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DESIGN PRINCIPLES FOR SELF-TUNING REGULATORS

K.J. ASTROM
Department of Automatic Control
Lund Institute of Technology
Lund, Sweden

ABSTRACT

A unified description of many types of self-tuners is given. Relations to design of
controllers for systems with known parameters and recursive estimation methods are
emphasized. The distinction between self-tuners based on identification of explicit
and implicit process models are discussed as well as the relations between Self-
Tuning Regulators (STR), and Model Reference Adaptive Systems (MRAS). An overview
of practical problems and operational issues is given. The particular problems of
integral action and estimator windup are covered in more detail.

1. INTRODUCTION

Adaptive control has been a challenge to control engineers for a long time. Many
adaptive control schemes have been proposed. In spite of this progress in the field
has been comparatively slow. One reason is that it is difficult to understand how
adaptive systems work because they are inherently nonlinear. Another reason is that
it has been costly and fairly complicated to implement adaptive controllers. The
situation has changed drastically with the advent of microprocessors which makes
implementation of adaptive controllers feasible. Recently there has also been pro-
gress in theory of adaptive control. See Ljung (1977), Egardt (1979), Goodwin et al
(1978}, Morse (1979) and Narendra et al (1979).

Self-tuning regulators (STR) and model reference adaptive systems (MRAS) are two
popular approaches. An overview of STR is given in Section 2. It is shown that self-
tuning regulators can be derived in a simple way which has a strong intuitive appeal.
It is then shown by examples, how many different types of self-tuners can be genera-
ted. Relations between STR and MRAS are also discussed in Section 2. Practical aspects
on self-tuners are discussed in Section 3. This includes different ways to use STR

as well as abuses of self-tuners. Two narticular practical problems namely how to
introduce integral action and how to avoid estimator windup are discussed in

Sections 4 and 5. The parametrization problem is discussed in Section 6.

2. SELF-TUNING REGULATORS

This section gives a brief description of self-tuning regulators. The discussion is
lTimited to control of single-input single-output systems described by



) u(t) (2.7)

_]) and B(q—]) polynomials in the back-

where u is the input, y the output and A(q
ward shift-operator. For further details we refer to the original papers Peterka
(1970), and Astrom and Wittenmark (1973) and the recent review Astrom (1979a), where
many references are given. The principles are first discussed. A self-tuner based

on classical control design is then presented as an example. The notion of explicit

and implicit algorithms is also discussed.

Principles

A block diagram of self-tuning regulator is shown in Fig.1.

S [
Design Estimator fa—
J
e o
Regulator U Process y

Figure 1. Schematic diagram of a self-
tuning regulator

The self-tuner can be thought of as being composed of three parts, a parameter esti-
mator, a design calculation and a regulator with adjustable parameters. The design
calculation computes the parameters of the regulator from the parameters which de-
scribe the process. The parameter estimator determines the parameters which charac-
terize the process and its environment from measurements of the process input and
output.

The regulator structure shown in Fig.1 is very flexible because it allows many
different combinations of design and estimation methods. So far, only a small number
of the possible combinations have been explored. Intuitively it seems reasonable to
choose a design method, which gives desired performance when the parameters of the
process are known, and an estimation method which will work well for the particular
disturbances. It turns out, however, that the structure shown in Fig.1 also has un-
expected properties. The regulator shown in Fig.1 is a certainty equivalence con-
trol in the terminology of stochastic control theory because the fact that the para-
meter estimates are not exact is disregarded. It is possible to introduce modifica-
tions which also take the uncertainties of the parameter estimates into account
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(cautious control) and modifications which introduce extra probing signals when the
parameter estimates are uncertain. The principles will be illustrated by a few
simple examples.

A self-tuning servo

Consider a servoproblem. A classical formulation of the design problem is to find a
regulator which gives the desired transfer function from the command signal to the
output. Let the desired transfer function be

Q
6, = (2.2)
Mop

. i . H
A self-tuning servo which gives this transfer function is given by

_ALGORITHM ET  (Basdic explicit algornithm)

Data: The polynomials P, T], and 01 are given.

Step 1: Estimate the parameters of the model
Ay(t) = Bu(t) (2.1)

by Teast squares.

Step 2: Factor the estimated polynomial é into B* and B~ where all zeros of B are
well damped and all zercs of B~ are unstable or poorly damped.

