical derivations. As mentioned
before, the general adaptive system is so complicated, that an analysis
unfortunately mostly is limited to very restrictive cases. In the following

example, Equation (4.3) is verified under fairly hard restrictions.

02
0.12 -
i m
0.10 - | 0.7 7
] W ————
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L 0.08 1
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0.04 I | | == 0
0.6 0.8 1

Figure 4.1 - Trajectories of the estimates in Figure 6.6a. The magnified part
to the right shows the first 100 points, when the fault has not
occured.
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Example 4.1. Consider the process model

y(t) = 8+:u + e(t) (4.5)

where the input u is constant and {e(t)} is a sequence of independent
Gaussian random variables. If the estimator defined by Equations (2.2a), (2.20)

and (2.5) is applied, the P-matrix converges to the constant scalar

P = —F (4.6)

The updating formula of the estimate of 6 then becomes

A

A A ~
B(t) = B(t-1) + [6¢t-1)-u + ett)) (4.7)

2
u
Without loss of generality, the constant input signal u is normalized to 1 in

the sequel. The estimate increments then becomes
A ~
AB(t) = (1-2) [B(t-1) + e(t)]) (4.8)

By using Equation (4.7) and the fact that 6 is constant, Equation (4.8) can also

be written as

t-1

A - -

AB(L) = - (1—7\)2 Z 7\t 1 Te(i) + (1-Ne(t) (4.9)
i=0

A
Since AB(t) is a sum of Gaussian random variables, it is Gaussian itself. The

aim {s now to compute the following probability

A A A A
P( aB(t)-a8(t-1) < 0 ] = P AB(t) > 0, AB(t-1) < O ] +
A A
+ P a6(t) <0, AB(t-1) >0 ] = [ [ f(x,y)dxdy  (4.10)
Q

A A
_where {(x,y) is the simultaneous density function of AB(t) and A6(t-1). The
A
integration area Q is the second and fourth quadrants. Since both A9(t) and
A
AB(t-1) are Gaussian, the joint distribution is also Gaussian, N(O,R), with the

covariance matrix
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A A A
A T11 T2 E(A6(t)%) E{AB(t)AB(t-1)}
R = -
r r A A A 2
12 22 E{AB(t)AB(t-1)} E{AB(t-1)%)
(4.11)

From Cramér (1945), the following expression for the integral in Equation
(4.10) is obtained

A A 11 .
P a6(t)-a0(t-1) <0 ] = 5 - = arcsin(e) (4.12)

where e is the correlation coefficient. The correlation coefficient is easily

calculated from Equations (4.11) and (4.9). Hence

r

A 12 1 - A

J F117 %22

Table 4.1 gives some numerical wvalues of the probabllity of getting a

e (4.13)

negative scalar product between two successive estimate increments. For
reasonable wvalues of A, Equation (4.3) is obviously true in this simple

example.

A 0.9 0.95 0.98 0.99 0. 999

Probability 0.5159 0. 5080 0. 5032 0. 5016 0. 5002

Table 4.1 - The probability of getting a negative scalar product between
successive estimate increments in Example 4.1.
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Implementation

Instead of observing the scalar product

A T,A .
AB(t) AB(t-1)

A
it is often more efficient to study the scalar product between AB(1) and a sum
of the latest estimate increments. To simplify the algorithm, an exponential
filtering of the increments of the estimates will be wused instead of an

ordinary sum. For this purpose, introduce w(t) as
A
w(t) = ylw(t—l) + AB(t) 0 = Yy < 1 (4.14)

In the case when a fault has occurred, w(t) can be viewed as an estimate of
the direction of the parameter change. The motivations for the Equations (4.3)
and (4.4) are valid even when w(t-1) fs substituted for Ae(t -1). The test
sequence that will be studied is {s(t)}, where s(t) is defined as

A
sty 8 sign[Ae(t)Tw(t-l)] (4.15)

The sign function makes the test sequence insensitive to the noise variance.

It is now clear in principle how to carry out the fault detection:

"Inspect the latest values of s(t). If s(t) is +1 unlikely many

times, conclude that a fault has occurred."”

The idea to use the signs of the differences between successive estimates to
decide whether the estimates has converged or not has been proposed before.
Kesten (1958) proposed a method to accelerate a stochastic approximation
method by letting the galn of the estimator depend on the frequency of the

changes of these signs.
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Testing method

Az mentioned earlier, most fault detection methoda end up with a statistical
test of a time sequence, e.g. {e(t)}, {e(t)z} or ag in this case (s(t)}. A
common way of doing this is to use the Sequential Probability Ratio Test
(SPRT), or modifications of this test. See Wald (1947) for an exposé of these
ideas. The SPRT is designed to decide between two hypotheses, which in this
case means between two different parameter vectors. The SPRT is usually
efficlent in terms of short times to detect the faults, if the values of the true
parameters occurring in practice are close to the hypothesized ones.
However, if the hypothesized values are taken merely to obtain a SPRT, and
do not represent the most frequently occurring values, the SPRT may not lead
to any time saving compared with other methods, see Wetherill (1966).
Requirement (R2) implies that no a priori information about the parameter
changes is avallable. Since requirement (R1) furthermore implies that a new
sequence to be tested must be introduced every sample instant for the SPRT
to reach the expected efficiency, a traditional Bayesian approach will be

used here instead.

Under normal operation, i.e. when the parameter estimates are close to their
true values, s(t) has approximately a symmetric two point distribution with
mass 0.5 each at +1 and -1. When a fault has occurred, the distribution is no
longer symmetric, but the mass at +1 is larger than the mass at -1. To add the

most recent values of s(t), the stochastic variable r(t) defined as

r(t) = yzr(t—l) + (1-72)5(‘(_) 0 =< < 1 (4.16)
is introduced. The sum of the most recent values of s(t) is replaced by an
exponential smoothing in order to obtain a simple algorithm. When the
parameter estimates are close to the true ones, r(t) has a mean value close to

zero. When a fault has occurred, a positive mean is expected.

The parameter 72 determines, roughly speaking, how many s(t) values that
should be included. E.g. Y, = 0.95 corresponds to about 20 values, which is a
“reasonable choice in many applications. A small Yo allows a fast fault
detection, although at the price of less security against false alarms. This

trade-off is typical for all fault detection methods. When the signal to noise
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ratio is small, it is not possible to detect the faults as fast as otherwise. It is
then necessary to have more information available to decide whether a fault
1s present. This can be achieved by increasing *(2.
The stochastic properties of r(t) are investigated in the next section. For
values of 72 close to one, r(t) will have an approximately Gaussian
distribution with variance

2 1

g7 = —, (4.17)
l+~(2

Since Yo is generally chosen in this region, it will in the sequel be assumed

that r(t) has a Gaussian distribution.

If r(t) exceeds a certain threshold r a fault may be concluded with a

0!
confidence determined from the wvalue of the threshold. In the present
algorithm, the threshold can be computed directly as a function of the rate of

false alarms ff. If a false alarm frequency equal to ff is acceptable, a fault

detection should be given every time r(t) is greater than the threshold r

defined by

0’

[+
1 X

- xp[ - =X ) ax = £ (4.18)
o /ﬁoloep{ 202] £

If a small value of the threshold is chosen to make it possible to detect faults
quickly, the false detection rate will be high. This is seen in Equation (4.18),
where there is an inverse relation between ro and ff. As was said before, this
compromise between fast detection and security against false alarms must be
made in all fault detection methods. The determination of Ty in this method
has the advantage that it is formulated in terms of the expected frequency of
false detections, which may be chosen to suit any particular application. In
Figure 4.2, the error frequency f versus the threshold r, is presented for

f 0
some different values of 72.

" The fault detection method described above fulfils the requirements stated in

Section 2.
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Figure 4.2 - The error frequency ff versus the threshold ro.

Finally, it should be remarked that if the requirement (R4) is eliminated, a
more powerful fault detection method can probably be derived by studying
the quantity w(t)Tw(t). This variable is usually much more sensitive to
parameter changes than the generally studied e(t)z, as illustrated in
Section 4.6.

4.4 A stochastic difference equation

In the previous section, the derivation of the new fault detection method
resulted in a proposed test of a sequence, {r(t)}. To be able to perform this
test, the statistical properties of r(t) must first be explored. This is done in

the present section.
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According to equation (4.16), r(t) is generated by the stochastic difference

equation

r(t) = yr(t-1) + (1-yis(t) 0 £y <1 (4. 19)

where the subscript "2" of ¥y is dropped for the sake of convenience. The

sequence {s(t)} consists of independent random variables with the symmetric

two point distribution

g(t) =

-1 with probability 0.5
{ (4. 20)

1 with probability 0.5

The distribution of r(t) is highly dependent on the value of y. Even if only
values of y close to one are considered in this special application, it is
interesting to investigate the behaviour of r(t) in the whole interval

0 £ y < 1. This will be done below, starting with ¥ = 0.

x=0

When y =0, r(t) is equal to s(t) and has consequently a symmetric two point

distribution.

0 <¥x <0.5

For values of y in this interval, a distribution of Cantor-type occurs. See
e.g. Chung (1968). To see this, it Is first noted that asymptotically r{(t) can

take any of the following values

r(t) € { (1 - ¥)(1 £ yv *x x"x ,..) } (4.21)

Arrange the asymptotic values of r{t) in groups according to

1. (i)

»

£ (1-y) (L4 (yey 24yt .0y = *1

F(t) = £(1-y) (L= (y+y2ty"t ... )

n

+(1-2v)
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2. T(E) = 2(l-y) (Liy=(y2eyeys L 00 = +(1-2¢2)
£(t) = #(1-y) (Loy+(y2aySryde L)) = 2(1-29+2¢2)
3. r(t) = 2(l-y) (Leyryim (yoeyteyOr L)) = +(1-2¢)
P(t) = £(1-y) (l-y-y2+ (yotyTayDs L)) = £(1-2y+2¢°)
r(t) = i(l—y)(l+7-72+(73+74+75+ ces)) = i(1—272+273)
r(t) = i(l—y)(l—y+72—(73+74+75+ cea)) = i(l-27+272—273)
and so on.

The groups are formed in the following way. In group number i, the
expressions in all the previous groups are rewritten, but with changed sign in
front of all terms of order greater or equal to { in the right parenthesis.
These values, defining the possible values of r(t), can also be derived in the

following way:

1. From the closed interval [-1,11, the open interval (1-2y) times the
interval length iz removed in the middle. This results in two disjoint

closed intervals with endpoints equal to the values in group 1.

2. From the two disjoint intervals obtained under 1, remove (1-2y) times the
interval length in each middle. This operation results in four closed
disjoint intervals, with end points equal to the values in group 1 and 2

above.
and so on.

