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Computer-based control and supervision strategies for complex technical processes, like those

in nuclear plants, make to an increasing degree use of mathematical models of the respective process.

Depending on the ;pccsﬁc application, the approach to modelling the process yoay be quite different.

Therefore, when modelling a nuclear reactor plant, the purpose of the model must be stated clearly

It is very difficult to use a detailed differential equation model, based on only physical assumptim,m
for controlling purposes. Rather a much less detailed model might give results which ave accurate

ion1 a suitable controller,

3

Ins the case of the Halden reactor there are different needs of models. They should be used partly

<
for inad follow control laws, for adaptive control or flux control, partly for steady state stochastic
control. In the former case a linear model with time variable coefficients is relevant, in the latter case

a linear stochastic mdd with constant coefficients could be suitable.

Madels can be established with the help of physical principles, by evaluating measured input and
output signals or by a combination of the two ways. The latter method is of particular importance
in the case of processes with varying characteristics, e.g. during large transients of individual variables.
Here, a basic structure of the process deseription would be set up from physical considerations or from

ysis of measured data, while the current changes of the model parameters had to be

l_.r

some preceding anc
tracked by on-line identification routines. In view of the increasing importance of suitable techniques
for pf::ocess identification from measured data - both for flexible on-line modelling and in order to save
extensive physics calculations - an attempt has been made in this paper to present an outline of possible
applications of on-line and off-line identification methods and some associated problems related to the

acqu' ition of process data. The presented techniques refer to applications in connection with the

search programme on computer control at the Halden Project.

In the first part of the paper an on-line identification algorithm is presented. The model is derived

go

recu vdy from input - output measurement data during normal operation. A recursive algorithm
based on generalized least square method was used. This method is able to track parameters of time

varying processes. Multivariable processes were investigated on simulations and on real pldnt data

In the sccond p } art a Maximum Likelihood technique is applied to {it input - output experimental
data to a linear stochastic model with constant parameters.

The third pert of the paper considers design of digital filters used for prefiltering of data. These

i

datz were then used to prepare the data f(,:-" t on-line identification calculations.
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performed, to obtain data at different operating conditions. The process parameters resulting from

these data by the on-line estimator are comparable with those generated by off-line calculations.

2. IDENTIFICATION OF THE HBWR-DYNAMICS
- 2.1 On-Line Identification
2.1.1 Choice of the Process Description

The process is assumed to be given in its functional form as a mathematical model. The paramcters
of this model have to be estimated. An arrangement can always be found for the form of the model

to conform with the general relaticnship,

/

/Y1 51 ;_%1‘2 : /1]
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where *
EiT = [x{1 %2 - Xjnl 5 35T = [a:7 a;0 - a; ]
i1 42 in
The aj; are ‘the unknown parameters and the xjj are a set of functions that can be derived from
the normal operating data available from the process. y; are observations contaminated by noise. '
The measured process input - output data are passed through digital filters, before entering the

On-Line Estimator.

Two among the better known dynamical models were chosen:

Difference equation model

Differential equation model

Both models are “structural models”. The estimated process parameters will therefore be affected
by noise-induced bias. This can be corrected by different means. If the statistical properties of the
noise are available, some suitable zstimation methods, e.g. the Instrumented Variable method could

be chosen (5). If these properties are not known, then some prefiltering can help to reduce the

noise/signal ratio of the measurements.
- Difference Equation Form

The general mathematical description for a multivariable process in the discrete form can be

written in the vector-matrix form containing a set of first order difference equations:

{k-1) + ng (Tg) w (k’n\\

!

H v
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| v = o (T v e+ gl (T) (k1) 12/
! \

Novm (B A bt (T v () + gt (T u (1) /

as this shall conform with /1/, one finds the following identities

* In this paper, vectors are denoted by underlining the respective variable,




v (k)

X = [vy (k1), Vo (k1) - v (K1), Uy (k-1),0 g (k-1) Uy (k-1)]
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- Differential Equation Form

The vector-matrix form containing a set of first order differential equations reads:

ey S Tox 0rgTEe
x;i (t) |= :/ Ty O+t ®u (1 3
AN ;n(t) \ me (t) 3 (1) + QmT () u (t)//

going also in this case confirm with /1/, the following identities result:

Y =V

§1T = {\71 (t), \72('[), --- Vm(t)’ ul(t), le(t) - um(t) }
T _ ,

g~ = [bjy bjg bjg - bims dip djg - djpy]

- Relation between Difference and Differential Form

Sometimes it is more suitable to have a difference model, sometimes a differential model. On

the other hand, it is convenient to have available the matrices ®,.G and B, D. For the linear,

time invariant case with a constant sampling interval exists a birelation kEstween these two

pairs of matrices. .