Step 3: Solve the linear equation.
AR, + B7S = PT. (2.3)

(Notice that there are many solutions and that a choice has to be made).

Step 4: Calculate the control variable u from

Ru = TuC - Sy (2.4)
where R = R]§+, and T = T]Q].

The steps 1, 2, 3, and 4 are repeated at each sampling period.

The algorithm is discussed in detail in Astrém and Wittenmark (1979). Similar al-
gorithms for regulation are discussed in Wellstead et al (1979). If the parameter
estimates converge the closed loop transfer function will be

Q.8
P



Notice that this is the best that can be obtained because it is not possible to
cancel unstable or poorly damped process zeros.

The algorithm E1 is called an algorithm based on estimation 0§ process parameters
or an algorithm with explicit identification, because the parameters of the process
model (3.1) in the standard form are estimated. Using the terminology of model re-
ference adaptive systems the algorithm is also called {ndirect, because the para-
meters of the regulator are updated indirectly via estimation of the process para-
meters (Step 1) and the design calculations (Steps 2, 3, and 4). See Narendra, Lin
and Valavani (1979).

The algorithm E1 can be simplified 1ittle in two special cases. If it is known that
the process has no unstag]elzeros apart from a known number of time-delays it follows
that B_(q'1) = q_k. Step 2 is then not necessary. The second step in the algorithm
is also avoided if all process zeros are considered as unstable or poorly damped. In
that case B” = B.

Implicit algorithms

It is possible to construct algorithms where the design calculations are avoided and
the parameters of the regulator are updated directly. The basic self-tuning regulator
in Astrom and Wittenmark (1973) is a prototype for algorithms of this type. The

idea is to rewrite the process model in such a way that the design step is trivial.
By a proper choice of model structure the regulator parameters are updated directly
and the design calculations are thus eliminated. Algorithms of this type are called
algorithms based on Amplicit identification of a process model. In the terminology
of model reference adaptive systems the corresponding algorithms are also called
direct methods because the parameters of the regulator are undated directly.

An example of an explicit algorithm will now be given. Consider a process described
by (3.1) with B~ = q'k. Assume that it is desired to find a feedback such that the
transfer function from the reference value to the output is

-k
z

Jeal

This means that all process zeros have to be cancelled. Assuming that the process
model is known the design equation (2.3) becomes

k

PT, = ARy +q 'S

Hence

k -k

kR1Bu +q 'Sy =q (Ru + Sy) (2.5)

PTy = ARy + q_kSy = wi
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where (2.1) isused to obtain the second equality. The process can thus be represented
either by (2.1) or by (2.5). The representation (2.5) has the advantage that the
polynomials R and S, which appear in the feedback law, occur explicitly. The following
self-tuning control algorithm is then obtained

TALGORITHM 12 (ImplLicit algorithm with all process zeros cancelled)

I
—
.

Data: Given the polynomials P and T, where P is normalized such that P(1)

Step 1: Estimate the parameters of the polynomials R and S in the model
PTy = q-k(Ru +Sy ) (2.5)

by Teast squares.

Step 2: Calculate the control signal using

A

Ru = Tu_ - Sy, (2.6)
where R and S are the polynomials estimated in Step 1.

The Steps 1 and 2 are repeated at each sampling period. &
This algorithm was originally proposed in Clarke and Gawthrop (1975). Since the spe-
cifications require that all process zeros are cancelled, they must be sufficiently
well damped for the algorithm to function. The algorithm will thus not work for non-
minimum-phase systems. It also requires that k is known apriori. Notice that T can be
interpreted as the observer polynomial.

Implicit STR and MRAS

It will now be shown that the implicit self-tuning pole-placement algorithm 2 is
equivalent to a model reference adaptive system (MRAS). For this purpose it is ne-
cessary to consider some details of the algorithm. Introduce

T

o(t) = [y(t-k) ... y(t-k—ns) u(t-k) ... u(t—k—nR)] (2.7)

where

Ng = deg S and np = deg R.

