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face-dwelling marine calcifying organism:
the coccolithophores (see the first figure),
perhaps the largest contributors to global
marine calcium carbonate precipitation. In
laboratory experiments, Zondervan et al.
have shown that the ratio of calcium car-
bonate to organic matter decreased with
increasing CO2 (3). This is logical: In-
creased CO2 is accompanied by decreased
CO3

2−. But the implications of this obser-
vation are potentially very important, be-
cause of the second component of the bio-
logical carbon pump in the oceans.

As discussed earlier, the ocean’s organ-
ic carbon pump provides a sink for CO2.
The calcium carbonate pump transports
inorganic carbon from the surface ocean to
the deep-sea floor, but calcification uses
carbon dissolved in seawater as HCO3

−

ions. Two moles of HCO3
− react with 1

mole of Ca2+ to precipitate 1 mole of cal-
cium carbonate, releasing the extra mole
of carbon as CO2. Thus, biogenic calcifi-
cation is a potential source of CO2 to the
atmosphere, rather than a carbon sink.

This seemingly counterintuitive obser-
vation is important for marine calcifica-
tion. We imagine that the carbonate accu-

mulations that drape the deep-sea floor or
form the White Cliffs of Dover provide a
sink for CO2, which they do—but only on
long time scales. The HCO3

− used in calci-
fication is indeed originally from the at-
mosphere. But it is delivered to the ocean
from the weathering of continents and is
buried as carbonates on long time scales,
relative to the surface-ocean process that
exchanges CO2 with the atmospheric
reservoir on time scales shorter than 1000
years.

The most interesting part of the work
by Zondervan et al. is that the decrease in
calcif ication associated with increased
CO2 exerts a negative feedback on rising
atmospheric CO2. Higher CO2 leads to less
calcification and hence less CO2 release,
counteracting the decreased buffer capaci-
ty of the anthropogenic carbon world.
However, this should not lead to compla-
cency. Decreased calcification might have
major effects on ecosystems [calculations
(9) and biosphere experiments (10) sug-
gest that corals will be affected]. It may in-
hibit sinking of organic carbon from sur-
face waters and lower the ocean’s ability to
take up CO2. 

To counteract the rising levels of atmo-
spheric CO2, the strategy of carbon seques-
tration, or carbon fixation, is receiving in-
creased attention. The goal is to capture the
CO2 produced by fossil fuel burning and
put it out of harm’s way. Some are looking
at ways to help the oceans sequester more
carbon. It is clear that we have a lot to
learn about how this process works, even
without human enhancement. Certainly,
the influence of manmade or glacial-inter-
glacial shifts in atmospheric CO2 on ocean-
ic carbon sequestration remains unclear.
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S C I E N C E ’ S C O M P A S S

S
pringtime depletion of the ozone lay-
er above the Antarctic was first ob-
served by ground-based measure-

ments from Halley Bay from 1979 to 1984
(1). Ever since, there has been great con-
cern about ozone depletion and its conse-
quences for the biosphere, because lower
ozone concentrations lead to increased ex-
posure to harmful solar ultraviolet radia-
tion from 280 to 315 nm (called UV-B).

Today’s ozone depletion and increased
UV-B levels are mainly caused by human-
made chemicals, especially chlorofluoro-
carbons (CFCs). But both ozone and UV-B
also vary naturally. Knowledge of past
stratospheric ozone concentrations and
surface UV-B radiation is rudimentary, but

recent research is beginning to shed light
on how they have varied on time scales of
tens to hundreds of years.

At wavelengths shorter than 242 nm, UV

light dissociates molecular oxygen to form
oxygen atoms, which combine with addi-
tional O2 to produce ozone. The ozone ab-
sorbs solar radiation at UV wavelengths of
200 to 340 nm and in the visible spectrum.
This absorption of UV light by ozone is the
primary energy input to the stratosphere.

Variations in ozone concentration modu-
late the stratospheric temperature, leading
to changes in atmospheric circulation that

may propagate to Earth’s
surface and influence at-
mospheric circulation pat-
terns worldwide (2–4).
Ozone changes directly al-
ter UV-B received at the
surface. However, relating
surface UV-B levels to the
overhead ozone concen-
tration has proven difficult
because ozone variability
has multiple causes, the
ground-based database is
generally poor, and changes
in cloud cover and other
climate parameters can
further alter the surface
UV-B.

Systematic instrumen-
tal measurements of
stratospheric ozone over
the Antarctic started only
in 1957. Solar UV-B mea-
surements began even lat-
er, and systematic ground-
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Solar activity, stratospheric ozone, and surface UV-B. At a solar

high, solar UV-C is enhanced, leading to a thicker ozone layer and re-

duced surface UV-B fluxes. Surface UV-B is thus anticorrelated with

changes in solar activity (see the second figure). The changing thick-

ness of the stratospheric ozone layer may amplify the changes in solar

activity (2) because more ozone means extra absorption of heat, with

effects on the stratospheric and atmospheric circulation patterns.
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based and satellite measurements of total
ozone and surface UV-B only exist for the
last two decades. Unique measurements of
total ozone above Arosa, Switzerland, from
1900 to 2000 indicate a trend of decreasing
stratospheric ozone starting between 1975
and 1980, but the strong fluctuations do not
allow detection of other patterns in the
ozone concentrations (5).