Dividing the closed intervals like this into smaller and smaller intervals, a
Cantor set is obtained. For values of ¥ in the interval 0 <y < 0.5, the
distribution is consequently singular. (It can be shown that the distribution
function in spite of this is continuous, see Chung (1968)).
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¥ =0.5

When y =0.5, r(t) will asymptotically have a uniform distribution in the
interval [-1,11. This can be shown by investigating the characteristic
function. The stochastic variable r(t) can be decomposed into a sum of

stochastic variables

t 0.5"% with probability 0.5
rit) = Z: X ; X = (4.22)
n n
n=1

-0.5" with probability 0.5

The characteristic function of Xn is

00
o (t) = [ ™™ 0.5(5(-0.5™ + 5(0.5™) Jax =
n —
n
= cos(0.5"t) (4.23)

The asymptotic characteristic function of r(t) is now given as the product

[ ]

00
e(t) = II o (t) = II cos(0.5%) = EE%LEL (4.24)
n=1

n=1

The last equality can be obtained from ordinary mathematical tables, e.g.
Gradshteyn and Ryzhik (1965). The characteristic function ¢(t) is the
characteristic function of a uniformly distributed stochastic variable in the
interval [-1,11. It is therefore proved that r(t) is uniformly distributed when
¥ = 0.5.

0.5 <y <1

The distribution of r(t) for values of ¥ in this interval is not easy to
determine. The asymptotic density function f of r(t) can however be

determined according to the following theorem.
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Theorem 4.1: The asymptotic density function f of r(t) satisfies the following

functional equation for 0 < y < 1.

1 r - 1 + y 1 r + 1 - «vy
f(r) = >— £ + = -
(4, 23)
f(r) = 0 irl 2 1

Prooft Denate the distribution function of r(t) by F‘t(r-). From Equation (4.19)

the distribution function is given by the equations

Furthermore, denote the asymptotic
density function in Equation (4.25)

shown that the difference

AF‘t(r) = F

" F(r)

(r) -

converges to zero. AF‘t(r) fulfils the

r _ 1 r -1 + v 1 r +1 - vy
Feer) = 5 Fyy | Y J o+ 53 Pl Y ]
{ Fo(r) =0 r < -1 (4.26)
= >
| F (o) =1 r2 1

distribution function corresponding to the

by F(r). The theorem is proved if it is

(4.27)

following inequalities

lAFt‘r)l = % aF o Eléil ]I * % IAFt-l[ Eiill ]I £
22 |aF 0|+ 2 |ar ] s
< % aF, | 1—”11\,1’”" )|+ i IAFt_z[ rll;l“Y ]] "
+ ﬁ oF, | I—“12;—}13’— ]|+ ﬁ lAFt_Z[ ’512:?51l ]| <
<5 |ar, | 5215511 J| + (4.28)

-

Proceeding until at least one argument gets outside the interval [-1,1] yields

the inequality
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IAF‘t(r)I < The mean value of I|AF (ri)l in a couple of points r, at

t-k
time t-k.

Hence the difference between the functions F‘t(r) and F(r) converges to zero.

Equation (4.25) has been solved numerically for some values of y, see Figure
4.3. For values of y close to one, r(t) will have an approximately Gaussian

distribution with variance

2 =1-x (4.29)

since r(t) in this case is a sum of almost equally distributed random

variables.

It has been shown above that the distribution of r(t) varies considerably with
¥. To illustrate this, the density functions for some values of y are shown in
Figure 4.3. For wvalues of y less than 0.5, the density function is singular.
Therefore the peaks in the corresponding diagrams represent Dirac-impulses

with appropriate areas.
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Figure 4.3 - Graphical illustration of the asymptotic density function of r(t)
for different values of the parameter y. Notice that the densities

are distributions for y < 0.50.
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4.5 Modification of the estimation algorithm

The first part of a method to handie large parameter changes was given by
the fault detection procedure derived in the previous sections. To complete
the method, a procedure to increase the gain in !the estimator, l.e. the
P-matrix In Equation (2.5), must also be established. From the information
handling point of view, given in Chapter 3, the increase of the gain in the
estimator can also be seen as a reduction of the information content in the
estimator. The inverse P-matrix denotes the information content. When a fault
has occured, P_1 indicates a too large information content. By decreasing P_1
when a fault is detected, the performance of the estimator can be improved

considerably.

To motivate the modification of the estimation algorithm, this section begins

with an investigation of the effects of an updating of the estimates.

According to Chapter 3, the least squares algorithm gives, at each sample

instant, a solution to the minimization problem

t
A -
min J6t)) & min Z: At (1)@ (4.30)
A A
8 6 i=0

Figure 4.4 shows an example of contours of constant values of J(é\(t)) in the
parameter space, in the noise-free case. At the point é\(t—l), ¢(t) is
orthogonal to the contour. In the least squares method, the estimate updating
is not done in the @(t) direction, but in the P(t)@(t) direction. Near the
correct parameter values, P(t) is mostly approximately proportional to the
inverse of the Hessian

H(t) = v2J(8(t)) |2 (4.31)

B(t)=6

By updating in the H(t)~1¢(t) direction, the order of convergence is two
instead of one, which would be the case if the updating were made along the
P(p(t) vector, see Luenberger (1973). If the updating is done in the P(t)g(t)
direction, the order of convergence is supposed to be somewhere between one

and two, and close to two near the correct solution.
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— él (t)
R :
Figure 4.4 - Contours of constant values of J(8(t)) in the parameter space.

When a fault is detected, the gain in the estimation algorithm should be
increased. It means that P(t) should be increased. This can be achieved in
many ways, but there are mainly two methods that have been used
previously. The first one is to decrease the forgetting factor A. The growth
of P(t) is then nearly exponential. The second method is to add a constant
times the unity matrix to the P(t)-matrix, in which case P(t) is increased

instantaneously.

When a fault has occurred, it is likely that the P(t)-matrix is no longer a good
approximation of the inverse Hessian. If the Hessian is unknown, the most
reagsonable direction of the parameter updating is along the ¢(t) vector, "both
from stability and rate of convergence point of wview. The gain in the
estimation algorithm will therefore be increased according to the second
method, and Equation (2.5) will be substituted by

P(t—l)cp(t)<p(t)TP(t—l)

A+ ¢(t)TP(t-1)¢(t)

P(t-1) + g(t)-I  (4.32)

=1
P(t) = 3

where B(t) is a nonnegative scalar and I is the unity matrix. The variable B(v)

is zero except when a fault is detected. When a fault is detected, a positive
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p(t) has the effect that the P(t)-matrix increases and that the parameter

updating is made in a direction closer to @(t).

The final problem is to choose a suitable p(t). When no fault is detected, (1)
is zero. When a fault is detected, it is reasonable to let pB(t) depend on the
actual value of P(t) and on how significant the alarm is, i.e. on the value of
r(t). This may of course be done in many ways, and the following proposal is

just one possibility.

In the nolse-free case, the progress of the estimation error, when 6(t) is

constant, is given by

e(t) B8(t-1) - P(tlgp(tre(t) =

& ultre(t-1) (4.33)

(]

(1 - ProttroT) Bct-1)

All eigenvalues of U(l) are one, except the one corresponding to the
eigenvector P(L)@(t). This eigenvalue determines the step length in the
algorithm. A small eigenvalue causes large steps, while an eigenvalue close
to one means that the step length in the algorithm is small. Using Equation

(4.32), the elgenvalue can be written as

(p(t)TP(t~l)<p(t)

1 - () TPt (t) T
A+ @(t) P(t-1g(t)

|1}
[

? - B(tIe(t) Telt)
A+ @(t) P(t-1)e(t)

- Bt (t) To(t)
(4.34)

When 8(t) = 0, the eigenvalue is thus

vty = ?
A+ @(t) P(t-1)e(t)

(4.33)

The eigenvalue is obviously between zero and one as long as P > 0. Suppose
‘how, that an elgenvalue equal to w(t) Is desired when a fault is detected.

Then B(t) has to be chosen as
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Blt) = — = [v_(t) - vit)) (4.36)

w(t)Tw(t) 0
The eigenvalue v(t) should lie in the interval

0 < v(t) < vo(t) ' (4.37)
in order to keep the P(t)-matrix positive definite. In practice, this choice of

B(t) must also be combined with a test for nonsingularity of cp(t)Tcp(t).

It remalns to determine a suitable v(t). This can be done in many ways. In the
example presented in the next section, v(t) is a piecewise linear function of

the significance of the fault alarm, see Figure 4.5.

Combining the fault detection procedure in Section 4.3 with the modification
of the estimation algorithm proposed in this section, a method to increase the
gain in the estimation algorithm in case of large parameter changes is
derived. The method is summarized in a block diagram in Figure 4.6. The
input to the algorithm is the sequence of parameter estimates a(t). When a
fault is detected, the P-matrix is increased according to Equation (4.32). This
corresponds to a decrease of the weights on old data, see Equation (3.12), or

in other words, a decrease of the information content in the estimator.
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/\/ = P(r<r(t))
0 Plr=r,) 1

Figure 4.5 - An example of a choice of v(t). Tq is defined in Section 4.3.

1-yq"! wit-1)

A A

¢ t *
fre) 4 fadw = |so ’,’ ) | s B
_qu‘

Figure 4.6 ~ A block diagram describing the fault detection method.
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4.6 A simulation example

»

To illustrate the new fault detection method and the modified estimation
algorithm, a simulation study is presented in this section. The simulations are

performed using the simulation package SIMNON, see Elmqvist (1975).

The system considered is shown in Figure 4.7. The purpose of control is to
keep the level in the tank constant. This is done by measuring the tank level

and controlling the inlet valve. The dynamics of the tank is described by the

equations
dh(t) _ 1 _
T C TG [qin(t) qout(t)] + 0.005 e(t) (4.38a)
qout(t) = aout¢2gh(t) (4, 38b)
where {e(t)} is a disturbance sequence and aut is the outlet area. The

sequence {e(t)} is generated as discrete Gaussian N(0,1) random wvariables

Figure 4.7 - The tank system.
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with a sampling period equal to 1/10:th of the controller sampling period. The
stochastic part of the equations can be viewed as originating from

irregularities in the flow.

The model of the tank used in the estimation algorithm‘is
h(t+1l) = a(t)-h(t) + u(t) + g(t) (4.39)

where u(t) is the control signal and {E(1)} is a sequence of independent
random variables. The parameter a(t) is estimated by the recursive least
squares method according to equations (2.2a), (2.2c) and (4.32). The equations

become
A A
a(t) = a(t-1) + P(t)h(t-1)e(t)

A .
e(t) h(t) - a(t-1)-h(t-1) - u(t-1)

(4.40)

P(t)

P(t-1)
5+ Bl

A+ P(t-1)h(t-1)

The forgetting factor A is chosen to 0.995. The equations of the fault

detection procedure become

A A
W) =y wit-1) + [alt) - act-1)])
A A

s(t) = sign[(att) - a(t-1) Jwit-1)]
P(t) = yor(t-1) + (1 - y)s(t) (4.41)
vo(t) = A >

A + P(t-1)h(t-1)

0 if r(t—l)<r0

B(t) = L -

——— [ vott) - vt ) if r(t-1)2rg

h(t-1)

=

where the two discounting factors Yy and v, are 0.85 and 0.95 respectively.

The choice of v(i) was presented in Figure 4.5. The wvalue of the threshold is
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Ty = 0.5, which corresponds to an expected false alarm every 1000:th sample
instant. The tank is controlled by a minimum variance regulator with

set-point

W(t) = h___ - alt)-h(t) (4.42)
For comparison, the problem is first simulated without any fault detection.
The result is shown in Figures 4.8 and 4.10. At t=500, the outlet area is
increased from 0.01 to 0.011, correspondling to a sudden increase in the outlet
flow or a small leak in the tank. This fault is hard to see directly in the
output-, input~, or residual sequences. Howewver, looking at the estimated
parameter Q(t), the fault is obvious. For comparison, the sequence
{w(t)Tw<t)} is also included. This sequence is very sensitive to the fault. In
Figure 4.10, the test sequence r(t) is shown. The values of the highest peaks
are very unlikely in normal operation, and a fault would have been detected.
Note that r(t) has an approximately Gaussian distribution with a standard

deviation of 0.16 in case of no fault.

