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EXISTENCE, UNIQUENESS, AND CAUSALITY THEOREMS
FOR WAVE PROPAGATION IN STRATIFIED, TEMPORALLY
DISPERSIVE, COMPLEX MEDIA*

STEN RIKTEf

Abstract. A mixed initial-boundary value problem for a nonlocal, hyperbolic equation is an-
alyzed with respect to unique solubility and causality. The regularity of the step response and
impulse response (the Green functions) is investigated, and a wave front theorem is proved. The
problem arises, e.g., at time-varying, electromagnetic, plane wave excitation of stratified, temporally
dispersive, bi-isotropic or anisotropic slabs. Concluding, the problem is uniquely solvable, strict
causality holds, and a well-defined wave front speed exists. This speed is independent of dispersion
and excitation, and depends on the nondispersive properties of the medium only.
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1. Introduction. During the 1980s and the 1990s, pulse propagation in strati-
fied, temporally dispersive slabs has been studied extensively [1, 4, 5, 9, 10, 12, 14, 16,
17, 18]. Related inverse scattering problems have been addressed as well [4, 5, 8, 12,
16, 19]. Since all media are dispersive to some degree, these investigations are of prin-
cipal interest. Temporal dispersion in linear, time-invariant media is modeled by time
convolution in the constitutive relations; see Hopkinson [11] for an early reference and
Karlsson and Kristensson [13] for a modern treatment. The propagation of mechan-
ical pulses in dispersive, viscoelastic media has been treated by Ammicht, Corones,
and Krueger [1], Karlsson [12], and Corones and Karlsson [5]. Electromagnetic pulse
propagation in dispersive, nonmagnetic, isotropic media was discussed by Beezley and
Krueger [4] and later by Kristensson [16]. Both these problems lead to scalar wave
equations involving memory terms. Using standard techniques, these wave equations
can be reduced to hyperbolic systems of two coupled, first-order, integro-differential
equations.

Attention has also been paid to the interaction between electromagnetic fields
and dispersive, bi-isotropic media [17, 18] and dispersive, anisotropic media [9]. The
bi-isotropic medium is isotropic but has a constitutive coupling between the electric
and magnetic fields. Consequently, it is characterized by four susceptibility functions.
In the anisotropic medium, there is no constitutive coupling between the electric and
magnetic fields. However, the medium is not isotropic, and in the extreme case, it is
characterized by 18 susceptibility functions. The bi-anisotropic medium, which is the
most general complex medium, involves at most 36 susceptibility functions. Since the
longitudinal field components in Maxwell’s equations can be eliminated using resolvent
operators, wave propagation in dispersive, complex slabs leads to hyperbolic systems
of four coupled, first-order, integro-differential equations.

In the analysis of the wave propagation problems above, two different, but related,
methods are employed, namely the invariant imbedding technique and the Green
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functions approach. Both methods are based on wave splitting and Duhamel’s princi-
ple. In the imbedding method, a one-parameter family of scattering problems related
to the original problem is studied. In the Green functions method, the internal fields
are related to the excitation at the boundary via a propagation operator of convolu-
tion type. The Green functions are simply the classical contributions to this impulse
response or fundamental solution. Both methods rest upon the assumption that—
in the weak sense—the propagation problem has a unique, well-behaved solution in
each bounded time interval. Furthermore, it is surmised that strict causality holds
for wave propagation in dispersive media. The attribute “weak” refers to that the
integro-differential equations are to be integrated along the characteristics (defined
by the nondispersive properties of the medium). This is also the appropriate measure
at numerical evaluation. The concept of strict causality refers to that the speed of
the wave front—which is undefined at this point—is lower than or equal to the speed
given by the nondispersive properties of the medium [21].

Unique solubility of hyperbolic systems modeling wave propagation in nondis-
persive media is discussed by Courant and Hilbert [7] and by Ayoubi [2]. The first
uniqueness and causality results for homogeneous, dispersive, isotropic media were re-
ported by Sommerfeld [22]. The most general results in this field have been obtained
by Roberts [21]. In this reference, plane wave incidence on the stratified, dispersive,
nonmagnetic, and optically impedance-matched isotropic slab is discussed. However,
the presented theorems can be applied to other (scalar) problems also. The existence
of a unique, well-behaved, weak solution to this wave propagation problem in each
bounded time interval is established. Furthermore, strict causality is verified, and a
theorem concerning the regularity of the wave front is presented and proved. As a
consequence of this wave front theorem, a well-defined wave front speed can be intro-
duced also at wave propagation in dispersive, isotropic media. As expected, this wave
front speed is independent of the dispersive properties of the medium as well as the
incident plane wave.

The questions of existence, uniqueness, and causality at wave propagation in
dispersive, complex media have not been properly attended to. In the present paper,
the theorems in [21] are generalized to a mixed initial-boundary value problem for a
nonlocal hyperbolic equation, which covers electromagnetic pulse propagation in large
classes of stratified, dispersive, bi-anisotropic media and which may be applicable to
other wave propagation problems also. In addition, the Green functions equations
are derived, discussed, and proved uniquely solvable. Due to the close relationship
between the imbedding method and the Green functions method, it is conjectured
that the imbedding equations can be proved uniquely solvable by referring to theorems
presented in this paper.

The investigations in, e.g., [8, 9, 17, 19, 18] suggest the study of the following
mixed initial-boundary value problem, defined in the product set (z,s) € (0,1) x R:

(1.1)
(0x + 0s)et (z,5)\ . et (z,s) s e s et(x,s) X
((aw - 85)6_($,s)> = b(@) <e_(x,s)> N /_Oo (@ ) (e‘(m,s')) as’,

et (r,5) =0, s<0,

~

toe'(s) = e* (+0,5) —roe” (+0,5), to+ro =1,
e (1-0,s)=riet(1-0,s).

The independent variables s and = are the travel-time coordinates for time and slab
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depth, respectively. For each ordered pair (z,s), €'(s), e*(x,s) € May;(R) and
a(z, s), b(x) € Myxa(R), where My, «,(R) is the linear space over R consisting of the
m X n matrices with real entries. The real numbers rq, tg, and r; are due to optical
impedance mismatch at the slab walls, x = 0 and x = 1, respectively.