In the impTicit algorithm the estimated parameters are equal to the requlator para-

meters. Hence

6 = [so... s rge-+ o 1. (2.8)



The residual & can then be written as

e(t) = PT y(t) - Ru(t-k) - Sy(t-k) = PT y(t) - o

(t)e (2.9)
The Teast squares formula for updating the parameter estimates can be written as

B(t+1) = 8(t) + P(t+1) @(t+1) e(t+1) (2.10)

Equation (2.10) can clearly be interpreted as an adjustment rule for the regulator
parameters 6. Notice that it follows from (2.9) that

o(t) = - grad, e(t)! : (2.11)

The vector ¢ can thus be interpreted as a sensitivity derivative, and the least
squares updating formula can be written as

8(t+1) = 0(t) - P(t+1) &(t+1) grad, e(t+) (2.12)

This is identical to the 'MIT rule' used to design MRAS, provided that the model
error is replaced by the least squares residual.

LQG self-tuners

Optimal control methods are popular design techniques. Such methods can of course also
be used to generate self-tuning regulators. The idea is illustrated using a simple
examplte. Consider a system described by

-1

) u(t) + C(q ') e(t) (2.13)

where e is white noise. Assume that it is desired to find a control law such that
the criterion

J=Tim L 5 2t) + oul(t)] (2.14)
N N n=0

is minimal. A self-tuning regulator for this problem is given below.
ALGORITHM (Explicit LQG)
Data: Given p and the samnling period h.

Step 1: Estimate the parameters of the model (2.12) by extended least squares or by

recursive maximum likelihood.



Step 2: Determine a stable polynomial P such that

PP* = oAR* + BB* P(2)P(z7') = oA(2)A(z ) (2.15)

where A and é are the estimates obtained in Step 1.
Find a solution to the diophantine equation.

AR + BS = CP (2.16)

such that deg S = deg B + deg C - deg P

Step 3: Use the control law

Ru = -Sy (2.17)

The steps 1, 2 and 3 are repeated at each sampling period

Notice that there are many variants. Instead of performing the spectral factoriza-
tion (2.15) and solving the linear equation (2.16) the feedback law (2.17) can be
obtained from a Riccati equation. See Astrom (1974).

3. PRACTICAL ASPECTS
Some practical aspects on simple regulators are first reviewed briefly. The corre-
sponding problems for self-tuners are then discussed. Operational issues and abuses

of self-tuners are also covered.

Simple Regulators

The basic algorithm for a PID regulator is very simple:

t

u=Kle + = [e(s) ds + Ty %% . (3.1)

An implementation of this algorithm in analog or digital hardware does, however, not
necessarily give a good controller. In practice it is also necessary to consider
operator interface, filtering of the signals, automatic/manual transfer, bumpless
parameter changes, reset windup, nonlinear output, (gap, saturation etc). How well
a PID regulator works in an industrial environment depends very much upon these con-
siderations.

Self-tuners

A1l things that apply to the simple regulators also apply to the self-tuners. For
self-tuners there are, however, more things to be considered because the basic
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algorithm is more complicated than the PID algorithm. For example windup occurs in a
PID regulator because the integrator in the algorithm could achieve large values if
the control value saturates or if it is driven manually. In a self-tuner with a for-
getting factor windup can also occur in the estimator. Some of these problems are
discussed in more detail in the following sections. The self-tuning regulator can
operate in many different modes like estimation only, tuning etc. The problem of
operator interface is particularly important. A key problem is how the specifica-
tions are entered and how an operator should interact with the controller. There are
many different possibilities ranging from the case where there are no knobs at

all on the panel to fairly complicated operator interfaces. Instead of Just having
manual and automatic modes it maybe useful to have several automatic modes e.g. fixed
gain, estimate process péraﬁeters but do not update controller parameters, estimate

and update controller parameters. The self-tuning regulators which are already
on the marked or which are in the process of coming out illustrate the wide
range of possibilities.

Operational issues

Self-tuning regulators can be used in many different ways. Since the regulator be-
comes an ordinary constant gain feedback regulator if the parameter estimates are
kept constant, the self-tuner can be used as a funet to adjust the parameters of a
control Toop. In such an application the self-tuner is connected to the process and
run until satisfactory performance is obtained. The self-tuner is then disconnected
and the system is left with the constant parameter regulator obtained. This mode of
using the self-tuner is convenient to implement in a package for direct digital con-
trol (DDC-package). The DDC-package is simply providedwith a tuning routine which
can be connected to an arbitrary loop in the package.

The self-tuner can also be used to build up a gain schedule. In such a case the
system is run at different operating points and the controller parameters obtained
are stored. When the process has been run at a sufficient number of operating points
a table for scheduling the controller parameters can be generated by interpolating
and smoothing the parameter values obtained.