In Figures 4.9 and 4.11, the result of the simulation {s glven when the fault
detection and the modified estimation algorithm are applied. A detection is

made after about 30 samples. The increased convergence rate {s obvious.

In Figure 4.12, the estimates from the two simulations are compared. Finally,
the loss functions in the two simulations are also compared in Figure 4.13.
Here the optimal loss function, i.e. the loss function obtained under control

with known parameters, is also given,

This simple example has shown that it is possible to improve the estimator by
including a device for fault detection. It has also been shown, that the
proposed fault detection method is able to detect faults, which have a very

small influence on the output signal and the residuals.
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10.005 A
10.000
400 600 800 1000 1200
0.2 1
0.1 A
400 600 800 1000 1200
0.005 1
-0.005 _ , ,
400 600 800 1000 1200
-0.9984
400 600 800 1000 1200
4-10"
0
- 400 600 800 1000 1200

Figure 4.8 - The result of the simulation without fault detection.

Q>
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10.005
10.000 {4 Y : ) RN \ h
400 600 800 1000 1200
0.2 -
! u
0.1 -
400 600 800 1000 1200
0.005 -
£
-0.005 - ' . ' , _ _ ,
400 600 800 1000 1200
-0.9984
A
a
0.9986 -
400 600 800 1000 1200
0.002 -
0.001 - p
0 T T T T T T T
’ 400 600 800 1000 1200

Figure 4.9 - The result of the simulation when the fault detection and the
modified estimation algorithm are applied.
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0.5 -

- 0.5 v M T T LI LS T
400 600 800 1000 1200

Figure 4.10 - The r(1) sequence when no modification of the estimation
algorithm is done. '

0.5 {

=

- 0o 5 T ¥ L L] L] T
400 600 800 1000 1200

Figure 4.11 - The r(t) sequence when the fault detection and the modified
estimation algorithm are applied.
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~-0.9985 A

-0.9986
Y | r i , ' '

400 600 800 1000 1200

Figure 4.12 - The parameter estimates from the two simulations.

0.002 {
0.001 -
Ed 0 T ¥ v L v T Y
400 600 800 1000 1200

Figure 4.13 - The loss functions in the simulations without fault detection
(1), with fault detection (2) and the optimal loss function (3).
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4,7 Level estimation in tankers

This section gives another application of the fault detection method. The
method is in no way limited to the least squares method. Almost any
estimation procedure can be used, since the inputs to the detector are the
estimated parameters. To illustrate this, an ordinary Kalman f{iltering

problem is considered.

In tankers carrylng fluids, it is important to have accurate estimates of the
levels in the different tanks. Loading and unloading must e.g. be made
properly in order not to endanger the stability of the tanker. This estimation

problem is a typlical case where a fault detection procedure is needed.

The noise is highly time-varying, since it mainly originates from the wind
and the sea. The noise level in a tank can vary up to a factor of ten. The
changes can be very fast, especially when the course of the tanker Iis
changing. Not to bother the operators, it is desirable to f{ilter the level
measurements gso that the varlations do not exceed a few centimetres during

times of constant mean level,

It ig alao important to track changes in the tank levels, caused by fiiling or
emptying, with a small time delay. The low pass filter required for the noise
rejection makes the estimator far too slow. Since the start of the filling or
emptying of the different tanks mostly is unknown to the operator, and since
an automatic feed forward is impossible for security and economical reasons,
the filling and emptying can be considered as unknown changes of the system
to the estimator. The fault detection procedure described in the previous
sections is therefore a feasible way to speed up the rate of convergence of

the estimator when a change of the level rate occurs.
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The tank model and the Kalman filter

The dynamics of a tank can be described by the following equations

»

L2(t+1) 2(t)
= A + L(t+1)
$(t+1) $(t)
(4.43)
2 (L)
y(t) = C + e(t)
$(t)

where 2(t) [m] denotes the tank level, 8(t) [m/h] the rate of change of the
level, y(t) [m] the measurement of the level, and Z(t) and e(t) are

disturbances. If the sampling period is h [hl, the system matrices become

A= cC = (1 0) (4. 44)

In the pregent application, the value of the sampling period is h = 10.35 [s81 =
= 2.875~1O—:3 (hl. The Kalman filter which minimizes the variance of the

estimation error is given by the equations

A A
Lit+1) L(t) R
= A + K(t)(y(t)y - &(t))
A A
3(t+1) 3(t)
K(t) = AP(t)CTR(t) (4. 45)

1)

[cPctrc” + rcer)7?

R(L) 5

P(t+1) = AP(t)AT - AP(t)CTR(t)CP(t)AT + Rl(t)

Here Rl(t) and rz(t) are the covariance matrices of (%) and e(t), and P(1) is

the covariance matrix of the estimation error. Both Rl(t) and r2(t) are

“time-varying and unknown.
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The variable rz(t) corresponds to the measurement noise variance. A constant

r2(t) is used in this example. The wvalue of rz(t.) is chosen to r2(t) = 0,01,

corresponding to an average noise variance.

kY

The covariance matrix B, (t) will be divided into a sum of two matrices

1
R,(t) = RP(£) + RY(t) (4. 46)
1 1 1 :
where R?(t) is the covariance matrix used under normal operation. The matrix
R, (1) is nonzero only when a fault is detected.

1

The matrix erl(t.) will be chosen so that the level estimate has a reasonable
variance in normal operation. For the sake of simplicity, it is assumed that
the uncertainties of the states only enter additively in the velocity equation.

It gives a matrix R?(t) with the following structure.

n 0 0
R, (t) = (4.47)
1
0 T

The parameter Ty will be chosen as a constant such that the level estimate
reaches a desired variance in stationarity. The variance of the level estimate
is given by the upper left element of the P(t)-matrix. Combining the

Equations (4.44), (4.45), (4.46) and (4.47) gives the following relation between

r22 and the stationary value of the variance of the level estimate, denoted by
p11}
p4
r = 11 (4. 48)

22 2
h (pll+r2)(pll+2r2)

A desired standard deviation of the tank level equal to 1 [cml, fl.e. Pyq =
6

=1.0-10 % [m1, gives o 3.0-10 .

When a change of the level rate is detected as described previously, the

“matrix Ri(t) is changed from the zero matrix to the diagonal matrix
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f Bl 0
R, (t) = ; r(t-1) 2 r (4. 49)
0] 52

[

For the sake of simplicity, the diagonal elements 61‘” and 62 are constant in
this example. The value of 31 is chosen to 91 = 0.01, corresponding to an
Increase of the stationary value of p11 by a factor of 100. A reasonable
relation between Bl and 62 can be obtained from the following arguments.
Suppose that a change of the level rate occurs at time t, and that it is
detected at time t + nh. Since the level is equal to the integral of the rate of
change of the level, the f{ollowing relation between Bl and 52 can be

concluded from Equation (4.43)
g, = (nh) 25 (4.50)
1 2 '

With the parameter choices used in this example, a mean delay time of the

detection of about n =~ 25 samples occurs. Using n = 25 in Equation (4.50) gives
ﬁz a2,

The Kalman filter is now defined, except for the detalils of the detection
algorithm. In Section 4.3, the sequence of successive estimate changes
mém} was considered, and shown to have the stochastic features that made
the new fault detection procedure possible. In the Kalman filter, the relation
between the states is given by the A matrix in Equation (4.45), and not by a
unity matrix. The inputs to the detector are therefore given by

&

AB(t) 8(t) - A-8(t-1) (4.31)

K

The complete fault detection procedure is described by the equations

w(t) = Ylw(t—l) + AKG(t)

AT
a(t) = sign[AKG(t) wit-1) ] (4.52)
r(t) = er(t—l) + (1 - YZ)S(t)

where a fault is detected every time the wvariable r(t) exceeds the threshold




64

ro. Since the measurement noise {e(t)} appeared to be slightly coloured, a

rather high value of r, was used, namely r, = 0.6. The filter constants used

0 o

were ¥y = 0.90 and ¥, = 0.95.

Experimental results

The Kalman filter with fault detection has been applied to several
measurement series from different tankers. Results from a tanker filling the

tanks with oil in the North Sea is presented below.

Figure 4.14 gives the measurements y(t) of one tank level, recorded during 12

hours. After about 6 hours of constant level, the tank is filled with varying
A

rates. With the precision shown in the graph, the estimates 2(t) coincides

with the measurements.

The estimated rate of change of the level :‘}\(t) is presented in Figure 4.15. A
first glance at the level measurements in Figure 4.14 gives the impression
that the filling is made during four distinct periods of constant rate. These
four periods are also evident in Figure 4.15. A closer look will however show
that the rate is slightly changing even during these periods. See e.g. the

small decrease of the filling rate after about 11 hours.

These small changes of the level rate can also explain the relatively high
detection frequency shown in Figure 4.16, where the upper left element of the
Ri(t) matrix is shown. The r(t) sequence is given in Figure 4.17.

To show the behaviour of the estimator in normal operation, the estimated
tank level is compared with the measurements of the level between 5 and 6
hours in Figure 4.18. The low pass filtering suppresses the variations to about

1 cm peak to peak.

The rest of the figures demonstrate the behaviour of the estimator between 6

and 7 hours, where a major change of the level rate occurs. Figure 4.19 shows

“the estimates of the tank level and the level measurements when the fault

detection procedure was turned off, i.e. when the matrix Ri(t) was zero
during the whole experiment. The need for a modification of the Kalman filter

like the addition of a fault detection procedure is obvious from this figure.
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When the fault detection procedure is used, the level estimate ;:(t) lies
totally within the high frequency variations of the measurements y(t),
Therefore, the differences between the measurements and the estimates are
presented in Figure 4.20. For comparison, the same differences are also shown

when the fault detection was turned off, in Figure 4.21,.

In Figure 4.22, the estimated rate of change of the level s(t) is shown.
Already in Figure 4.14, it is evident that the rate is not increased
instantaneously, but the filling rate is gradually increased. From Figure 4.22
it is seen that it took about half an hour to reach the full filling rate.

In Figure 4.23, the times of detection are finally given. Between the 6:th and

the 7:th hour, three periods of detection occured.

[m]

10 -

0 . 5 10 [Al

Figure 4.14 - The measurements of the tank level.

[m/h] 4

0 5 10 [A]

Figure 4.15 - The estimated rate of change of the level.
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0.01
0.005
0

0

Figure 4.16 - Times of fault detection. The upper left element of Ri(t).

-

5 10 [r]

0.5

~-0.5 4

.

0 A 5 10 LAl

Figure 4.17 - The r(t} sequence.

[m]

i

Hh,.ﬁtlk y I ‘lllh'l ”'”"l“‘n "'T llll 'l " I"' ||1 M I lill |

5 5.5 6 Lhl

=

Figure 4.18 - The measurements of the tank level and the estimated tank
level during normal operation.
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[m]

3.5 4

3 ¥ 1
6 6.5 7 [h]

Figure 4.19 - The measurements of the tank level and the estimated tank
level, without fault detection.