B = 1/T;lnd
D = (@-1)!BG /4/
where

— . T 5T = ; T
B b—l 5 D= 'él ! s P % vy s G = o1 }
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The matrix B can be calculated using series expansions:

T M. G F e ;:(3 - *4
- =R /s
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r, 2T, 387y AT
with @% = @ . I, /b] converges surely, when the clements of the matrix (¢ - 1) are in the range

-1 to +1, except the clements are 2ll equal.




The other way around reads:

BT.
® = ¢ °

. 16/

Bl (®-1)D
The calculation is done by series expansion:
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2.1.2 A Fecwsive On-Line Identification Method for Multivariable Processes

Since the methods treated in this work shall be applicable to some practical cases, they have to
be as simaple as possible. The best known technique to find the parameters of an unknown process
is the least square technique. In this work the so-called equation error approach” will be investigated
(vef. 6, 7). This approach is simple and general and entails modelling the dynamics of the process by
equation /1/. Each row in this vector-matriz-cquation is treated by a scparate estimation procedure
running concurrently. An equation error can be defined:

! ' )
e = }_{_iT;a—i - Y /7/

?l\. is the estimate of the i’th parameter row vector a:.
= XY
SLibeitUtiDg the i’th clemen‘[ f],"Ol’il /1/ in /;/ giVCSZ
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The process can be identified by choosing these estimates a;; which minimize the criterion

1
function:

k "
(o) = 2 [xiyd;- vl /o
I=1
The problem is a linear least-squares fitting problem.
This equation error approach can be applied whenever the mathematical models of the process
can be manipulated into equation [1/. Y
The minimisation of /9/ requires that all partial devivatives of (Ig) with respect to each of the

parameter cstimates should be set simultancously to zevo:

k k :
P 2N - I R . -
Vaj (Ig); = (E*l X X ) 25 -El %151 =0 /10/

where _T

i+ Is the transpose of x; and k is the sampling instance.

The solution is:

a7 Py By 11/




where
_ AU N |
K = (Zliﬂéil ) /12/

is an nxn time variable weighting matrix and

k

Big = 1711 Xi1 Vil /13/

is an nxl vector.

For the parameter estimation a recursive form of equation /11/ is needed in which the estimator
vector a; at the k-th instant is a linear sum of the estimate at the (k-1)-th instant plus a corrective

term based on the data at the k-th instant:

1. 1 T
P =Pk + [xp 2]

and /14/
Big = Bj, 11+ Xk ik

After some rearrangements of equations /11/ and /14/ and considering a stochastic interpretation

of the problem, a non-stationary recursive least-squares estimator can be obtained (Ref. 6).
A 7statistical model” of the parameter variations can be written as:
ap = ¢ (k, k1) ap1t9p ' [15/
where ¢ is an nxn transition matrix and 9.1 is an n vector of random disturbance elements, having

SRS

: . . - . . . e
In the light of these above considerations it is possible to construct a ”dynamic equation error

zero mean and covariance matrix E(q : ﬂjT) = () 6. (& is the Kronecker delta function).

algorithm, which in its most useful case, when ¢ =1 (random walk model of parameter variations)
reads as follows: (the following equations are ment for the ’th row in equation [1/. To case the

writing, the 1 is cancelled):.

= . T 11 T2
ay = é:k—l - Prjke1 2k L+ xp" Py 07 (= agg - i)

Prjier = P B ] /16

_ o+ T p -
P =Py - Prger 2k B X0 Prgien sl gt Pk/k-1

The time variable weighting matiix Py is a strictly decreasing function of the sample number.
9

O
Large corrections are possible at the start, less correction is needed, when the cs stimation progresses
and the estimates converge. The great advantage of the recursive algorithun /16/ is that it provides

RS X GO tivee e
for a minimum of computer storage and that there is no need for direct matiix mversion since ithe

expression (1 + \E Pry xy) Is a scalan.

E is a positive, definite matrix analogous in its effect to the covariance maliix { in the regression

4

case. Individual elements can be Jimited to different degrees, specifying different expected rates o

——

parameter variations. If necessary, 1 can be modified Jater exp perimentally.