The self-tuner can also be used as a truly adaptive controller for systems with
varying parameters. In cases where rapid adaptation over widely varying operating
conditions are required combinations between gain-scheduling and self-tuning can
also be considered.

Abuses of self-tuners

Compared with a three-term controller the self-tuner is a sophisticated controller.



Such a controller can of course be misused. The self-tuner should of course not be
used if a simpler controller will do the job. Before considering a self-tuning re-
gulator it is therefore useful to check if a simpler regulator will work. The fol-
Towing 1ist may help to decide.

PI or PID

Linear MISO (What order?)
Nonlinear

Fixed Gain

Gain Schedule

Self-tuning or Adaptive

Notice that it is not always easy to decide if a constant gain regulator will work

based on the open Toop characteristics of the process. Two examples illustrate the
point.

_Example 1

Fig. 2 shows the step responses of systems with the transfer function
1

G(s) = ———— (3.2)
(s+1)(s+a)

for a = 0, 0.01 and 0.02.

4001 a=

3001
© 200 |
C
(@} |
] |
@ 100 a=0.01 |
a a=0.02
bt
n 0 : . , . . , : ,

0 100 200 300 400

Time t

Figure 2. Step responses of open loop systems with transfer function (3.2).

The step responses of the corresponding closed loop systems obtained with the constant
parameter feed-back



are shown in Fig.3.

15-

Step response
()
o

0

-
-
-
-

0 ' 5 ' 10 5 20 |
Time t ‘

Figure 3. Unit step responses for closed loop systems

a
_Example 2
Fig.4 shows the step responses of systems with the transfer function
20(1-sT)
G(S) = (3.3)

(s+1)(s+20) (14sT)
for T = 0, 0.01, 0.02

The step responses of the corresponding closed Toop systems obtained with the con-
stant parameter feed-back Taw

u(t) = 20(y, - y(t))

are shown in Fig.5.

Step response
()
(6h)

0

0
Time t

M"’l
w-—
I~

Figure 4. Unit step 1esponses for systems with transfer function (3.3).

10
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Figure 5. Unit step responses for closed loop systems with transfer function (3.3)
m]
When designing a self-tuning regulator it is useful to consider the particular appli-
cation carefully and decide upon a design method which is suitable for the particular
problem if a model for the process and its environment are known. A parameter estima-
tion scheme which works well for the particular problem should also be chosen before
the details of the design are considered.

4. INTEGRAL ACTION

The reason for introducing reset and integral action is to eliminate steady state
errors in the closed loop system. Steady state errors can be generated by many dif-
ferent mechanisms, calibration errors, nonlinearities, load disturbances etc. Irre-
spective of the origin of the disturbances it has been found empirically that the
errors can be eliminated simply by letting the feedback signal have a term which is
proportional to the integral of the error. It is also well known that integral feed-
back can Tead to difficulties. It destabilizes the system and may lead to oscillations
with large amplitudes. Since the integral is an unstable system it may happen that

the integral can assume very large values if the control signal saturates (due to
nonlinearities or manual control) when there is an error. This is called neset wind-
up. Special precautions have to be taken in ordinary regulators to avoid windup of
the integrator. There are several ways to provide reset in self-tuning regulators.
Since there is no method which is uniformly best a few different schemes will be
discussed.
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Automatic reset provided by the STR

Since many self-tuning regulators estimate models of the environment it can be ex-
pected that the self-tuner will attempt to model slowly drifting disturbances and
compensate for them by introducing integral action automatically. This is indeed the
case for many configurations. It is easy to check if a particular self-tuner has this
ability simply by investigating possible stationary solutions when there is an off-
set or a drifting disturbance. A typical example is given below.

EXAMPLE 3

Consider the simple implicit self-tuner discussed in Astrom and Wittenmark (1973),
which is based on Tleast squares parameter estimation and minimum variance control.
The self-tuner is based on the model

y(t+k) = Ru(t) + Sy(t)

The conditions for an equilibrium of the parameter estimates is that

n
(@]
=]

1}

y(t+r) y(t) k,...,k + deg S

™M=

1
N t=]

|1}
(]
=

1}

y(t+r) u(t) Ky...s k + deg R

=2 |—
+ M=

=1

These conditions can clearly not be satisfied unless the mean value of the output y
is zero. When there is an off-set or a disturbance the parameter estimates will

assume values guch that ﬁ(]) = 0. N

Another example which shows that reset can also be provided automatically in explicit
algorithms is given in Astrom (1979b).