These data sets reveal relations among
solar activity, atmospheric ozone concen-
tration, and UV-C radiation (10 to 280
nm). When solar activity is high, so too are
solar UV-C radiation and ozone concentra-
tions, which reduce the UV-B radiation
that reaches Earth’s surface (see the first
figure). Irradiance in the UV-C band in-
creased by 2% during recent 11-year solar
cycles (6). The corresponding increase in
solar (not surface) UV-B irradiation was
only 0.4% (7, 8). 

Measurements in the tropics suggest a
change of ~6% of the total ozone column
during the 11-year solar cycle from solar
low to solar high (9, 10), whereas esti-
mates from satellite data indicate a column
variation of ~2 to 3% (11, 12). Continuous
monitoring of spectral UV irradiances at
Earth’s surface has begun only in the last
decade. The collected data are still too
noisy to confirm the 11-year variations,
but they do show the predicted anticorrela-
tion of UV-B irradiance with ozone col-
umn amounts (13, 14).

Historical reconstructions of solar spec-
tral irradiance based on analyses of solar
cycles (7) suggest that long-term UV-C
variations exceed the 11-year solar cycle
amplitudes by a factor of ~2 (see the sec-
ond f igure). During the 17th-century
Maunder Minimum (1645 to 1715), UV-C
irradiance may have been 3 to 4% lower
than today (7). Reduced solar UV-C radia-
tion during the Maunder Minimum epoch
of low solar activity suggests that ozone
concentrations may also have been lower
and surface UV-B radiation higher. 

Since the Maunder Minimum, ozone
thickness may thus have increased by dou-
ble the amount of solar cycle variations.
On the basis of the ~2 to 6% changes of
total ozone and a radiation amplification
factor (indicating the increase of radiation
damage with 1% ozone depletion) of 2.1
for DNA damage (15), the dose of surface
UV-B should be ~4 to 13% lower at maxi-
ma of the 11-year solar cycle (16), and
surface UV-B should have changed by ~9
to 27% from the Maunder Minimum to to-
day. These changes are comparable to and
may even exceed those caused by CFCs.

Biological proxies—indirect records of
past changes of UV-B radiation (and hence
stratospheric ozone)—can be used to re-
construct historical levels of UV-B on
Earth. Recent research (17, 18) shows that
plants exposed to elevated UV-B radiation
levels, simulating 10 to 50% ozone deple-
tion, generally develop UV-B–protective
pigments. These UV-B–absorbing com-
pounds often consist of simple phenolic
acids (such as ferulic and coumaric acid),
or more complex (poly)phenolic com-
pounds such as flavonoids. They are chem-
ically relatively stable and are preserved
well under special environmental condi-
tions (frost, waterlogging, high acidity).
Soil cores and lake sediments in the Arctic
and Antarctic therefore represent unique
archives of past UV climates.

Evidence for increased UV-B radiation
during an epoch of reduced solar activity
comes from a recent analysis of UV-B–ab-
sorbing pigments (scytonemin) of cyanobac-
teria in shallow Antarctic lake sediments (14,
19). Similarly, flavonoid levels of leaves of
the terrestrial moss Bryum argenteum col-
lected between 1957 and 1989 from the Ross
Sea area of continental Antarctica (20) show
that when Antarctic stratospheric ozone con-
centrations decreased from 1971 to 1980,
both UV-B absorbance and relative flavonoid
levels increased. 

UV-B–induced aromatic groups such as
(soluble) flavonoids in pollen and coumar-
ic acid in sporopollenin are particularly
promising candidates for reconstructing
historic solar UV-B levels. The UV-B–ab-
sorbing compound p-coumaric acid was
found to be a monomeric building block of
the highly bioresistant sporopollenin (21),
the part of pollen grains that is particularly
well preserved in the fossil record.

Reconstructions of past UV-B radiation
should be based on the dose-response rela-
tion between solar UV-B and the content of
UV-B–absorbing compounds in plants. The
p-coumaric acid content of pollen grains of
plants exposed to UV-B levels simulating
15% and 30% ozone depletion has been
found to increase substantially (17, 18).

Highly sensitive pyrolysis gas chro-

matography–mass spectrometry allows the
quantitative analysis of p-coumaric acid
content of small numbers of pollen grains
or spores (17, 18). This offers the possibil-
ity of tracking changes in surface UV-B
during 11-year cycles as well as periods
characterized by a longer term decline of
solar activity. Frozen moss peat banks in
the Antarctic, radiocarbon-dated to be
3000 to 5000 years old, are a particularly
well-preserved archive. Dry-stored and
dated pollen grains from old herbarium
specimens may also be analyzed for their
flavonoid and coumaric acid content.

The use of biological proxies to recon-
struct UV-B on Earth and infer stratospher-
ic ozone variations may help to test and
validate relations among solar irradiance,
ozone, and climate change during past cen-
turies. The anticorrelation between surface
UV-B and solar activity may amplify or
mitigate the human impact on climate
change. For example, an increase of total
ozone caused by increased solar UV-C may
counteract CFC-related ozone depletion,
whereas a decrease of total ozone caused
by lower solar UV-C may exacerbate it.
Better knowledge of long-term solar radia-
tion–ozone relations may help to elucidate
the resulting climate change processes (2).
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