The functions a and b and the optical reflection coefficients o and r (viewed
from the slab) depend on the properties of the complex medium. Temporal dispersion
is modeled by time convolution with the kernel a, for which one has a(z, s) = 0 for all
s < 0. The vector fields e* have been obtained by (optical) wave splitting. A wave
splitting is a change of the dependent variables, such that in the simple media outside
the complex slab, the split vector fields e™ and e~ represent the right-going and the
left-going waves, respectively; see, e.g., [8, 9, 17, 19, 18] or section 5. Throughout
space, the sum et 4+ e~ and the difference e™ — e~ represent the total electric and
magnetic fields, respectively; see, e.g., section 5. The second relation in (1.1) shows
that the slab is initially quiescent; therefore, fjoo can be substituted for fos in the
first one. The third and forth relations are boundary conditions. The incident electric
field e at the front wall is initially quiescent: e’(s) = 0 for all s < 0. Clearly, there
is no incoming field from the right. Observe also that the metal-backed slab is not
excluded (r; = —1).

The matrix notation in (1.1) is appropriate for the wave propagation and scatter-
ing problems referred to above and is employed throughout this paper. Every vector
(in the plane) is identified with its column vector representation in the usual basis
(i-e., as a 2 x 1 matrix), and is typed in italic boldface. Quadratic matrices are typed
in roman boldface.

In section 2, the weak canonical problem is examined with respect to unique
solubility and regularity. In section 3, it is proved that the general problem (1.1)
is uniquely solvable in the weak sense in each bounded time interval and that strict
causality holds. Furthermore, a theorem concerning wave fronts is given, which implies
that the speed of the wave front is precisely one. In section 4, the Green functions
equations are derived and proved to be uniquely solvable. In addition, it is shown
that the solution to (1.1) can be written in the form

et (x,s) = / g (x,s —s")e'(s') ds’'
0

(1.2) o
+ Z [ut (2, 2 + 2k)]e’(s F = — 2k),
k=k+*
where k¥ = 0, k= = 1, and [u®(z, s)] denotes the jump in u*(z,s) at (z,s). The

matrix-valued functions u® (z, s) and g*(z, s), which depend on the properties of the
complex medium only, are the canonical solutions and the Green functions, respec-

tively. Finally, in section 5, (1.1) is derived for a large class of bi-isotropic media.

2. The weak canonical problem. In this section, linearly polarized excita-
tion with the Heaviside step is considered. Two theorems concerning this canonical
problem are presented and commented upon. The proofs can be found in Appendix A.

Theorem 2.1 states that—in the weak sense—the canonical problem is uniquely
solvable in each bounded time interval. The proof is similar to the one given in the
scalar, dispersive case [21]. The basic idea of the proof is the repeated use of the
Banach fixed-point theorem [23]. A similar method of proving unique solubility of
hyperbolic integro-differential equations has been employed also by Beezley [3].
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Theorem 2.2 shows that the regularity of the solution to the canonical problem
is increased with the regularity of the memory function a. This admits the definition
of the Green functions employed in, e.g., [8, 9, 17, 19, 18].

In the theorems and the proofs below, the following definitions and facts are
employed: if A C R? is an open set, the real linear space consisting of all functions
f:A — M,xn(R) with bounded and continuous derivatives up to order k in A is
denoted by Ck .., (A). This function space is complete furnished with the norm

mXn

(2.1) [£]] = max([fi ;oo = max(sup |f; ;(2)]),
©J Ll xeA

where f; ; are the components of f. The class Cp,xn(A) is defined analogously. The
product space Cryxn(A) X Cruxn(A) over the real numbers, equipped with the norm
[[(;-)| = max(]| - ||, - -Il), where the norm || - || is defined in (2.1), is also a Ba-
nach space. Convergence in these norm-topologies is called uniform. By straightfor-
ward generalization of a theorem in real analysis, one can prove that, if the sequence
(£))521 € Chwn(A) X Chyr(A) converges pointwise to f in A, and if (9;f;)52, €
Cinxn(A) X Craxn(A) converges uniformly to g in A, then g € Cpxn(A) X Cruxn(A4), £
is differentiable in A with respect to the ith coordinate, and O;f = g in A. Further-
more, recall that a function f on a Banach space (B, || - ||) is called a contraction if
there exists a nonnegative number r < 1 such that || f(z) — f(y)|| < r|lz — y| for all
points z and y in B, and that the Banach fixed-point theorem under these circum-
stances guarantees that f has a unique fixed point in B; i.e., there exists precisely
one point z € B such that f(z) = z. Finally, the Heaviside step function is denoted
by H, and I is the 2 x 2 identity matrix.

In the absence of axial symmetry, two directions of polarization of the incident
field must be considered in (1.1). It is appropriate to treat these two canonical prob-
lems together; therefore, a matrix-valued step response (the canonical solutions) u*
is introduced in Theorem 2.1 below. Geometrical quantities defined in Theorem 2.1 or
its proof are illustrated in Figure 1. The main theorem of this section is Theorem 2.1.

THEOREM 2.1 (weak canonical problem). Let the given functions a € Cqxa(IxXRY)
and b € Caxa(I), where I = (0,1) and Ry = (0,00), be decomposed into Cax2-blocks
according to

a(x,s):<a”(”’s) a”(x’s)>, b@):(b”(x) b”(f”)), (z,5) €Tx R,

agi(x,s) asn(z,s) bo1(z) bas(x)

Define trapezoids by Qapn = {(x,8) € IXR4:0 < s <z + 2n} and unions of line seg-
ments by LT = U {(x,£x +2k) € Ix Ry} and L = LY UL~. Furthermore, let 1,
ro, and ty be given real numbers. Then, for every integer n > 0, the initial-boundary
value problem defined in the product set I x Ry by