In many cases it is thus not necessary to make any special provisions to obtain re-
set action. The self-tuner will automatically introduce reset when needed. The main
drawback of such a scheme is that the response of the system to sudden variations

in the Toad level may be slow. The problem is particularly severe if the nature of
the disturbances change drastically with time. The method is also inconvenient when
the STR is used as a tuner. It could easily happen that the disturbances encountered
during the tuning have a small Tow frequency component. The requlator obtained will
then not necessarily have sufficient gain at low frequencies. When integration is pro-
vided automatically it is necessary to introduce facilities to avoid reset windup i.e.
to ensure that the regulator state which correspond to the integral will not grow
without bounds when the output saturates. One possibility is to replace the control
law (2.4) by
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u(t) = sat[TuC(t) - Sy(t) - (R-ro)u(t)]/rO (4.7)

where sat is a saturation function which saturates before the actuator. Another way
to avoid reset windup is discussed in Andersson and Astrom (1978).

Estimation of a Bias

A simple way to model the off-set errors is to replace the model (2.1) by

Ay(t) = Bu(t) +b (4.2)

where the bias term b represent the errors. With a model like (4.2) it is natural to
estimate the bias b and to compensate for it. Such a scheme was proposed by Clarke
and Gawthrop (1979). An advantage is that the estimation of b is simple. The draw-
backs are that an extra parameter has to be estimated. The estimate b will converge
slowly unless special precautions are taken. If forgetting factors are used it is
useful to have separate forgetting factors for b and the other parameters. See Astrom
(1979b). If bias is eliminated in this way it is not possible to use the STR simply
as a tuner because there will be no reset when estimation is switched off.

Forced Integral Action by Use of a Special Model Structure

One possibility to obtain reset is to choose a model structure so that the regulator
designed from the model will always contain an integrator. For explicit self-tuners
based on pole-placement design this can be done by using the lack of uniqueness in
the equation (2.3) to impose the condition that 1 - q-1 should be a factor of R.
This can always be done. For implicit self-tuners integral action can be imposed

by replacing the model (2.5) by

PT, y(t) = Rvu(t-k) + Sy(t-k) + b (4.3)

where v = 1 - q_1.

The control Taw (2.6) is then replaced by

Y )
R7u(t) = Tu_(t) - Sy(3-~K) (4.4)

Notice that it follows from the design procedure that T(1) = S(1). Notice also that
it is useful to include estimation of the bias b although the estimate is not used
when calculating the control signal.

The main advantage of this scheme is that the controller will always have integral
action. If the STR is used as a tuner the regulator obtained when the tuning is
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switched off will always have integral action. A drawback is that there will be one
additional mode in the controller. In the pole-placement design it is then an addi-
tional pole to position. This pole is not entirely trivial to choose. If it is
placed at the origin the controller will have an unnecessarily high gain. The

scheme also requires special tricks to avoid reset windup. Another drawback with the
scheme is that the self-tuner may try to eliminate the integral action when it is

not needed. The estimated polynomial S then has the factor v = (1 - q_]

). This means
that the regulator transfer function has an unstable mode which is cancelled, and
the system will be unstable. An example where this happens is discussed in Astrom

and Gustavsson (1978).

Integration in Inner Loop

Steady state errors can be avoided by the scheme shown in Fig.6. The process is pro-
vided with a fixed gain feedback loop with integrating action.

> 3 STR Pl > Proc

Figure 6. Block-diagram of a regulator with an integrating regulator in an
inner-Toop and an outer-loop with self-tuning.
The use of an inner Toop was originally proposed by Wittenmark (1973). The arrange-
ment shown in Fig.6 was applied by Dumont and Belanger (1978). One drawback of the
scheme is that it may be difficult to tune the regulator in the inner loop. Another
drawback is that it is not good practice to have integration in an inner loop even
for systems with fixed parameters.

Integration in an Outer Loop

Another possibility to avoid steady state errors is shown in Fig.7. A self-tuner

is first connected to the process. An outer loop with integral action is then intro-
duced. Since the self-tuner makes the inner Toop invariant to changes in process
dynamics it is possible to have fixed gain in the outer Toop.
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Model 2l STR Proc

Figure 7. Block-diagram of a regulator structure with a self-tuner in an inner
loop and an outer loop with integration.