[m] 0.3

6 6.5 7 [h]

Figure 4.20 - The difference between the measured tank level and the
estimated tank level, in case of fault detection.

[m] 0.6

0.3 1

6 6.5 7 LAl

Figure 4.21 - The difference between the measured tank level and the
estimated tank level, without fault detection.
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[m/h]

6 6.5 7 LAl

Figure 4.22 - The estimated rate of change of the level.

0.008

0.004 1

6 6.5 7 Lhl

Figure 4.23 - Times of fault detection. The upper left element of Rfl(t).
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5. SLOW PARAMETER CHANGES

In the previous chapter, the estimation problem was discussed for large
parameter changes. Special methods could be used,‘since large parameter
changes can be detected easily. This chapter deals with slow parameter
changes and variations in the excitation. Based on the weighting problem
described in Chapter 3, a new principle of forgetting old measurements is
given in Section 5.1. This approach was first presented in Hagglund (1983). An
algorithm which implements the principle is presented in the following

sections, where the algorithm is also analysed.

5.1 A new solution to the weighting problem

In Section 3.2, it was argued that a reasonable weighting of the measurements
could be made if Assumption 3.1 and certain additional conditions hold. It was
also shown, however, that severe problems could occur {f these assumptions

were violated.

In this section, a more general problem will be treated. It is assumed that
Assumption 3.1 hold and that the parameter variations are slow. This

corresponds to case 4 in Table 3.1.

Information handling in an LS estimator poses two different types of
problems. The first one is that the incoming information may be poor, because
of bad excitation or large variations of the parameters. This problem can be
solved by dual control, which gives active excitation when the incoming

information is poor.

The second problem occurs when the incoming information is sufficient, but it
is handled incorrectly as described in Section 3.2. In other words, the
problem is caused by bad match between real and estimated values of cm(t,i)
and on(i). The situation can be improved by better estimates of these
variances. The fault detection procedure described in Chapter 4 illustrates
one way to provide a better estimate of om(t,i). Remember that it is very

important to distinguish between om(t,i) and on(i), since they imply opposite




70

actions,

The accuracy obtainable in estimating the variances is unfortunately often
rather poor. In Chapter 4, it was shown that large increases of om(t,i) can be
found by fault detection. There will however always be some time delay
between the parameter change and the detection, and the estimate may be of
the qualitative form "om(t,i) has increased". It is possible to get a fairly
accurate estimate of On(i) under stationary conditions. It will however take
some time before fast changes of the noise level are distinguished from
parameter changes. The a priori knowledge about om(t,i) and on(i) is mostly

poor.

The purpose of the LS estimator is to provide estimates of the parameter
vector ©(t) with a reasonable accuracy. The weighting problem becomes
troublesome because of the lacking knowledge about the uncertainties of the
measurements. Instead of using assumptions of variations of the parameters
and the noise levels, a different approach will be suggested, where the
accuracy of the estimates é\(t) is considered. As will be shown, several
problems can be avoided by relating the welighting directly to the accuracy,
i.e. the amount of information available, and to the incoming Information. The

following principle is therefore proposed.

Discount past data in such a way that a constant desired
amount of information is retained, if the parameters are

constant,

A quantitative measure of information is defined in Equation (3.12) as the
inverse of the P-matrix. More precisely, the algorithm given in the following
sections gives a P-matrix which is proportional to the identity matrix. The
diagonal elements of P(t) may be interpreted as approximations of the
variances of the corresponding parameters. The welghts w(t,i) are therefore
chosen so that these variances get a desired value. The time horizon will
consequently vary, depending on the incoming information. If the signals are
noisy with a small information content, the time horizon will be long. If no
information is coming in at all, nothing will be forgotten. If on the other hand
the incoming information content is large, old measurements can be

discounted quickly and a fast adaptation to new parameter values is possible.
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The method requires an estimate of the noise level if the interpretation of the

P-matrix as the covariance matrix shall make sense.

It should be emphasized that the method is not restricted to the case where P
converges to a diagonal matrix. Any positive definite matrix could be used as
the desired limit of the P-matrix. It will however be shown later that it is

often wise to choose the limit P-matrix proportional to the identity matrix.

5.2 Updating the covariance matrix

The goal for the egstimator is to weight the incoming data in such a way that
the P-matrix becomes proportional to the identity matrix, say a-I. The value
of a is the desired variance of the parameter estimates. The equation for

updating the P-matrix will now be derived.

According to Equations (3.9) and (3.12), the LS estimator is given by

T 1 T 1

A . - -
e(t) V(t) l<1>(‘t:)] (L) V(L) "Y(t) =

(et

P(t)<l>(t)TV(t)_lY(t) (5.1)

Let V(t;t+k) denote the upper left quadratic t-dimensional submatrix of
V(t+k). The updating of the information matrix is then gliven by

1 T 1

P(t) d(t) V(L) “d(t) =

n

([ect-07T ctr) T

Vit-1;t) 0 ][ d(t-1) ]
1 e(t)

0 vit)

loce-1) + ¢(t)v(t)'1¢(t)T

(5. 2)

¢(t—1)TV(t—1;t)'

1]

The second term in Equation (5.2) represents the new incoming information.
.The inverse P-matrix is changed by a rank one matrix proportional to
<p(t)<p(t)T. With some abuse of language, it will be said that the inverse

P-matrix is ""changed in the direction of ¢".
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If the discounting is made according to the new principle, data are in
stationarity only discounted in the direction where the new information is
entering. This Way of discounting is used even during the transient periods.

Therefore, choose V(t-1;t) such that

»

¢(t—l)TV(t—l;t)_l<l>(t-l) = 4>(t—l)TV(t-l)—l<I>(t—l) -

- a(t)w(t)w(t)T (5.3)

where a(t) is a scalar. The P(t)-matrix is then updated as

1

POty = (ect-10Tvie-1 Tece-1) + [vit) Toat) Jottror )T -

P(t—l)¢(t)<p(t)TP(t-l)

= P(t-1) - = — T (5.4)
[vit) 7T-a) )T+ o) TP(t-1g(t)
or equivalently, the information matrix is updated as
Pyt o= pee-1y Tt [vior t-actr )otromn T (5.5)

Obviously, oft) must be nonnegative, since a negative o(t) would mean an
addition of information instead of a removal. From Equation (5.5) it is seen
that a(t) should be equal to v(t,)_1 in stationarity, i.e. when the P-matrix has
converged to its desired value. From the equations above it is also concluded
that the P-matrix may become nonpositive if «(t) iz chosen too large. The
following theorem gives bounds on «o(t) such that the P-matrix is positive

definite if a(t) is chosen within those bounds.

Theorem 5.1: Given a sequence of matrices {P(t)} which  satisfy
Equation (5.4). If the initial matrix P(0) is positive definite, then P(t) will be
positive definite for all t if and only if «(t) lies within the bounds

0 < att) < vit) T + 1 (5.6)

e(t) TP(t-1)p(t)
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Proof: The proof is divided into two parts. First consider the case when o(t)
is in the interval

0 < att) < vit) *

»

The inverse P-matrix is updated according to Equation (5.5). Since the second
term is nonnegative, it is clear from recursion that the inverse P-matrices

and consequently the P-matrices are positive definite.

If a(t) is chosen in the interval

vit) b < atty < vty Tt = 1
e(t) "P(t-1)gp(t)

the second term in Equation (5.4) always becomes positive. By recursion it is
therefore concluded that the P-matrices stay positive definite even for a(t)
in this interval. It is also easily verified that P(t) becomes nonpositive if

a(t) is greater than or equal to the upper bound in the inequality (5.6).

Summing up, the new method for updating the P-matrix is given by
Equation (5.4) with the bounds on «(t) given in Theorem 5.1. Later on, a(t)
will be further restricted so that the desired properties of the estimator are
obtained.

An interesting property of the new algorithm can already now be seen, by
comparing the new updating formula for the information matrix, Equation
(5.5), with the corresponding equation for exponential forgetting. From
Equation (3.13), the information matrix is updated as

1 1

P(t) * = P(t-1)"1 - (1-An)-P(t-1) 1%

vt Totretn T

(5.7)

when a forgetting factor A is used. Both in Equation (5.5) and in Equation
(5.7), the information at time t can be expressed as a sum of three terms: The
Anformation at time t-1, the old information which is removed, and thé new
information. The added information is the same in both cases. It consists of a

rank one matrix, i.e. information is only added in one direction. Equation
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(5.7, corresponds to information being removed in all directions, since the
second term is a full rank matrix. In the new updating formula given by
Equation (5.5), information is however only removed in the same direction as
the new added information. This property will enable the desired control of

£

the P-matrix.

5.3 Updating the parameter estimates

The new way of updating the P-matrix described above will also influence the
updating of the estimates. The new equations will be derived from

Equation (5.1).

2 T -1
8(t) = P(L)Y®(t) V(L) “Y(t) =

P(t) [#(t-1)7 git))

Vit-1;t) 0 Y(t-1)
UL

0 vit) y(t)

T 1

P(t)[¢(t~l) V(t—l;t)_lY(t—l) + ¢(t)v(t)_ y(t)] (5.8)

This expression can generally not be evaluated without a more precise

determination of V(t-1;t) than provided by Equation (5.3). Assume however for

a moment that no disturbances are acting on the system. Since the parameters
A

68 are assumed to be constant, Y(t-1) is then equal to &(t-1)6(t-1), and the

estimate at time t is given by

~ T -1 A -1
8(t) = P(t)[cb(t—l) Vit-1;t) "¢(t-1)6(t-1) + @(tiv(t) y(t)]
(5.9)
This expression can be evaluated using the Equation (5.3).
A T _l A
8(t) = P(t)[<l>(t-l) Vit-1) "$(t-1)8(t-1) +
- A
+ (vt ooy - a(t)w(t)TG(t—l))¢(t)] (5.10)

By applying the new updating formula for the P-matrix, Equation (5.4), the

following equation is obtained after some calculations
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P(t-1)(t)e(t)
vit) + o) TP(t-1)e(t) (1-a(t)v(t) )

A A
8(t) = B8(t-1) +

(5.11)
or N
A A l
8(t) = 8(t-1) + 0 P(tlp(tle(t) (5.12)
where
TA
e(t) = y(t) - @(t) B(t-1) (5.13)

In the general case, when disturbances are acting on the system, Equation
(5.8) can not be evaluated without a more detailed determination of V(t-1;t).
The full ¢(t-1), V(t-1) and Y(t-1) matrices are not stored in the recursive
estimator, but the information is stored in terms of the parameter estimates
é\(t), the corresponding covariance matrix P(t) and the state vector ¢(t). The
remalning freedom to choose V(t-1;t) will be used to retain this appealing
structure of the estimator. When y(t) is equal to the predicted output value,
l.e. y(t) = <p(t)Tg(t-1), no change of the estimated parameters will be made.
Hence, letting y(t) = (p(t)Tlé(t—l) in Equation (5.8) should yield ’é(t) =A9(t-1).
Using this additional requirement together with Equation (5.4) gives

S(t-1)Tvit-1;t) Ty (t-1) =

T -1 TA
= ¢(t-1) " Vt-1) TY(E-1) - a(t)e(t) B(t-1)-¢(t) (3.14)

Inserting this expression in Equation (5.8) gives, after some calculations, the
csame updating formula as in the noise free case, l.e. Equations (5.11) and

(5.12) are true even in the general case.