In computational terms, the E-matrix limits the lower bound on the elements of matrix P,
preventing the elements from becoming too small and allowing for continuous correction of 2,

Starting values for P and : 2 have to be specified.
2.1.8 Considerations on Excitation Signals and Data Filtering
- Excitation Signals

Process identification is to a great extent dependent on the kind of input signals which excit
the unknown process. 1f the process remains inactive due to a lack of input stimulus, the measure-
ment matrix can become singular. The elements of the measurement vector X shall not be linearly
dependent or strongly corrclated. The number of discrete frequency components in a periodic signal
should exceed d > m/2 where m is the order of the model equation. In this work periodic rectangular

and pscudo random binary noise signals (PRBNS) have been used.
- Data Filtering

Digital lowpass-, bandpass-, and time derivative filters, designed by the bilinear z-transform, have

been used.

.

If the process parameters of a linearized process model shall be estimated on-line, the process
input- and output data have to be brought into such a form that they fit into this linearized model.
This means the mean value of the data has to be subtracted from the signal itself, in order to get
rid of biased measurements. Furthermore this difference will be normalized to this mean value.
Then the equations describing the process are dimensionless. If the process is described in difference
equation form, then these normalized differences are the input signals to the on-line identification
‘algorithm, In case the process is given in differential equation form, this normalized difference-
signals are passed through a set of digital transformation filters 1o obtain the first time derivative
of these normalized difference signals. These transformation filters are composed by the method of

“multiple filters” (Ref. 5).
2.1.4 Simulation Results

Various simulations have been performed in order to test out the on-line estimator. As a hasis
for all simulation tests a known model of the HBWR plant at a certain operating condition was
used. It serves as a comparison for the results. Figure 2.1 shows the general simulation and test

scheme.

The following partial HRWR-model was considercd. In tne discrete version:

po(k) = ¢11 poll-l) + ¢19 pg(k-1) + 817 pl(l’—l) + g9 VB 282 (k-1) [17af

pg(k) = (’021 p?(\k‘}) + Qpcgz p (L ) + 321 1(1 ) + gzz VE 282 (kl) /171)/
where

py = the primary pressure

po = the secondary pressuse

pg = the fertinry pressure

VI 282 opening of steam outlet valve




and in the continuous version:

If /17] and /18] are modelled into equation /1/, onc gets for:

e.g.: [17af: y1 = po(k); gg‘lT = [po(k-1), pg(k-1), py(k-1), VB 282(1;;1)]
ay’ = o1y, 0195 211 €12]
/18af: yy =Po;  xL = [pg, pg 1, VB 282]
ayt = [byy, bygidyy, d12]v
Figure 2.2 shows the fesultiné estiméted iaal‘an‘wters ill case of parameter tracking for the discrete
model.

The parameters @19, g1 and goj were changed along ramps. The estimated ramps of the
parameters gy and goy are almost identical with the actual ramps, while the estimated ramp
in ¢y9 is lacking a bit behind the actual ramp. It also can be seen that changes in some pzua-
meters influence the others during these changes. The startiag values for the P matrix was 10% x I

 and the elements for E were chosen due to the paramcter changes as follows:

for equation [17a/ . and for equation [17b/
N
El = /10"4 0 , £2 = /10% 0 \
101 104 §
101 \ 10!
0 0
104/ \ 1074

As an example one element of the matrix P1 is plotted in Figure 2.3
2.1.5 Measurements on the HBWR Plant
- Test of the On-Line Identifier with HBWR Plant Data

To test the on-line estimator with real process data, an experiment with PRES-sequences
applied to the HBWR plant was performed to collect data. The control elements (steam outlet
valve, valve in subcooling circuit and rods) were perturbed simultancously with uncorrelated
PRBNsignals. These signals together with responses of a number of plant variables were logged in

time intervals of 2 seconds.

The model equation [17/ was assumed:

-tp
PRORM T p
where
Pnorm = normalized pressure

Pry = pressure measwement from differential meter




0.

Pp = mean value of Ppy over the observation interval

li

mean value of the pressure measurements from absolute meter

over the observation interval

Test runs with precalculated mean values were made, and runs, where a digital {ilter combination
was used to obtain Py For the latter case the estimated parameters are given in Figure 2.4. The
initial P-matrix was 10% x I and E was 10°% x 1. The estimates show a slow convergence and some

of them are also biased. This is a result of the noisy data.
- Comparison of the Results with the Model obtained by the Maxtmum Likelihood Method

The estimated parameters for model /17/, obtained by method /16/ supplied to real plant data

were compared with parameters obtained off-line with the Maximum Likelihood Method.

“11 $12 811 812 “21 ©22 821 822
On-Line  .845 027 145 -008 306 67 -.06 -.04

Off-Line 8194 04312 1811 -00043 .035 952 .00265 -.0189

Parameters with absolute high numerical values are in good agreement. Those with lower
values show less agreement. The estimator has then obviously difficulties to find these small

values.