0y + 05)ut(z, s ut(z,s s ~fut(z, s ,
<E8x - 8S§U_Ex,sg> = b(2) (u_ Ex,s;) +/0 a(z,s =) (u_gx, s’;) ds’,
(2.2) { u*(z,0) =0,
tolH(s) = ut(+0,s) — rou™ (+0, s),
u (1-0,s) =rut(1-0,s)

has a unique solution u* € Cox2(Q2n \ L) in the weak sense in Qay, i.e., integrated
along the characteristics. Thus, (0, £0,)u™ are understood as derivatives with respect
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FIG. 1. Geometrical quantities defined in Theorem 2.1 and its proof. LT (L™) is the union
of the open line segments of the boundaries of the triangles Ty with positive (negative) slopes. The
trapezoids Qan and the triangles Ty, are related to each other through the relations Qo = Tp and
QQn \ L= T27L U T2n71 U Q2n72 \L

to the vectors (1,%1), respectively. The solution equals zero in Qq, and for every j €
{0,1,...,2n}, the restrictions of ut to T; can be extended continuously to Tj, where
the open triangle T is given by Qo if j =0, by {(z,8) e IxRyz+j—-1<s < —a+
J+1}if 7 is an odd integer, and by {(z,s) e IXRi:—zx+j<s<zxz+j}ifj>0is
even. Moreover, u* have jump discontinuities across L*, respectively. The jumps in
u® at the point (z,s) € LT, defined by [u*(z,s)]: = ut(z, s4+0) —ut(z,s—0), satisfy

the following ordinary differential equations, where B+: =bi1 and 87 : = bay:
d. . d . + +
(2.3) %[u (x, £z + 2k)] = Y (x, £z 4 2k) | = BT (x)[u™ (x, £z + 2k)]

for x € 1. At the boundary, the jumps are coupled to one another as

(2.4) [ut(+0,0)] = tol, [ut(+0,2k)] = rolu™ (+0,2k)], k>0,

' [u=(1-0,2k—1)] =ri[ut(1-0,2k—1)], k>0.
Finally, if [u™(40,2k)] # 0, then [u™(z,z + 2k)] is nonsingular for each x € 1, and,
if [u™(1—=0,2k —1)] # 0, then [u™ (z,—x + 2k)] is nonsingular for each x € 1. In
particular, ut and u™ £ u~, but not u~, are discontinuous across the line s = x.
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Note that if the matrices (b11(x))o<z<1 all commute, a closed form expression for
the jumps in ut can be obtained: [u™(z,z + 2k)] = exp ([ b11(2’)da’)[u™(+0, 2k)].
Analogously, if the matrices (baz(x))o<z<1 all commute, integration of (2.3) yields
[u™(z,—z + 2k)] = exp([; bao(2’)da’)[u=(1 — 0,2k — 1)]. Note also that if I is
replaced by 0 in Theorem 2.1, then the solution uZ to (2.2) is identically zero. This
follows from the uniqueness assertion, since u® and u* + u(jf both solve (2.2), if u*
the solution in Theorem 2.1. More generally, it follows that the unique weak solution
to (2.2) subject to the input Y c¢;H,, instead of H, where ¢; € R, s; € Ry, and
H,,(s) = H(s —s;), is given by 3" c;uL, where uf (z,s) = u*(z,s — s;).

The regularity of the canonical solutions u* is now discussed further. First, by
necessity, u are continuous on the broken lines LT, respectively, i.e., ut € Cox2(Qan\
L7F). Second, by the hyperbolic integro-differential equation (2.2), the derivatives
(0, £ 05)u™ are as regular as u®, i.e., (9, & 9s)ut € Caxa(Qan \ L). The existence of
the classical time derivatives

(2.5) gt = 0,ut € Caxa(Qan \ L)

—which is crucial for the Green functions formulation—is, however, not guaranteed
by Theorem 2.1. The requirement (2.5) can be met by increasing the regularity of the
memory function a(x, s). The second theorem of this section is as follows.

THEOREM 2.2. If, in the foregoing theorem, a is differentiable with respect to s
inT xRy, and if 9sa € Cyxa(I x Ry), then ut € Ci.5(Qan \ L), and the restrictions
of the partial derivatives of u* to T can be extended continuously to T for each j.

According to Theorem 2.2, the step response u® is differentiable in Qa, \ L
provided that the dispersion model is regular enough. Consequently, the contributions
g* to the impulse response are well defined.

The functions g* have finite jump discontinuities across L, and the jumps can
easily be computed in terms of the jumps in u*. For instance, if (z,s) € L™, then
[O,uT(z,5)] — [Osut(z,s)] = 0. This is due to the fact that u™ is continuous across
L~ and the directional derivative 9, — J is along L~. On the other hand, by (2.2),
one obtains [0, u™(z,s)] + [Osut (z,s)] = bia(z)[u™(z,s)] at (x,s) € L™, whence

(2.6) 8" (2,5)] = [0.u" (2,5)] = biz(2)[u (2,9)]/2, (2,5) €L
In particular, u™ is, in general, not differentiable on L. Analogously, one obtains
(2.7) g (z,5)] = —[0,u” (z,8)] = —bay(z)[u’ (x,5)]/2, (v,8) € L".

Consequently, u~ is, in general, not differentiable on L*. Furthermore, u® might not
be differentiable on L*, respectively, even if [u™] = 0. To see this, integrate (2.2)
along both sides of the characteristics, differentiate with respect to s, and subtract.
In the limit, these operations yield

(& (2 + 28)] = [+ (+0,2k)] + / by () g (o af + 28)] o’
+/om (a1 (a’, +0) = bua(x )b21(90')/2)[ (2!, 2" + 2k)] da,

g (x,—z+2k)]=[g"(1-0,2k—-1)] + b22 (2, —2' + 2k)] da’

H\

+/1$ (a22(2’, +0) + b21(2")b12(2") /2) [u™ (¢, =" + 2k)] da’,
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where (2.6) and (2.7) have also been employed. This equation can be solved. By a
well-known theorem in real analysis, [g¥ (-, £ - +2k)] € Ca,(I) and

(2.8) %[gi(a:, +x 4 2k)] = BF(2)[gF (z, 2 + 2k)] + o (2)[u® (z, £2 + 2k)],

where a+(x) = 311(.13, +O) — b12($)b21($)/2, a_(x) = 322(.13, +O) + bgl(l‘)blg(x)/Q,
B (x) = byi(z), and B8 (x) = boy(z) for z € I. If [ut(+0,2k)] # 0, one obtains

g7 (z, 2 + 2k)] = [u™ (z, 2 + 2k)][u™ (+0, 2k)] "} [g T (+0, 2k)]

(29) + [ut (z, 2 + 2k)] /OI [ut (2, 2" + 2k)] Lot () [ut (2, 2" 4 2k)] da’,

where the results in Theorem 2.1 have been used. If [u™ (1 — 0,2k — 1)] # 0, then
g™ (v, —x +2k)] = [u™ (z, —z + 2k)][u" (1 — 0,2k — 1)] " '[g™ (1 — 0,2k — 1)]

+ [u (x, —x + 2k)] /f[u (2, —2' + 2k)] Lo~ (/) [u= (2, —2' + 2k)] dz’.