5.4 Cholce of a(t)

In the two previous sections, the new updating formulas for the parameter
A

=vector B(t) and the covariance matrix P(t) were derived. They are given by

Equations (5.4) and (5.12). To complete the algorithm, the discounting factor

aft) should also be determined. In this section, a choice of «(t) is presented
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which makes the P-matrix converge to the desired matrix a- 1.

First of all, some limitations on a(t) will be introduced. The quantity a(t) is a
measure of the amount of information discounted at time t. In Theorem 5.1 it
was shown that the P-matrix remalned positive defiinite if o(t) belonged to
the interval

0 < alt) < vit) 1« 1 (5.15)

() TP(t-1)g(t)

A removal of too much information would give an unstable estimator. It is not
within the scope of this thesis to give a complete stability proof for the new
estimation scheme in the considered general time-varying case. A stability
investigation is however made for the restricted case of constant parameters

and no noise.

A cruclal part in most stability proofs of adaptive controllers is to show that

the function

a(t) Pty Toct) (5.16)

f(t)

vhere

8(t)

8 - B(t) (5.17)

is decreasing. In the following theorem, that requirement is used to give

another bound on a(t).

Theorem 5.2: Assume that the parameters 6(t) are constant and that no
disturbances are acting on the system. If «(t) satisfies the requirements of
Theorem 5.1, then the function f(t) given by Equation (5.16) decreases if and
only if

T
alt) < = [ 1,1 //1 + 40U PC-1)g(t)
P(t) P(t-1)g(t) v

(5.18)
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Proof: In the noise-free case, the residuals e(t) are given by

e(t) = y(t) - (p(t)TG(t-l) = (p(t)TG(t—l) (5.19)

From Equation (5.12), the propagation of the estimation error can therefore be

written as

e(t) A(t)-B8(t-1) (5. 20)

where
A P(t-1)¢(t)p(t) L
ACt) & 1 - T VAR (5.21)
vit) + @(t) P(t—l)w(t)[l—a(t)v(t)]
Hence the function (1) becomes
() = 8(t) Pty To(t) = 6(t-1) At TP(t) TA(t)®(t-1)
(5.22)

It follows from Equation (5.5) that the inverse of the P-matrix satisfies

1

P(ty * = pet-1) 1

+ (v Thacer Jo o T (5.23)

The following equality can be obtained from the Equations (5.21) and (5.23).

act)rPeor tace) = acor T(pee-n Tt - alt)p(t)p(t) ) =

4 L+ att)vie) [1-att) o) TP(t-1)g(t) )
= P(t-1) " - 7 PUtIp(t)
VL) + @(£) P(t-1)e(t) [1-a(tIv(t)]

T

(5. 24)

Inserting Equation (5.24) into (5.22) gives

L+ alt)vit) (1 - alt)e(t) Pit-1)g(t) )
£(t) = £(t-1) - T e(t)
- vit) + (1) P(t-1)o(t) [1-att)v(t)]

2

(5. 25)

The denominator of the second term in Equation (5.25) is always positive if
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a(t) satisfles the requirements of Theorem 5.1. Hence f(t) is decreasing if and

only if
1+ oc(t)v(t)[l - a(t)@(t)TP(t—l)q)(t)] 2 0 (5. 26)

For values of of(t) within the bounds given in Theorem 5.1 this is achieved if

and only if Relation (5.18) holds.

Theorem 5.1 and Theorem 5.2 limit the possible choice of «(t). For the sake of

convenience, a(t) will in the sequel be chosen such that

0 € a(t) £ L (5.27)

(p(t)TP(t-l)(p(t)

This condition implies that the requirements of both Theorem 5.1 and
Theorem 5.2 are satisfied. Within these bounds, a(t) should be chosen so that
information is discounted according to the principle given in Section 5.1. This
can be done in many ways, so the method glven below iz not the only

solution.

The goal is to obtain a diagonal P-matrix of the form a-Il. Equation (5.4)
shows that the P-matrix is changed along the P(t-1)p{(t) direction in each
iteration. Theorem 5.3 below shows that the desired property of the estimator

should be obtained if a(t) could be chosen such that

©(£) TP(t-1)P(£)P(t-1)p(t)

@(£) TP(t-1)P(t-1)o(t)

(5. 28)

Eliminating P{(t) in Equation (5.28) using Equation (5.4) gives the following

desired value of o(t)

-1 Sd(t)
ad(t) v(t) + T (5.29)
Bd(t)w(t) P(t-1)ep(t) - 1

where
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T
5 (t) 1 e(t) P(t-1)P(t-1)I)P(t-1)g(t)

d (p(t)TP(t—l)ch(t) (p(t)TP(t~l)P(t-l)q>(t)

(5.30)

From Equation (5.29), the auxiliary variable & (t) can also be expressed as

d

1
5.(t) = (5.31)
d [veer™t - oy ()] Ly et TR(t-1re(t)

The value of a(t) given by Equation (5.29) can however not always be used,
because of the restrictions on of(t). Before treating these restrictions, the
physical interpretation of the variable 8(1) will be given. Let 6(t) be defined
analogously to &

(), but with a (t) substituted by a(t). From Equation (5.31),

d d
Equation (5.4) can then be written as

P(t) = P(t-1) - S(t)-P(t—l)<p(t)(p(t)TP(t—l) (35.32)

The variable 8(t) may thus be interpreted as a gain in the equation for

updating the P-matrix.

It i3 not trivial to handle the bounds on of(t). To get some insight, the

variable Sd(t) is therefore plotted versus « (t) in Figure 5.1, From this

d
figure and from Relation (5.27) the following choice of a{t) is concluded.

0 ay 0
1
<
%y O <oy =7
¢ Po
a = 1 (5.33)
——l——— ':IL‘ < o Sv_l+ 1
¢ Po ¢ FPo ¢ Po
0 o >v_l+ 1
d T
- ¢ Po

The bounds on « given by Equation (5.33) can also be expressed as bounds on

& according to
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col T
vre' Py ¢’ Po —

-1
14 ; 7 ad
Vv™i+ 7
o' Py
Figure 5.1 - Bd(t) versus cxd(t).
1 5y 2 1T
v+ Po v+e Po
5= 18, % [ 1 - = ] < 5 < 1T
¢ Py ¢ Po v+e Po
1 [ 1 - 2 ] 5, < 1 [ 1 - 2 ]
¢ Po ¢ Po ¢ Po ¢ Po
(5.34)

Comparing this equation with Equation (5.33), shows that even if o is a

discontinuous function of « the gain & in the updating formula of the

dl

P-matrix is a continuous function of the desired gain & . In a practical imple-

d
mentation, it may be more appealing to introduce & directly in the updating
formula of the P-matrix, as in Equation (5.32), and to use the bounds on &(L)

given by Equation (5.34).
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5.5 Possible convergence points and adaptation rate

This section contains a short discussion of possible convergence points of the

P-matrix, and of the adaptation rate of the new estimator.

The P-matrix will not converge to a+l, if the parameter a is chosen too large,
because the conditions for stability of Theorem 5.2 would then not be
satisfied. From Equation (5.32), it is obvious that a stationary solution to the
updating equation of the P-matrix may be obtained if and only if 8 = 0. To
reach the desired stationary solution P = a-I, the desired gain & , must also

d
be zero. It then follows from Equation (5.34) that

vit) 1 < 1 (5.35)

e(t) TP(t-1)g(t)

See also Figure 5.1. This inequality is not valid if the parameter a is chosen

too large.

1f the inequality (5.35) s not satisfied, the P-matrix will not converge to
P =a-1, but it will be smaller. This occurs when the desired parameter
variance, a, is too large, e.g. due to a high signal to noise ratio. This is
rarely any problem in practice, but it will show up in the convergence
analysis in the next section. The pleasant solution to the problem is of course
to accept a higher parameter accuracy or choose a smaller value of the

parameter a when the signal to noise ratio is "too" high.

When discussing the LS algorithm in Section 4.5, the estimation errors were

represented by the following equation.

e(t) = U(t)-8(t-1) (4.33)

All eigenvalues of U(t) are equal to one, except the one which corresponds to
the elgenvector P(t)e(t). This eigenvalue, denoted by vy can be interpreted

as a measure of the tracking capability of the algorithm.
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The most rapid adaptation rate will be obtained if Vo = 0. This means that the
projection of the error on the eigenvector P(t)@(t) is brought to zero in one
step. Under conditions of persistent excitation, the full estimation error will

then be zero in n steps, where n is the number of parameters.

Equation (4.33) also holds for the new algorithm. The elgenvalue vo is easily
calculated from Equations (5.20) and (5.21). It is given by
(t)TP(t—l) (t)
vg = 1 - P P T (5.36)
v(t) + [l - a(t)v(t)]w(t) P(t-1)op(t)
In stationarity, when a(t) = v(t)_l, the eigenvalue becomes
(p(t)TP(t—l)(p(t)
Vo 1 - e (5.37)

This equation shows clearly how the tracking capability, or equivalently the

time horizon of the estimator, is influenced by the signal to noise ratio.

It is interesting to see how the restrictions on the possible convergence
points of the P-matrix influences the adaptation rate. A smaller P-matrix will

normally give a slower adaptation rate. Notice that v would be negative if

0
a(t) were chosen as v(t) 1 when the inequality (5.35) is not satisfied. The

bounds on «(t) given by Equation (5.33) guarantee, however, that v_ stays

0
nonnegative. In particular when aoft) is equal to the upper bound in
Figure 5.1, i.e. a(t) = 1/cp(t)TP(t-1)(p(t), the eigenvalue is zero. Therefore, the

restrictions above do not limit the rate of adaptation.

5.6 Proof of convergence

It remains to show that the P-matrix actually converges to the constant
matrix a-I when of(t) is chosen according to the previous sections. The proof

is based on the following two lemmas.

-
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Lemma 5.1: Glven a sequence of symmetrical matrices {S(1)} which are

updated according to

S(t) = S(t-1) - k(t)x(t)x(t)T N (5.38)

where {x({)} are normalized vectors and the scalar k(t) is chosen as

k(t) = x(t)x(t)TS(t-l)x(t) & x(t)o(t-1) (5.39)

with
0 < x(t) < 2 (5.40)

Let %i(t), i = 1..n, be the eigenvalues of S(t). Then the function

n
Wt) = Z 7\i(t)2 (5.41)
i=1

is decreasing.

Proof: By using Equation (5.38), the function W(t) can be written as

W(t) = %r S(t)2 = tr ( '.-E'>(t-l)2 - 2k(t)x(t)x(t)TS(t—l) +

+ R ZR(OIR(E) 1] = W(t-1) +

+tr [ - 2k(0)x(0) TSE-1Ix(t) + k() 2x(t) Tx (b))
(5.42)
Substituting k(1) using Equation (5.39) gives
W(E) = W(t-1) - 2x(t)o(t-1)2 + x(t)Zo(t-1)7 =
= Wie-1) - (1 - (1 - % %)oct-1)7 (5.43)

-

From (5.40) it is finally concluded that




84

Wit) = W(t-1) (3. 44)

with equality if and only if o(t-1) = 0.