The approach is particularly attractive for self-tuners whose specifications are
directly related to properties of the closed loop transfer function because the outer
loop gain can then be set automatically. Another advantage is that standard methods
can be used to avoid reset windup. The major disadvantage is that is is not convenient
to use the scheme for self-tuners whose performance are not directly related to the
bandwidth of the closed loop system. In such a case the integrator gain cannot be

set automatically.

5. ESTIMATOR WINDUP

The problem of windup can occur whenever there is an unstable mode in a regulator.

In a self-tuning regulator there may be unstable modes associated with the parameter
estimator. The problem is closely connected with the design of the estimator, and the
way in which control signals are 1imited.

Input Saturation

There are several mechanisms which can cause instability. Consider for example the
case when the actuator saturates. If no precautions are taken it could easily happen
that the control signal calculated by the regulator is outside the saturation Timits.
The estimated process model will then have too low gain. The calculated controller
gain will be too large. Saturation effects will be even more pronounced etc. This
simple intuitive argument has been supported by simulations. In simple cases it can
also be verified analytically. There is a simple remedy. Introduce a saturation in
the controller where the Timits are set tighter than the actuator saturation. e.g.

as in (4.1). The parameter estimator will ther have a faithful representation of the

actual process variable.
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Covariance Windup

Another mechanism which can cause instability will now be discussed. For this pur-
pose the equations describing the parameter estimator are needed. They are

B(t+1) = 6(t) + P(t+1) o(t+1) &(t+1) (5.1)
P(t+1) = [P(t) - P(t) o(t) R(t) o (t) P(t)1/x (5.2)
R(t) =[x + @' (t) P(t) w(t)]”! (5.3)

Consider the equation (5.2)., The negative term in the right hand side represents the
reduction in uncertainty due to the last measurements. If the control signal and the
output are zero the vector P(t)p(t) will then be zero. There will not be any changes
in the parameter estimate and the negative term in the right hand side of (5.2) will
be zero. The equation (5.2) then reduces to

P(t+1) = L p(t)

A
and the matrix P will thus grow exponentially if x < 1. If there are no changes for
a lTong time the matrix P may thus become very large. Since P represents the gain in
the parameter estimator (5.1) a change in the command signal may then lead to large
changes in the parameter estimates and in the process output. The large values of the
matrix P may also lead to numerical problems. The problem will occur whenever the
vector P(t)o(t) is zero or sufficiently small over a period of time. The problem is
closely associated with identifiability conditions and the selection of the forgetting ..
factor A.

Excitation of the Process

Identifiability depends on the input signal u and the number of estimated parameters.
In typical regulation problems where the system is continuously excited by the dis-
turbances the problem will not occur provided that the number of estimated parameters
is not too high. The problem will be much severe in a typical servo problem where

the major excitation comes from the command signal which may be constant for long
periods of time. The situation is similar for regulation problems where the major
disturbances are constant over long time periods. One possibility to ensure that

the process is properly excited is to introduce perturbation signals or to use a

dual control law.

The Forgetting Factor

Covariance wiadip is closely related to the choice of the forgetting factor A. If
A =1 the problem will not occur. For x» = 1 the estimator gain will, however, de-
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crease and the estimator will be very sluggish. There are, however, several other

possibilities to obtain estimators with non-decreasing gain. The matrix P could
simply be chosen as a fixed matrix. This is commonly done in model reference systems.
Another possibility is to replace equation (5.3)

T

P(t+1) = P(t) + P(t) o(t) R(t) @ (t)P(t) + R (5.4)

1
In this case the matrix P will grow linearly instead of exponentially when Py is
zero. A third possibility is to replace the equation (5.3) by

k=1

where o is a small number. This ensures that P stays bounded. The size of P is de-
termined by a.

A fourth possibility is to simply put a bound on P e.g. by restricting it so that
the trace of the matrix P is constant in each iteration. This has been proposed by
Irving (1979).

A fifth possibility is to adjust the forgetting factor automatically. It can e.g. be
chosen as
A=1-a« s:2/:g

where 52 is the mean value of 52 over a certain period. More complicated formula for
adjusting X have also been proposed. See Fortescue et al (1978). An automatic adjust-
ment of A does not guarantee that the matrix P stays bounded. The period where P has

a reasonable size may, however, increase substantially.