At the boundary, the jumps in g* are related to each other as

[&" (+0.0)] = rolg™ (+0,0)] = — b1 (+0)[u” (+0,0)] = —%“bm(w»
(2_1()) Z [g_(l -0, 2k — 1)]]‘ =" Z [g+(1 =0, 2k — 1)]j’ k> 0,
J=+— J=+—
> g7 (+0.2k)];=r0 ) [g"(+0.2K)];, k>0,
J=+— j=+,—

where the subscript +(—) indicates that the jump across L™ (L) is referred to. The
jumps in the z-derivatives of ut across LT, respectively, are of less interest, but can
be computed by (2.3), once the jumps in the s-derivatives have been calculated.

From the above results, it is possible to make statements about the regularity of
the canonical solutions on L* in the partial mismatch cases (1) r; = 0 and (2) 1 # 0
and 7o = 0, which are of special interest. In both cases, u™ is discontinuous across
the line segment s = x, while u™ is continuous, but not differentiable, across this line
segment.

(1) u™ is continuous across the line segment s = 2 — = but not differentiable,
while u™ is differentiable across this line segment. Across the line segment s = 2 + z,
u' is continuous but, in general, not differentiable, while u™ is differentiable. If also
ro = 0, u™ are both differentiable on this line segment. On the rest of L, u* are both
differentiable.

(2) u™ is discontinuous across the line segment s = 2 — z, while u* is continuous
but not differentiable. Across the line segment s = 2 + z, u™ is continuous but not
differentiable, and u~ is differentiable. Across the line segment s = 4 — z, u™ is
continuous but not differentiable, and ut is differentiable. On the rest of L, u® are
both differentiable.

3. The full propagation problem. In this section, the results in the pre-
ceding section are extended to a more general input e’. Two theorems are given.
Theorem 3.1 shows that there exists a unique, well-behaved, weak solution to the
general propagation problem (1.1). The solution is given explicitly in terms of the
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canonical solutions u® and the excitation e’ at the front wall (Duhamel’s integral).
Theorem 3.2 shows that the notion of wave front speed is well defined also for wave
propagation in dispersive, complex media.

The first theorem of this section is as follows.

THEOREM 3.1. Let a, b, r1, 19, to, LT, Qan, and u* be as in Theorem 2.1. Let
the vector e:R, — May1(R) be continuously differentiable with bounded derivative
with exception for at most a finite number of points, 0 < 51 < --- < sp, where it is
undefined. Finally, let T = TtUT~, where T+ = Uy_, {(z,s) € I x Ry:(0,s;) + L*}.
Then, for every integer n > 0, the initial-boundary value problem (1.1), defined in
I x Ry, has a unique solution e* € Cax1(Qan \I’i) in the weak sense in Qayp, i.c.,
integrated along the characteristics. Thus, 0, + 0 are interpreted as derivatives with
respect to the vectors (1,+1), respectively. The solution is given explicitly by

et (z,s) = 0, S_Iui z,s —s')el(s')ds'.
(3.1) (,)8/0 ( Jel(s') d

If €'(s) = 0 when s < sq for some arbitrary nonnegative number sq, then et = 0 in
Qs,- If Osa exists in T x Ry and dsa € Cyxa(l x R, then e* € C3,1(Qan \ T).

Proof. The Cauchy convergence principle guarantees the existence of e’(s; £0): =
lime'(s), as s — s; £ 0, at each discontinuity point s;, since, e.g., €'(s’) — e'(s”) =
fss,: 4 ei(s)ds, s; < 8" < s' < sji1, has the limit 0, when s',8" \\ s;. Thus, e’ has
a finite jump discontinuity at the point s;, and the jump in e® at s; is defined as
[e'(s;)]: = e’(s; +0) — e’(s; — 0). A solution to the problem (1.1) is immediately
obtained by a straightforward extension of Duhamel’s principle (see [7]):

et (z,5) = ,é“i(x’s sl [ utes o) { et ay

for all (z,s) € Qa, \ T, where {£e'}(s) denotes the classical derivative of e’ at s.
Use of the fact that u®(z,s) = 0 when z > s yields the desired result (3.1). The
solution inherits the regularity of u* and e’. Consequently, e* € Cox1(Q2n \ I'F)
and et = 0 in Q,, if €’(s) = 0 when s < sy. Moreover, the solution (3.1) is the
only solution in the weak sense. For let (e*,e™) be the difference between two such
solutions. Clearly, the matrix-valued functions (ei 0), where the second column is
the zero vector, solve the canonical problem in Theorem 2.1, with I replaced by 0, and
since the solution of this problem is unique, (e™,e™) is zero. Finally, the last sentence
in the theorem holds according to Theorem 2.2 (any (first) derivative of Duhamel’s
integral (3.1) may act upon u®). The proof is finished. d

Recall that the vector fields e 4 e~ are essentially the electric and magnetic
fields. By Theorem 3.1, e™ + e~ € Cax1(Q2, \ I'). Furthermore, e™ + e~ = 0 in Qs,
if e(s) = 0 for all s < so. Consequently, the speed of the wave front is < 1; that is,
strict causality holds for wave propagation in dispersive, complex media.

Theorem 3.2 below asserts the existence of a well-defined wave front inside the
dispersive, complex medium, whenever the incident field has a well-defined front edge.
The proof uses the fact that this already has been established for the step response
ut; see Theorem 2.1. The main consequence of Theorem 3.2 is that the speed of the
wave front is precisely one, independent of the dispersion kernel a and the excitation
e'. The second theorem of this section is as follows.

THEOREM 3.2 (wave front speed). Let, in the preceding theorem, e have the
following additional property: there is a number § > 0 such that the restriction of €'
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to (0,6) is continuously differentiable and €*(s) # 0 for all 0 < s < &. Then, for each

€ (0,1), there is a number s, x < s < x + 6, such that et (x,s) # 0, where (e*,e™)
is the unique solution to the problem (1.1) given by (3.1). The same statement is true
for the vector fields et e~ .