2.1.6 Condﬁsions

The “dynamic least square” algorithm is very similar to the Kalman filter. It is able to track
parameter variations, is most flexible, needs due to the vecursive character little computer space,
and is relatively simple to bandle, The dimension of the parameter matrices ®, G, respectively
B, D which can be handled is restricted by the computer speed. If the process transients are
relatively slow, then the sampling interval can be increased. In this way there is then move time

available,necessary for estimating parameter matrices of bigger dimensions.

The identification programmes are written in Fortran. The computation time can be down-

scaled substantially when the routines are coded in Assembler.

List of Symbols

A measurement vector

X - rs - iy 3

=5 the ’th measurement vector

a; the P’th process parameter vector

v (k) state variable vector of the discrete model af time k
P state transition matrix

G state {ransmission matrix

B coefficient matrix
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D diﬁiVing matrix

P, ’th row vector of @

g . i’th row vector of G

b ’th row vector of B

d; i’th row vector of B

v first time derivative of the state vector of the continuous model
I identity matrix

€ equation crror for the ’th row in equation [1/

'a;i estimated pamme‘ter vector for the i’th row in equation | 1/
Py time variable weighting matrix

T sampling interval

List of Figwes

Fig. 2.1 Test and Simulation Scheme

Fig. 2.2 Parameter Tracking for the Discrete Process Model
Fig. 2.5 Matrix Elements of P1 as a Function of the Sampling Number
Fig. 2.4 Parameter Estimation from HBWR Plant Data with Prefiltering

9.9 Maximuwm Likelihood Identification of the BBWI Dynarics
A linear mode!l with constant parameters has been fitted to the input - output samples from
X
experiments, performed at the HBWR.

Analysis of several runs has been performed and is yeporied in detail elsewhere (14). In the pre-
sent paper some problems connected to these identifications are discussed and three models of the

contro} rod influence on nuclear power arc presented and ¢ mpared.

The available reactor information is a sequence of measured variables of the input [u(t), t =1, .. Nji,

generated by the computer, and the output [y(t), t=1, .. N]. The sampling interval is normalized to 1.
In this application the Maximum Likelihood technique uses a model of the form

A yy() = BH(q u) + 2CH g e()
where
q is the forward shift operator

1+ alq'l + ot

N
=g
S
-,
ft
~—
1}

pe(ql) = by, + bigh 4 bg™

C*(Q'l) w ] clq‘l + ..+ cnq'n

"

ko Tk AES - SR LR, A v A N i, A Sk - v ot3rin e
Ak BE and CF have no commmon factor, The roots of the polynomials pAF(p B are shwuated

inside the unit cirale.
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The disturbances e(t) are assumed stationary, independent stochastic variables with zero mean

and unit variance.

Thus the noise sequence is correlated, and generally a least square method will give biased para-
meter estimates. The Maximum Likelihood estimates, however, are consistent, asymptoticly normal

and efficient under mild conditions.

The method has been developed by Astrém (15). I Gustavsson has written the programmes (1)
used in these identifications. The method has been applied to other industrial applications (12) as

well.
2.2.1 The Experiments
The results from the following two experiments are discussed.

Experiment 1 EP 708, run 84 |
Experiment 2 EP 710, run b ‘

The power regulator was decoupled during the experiments. The experimental conditions were

as follows.

Exp. 1 Exp. 2

Power at start (MW) 8.1 9.5

Subcool. (MW) 1.35

Input (1 step up and down) rod 11 rods 13, 15, 17
No of scans ’ 780 1018

2.2.2 Input Characteristics

The inputs arve chosen pseudo random sequences, but of different amplitude and frequency. Because
of the nature of the dynamics, with very small and very large time constants, the choice of input signals

is crucial. Problems of that nature are discussed e.g. in (16, 12).

A large input amplitude is desirable because of the disturbances. On the other hand, process re-

strictions and nonlinear effects make it necessary to limit the amplitude.

The Maximum Likelihood method does not impose any restriction on the input signal, except that

it should be persistently exciting, e.g. a PRBS (15).

A

In all cases. the sampling time was 2 scconds. A pseudo randorm sequence can be characterized by

its amplitude, its basic interval T, period M Tp and maximum Jength of constant sign vI'p.

The autospectrum of a PRBS has the property, that it has decreased less than 8 dB for frequencies

2.8

T
P
1

This means that Tp should be about half of the smallest time constant. Practical

smaller than -

rad/sec.

that time constants about 3 - B times

is large enough.