If there were no constraints on «(t), the quantity 8 (t) would be the gain in

d
the updating equation of the P-matrix. See Equation (5.32). The constraints on
alt) given by Relation (5.27) induce corresponding constraints on &(t). These
are glven by the Equation (5.34). The relation between the constrained gain
and the desired gain can be written

s(t) = u(f)-&d(t) (5.45)
where x(t) will be referred to as the gain reduction factor. Bounds on the

gain reduction factor (t) will no be given.

Lemma 5.2: If either Relation (5.35) holds or the desired parameter variance

is smaller than

To3 Tp2 "
a < &2 _ ¢ ¢ [ 1 - ] (5. 46)

, T T
¢ P ¢ 20 Pe ¢ Po
then the galn reduction factor x%(t) is bounded to

0 < x(t) < 2 (35.47)

Proof: When Relation (5.35) holds, the lemma is easily verified from Equation
(5.34). 1f Relation (5.35) does not hold, the lower bound in Equation (5.34) may
however cause troubles. In this case, x(t) satisfies Relation (5.47) if and only
if 5d(t) is greater than

5 () > 1 1 - v(it) (5.48)

d 20 (£) TP(t-1)g(t) e (£) TP (t-1)g(t)

Substituting 8d(t) by the expression in Equation (5.30) in Relation (5.48)
yvields the bound on a given by Relation (5.46).
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Note that the restriction on the parametef‘ a given by Relation (5.46) is
imposed by Theorem 5.2. If the weaker restriction on «(t) given by Theorem

5.1 is used, (1) fulfils Relation (5.47) for all values of a.

The main result can now be stated.

Theorem S5.3: Let )\i(t), { =1..n, be the elgenvalues of P(t). Assume that the
P-matrix is updated according to Equation (5.4) with «(t) chosen as in
Equation (5.33), and that a is chosen according to the assumptions in Lemma

3.2. Then the function
2
Weey = ) (ALt - a)? (5.49)
1

is decreasing.

Proof: According to Equation (5.32), the formula for updating the P-matrix can

be written as

P(t) = P(t-1) - k(t)x(t)x(t)" (5.50)
where
P(t-1)o(t)
x(t) TP oD oty (5.51)
and
k) & ity -oty (5.52)

The function x(t) is defined in Equation (5.45), and o(t) is given by

G(t) = @(t) P(t-1)2p(t) 5. (t) (5.53)

ci(
The variable o(t) corresponds to the one defined in Lemma 5.1. Since x(t)
satisfies 0 < x(t) < 2 according to Lemma 5.2, Lemma 5.2 can now be applied,
with S(t) substituted by P(t) - a-1I.
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It follows from the proof of Lemma 5.1 that the convergence point will not be
reached only if either (t) » 0 or 2, or o(t) » 0. There are two cases when

x(t) » 0. From Equations (5.45) and the definitions of &(t) and & (), or from

d

*

Figure 5.1, it is seen that x(t) » 0 if

ay(t) > vit) s 1 (5.54)

(p(t)TP(t—l)(p(t)

This will only occur if 8(t) > w, i.e. if an eigenvalue of the P-matrix goes to
infinity, which contradicts Theorem 5.3. The gain reduction factor »(t) may
also approach zero if

@(t) TP(£-1) o (t)

vit)

> 0 (5.55)
or in other words, if the incoming information diminishes.

The gain reduction factor x(t) is always less than or equal to one as long as
Relation (5.35) holds. It approaches 2 only when Relation (5.35) does not hold
and the parameter a converges to the bound given by Relation (5.46). Thus,
keeping the parameter a away from this bound guarantees that x(t) never

converges to 2.

The other situation, if.e. o(t) 3 0 before the P-matrix has converged to a-l,
may only occur if the vector sequence {P(t-1)g(t)} is asymptotically bounded
to a certaln subspace. Since the P-matrix only is changed in the P(t-1g(t)
directions, this means that the algorithm is unable to make the P-matrix

converge to the desired value in directions outside the subspace.

Since a symmetric matrix with equal eigenvalues is diagonal, it is therefore
shown that the P-matrix will converge to the diagonal matrix a+I, subject to
certain excitation conditions. The new discounting principle stated in Séction
5.1 has therefore been converted to an algorithm, defined by Equations (5.4),
(5.12) and (5.33) or by Equations (5.12), (5.32) and (5.34), which has been

proved to meet the desired properties.
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It should finally be remarked, that the above equations to control the
P-matrix to a:] can give analogous equations to control P—1 to a—l-I. These
equations are conceptually simpler, but involves the unattractive matrix

inversion.

2.7 U-D factorization equations

The classical equations describing the least squares method, or modified
verslons of it, are conceptually appealing. The interpretation of the state of
the algorithm as a combination of the estimates and the covariance matrix of
the estimates has been of great importance in giving insight into the
algorithm. These equations are often called the Kalman equations because of

their similarity to the Kalman filtering.

The Kalman equations may unfortunately have bad numerical properties. The
main reason ls, that the formula for updating the covariance matrix may
contaln differences between two almost equal terms. The computer roundoff
may then deteriorate the estimation. It may even lead to a computed

covariance matrix which is not positive definite.

Problems occur most frequently when the P-matrix becomes ill-conditioned.
Relating to what is said previously, this situation may arise after an
initialization of the P-matrix, if the excitation is not uniform. In other LS
algorithms, the P-matrix may also become ill-conditioned after the
initialization period if the new information is not uniform for a while. This
may not happen with the new algorithm. For numerical reasons, it is thus
advantageous to keep the P-matrix close to a diagonal matrix with equal
diagonal elements. The effort to make the covariance matrix converge to a-I
is therefore also appealing numerically. A different covariance matrix can of
course still be obtained by scaling or transforming the original 6 and ¢

vectors.

So called square root algorithms have been important to overcome the
“numerical problems described above. See Bierman (1977). Instead of updating

the P-matrix, a matrix S(t) satisfying
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P(t) = E‘»(‘t)S(t‘.)T (5.56)
can e.g. be updated.. A rule of thumb is, that these algorithms can use about
half the word length rexquired by the Kalman equations.

The use of the true =quare roots in Equation (5.56) involves square 'root
computations, which are offen time consuming compared with other arithmetic
operations. The so calBed U-D factorization of the P-matrix is therefore often
used instead. See Bierman (1977). In the U-D factorization method, the
P-matrix {s factored s

T

P(t) = UCt) D ()WL) (3.57)
where U(t) is a unit uspper triangular matrix, i.e. an upper triangular matrix
with a unity diagonzl, and D(t) is a diagonal matrix. Using the factorization

In Equation (5.57), scua&re root computations can be avoided.

Derivation of the U-[D #actorization formulas

The equationz describbing the U-D factorizatlon of the new least szquares
algorithm will now b« derived. The equations are analogous to those in
Bierman (1977). The muodiffied Kalman equations are first reformulated from

Equations (5.4) and (:5.712).

B(t) = B(t—1) + -2 e(t) (5.58a)
nn

k= P(t=lrpit] (5.58b)
T

nn = v(t) + =(t) P(t-1L)e(t)e (5. 58¢c)

e = 1 - ox{)=w(t) (5. 58d4)
P(t-1)e(t)e(t) [P(t-1)

P(t) = P(t—1) - L4 n¢ e (5. 58e)

n

The time arguments of the introduced variables are omitted to simplify the
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P(t) = S(t)S(t)T (5.56)

can e.g. be updated. A rule of thumb is, that these algorithms can use about
half the word length required by the Kalman equations.

The use of the true square roots in Equation (5.36) involves square root
computations, which are often time consuming compared with other arithmetic
operations. The so called U-D factorization of the P-matrix {s therefore often
used instead. See Bierman (1977). In the U-D factorization method, the

P-matrix is factored as

P(t) = U(t)D(t)U(t)T (35.37)

where U(t) is a unit upper triangular matrix, l.e. an upper triangular matrix
with a unity diagonal, and D(t) is a diagonal matrix. Using the factorization

in Equation (5.57), square root computations can be avoided.

Derivation of the U-D factorization formulas

The equations describing the U-D factorization of the new least squares
algorithm will now be derived. The equations are analogous to those in
Bierman (1977). The modified Kalman equations are first reformulated from

Equations (5.4) and (5.12).

k

A A n

8(t) = B8(t-1) + — g(t) (5.58a)
nn

k = P(t-Le(t) (5.58b)
T

n_ = vit) + ¢(t) P(t-1llelte (5.58¢)

e = 1 - alt)vit) (5.58d)

P(t-1)o(t)o(t) P(t-1)

"n

P(t) = P(t-1)

(5. 58e)

The time arguments of the introduced variables are omitted to simplify the
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notations. The use of the subscript n is motivated later.
As mentioned above, Equation (5.58e) will be replaced by equations
describing the updating of the matrices U and D defined in Equation (5.57).

The derivation will be based on the following technical lemma.

Lemma 5.3: Given a unlt upper triangular matrix U and an arbitrary matrix X

of the same dimensions. Let V denote the matrix

v = UXUT (5.399)

Then a lower right submatrix of V is equal to the product of the

corresponding lower right submatrices of U, X and UT respectively.

Proof: The lemma is easily verified by dividing the matrices U and X into

submatrices and evaluating the product.

Let d(t)i denote the {:th diagonal element of D(t) and u(t)i the i:th column of

U(t). The updating formulas are then given by the following theorem.

Theorem 5.4: The U-D factorization of Equation (5.58) is given by the

following algorithm.

T

£ = UCt-1) @(t) (5.60a)
g = D(t-1Of (5.60b)
T
kg = (0 ... O) (5.60c)
i
k, = 2: ult-1) g, i=1,..,n (5.60d)
i 3°3
j=1
e = 1 - alt)v(t) (5.60e)

ng = vt (5.60f)
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i
, = v(t) + Z: f . .g. i=1,..,n (S5.60g)
“1 e JgJ g
Jj=1

For i = 1,..,n, go through the Equations (5.60h) - (5.60j).

Ni-1
d(t), = d(t-1), (5. 60h)
i i n,
i
Ai = —fie/ni_l (5.601)
ult), = ult-1), + A .k, (5.603)
i i i i-1
A A k
n
8(t) = B8(t-1) + — e(t) (5. 60k)
Mn

Here n is equal to the dimension of the U- and D-matrices, and fi and gi are

the i:th elements of f and g respectively.

Proof: For simplicity, the equation numbers (5.60v), v = a,..,k, are

abbreviated to [v1 in the following proof.

Factorizing the P-matrices in Equation (5.58e} and using the definitions of f
and g glves

UCEHD()UE) T= UCt-1D(e-1) [ T - %~ £fg7 Jut-1T (5.61)

n

From Lemma 5.3, the following set of equations are obtained by taking the
determinants of lower right submatrices in Equation (5.61), and using the fact

that the determinant of a unit triangular matrix i{s one.

n n n

= - _EL_Z -
I ety [ I]'d(t D, ][ 1 . f,0, ] £=1,..,n
i=4 i=g i=

N o (5.62)

It follows from [ gl that
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n
N, _
1 - & Z: f,g, = —=1 (5.63)
n iZi

Hence -

d(t) = d(t-1) [ 1 - 8¢ g = d{(t-1) (35.64)
n n n n n

nn n

By recursion, [hl is now easily shown, and the updating formula for the

D-matrix is thus demonstrated.

It remains to show that the updating of the U-matrix satisfiezs the Kalman
equations. This is done by evaluating the left hand side of Equation (5.61)
using the Equations (5.60), and showing that Equation (5.61) is correct.