Proof. Put €' = (e}, e}) and choose a real number &y, 0 < 8y < 8, such that both
el and e} do not change bign in the interval 0 <s< 8o. In particular, this implies that
at least one of the terms fo ei(s')ds fo eb(s') ds’ is nonzero. Assume, contrary to
the hypothesis of the theorem, that there isa pomt x € (0,1) such that e™ (m, s+zx)=0
for all s € (0,6). By Theorem 2.1 in the previous section, det(u™(z,z + 0)) # 0, and
since u™ (z,z + 0) is a continuous extension, there is a number §; > 0 such that

uf(z, 0+ s1) uly(z,z + s9)
2 det (13 2\
(3:2) (um v+ s5) ulwats))” "

for all sq,s2, s3, 4 such that 0 < sq, 82, 83,84 < 671. It is not a restriction to assume
that 8o < é1. Equation (3.1) implies that 0 = 9; fos ut(z,x+s—s)e(s)ds’, 0 < s <
b0, so that 0 = [Ju™(z,z+s—s')e’(s')ds’, 0 < s < §. The mean value theorem of
integral calculus asserts that there are positive real numbers 89, 63, 84, 65, such that
62, 63,64, b5 < 89 and

bo b0

ufy (v, 2 + 6o — 52)/0 et () ds' +ufy(z,x + 6o — 53)/0 eb(s')ds' =0,
bo b0

ugy (z, 2+ 6o — (54)/0 et (s) ds' +udy(z, 2+ 6o — (55)/0 eb(s')ds' = 0.

Equation (3.2) implies that this system of equations has the trivial solution only; i.e.,

foéo el (s')ds' =0 and féo 4(s")ds’ = 0, which contradicts the second sentence of the

proof. Thus, there exists a number s, ¢ < 8 <x+ 06, such that et (z,5) # 0.
Analogously, since det(ut(z,z + 0) £ u= (2,2 + 0)) # 0 for each z € I, and

ut(xz,z+40) £ u" (x,z+ 0) are continuous extensions, there is a number 65 > 0 such

that

ot

dot <u1"1(:c ,x+s1) up(z,x+s1) u

Sz, T+ s2) L uly(z, z + s2)
#0
ugy (v, 2+ 83) £ uyy (v, 0+ 83) u

ST, x4 s4) L ugy(z,x + 54)

[V

for all s1, 89, 83,54 such that 0 < s1, 89, 83,84 < d¢. An investigation similar to the
one above shows that for each 2 € (0,1), there exists a number s, z < s < x + 6, such
that e™(x,s) + e~ (x,s) # 0. The proof is finished. O

4. The Green functions. As mentioned in section 1, the results of this paper
have already been used by the scientific community in a number of papers on direct
and inverse scattering in dispersive, complex media [8, 9, 17, 19, 18]. In these arti-
cles, the Green functions equations are employed rather than the canonical functions
equations (2.2). For completeness, the Green functions equations are now derived
and proved to be uniquely solvable in the weak sense. Throughout the section, the
memory function a(z, s) is assumed to be as regular as stated in Theorem 2.2.

There are slight variations among different authors in definitions of the Green
functions g(z, s). In this article, the Green functions are defined as the classical time
derivatives of the canonical functions u*(x,s), that is, by (2.5). This definition is
closely related to the original one by Krueger and Ochs [20].
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The relationship between the split vector fields e* and the Green functions g*
and the excitation e’ is obtained by performing the differentiation in Duhamel’s in-
tegral (3.1). The final result is given by (1.2). Consequently, the Green functions are
the classical contributions to the impulse response.

The properties of the Green functions are given by the following theorem.

THEOREM 4.1. Leta, b, r1, 79, to, LT, L, Qon, Tk, and u* be as in Theorem 2.2.
Then, for each integer n > 0, the integro-differential equation defined in 1 x Ry by

(2 80) v (£3) [0 (1)

+§: aj(r,s—x—2m+2) ap(zr,s+z—2m)\ ([ut(z,z +2m — 2)]
~ asi(z,s —x—2m+2) ag(x,s+z—2m) u (z,—z+2m)| )’
g (2,0) =0,
g+(+07 §) = TOg_(+O7 5)7 g_(l -0, S) = T1g+(1 -0, 5)7

)
gt (z,s)] = bya(x)[u (z,s)]/2, (x,s) €L,
| = —boi(z)[ut(z,5)]/2, (z,s)eL®

has a unique solution, g+ € Cax2(Qa, \ L) = Cox2(U"  Ty), in the weak sense of
line integration along the characteristics within each triangle Ty, k < 2n. Thus, the
derivatives are interpreted as derivatives with respect to the vectors (1,+£1), respec-
tively. The solution is given by the Green functions defined by (2.5). The finite jumps
in gt = 0,ut across LE, respectively, are given by (2.8), and the jump conditions on
the boundary, by (2.10).

As an immediate consequence of (2.9) and (2.10), the “initial values” of the Green
functions become

g (2,21 0) = Qf (x) <—T0b21(+0)/2 +f " Qi) et (¢)Q () dx') ,

g (z,2+0) = —ba1 (2)Qq (2)/2,

where Qi (z) = ut(z,z +0) for z € I.

Observe that knowledge of the unique existence of a weak solution to the Green
functions equations in the sense of Theorem 4.1 is sufficient for numerical purposes |8,
9, 17, 19]. Notice also that the finite jumps in g% across LT, respectively, cannot be
obtained from the integro-differential equation (4.1).

Proof of Theorem 4.1. By Theorem 2.2, the Green functions (2.5) are well defined.
Line integration of the canonical equations (2.2) along the characteristics within any
triangle Ty, k < 2n, followed by differentiation with respect to s shows that the Green
functions constitute a weak solution to the problem (4.1). Thus, the existence of a
solution is proved. The jump conditions are direct consequences of (2.6) and (2.7).
Suppose that there is another weak solution to the problem (4.1). The difference
between these solutions then satisfies (2.2) with input 0 instead of I. By uniqueness
in Theorem 2.1, this difference is zero; consequently, there is a unique weak solution
within each triangle Tj. The proof is finished. 0

Finally, the regularity of the Green functions across L in the mismatch cases, (1)
r1 = 0 and (2) r; # 0 and ro = 0, is commented upon. It is easy to obtain the explicit
expressions for the jumps in g across L by combining various formulas in this paper;
therefore, a quantitative discussion is sufficient.
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The “initial values” show that g* are both discontinuous across the line segment
s = x even in the optically impedance-matched case.

(1) g~ is discontinuous across the line segment s = 2 — x, while g™ is continuous.
Across the line segment s = 2 + 2, g™ is discontinuous, and g~ is continuous. If also
ro = 0, g* are both continuous on this line segment. On the rest of L, g* are both
continuous.