It has also been proposed to eliminate covariance windup by stopping the updating of
6 and P when Pp or ¢ is sufficiently small. See Egardt (1979).

In Goodwin et al (1978) it is proposed to analyse the conditioning number of the
matrix P and to switch to a stochastic approximation algorithm when the matrix P
becomes poorly conditioned.

6. THE PARAMETERIZATION PROBLEM

A mathematical model can be parametrized in many different ways. The choice of para-
meters is important for the design of self-tuners. For example when discussing im-

plicit and explicit algorithms for self-tuning servos in section 2 it was found that
the algorithm could be simplified substantially if the model was parametrized in the
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reqgulator parameters.

Although the parametrization problem is important it has been given 1ittle attention
in literature. The general tendency, both as far as MRAC and STR are concerned, is
to parametrize in such a way that the estimation problem becomes simple e.g. Tinear
in the parameters. In Astrom (1979c) an example is given which shows that it may

be advantageous to use other parametrizations.

The parametrization of the minimum variance self-tuner (Astrém and Wittenmark (1973))
or its model reference equivalent has been given some attention. For minimum variance
regulation the variable y i; often chosen as the control error. Since PT1 =1 for
minimum variance control the estimation model (2.5) then reduces to

y(t+k) = s(a7) y(t) + R(q™") u(t) (6.1)

and the control law becomes
-1
) u(t) = -S(q ) y(t) (6.2)
This control law has one redundant parameter because the polynomials R and S can be

multiplied by a constant without changing the control Taw. The redundant parameter
can be eliminated by reparametrizing the estimation model (6.1) as

y(t+k) = rolu(t) + rou(t-1) + ... + ré u(t-np)]

]
& (6.3)
S y(t) + s]y(t-1) + ...+ sns y(t-nR)
The control law (6.2) then becomes
u(t) = - l—{go y(t) + ... + §n y(t—ns)]
o S
(6.4)
- ri u(t-1) - ... - rﬁR u(t-nR)

It is shown in Astrom and Wittenmark (1973) that the estimate ;O can be fixed apriori
if

0.5 < ;'O/Y‘O < o
without influencing the equilibrium condition. In Ljung (1977) it is shown that if

the algorithm converges for ' = "o it will still converge if (6.5) holds. The con-
‘vergence rate is, however, influenced by rO.It is fastest for ' = "o

For minimum variance self-tuners either of the models can be used. The algorithm
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based on (6.4) with fixed ;O is most robust provided that apriori knowledge to choose
o subject to (6.5) is available. If this is not possible the parameters in (6.1)
can be estimated. Identifiability is poor because of the feedback. The estimates of
the parameter combinations ri/ro and si/r0 converge as 1/t. The estimate of ro con-
verges, however, at a slower rate. Algorithms which treat ro in a special way are
therefore also used.

7. CONCLUSIONS

The word self-tuning regulator may lead to the false conclusion that such regulators
can be switched on and used blindly without any apriori considerations. This is not
true. The self-tuning reéu]étor is a fairly complex control Taw. A proper design in-
volves the choices of gross features Tike underlying design and estimation methods
and decisions on details 1ike initialization, selection of parameters, and safeguard
methods. Proper choices require insight and knowledge. There are known cases where
bad choices have been disastrous.

There has recently been considerable progress in the theory of adaptive control.
Stability results have been proven for simple self-tuners (implicit minimum variance
and pole-placement) connected to linear systems. The theory requires assumptions
which are hard to verify in a practical situation. The theory is also limited to
simple self-tuners. The theory required to use self-tuners confidently is thus not
available A cautious person would then perhaps be inclined not to try a self-tuner.
To get some perspective it may be useful to reflect on the role of theory in similar
situations. The properties of the closed loop system obtained when a PID regulator
is connected to a Tinear system are fully understood theoretically provided that the
regulator operates in the linear region. As soon as nonlinearities associated with
gap, saturation and anti-windup are introduced there is, however, little theory which
tell theoretically what happens. In spite of this,large systems with many inter-
connected PID regulators are designed, sold, commissioned and used routinely.