The left hand side of Equation (5.61) can be written as

n
U(t)D(t)U(t)T = Z u(t)id(t)iu(t);{ (3.63)

i=1

Using [hl and [j] to write Equation (5.65) in terms of variables known at

time t-1 gives

UCE)D(H UL T =

n T
_ Ni-1
= ([uct-10, + Ak, _, Jdt-1), (uet-13, + Ak, ]
i i"i-1 ing i ii-1
i=1 (5. 66)
Parts of the right hand side can be evaluated as
n. n,_,n,
Ll fwce-n, ¢ Ak, ) o= uce-ny, o+ AT E Gy
. i i-1 i n i
i 1
n,; _ ef.g ef
P Sk S = ult-1), - L ou(t-1), - —= g =
n. 1 i i i-1
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ety °fy
= ult-1), + (x - k] - =
i . i-1 i n, i-1
1 h
ef,
= u(t-1), - k . (5.67)
i ng i

where [gl and [i] are used in the second equality and [d] is used in the

third equality. Using Equation (5.67) in Equation (5.66) now gives

n
T _ - - .
UCHHDeoUE) T = ) (uct 1y, + AkyJdce-1,

i=1

UCt-1)D(t-1)U(t-1) T +

~
-
——
n

2 T efy T
+ Z: dit-1), [N, k., ,ult-1), - ult-1) .k, -
il ii-1 i n. ivi
i
i=1
ef
S S kT] (5.68)
n ivi-1"1
i
The terms in the sum above can be simplified as follows
ef. ef,
dit-1), Ak, ,ult-107 - =% ge-1y kT - 2 5k k7| =
il7ivi-1 i ny ivi n; i i-171
eqg, eg eg.f.e
= -k _qute-D] - = ueen k] s A R,k =
N1 Ny N3N
T
k T k
- i-1 - - 4
Y T B e Y
i-1 i
1 1 T kikT ki-lkz—l
- + - = )k gk ] = e[- + (5.69)
Nj-1 Ny Ny Nj-1

where [b] and [il are used in the fist equality and [d] and [g] are used in
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the second equality. Using Equation (5.69) in Equation (5.68) now finally gives

UCE)D(EIUCE) T = UCt-1)D(t-1)Ut-1)7 +
n T T :
kiky  kyaakioy |
+ e —n + n =
i=1 i i-1
= UCt-1)D(t-1)UCt-1)T - & k k! =
n n n
n
_ e T T
= UCt-1)D(t-1) I - - fg Juct-1) (5.70)
n

which is the right hand side of Equation (5.61). Hence it is shown that
Equation (5.60) correctly describes the U-D factorization of Equation (5.58).

The U-D factorization equations given above include the variable «(t)
explicitly, in Equation (5.60e). In a practical implementation, it may instead
be better to introduce the equations involving the variable &(t), and to use
the bounds on 6(t) given by Equation (5.34). The corresponding U-D
factorization equations are easily obtained by simply expressing e in terms
of &(t) instead of a(t). Equation (5.60e) is then replaced by

S(tiv(t)

e = T (5.60e’)
1 - 8(t)e(t) P(t-1)op(t)

Example

To compare the numerical properties of the Kalman equations and the U-D
factorization equations, the two computational methods have been simulated
using the program package MATLAB, see Moler (1981). These examples may
also illustrate the properties of the new recursive estimation algorithm, in a
“difficult case.
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It follows from the discussion at the beginning of this section, that numerical
problems are more likely if the information which enters the estimator is
nonuniformly distributed. In the present example, a fifth order AR process
driven by white noise has been simulated. The AR process has all the five
poles at z = 0.3. The compared estimation algorithms are given by Equations
(5.58) and (5.60) respectively. The variable «(t) is chosen according to
Equation (5.33). For simplicity, only the eigenvalues of the P-matrices are

presented in the following examples.

Figures 5.2 and 5.3 show the five elgenvalues of the P-matrices for the two
algorithms. The P-matrices are initialized to 500-1. MATLAB uses double
precision arithmetic, so no differences between the two methods can be seen
in Figures 5.2 and 5.3. The slow convergence is a direct consequence of the
poor excitation. In Figure 5.4, a longer simulation is presented, which better
demonstrates the convergence properties of the algorithm. The desired

P-matrix is 0.005-1.

Figures 5.5 and 5.6 show results of the same computations in single precision
arithmetic. The U-D factorization method performs almost like the double
precision version. The Kalman equations are however deteriorated by the
computer roundoff. The algorithm even fails to girve a positive definite

P-matrix.

An interesting property of the new least squares algorithm can be seen in
Figure 5.6, namely that a computed nonpositive covariance matrix do not
have to imply that the estimator fails to work. The original least squares
algorithm and the modified version with a constant forgetting factor all
become unstable if the P-matrix becomes nonpositive. In the example
presented above, the algorithm manages to make the covariance matrix

positive definite again after three periods of negative eigenvalues.

The example demonstrates, that though the Kalman equations and the U-D
factorization method are algebraically equivalent, their behaviour may be
totally different in a computer implementation. The U-D factorization

Aequations are therefore recommended for practical implementations.
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Figure 5.2 - The logarithms of the eigenvalues of the P-matrix when the U-D
factorization equations are used. The computations are
performed in double precision arithmetic.
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Figure 5.3 - The logarithms of the eigenvalues of the P-matrix when the
Kalman equations are used. The computations are performed in
double precision arithmetic.
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F‘iguré 5.4 - The logarithms of the elgenvalues of the P-matrix when the

Kalman equations are used. The computations are performed in
double precision arithmetic.

1 1 1 1
0 200 400 600 800 1000

Figure 5.5 - The logarithms of the eigenvalues of the P-matrix when the U-D

factorization equations are wused. The computations are
performed in single precision arithmetic.
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Fiqure 3.6 - The Vlogarithms of the elgenvalues of the P-matrix when the

Kalman equations are used. The computations are performed in
single precision arithmetic.
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6. EXAMPLE - CONTROL OF AN INDUSTRIAL ROBOT

The properties of the estimation procedure derived in the Chapters 4 and 5
will now be illustrated by an example. The simulations are performed using
the simulation package SIMNON, see Elmgvist (1973). ‘A crude model of an

industrial robot will be used as a process model.
The complete estimation procedure is first summarized in Section 6.1. The

dynamics of the robot is presented in Section 6.2 and the simulation results

are flnally given in Section 6.3.

6.1 The complete egtimation algorithm

The estimation algorithm has been given previously. The complete algorithm
is however summarized below for the sake of convenience. There are some

remaining comments to make.

Throughout the thesis, the estimate of the noise wvariance v(t) has been
included in the algorithm in order to have the notions of "covariance matrix"
and "information matrix" make sense. Low pass filtering of the squares of the
residuals €(t) is a simple and convenient way of estimating on(t)z. From the
discussion in Chapter 3, it is easily seen that this method will give a poor
estimate when there are large parameter changes. It is therefore wise to
avoid estimation of the noise variance when there are large parameter
changes. This is conveniently done by considering the variable r(t), see
Equation (4.16). Since r(t) is a measure of the probability of a recent
parameter change, the noise estimation is to be performed only when f(t.) is
smaller than a certaln threshold ry. To compensate for the time delay in the
detection procedure, it is also useful to introduce a time delay v in the noise
variance estimator. The parameter values r, = 0.1 and T = 15 are used in this

1
example. The noise variance estimation is given by Equation (6.1%) below.
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The new fault detection method in Chapter 4‘was derived for the estimation
scheme based on a constant forgetting factor. The determination of the
parameter B(t) given by Equations (4.33) - (4.36) is easily reformulated for
the new method given in Chapter 5. The parameter g(t) is given by Equations
(6.1)) and (6.1k), where v(t) ig chosen according to Figt.;re 4.5.

The complete estimation algorithm is glven by the following equations.

A A 1
B(t) = 8(t-1) + =57 P(t)gltie(t) (6.1a)
TA
E(t) = y(t) - @(t) 6(t-1) (6. 1b)
P(t-1)g(t)g(t) P(t-1)
P(t) = P(t-1) - - 22 T + BT
(vitr 7T -attd ] 7T 4 gt PE-Dig(t)
(6.1c)
0 ay S0
1
<
%4 0 <oy =7
¢ Po
« =1 N -1 L (6.1d)
T T, ~ % =V '
9 Po ¢ Po ¢ Po
0 o, > v i 2
d T
¢ Po
5 ()
ay(t) = vyt : Td (6.1e)
54(t)p(t) P(t-1)g(t) - 1
T 3
5t - . 1 _ ¢(t)TP(t—l)2@(t) 4 6. 15)
@(t) P(t-1)%(t) L o(t) P(t-1)%p(t)
A
W(t-1) = y,w(t-2) + AB(t-1) (6.1g)
A .
s(t) = sign[aB(t) w(t-1)] (6.1h)
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r(t) = er(t—l) + (l—yz)s(t) (6.11)
(£)TP(t-1)(¢)

vo = 1 - P ? 7 (6.13)
vit) + (1 - alt)v(t) Jet) Pt-1)g(t)
0 r(t-1) < rg

B(t) = (t) (6. 1k)
——— vyt -vit) ] r(t-1) 2 rg
@lt) (L)
Yvit-1) + (1l-% )e(t—'c)2 r{(t-1) < r

3 3 1

vit) = (6.1%)

vi{t-1) r(t-1) 2 r,

6.2 The robot model

The problem of controlling an industrial robot is an advanced servo problem,
which has recelved considerable attention in recent years. The robot arm is
positioned by servos in the different joints. In this example, only circular
motions around the vertical axis will be considered. See Figure 6.1. Assuming
that the distance between the vertical axis and the tip of the robot arm is
constant, and that the moment of inertia J is constant, the torque balance for
the vertical axis becomes
dw(t)

J at = Te(t) + Tf(t) + Td(t) (6.2)

where Te(t) is the torque generated by the motor, Tt) a friction torque,

f
Td(t) a disturbance torque and w(t) the angular velocity. The sampled version

of Equation (6.2) becomes

wlt+l) = w(t) + [Te(t) + T () + T, (t) ] (6.3)

£ d

Cat e

. The disturbance torque T (t) will be modeled as a white noise disturbance

d
sequence. The friction torque is modeled as
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—(~

Figure 6.1 - The robot considered in the example.

= - t .
Tf(t) kf glgn(w(t)) (6.4)
where kf is a constant. This is a good description of friction only for w(t) *0,
but since kf is small compared to Te(t) and Td(t) in the example, the
Equation (6.4) 13 acceptable.

It 13 assumed that the motor has current feedback. The torque from the motor
then becomes
T () = k_-I(t) (6.3)
e I
where kI is a constant and I{t) is a function of the angular velocity, defined
by the control law. The desired control law in this example is chosen as

Te(t) = 0.5-J (t) - w(t)] + kf sign(w(t)) (6.6)

[wref
This corresponds to a pole assignment at 0.5 and a nonlinear compensation for
“the friction torque. Since it is assumed that the moment of inertia J and the
friction constant kf are unknown, they are estimated using the algorithm

described in Section 6.1. From Equation (6.3), the parameter vector 8 and the
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regression vector ¢ become

_ T A T
oty = (173 2k/3 )0 2 (e ) e (t) ) (6.7)
and ’
_ 1. T
ety = | T_(t) - 3 sign(w(t)) ] (6.8)
The applied control law becomes
A
0, (t)
1 2 .
T (8) = 0.5 7= [o__(t) - o(t)] + 75— sign(e(t))
e,(t) * 8, (t)
1 1
(6.9)

6.3 Simulation results

The process and the regulator defined in the previous section have been
simulated together with the adaptation loop glven by Equation (6.1). The
filter constants were chosen to 71 = 0.8, 72 = 0.95 and 73 = 0.95. The example
is included in order to demonstrate several features of the new algorithm.