(2) g* are both discontinuous across the line segment s = 2 — . Across the line
segment s = 2+, gT is discontinuous, but g~ is continuous. Across the line segment
s =4 —x, g is discontinuous, and gt is continuous. On the rest of L, g* are both
continuous.

5. A bi-isotropic example. In this section, electromagnetic pulse propagation
at normal incidence on the stratified, dispersive, bi-isotropic slab is discussed. It is
demonstrated that this problem reduces to the mixed initial-boundary value prob-
lem (1.1); consequently, all of the theorems and results presented in this article apply.

The bi-isotropic slab is located between the planes x3 = 0 and z3 = d. The media
outside the slab are assumed to be simple—homogeneous, isotropic, and without
dispersion. However, the medium to the right of the slab might differ from the medium
to the left. The slab is excited by a transient, transverse plane wave, which is incident
from the left. The incident electric field at the front wall, 3 = 0, which is denoted by
E' (t) at the time ¢, is supposed to be quiescent before a finite time 77, i.e., Ez(t) =0
for all times t < T;. Moreover, it is assumed to be continuously differentiable with
bounded derivative except for at most a finite number of points, t; < --- < t,, where
it is undefined. The set of all incident electric fields with these properties forms a
linear space over the real numbers.

The constitutive relations of the bi-isotropic medium at the time ¢ and at the
point r = (z1,T2,73) = T1X] + T2X2 + w3X3 are defined by the following relation
between the electric field E and the magnetic field H on one hand, and the electric
and magnetic flux densities, D and B, respectively, on the other:

(5.1) {D(’r, t) = e(w3) (B(r,t) + (xee * E)(r,t)) + c(x3) ™" (Xem * H)(r, 1),
' B(r,t) = c(23) ™" (Xme * E)(r,t) + p(xs) (H(r, 1) + (tmm * H)(r, 1)),

where, e.g., (Xee * E)(r,t) = fioo Xee(zs,t — t')E(r,t')dt’. Tt is understood that
the slab is initially quiescent, i.e., there is a time 7', such that E(r,t) = 0 for all
t < T, and similarly for the magnetic field H(r,-). Therefore, fjoo can be sub-

stituted for f; in the convolutions above. The positive functions e(x3) and u(x3)
are the nondispersive parts of the permittivity and permeability, respectively, and
c(x3): = (u(xs)e(xs)) /2. All of the integral kernels Xee(23,1), Xem (3, 1), Xme(3,1),
and Xmm(73,t) have the same unit, s71. These functions are referred to as the sus-
ceptibility kernels of the medium. Clearly, the kernels x.. and X, model the or-
dinary dispersive effects, while the chirality, (Xem — Xme)/2, and the nonreciprocity,
(Xem + Xme)/2, are the characteristic properties of the bi-isotropic medium. The
medium is reciprocal if Xem + Xme = 0; see [13].

The medium is expected to be stratified with respect to depth, i.e., e(z3) and u(x3)
depend on the spatial variable x3 only, whereas the susceptibility kernels depend on
x3 and the time ¢ only. The functions € and p are continuously differentiable with
bounded derivatives in the interval (0, d), and the susceptibility kernels and their first
and second time derivatives are assumed to be bounded and continuous functions in
(23,t) €(0,d) % (0,00). The susceptibility kernels are equal to zero when t < 0; see [13].
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The electromagnetic field satisfies the source-free Maxwell equations:
(5.2) VxE=-0B, VxH=0D, V-D=0, V-B=0.

Transverse solutions, independent of the transverse coordinates (x1,xs), are sought.
In other words, the solution to the propagation problem can be written in the form
E(r,t) = x1F1(x3,t) + X2 F2(x3,t) throughout space. Observe that it is not nec-
essary to assume that the 3-components of the vector fields vanish inside the bi-
isotropic medium; the independence of the spatial variables (x1,x2) and the Maxwell
equations (5.2) imply that D3 and Bz are both constant, and by the continuity at
the walls, they are both equal to zero throughout space. The constitutive relations
and the associative law for causal convolutions then imply that both Es(xs,-) and
Hj(x3,-) satisfy the equation f+ (Xee + Xmm + Xee * Xmm — Xem * Xme) * f = 0, which
is a linear Volterra integral equation of the second kind, and therefore has the unique
continuous solution f = 0; see [15]. One arrives at the same conclusion if f has the
regularity described in the third paragraph of this section.
With the transverse ansatz above, the Maxwell equations (5.2) can be written

(5.3) 05E —0,(3JB), O(JH)=0,D, J— (‘1) _01> ,

where a compact matrix notation, pertinent to the analysis of the propagation of
electromagnetic waves in the bi-isotropic slab, has been introduced. Put X, .: = Xeel,
Xme: = Xmeds Xomm: = XmmlL, Xem: = Xemd. By the constitutive relations (5.1), the
flux densities B and D in (5.3) are eliminated, and a hyperbolic integro-differential
equation in the electric and magnetic fields E and H is obtained:

0. E 7 (o0 E
S\nIH)  p\0 1)\nIH
—1 Xm,e"< I+Xmm* E
te 6k((Ieree* ~Xem* )(nJH)>’

where 1: = /p/€ is a locally defined optical wave impedance. Next, the optical wave
splitting,

o (E)-rlh) il (b))

is adopted. The wave splitting technique is a well-established method for solving
direct and inverse scattering problems. For a recent survey of the technique, the
reader is referred to [6]. Recent contributions to the solution of direct and inverse
scattering problems in dispersive, complex media can be found in [8, 9, 19, 18].

The form of the matrix P~! shows that the electric field is the sum of the split
vector fields, ET, and that the magnetic field is proportional to the difference (with a
matrix as proportionality constant). Outside the slab, E7 represent the general right-
going and left-going waves. More precisely, E* (z3,-) are the incident and reflected
electric fields at position x3, respectively, if 25 < 0. Analogously, E~ (z3,-) = 0, and
E+($3, -) is the transmitted electric field at position z3, if x3 > d.