Based on attempts to develop suitable theory and experiences from a few applications
I believe, however, that self-tuning regulators can and will be used profitably,
even if all their properties are not fully understood theoretically. I hope that
this paper may inspire some of you to acquire the appropriate knowledge and try some
schemes. I also hope that some of you will tackle the important theoretical problems
that remain.
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N
Design Estimator
)
Ue ol
Regulator u ™| Process

MANY POSSIBILITIES

DESIGN METHODS
MINIMUM VARIANCE
LQG
POLE-PLACEMENT

PHASE- AND GAIN MARGINS

ESTIMATION METHODS

STOCHASTIC APPROXIMATION
RECURSIVE LEAST SQUARES
EXTENDED LEAST SQUARES
MULTI-STAGE LEAST SQUARES
INSTRUMENTAL VARIABLES
RECURSIVE MAXIMUM LIKELIHOOD




L&G SELF-TUNER

ONE KNOB CONTROL
WEIGHT g

DATA: GIVEN h amp @ <

1. ESTINATE PARAMETERS IN THE MODEL
Aqh y© =B@™h) uw) + cgh e

BY ELS OR RML.

2, FIND CONTROL LAW WHICH MINIMIZES
N

J=lJM-%'%;I[y2@)*'QU2&)]

P(2) Pz = ok Ah + B Bz b

3, USE CONTROL LAW

A

Ru = Gy, - Sy

NOTE: SAMPLING PERIOD h CAN BE TUNED AUTOMATICALLY,



POLE-PLACEMENT DESIGN

DATA: PROCESS MODEL G = B/A

DESIRED RESPONSE G, = Q/P

OBSERVER POLYNOMIAL T, peq T, =7 "E¢ A KA

~==pec A-1 LUENBERGER

REQUIREMENTS

1. peEc P - pEc Q > pEG A - DEG B,
2, B=B'B", Q=0;8
B* STABLE AND WELL DAMPED, B~ UNSTABLE OR POORLY DAMPED.

5., A AND B NO COMMON FACTORS.

DESIGN
1. CHOOSE T = T;Q; AND SOLVE THE DIOPHANTINE EQUATION
AR +BS = PB*T).  (ARy + B™S = PTp)
2. CONTROL LAW IS THEN
Ru=Tvg-Sv.  (R=RpB", T=¢D
ALTERNATIVE INTERPRETATION

R R

S—
I_ LDESIRED OUTPUT
INVERSE MODEL
DESIRED RESPONSE




POLE PLACEMENT
0=0QB", B=BB, T=Tq

AR + BS = PB'Ty
SPECIAL CASES WHICH AVOID FACTORIZATION:

CASE 1 ALL ZEROS CANCELLED
0=1= Q=B=1, B =B, T;=T
AR +BS=PTB = B piv R, R=RgB
ARy + S = PT

RiBu = Tvg - Sv

CASE 2 NO ZEROS CANCELLED
0=B = Q0 =8"=1, Q=B T=Tp
AR + BS = PT

Ru = TYR - Sy



EXPLICIT DESIGN

INDIRECT CONTROL

1. ESTIMATE MODEL Ay = Bu BY LS

2, FACTOR B-POLYNOMIAL AS B = ByBy. By STABLE

Desired observer poles

5. PUT T=T4Q; AND SOLVE AR + BS = PBT; FOR R AND S

\\Desired additional zeros

4, USE CONTROL LAW Ru = Tyg - Sy

NOTICE: CLOSED LOOP TRANSFER FUNCTION IS

03By SPECIAL CASE
P 0 =1. B, =B




IMPLICIT ALGORITHMS

DIRECT CONTROL

EXAMPLE

BT
AR +BS

. X
P

DESIGN IDENTITY: AR + BS = PBI

A
PTy = : Ry + Sy = Ru + Sy

ALGORITHM:

STEP 1: ESTIMATE PARAMETERS IN MODEL

PTy = Ru + Sy
BY LS.

STEP 2: USE CONTROL LAW

Ru = TYR - Sy

NOTE. THE POLYNOMIAL B IS CANCELLED

BECAUSE R = RyB



STR & MRAS

MODEL REFERENCE:

MIT RULE:
dy et T immma
dt A

AUGMENTED ERROR

IMPLICIT POLE-PLACEMENT STR

Je+1) = 0) + Pe+l) Y+l ele+l)

e(t) = PTyt) - Ry&t-k - Sy(t—k) N

PTyte) - ¢ (&)

De(t)

= ) X

Y+l = ¥e) - Pe+l) e+D) GRAD g € (t+1)

e(t) = PREDICTION ERROR