The robot is therefore supposed to perform the following motion scheme.

At the beginning, the robot is supposed to rotate back and forth with a
constant velocity. The reference value ©rof of the angular velocity is a
square wave with unit amplitude. The variance of the disturbance torque
Td(t) is 0.01, and the friction coefficient is kf = 0.05.

At t = 100, the robot picks up a heavy tool. This is simulated by increasing
the moment of inertia J from 1 to 2. The changed moment of inertia causes a

change In the parameters by a factor of two, and simultaneously a decrease in

the noise variance by a factor of four.
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At t = 300, the reference signal becomes zero instead of a square wave, i.e. it

is desired to keep the robot arm at rest.

At t = 400, the variance of the disturbance torque ingreases to 0.1. This may

e.g. model the situation that the robot starts to drill.

Figures 6.2 - 6.5 show the results of the simulation. The algorithm is
initialized in equilibrium. The parameter estimates, the estimate of the noise
variance and the P-matrix have the expected values. The P-matrix is

postulated to converge to 0.0005-1.

When the moment of inertia changes at time t = 100, the parameter esatimates
slowly converge towards their new values. At t ~ 125, this change is detected
with a confidence of more than 99.9% (r(t) > ro = 0.35). See Figure 6.4. The gain
of the estimator is then increased, which shows up as an increased adaptation

rate. See Figure 6.2.

When the reference signal becomes zero at t = 300, the moment of inertia J is
more difficult to estimate. The time horizon for the estimation of el(t) is
therefore increased, leading to the very slow rate of change of the estimate.

The changes of the noise variance at t = 100 and t = 400 are also detected in
the estimates shown in Figure 6.2. Notice also the periods when the estimation
of the noise variance is interrupted by large values of r(t). The algorithm
compensates for the variations in amount of incoming information so that the
parameter variance is kept constant. The slow variations of the parameter
estimates in Figure 6.2 at the end of the simulation is a consequence of the
increased time horizon.

The variable a(t):v(t) is plotted in Figure 6.4. At the beginning a(t) = v(t)-l,
which means that the same amount of information that enters the estimator is
discounted. See Equation (5.5). When a parameter change is detected and the
diagonal elements of the P-matrix have been increased, the variable a(t) is
set to zero which means that all new information is retained. After a while,
Pthe P-matrix gets close to the desired value a+I, and the value of a(t) varies
to perform the fine adjustment. When this is done, o(t) becomes equal to

v(t)-1 again.
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For comparison, the above simulation problem was also solved by two other
estimation schemes. Figure 6.6a shows results with an LS estimator with a
constant forgetting factor. The forgetting factor is chosen to give the same
parameter variance as the former algorithm in the  initial phase. Since no
parameter changes are detected, the rate of adaptation is slower. If a
constant forgetting factor is used, the parameter variance is a function of the
noise variance. This is clearly seen in this simulation, where the parameter

variances increase drastically when the noise variance increases at t = 400.

Figure 6.6b shows results using an algorithm where the forgetting factor is

changed as

2
Ay =1 - S (6.10)
N-e(t)
with
e(t)% = 0.95-2(t-1)% + 0.05-e(t)2 (6.11)

This is essentially the method of Fortesque et al (1981) and Wellstead and
Sanoff (1981) discussed in Chapters 2 and 3. The value of N is chosen to give
an adaptation rate approximately as fast as the one in Figure 6.2. The method
interprets all increases of rs(t)2 as parameter changes. The increased noise
variance at t = 400 will therefore deteriorate the estimation drastically. Note
’that the variances of the parameter estimates are much larger than in

Figure 6.6a, where a constant forgetting factor is used.
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Figure 6.2 - The estimated parameters and the estimated noise variance.
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Figure 6.3 - The output- and input-signals of the system, and the residuals
e(t).




108

0.5 1

-0.5

0.01

200

400 600

0.005 -1

200

400 600
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Figure 6.5 - The elements of the P-matrix.
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Figure 6.6 - The estimated parameters when a constant forgetting factor (a)
and a time-varying forgetting factor (b) was used.




111

7. CONCLUSIONS

In the Introduction, the adaptive control concept was motivated for two

reasons:
1. To facilitate the analysis and the design procedure of the control
problem.

2. To extend the applications of the theory for linear time-invariant

systems to nonlinear and/or time-variable systems.

The motivation for the thesis has been the second reason, and the main
contributions are proposals for new ways to handle time-varying and slightly

nonlinear proceszes by using adaptive control.

The thesis has focused on the estimation part of the problem, since this is
where most difficulties due to the time-variability occur. Both the problem
and the proposed solutions have been discussed from an information handling
polint of view. It was shown, in Chapter 3, that most of the difficulties could
be deduced from a bad correspondence between true and assumed uncertainty
of the measurements, leading to an incorrect relative weighting of the
measurements. After a discussion of the basic problem and previous solutions,

new scolutions to the problem were given in Chapter 4 and Chapter S.

The way to solve the weighting problem depends on the nature of the
time-variations. In Assumption 3.1 of Chapter 3, fundamental assumptions
about the time-variations were introduced. The class of time-variations

fulfilling Assumption 3.1 was then divided into two categories.

The first one consists of those parameter changes that can be detected by a

fault detection procedure. They were called large parameter changes. The

way to handle these parameter changes is to detect them and increase the
gain in the estimation algorithm whenever they occur. The fault detection
performs a nonlinear dynamic filtering of the measurement sequence. This
kind of filtering was used in order to get a method which is insensitive to the

disturbances.
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The second category of the time-variations were called slow parameter

changes. They can not be detected easily. The way to handle them is to
prevent the gain in the estimator from being to small, by giving more weight

to recent information. -

A new fault detection procedure was presented in Chapter 4. Methods for
fault detection are of course of substantial importance in their own. It is a
well-known trend, that the industrial processes are getting more and more
sophisticated. The Increased performances are often reached at the price of
processes that are more sensitive and harder to supervise. Illuminating
examples are e.g. aircrafts and power systems. This progress, together with
increasing demands on availability and security, has caused an increased
interest in the problem of fault detection in dynamic systems. The problem is
often solved by redundant hardware combined with some voting technique.
Since this is an expensive solution and since computers are getting cheaper
and cheaper, software solutions have recelved much interest in the past few

years.

Concerning the adaptive control application, four requirements on the
detection method (R1) - (R4) were set up. The new fault detection method was
constructed so that these requirements were satisfled. Since these
requirements are natural, the new method is believed to be applicable also to

other areas of fault detection.

It has been shown in examples that it is possible to detect faults by the
proposed method, even if the faults do not influence the magnitude of the

residuals £(t) much.

In the traditional estimators, the information is usually condensed in the form
of an estimate of the parameters and an estimate of the estimation error
covariance matrix. It has here been proposed to extend the stored information
with variables that keep track of whether a fault in the process model has

occurred or not.
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In Chapter 5, slow parameter changes and changes in the excitation were
treated. The weighting problem is difficult because of the lack of knowledge
about the uncertainties of the different measurements. In Chapter 3, the
uncertainties were divided into two terms, where one depends on the noise
disturbances and the other is due to changes of the m;del. The importance of
distinguishing between these two terms was also stressed. An increase of the
noise level means that future measurements are more uncertain than old ones.
The estimator gain should therefore be decreased in this case. An increase of
the model error means that old measurements are unreliable. The estimator

gain should thus be increased.

The solution proposed in Chapter 5 results in an estimation scheme which
retalns a constant desired amount of information in the estimator, when the
parameters are constant. It is shown that the method gives a P-matrix which
converges to a matrix with desired equal diagonal elements. These diagonal
elements can be interpreted as the desired variances of the barameter‘
estimates. (Different variances of the parameter estimates can be obtained by

scaling the 6 and ¢ vectors.)

The inverse P-matrix (welghted with the nolse wvariance according to
Equation 2.2) i{s a measure of the information content in the estimator. To be
able to track time-varying parameters, it is necessary to keep the inverse
P-matrix bounded. This problem could therefore be viewed as a problem of
controlling the information used in the estimator. This control problem is

described in block diagrams in Figure 7.1.

Figure 7.1a shows a block diagram for the updating of P('t.)_1 in the original LS
procedure. The matrix grows boundlessly, since it is the output of an

integrator with a positive input signal. The system has to be controlled.

Figure 7.1b shows the updating with a forgetting factor. The system is
stabllized, so the inverse P-matrix stays bounded. Since no reference value
is specified, P(t)—_1 fluctuates depending on A, @(t) and v(t). Some eigenvalues

may approach zero, which leads to the problems described in Chapter 3.

s
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Figure 7.1 - Block diagrams describing the updating of the inverse P-matrix.
a. The original LS procedure.
b. LS with forgetting factor.
c. The new proposed method.
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Figure 7.1c shows a simplified version of the écheme described in this thesis.
In control systems terminology, the method consists of a feedback from the

stored information and a feed-forward from the incoming information.

The problem of "controlling" the P-matrix is of co&rse not as simple as
indicated in Figure 7.1. Since the updating of the P-matrix is a part of a
complex control system, other demands limit the design possibilities. The
bounds on o(t) to obtain stability and the requirement of keeping the

P-matrix positive are some examples.

The major advantage of the proposed method is that it solves the problems
caused by nonuniform excitation (both in time and in space) of the process. In
other methods, the P-matrix is prevented from becoming too large by
additional supervisory loops. This supervisory level, or safety net, also
contains logic to interrupt the estimation in case of bad excitation. In the
new method, this logic can be eliminated, since these problems are handled
automatically by the algorithm. A nice feature is also that ad hoc cholces of
forgetting factors are replaced by the performance related choices of desired

parameter variances.

In the final example in Chapter 6, both the new fault detection method and the
new way of controlling the P-matrix to a diagonal matrix were used. It should
be noted that it is not always necessary to use the total algorithm given by
Equation 6.1. The updating of v(t) may be omitted if the noise variance is
cons{ant. If the changes of the model are known to be slow, the fault
detection procedure can be excluded. What is meant by "slow changes" can be
computed automatically, since the wvalues of af(t), wv(t), ¢(t) and Pt
determines the time horizon of the estimator. See Equation (5.36). This
knowledge provides also possibilities to adjust the fault detection procédure

dynamically.

As mentloned several times before, the methods are not limited to the least
squares procedure. The fault detection procedure has in this thesis been
applied to three different algorithms, the least squares method with a
“constant forgetting factor, the Kalman filter and the least squares method
with the new discounting method. Since the inputs to the detector are the

parameter estimates, see Figure 4.6, the detector can be applied to almost
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any estimation scheme.

The new way of discounting past data described in Chapter 5 is concerned
with the updating of the covariance matrix. Since most estimation schemes
include an updating of a covariance matrix, the new method can also be

applied to many other algorithms.
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