(5.4)
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The wave splitting and the continuity of (the tangential components of) the mag-
netic and electric fields £ and H at the boundary yield

v 2n(=0) _ n(+0) —n(-0)
B0 =100 o O G o @
B = — 240 ey gy

~ n(d+0) +n(d—0)

where E"(t) is the electric field of the reflected transverse plane wave at the front wall
and E'(t) is the electric field of the transmitted transverse plane wave at the back
wall, both evaluated at time ¢. Thus, once the functions E~(+0,-) and E*(d —0,-)
are known, the direct scattering problem is solved. In the second formula, the fact
that there is no incident field from the right has been used. Another consequence of
the wave splitting and the boundary conditions is

(5.6) E~(d=0t)=nE"(d-0.1),
: toE'(t) = ET(+0,t) — roE~ (+0,1),
where
- n(d+0) —n(d—0) Tozw7 and to+1ro=1.

T 9(d+0) +n(d—0) 1(—0) + n(+0)

The hyperbolic integro-differential equation for the split vector fields E¥ is easily
obtained from the wave equation (5.4) and the wave splitting (5.5). The result,

(i mane ) =3 (G ) (5) o (e (2)

X: = <Xee — Xmm — Xem + Xme ~Xee + Xmm + Xem + Xme)
Xee = Xmm + Xem T Xme Xee T Xmm — Xem + Xme ’

(5.7)

is clearly equivalent to the Maxwell equations for the bi-isotropic medium. According
to the second and third paragraphs of this section, there is a time Ty: = min(7y,T)
such that

58) {El(t) =0, t<Tp,

Ei(xi%t) = 07 (x3at) € <Ovd) X (*OoaTO]'
Introduce travel-time coordinates, (z, s), by
t—1T; 1 3 daxt 4 dat
S(t) = 707 l'(x?,) = / /3 ’ tslab = / /3 )
Lsiab tstab Jo C(x?,) 0 C(‘rs)

and put e*(z, s): = E*(z3(x),t(s)) and e’(s): = E'(t(s)). By these substitutions of
variables, (5.7), (5.6), and (5.8) are transformed into the nonlocal hyperbolic initial-
boundary value problem (1.1), where the functions a and b are defined by

ts a
;basx (23(2), tstans) » (z,5) €I x Ry = (0,1) x (0, 00),

b@=%%mmm+dm7W“”C 4) vel

a(z,s) =

dx 70 I I
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and 7 is the wave impedance in vacuum. From the third paragraph of this section, it is
clear that a € Cyx4(IxRy) is differentiable with respect to time s, 9;a € Caxa(IXR,),
and b € Cyx4(l), so that all theorems in the previous sections are applicable to this
wave propagation problem. Equation (5.7) reveals that the speed of the wave front is
precisely ¢(x3) at the point x3, as expected.

As a final remark, note that the solution to (1.1) in this bi-isotropic case is axially
symmetric; i.e., if e* is the solution corresponding to the input e’, and R is an
arbitrary rotation matrix in the z1-zo-plane, then Re® is the solution corresponding
to the input Re’. This is not surprising since the constitutive relations for the bi-
isotropic medium are isotropic. More generally, this happens for media such that
Ra;;R™! = a;; and Rb;;R™! = b;;, 1 < 4,5 < 2, i.e., for media such that all the
submatrices a;; and b;; of a and b, respectively, defined by the decompositions in
Theorem 2.1, commute with every rotation matrix R.

Appendix. Proofs of Theorem 2.1 and Theorem 2.2.

Proof of Theorem 2.1. A necessary condition for the existence of a weak solution
ut € Cyx2(Qan \ L) in Qa, to (2.2) is that u™ and u™ can be extended to continuous
functions in Qa, \ L™ and Qa, \ L™, respectively. This fact is used below in the
construction of the solution. Choose T' > 0 such that Tny = 2 for some even integer
nr, and such that

(A1) b(T): = 2(1 + [r1| + |ro)(IBI|IT + [[al|T?) < 1/2,

where the different norms || - || are defined in (2.1). Assume that the theorem holds in
the set U?;&Tj for some k, where 0 < k < 2n, and prove that it holds also in U;?:OT Iz
by using the Banach fixed-point theorem ny (ng/2) times if k # 0 (k = 0). By (A.1),
it will be clear that the method works for all k, including & = 0, and the theorem
follows from the induction axiom. Consider the continuous map f = (f*,f7) on the
Banach space Coxa(Tk) X Caxa(Tx) defined by

(A.2)
(fF(u™,u7))(z,5) = (BT (uF,u7))(z,s)

T
—|—/ bll(sc')u+(x’7s—x—|—a:’)da:’+/ bia(z)u=(2',s — x + 2') dx’
xT

+ z+

x s—z+a’
+ / / aji(z,s —x+12' —s")ut(2/,s")ds" | da’
zt —00

xT s—w+w’
+/ / ap(r,s—o+2 —s")Yu (2,s")ds" | da’,
zt —o0

(f~(u*,u7))(z,s) = (B~ (u’,u7))(z,s)

T xT
+/ bgl(m’)u+(x’7s—x’—i—x)dac’—i—/ bos(z')u (z',s — 2’ + x) da’

x S—$I+LL‘
+ / / as;(z/,s — 2’ +x —s")ut(2/,s")ds" | da’
T — 00

x s—w'+;r
+ / / ax(r,s—a' +x—s"Yu (a/,s")ds" | da’,
T~ — 00

where it is agreed that u™ (z, s) for points (z, s) € U?;&Tj attain the values computed
in the previous steps. This map is induced by line-integration along the characteristics
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of (2.2), and the points (z*, s*), where s* < s, are the points where the straight lines
emanating from (z, s) with slopes 41, respectively, cut the boundary of Ty, 9T}, and
B*(ut,u™) are the corresponding initial-boundary values of f*(u™,u™) at these
points; see Figure 1. For a fixed element (u™,u™) in the domain of f, these quantities
are functions defined on Tj. If k is odd, they are given by

8
+
/\
v(‘Ib
+
8
»

):(0’371')7
y=2"Yor+s—k+1l,x+s+k—1)€dTNIT 1,
B~ (u ,u ) z,s):=u (z7,s —0),

(
(™
A.
(A.3) ( (
( Nz, s): =tol +ro(f~ (u™,u™))(zt +0,57),

uy)
+
C
E

(zT y=2"Yk—s+xk+s—x)€ T NIT)_1,
(x~ )=(l,s+x—-1),

(B+(u u7))(z,8): =ut (2t sT ~0),

(B~ (ut,u))(z,s): =r (fH(ut,u")) (™ —0,57).

H
/\
ufn
+
&
»
~— ~—

(A4)

It is obvious that every element (f*(u™,u™),f~(u™,u™)) in the range of f can be
extended to a function in Caxa(T})) X Cax2(Tk) in a natural way, and by the fourth
formula in (A.3) and (A.4), it is clear that this extension satisfies the boundary
values in (2.2). Furthermore, by the third condition in (A.4) and (A.3), it follows
that f¥(ut,u™) are restrictions to T} of continuous extensions of u* from Tj_;
to Tp_1 U T}, respectively; see the first sentence of the proof. Differentiation of
f*(ut,u™) with respect to the vectors (1,=+1), respectively, yields

(6 20t e ) =200 (o)) + [ e =0 (26 ) o

— 00

Note that the derivatives of the boundary-value functions B*(u*,u™) are zero. The
theorem is essentially proved, if it can be shown that the map f has a unique fixed
point (ut,u™) € Coxa(Tk) x Cax2(T)). Unfortunately, this cannot be accomplished
in one step only; therefore, the following subdivision of T} is introduced (see also
Figure 1): Py =T N(Ix (k—14+(j—1)T,k—1+4T)),j€{L,... ,nr}.

Since b(T) < 27!, the Banach fixed-point theorem implies that f has a unique
fixed point in CQXQ(Pk,l) XCQXQ(P]‘;’I) if k # 0 and in CQ><2(PO’nT/2+1) XCQ><2(P07nT/2+1)
if £ = 0. In the latter case, the solution is obviously zero. That f actually is a
contraction follows easily from (A.1)—(A.4):

[f(ut,u™) = £(vT,v7)|| < b(T) |[(uT,u™) = (v,v7)],

for all (u*,u*), (V+,V7) S C2><2(P]€7j) X ng2(Pk,j).

In the next step, the procedure in the previous paragraph is repeated to show that
f has a unique fixed point in the Banach space Cax2(Pk,2) X Cax2(Py2) if k£ # 0 (and
in Cox2(Ponyp/242) X Cax2(Pongj242) if k= 0), at which the restriction of (u*,u~)
to Pr1 (Ponp/2+1) in (A.2) is the unique solution obtained in the first step. Clearly,
u* become continuous on the part of the horizontal line s = k — 1+ 7 (s = T) that
is contained in Ty (Tp). It takes ny — 2 (nr/2 — 2) other steps to show that the map
f has a unique fixed point (u*,u™) € Coxa(Tk) X Cax2(Tk), which is equal to zero if
kE=0.
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It remains to verify the statements concerning the jump-discontinuities. The
solution to (2.2) is zero in @, and by (A.3), u™ is continuous on the line s = z.
Equation (A.2) then gives that u™(z,z + 0) = toI + [ bii(a’) u™(a’,2’ + 0) da’ for
all x € I, which is the required result for the function z — [u™(z,z)]. Finally, if
QT (z): =ut(z,z+0), x €[, then det QT (0) # 0, and basic matrix theory yields

et QF () = det (Qh(r) @a(a)) + det (Qu(x)  @4(a))

= det (b11(2)Q1(z) Qy(x)) +det (Qy(z) b11(2)Qy(x)) = tr(b11(x)) det Q* (x)

for all x € I, where @, and Q, are the column vectors of Q. Thus, det QT (x) =
exp ( [y tr(bi1(2’)) dz’) det QT (0) # 0, x € I, which proves that Q*(z) is nonsingular
for each x € I. The other results follow analogously. The proof is finished. 0

Proof of Theorem 2.2. Assume that for some k, 0 < k < 2n, the theorem holds in
Uf;éTj and prove the validity of the theorem in U;?:OTJ'. The theorem then follows by
induction in k, since no special consideration has to be made in the first step or depend-
ing on whether k is odd or even. The map f in the proof of Theorem 2.1 has a unique
fixed point (ut,u™) € Coxa(Tk) xCaxa(Tk). It must be shown that u* actually belong
to C21X2(Tk). Since (0, + 05)u® € Coxa2(Tk) by Theorem 2.1, it is sufficient to show
that 0,u® exist and belong to Cox2(Ty). To this end, define recursively a sequence
(0, )30 0 Cha(Ph) X Chao(Pea) by (whyu5) = (5 (), ;). £~ (uf )
which is possible since da exists in I x R and Osa € Cyxa(I x Ry). The proof of
the Banach fixed-point theorem—this is actually the method of successive approxi-
mations, where the first element in the sequence can be chosen arbitrarily—implies
that this sequence converges uniformly to (u™,u™) in Py 1, since

(A5) H(u;_7uj ) ( H < b H j 17u] 1) (u;tl’ui_fl)H
for all 4,57 > 0 by (A.1)—(A.4). Similarly, these equations yield

195 (uf" s uy7) = 05 (uif, u) | < BT (|05 (wj_y, w52y) = Ds(wily uisy)|

(A.6) N .
+a(T) H(uj—l’uj—l) —(ui"q,u; ) H Vi, j > 0,

where a(T') is independent of k and (u u; )72, Equations (A.5) and (A.6) imply
that

o ;) = 0utuf )|

(H({?S(ufvuf) - 85(“3?“6)” + QQ(T) H(uf,uf) - (1137116)H)

if 0 <4 < j;ie., (Os (u;',u )52 is a Cauchy sequence in Caxa(Py 1) X Caxa(Pg1)-

Since this function space is complete, the sequence (9 (uj,uj )52 converges uni-
formly in Py to a bounded and continuous function (v, v™). By the third para-
graph of section 2, it follows that d5(u™,u™) exists and equals (v, v™). Thus, f has
a unique fixed point in C3,o(Pr.1) X Cayo(Pr1)-

In the next step, the procedure in the previous paragraph is repeated to show
that f has a unique fixed point in C3,5(Py2) X C3,5(Px2). In this second step, we let
the restriction of (u™,u™) to Py be the unique solution obtained in the first step.
Since dsu® exist and are continuous on both sides of the part of the horizontal line

s =k — 1+ T that is contained in T}, and since, by construction, (0, =+ 0Os )u and
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d,uT exist and are continuous on this part of the line, d;u® exist and are continuous
here also. Just as in the proof of Theorem 2.1, it takes np — 2 similar steps to show
that there is a unique Ci., x C3,,-solution (ut,u~) to (2.2) in U;?:OT]-. From the
explicit form of the derivatives of the solution, it is clear that these functions can be
extended to bounded and continuous functions in 7). The proof is finished. 0
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