The period M - Tp should be about five times lonper than the largest time constant. Another
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intuitive rule is based on the argument, that the cstimates of the gain and the longest time con-
stants arc improved, if the process is allowed to approach a new sicady state during the experi-

ment. Then ¢ ° rlP should be larger than 3 x Tmax'

The discussion is summarized in the following table.

Amplitude Tp,sec v Tp,sec M Tp, sec Ty, sec T hass sec
Exp 1 1 10 240 ~2 -4 ~480
Exp 2 ~3 2 18 1980 ~0.4-0.7 ~ 36

The table indicates, that it should be possible to find higher frequencies in experiment 2 than
in experiment 1. This is true, and a 0.8 sec. time constant was found. On the other hand, the si-

mulations show clearly that the low {requency behaviour of exp. 1 is significantly better than that

of exp. 2.
2.2.9 Identification Results

It is assumed, that the rod input is directly coupled to the nuclear power output. This depends

on the neutron kinetics, and for the sampling interval 2 seconds the kinetics is considered instant.

Models of different orders were adjusted to the experimental data. The order decision was based
on a number of comparisons. The loss functions for different models were compared by statistical
F-test quantities of a 5% visk level. Static gains, Bodc plots, poles and zeroes, parameter variances
and finally simulations were used to find the most relevant models. The order of the dynamics

never excecded four. The resulis are shown in Table L.
. In Figures 2.5 and 2.6 simulations of the models are shown. The curves are

a)  input u(t)
b) output y(t) (nuclear power (MW))

c) output of deterministic model

yat) = BH Dy
#(q)

,’>

2.2.4 Comparisons between the Models

The different models of exp. 1 and 2 have been compared in several ways in (14). Some simu-

lations, that demonstrate the behaviour, are shown here. The modd, achieved from exp. 2, is

T

imulated with the mput from f::p 1 and vice versa. The deterministic model outputs are shown

as the curves d in Figures 2.5 and 2.6,

Both in Figures 2.5 and 2.6 a difference in the low frequency hehaviour between the curves ¢
and 4 is demonstrated. The discrepancy is most clear in Figure 2.5

Tn both models there is a di

e close to the unit civele whish cannot be removed. This cau

the static gain to be « Jdeulated with bad accuracy. The pole to the unit circle gives about the same
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Table 1
Identification Results, Showing Relations between Rod and Nuclear Power Quitput.
The o Limits are Shown at the Figures

Experiment 1 Experiment 2 From state model
ay -2.108+0.165 -2.730%0.047 -2.795
ag 1.564+0.316 2.630%0.092 2.607
ag -0.254+0.152 -0.948+0.050 -0.814
ay 0.051+0.006 0.0028
b, 0.148+0.006 0.138+0.001 0.138
by -0.298+0.029 -0.364+0.001 -0.383
by 0.187+0.052 0.3%2+0.012 0.355
bg -0.037+0.025 -0.105+0.006 -0.110
€1 -0.954+0.163 -1.624+0.057
€9 0.210+0.126 - 0.685%0.059
cg -0.218£0.056 0
C4 0
A 0.028 ' 0.0271

behaviour as an integrator. The reason is, that the sampling interval, 2 sec., is very short in com-

parison with the largest time constant of the system.

Presently experiments from the series EP 714 are analysed. The influence of different sampling

intervals is investigated.

In that experiment the basic input interval length is 12 seconds. Then it is possible to select

every 2nd, 3rd or 6th input-output sample in order to get the sampling times 4, 6 and 12 seconds.
2.2.5 Comparison to a State Model

The identification results have been compared to a 11:th order linear state model, developed in
Halden (13). Input-output data were generated with the rod input from experiment 2 applied to the

model. No disturbances were added.

A deterministic 11th order model should of course give a parametric model of the same order.
In this case, however, already a fourth order model gave satisfactory results. For a fifth order medel
no significant decrease of the loss function was achieved. Numerical difficulties arose for higher order
models because of the reason, that the prediciion error could not be made significantly smaller. The
model is shown in Table 1. It has also been simulated with the inputs from experiments 1 and 2.

The deterministic outputs from the fourth order model are shown in Figures 2.5.e and 2.6.e.
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A model, where every state variable is corru ted by independent white noise showed a bad
} p b p
agreement with the stochastic part of the experimental results, as was expected. Only the noise

amplitude was acceptable.
2.2.6 Conclusions

All identification results show, that the prediction error can be made satisfactorily low with a
stochastic controller based on a fourth order model. The noise description must be more sophisticated

than just independent noise, added to the state variables.

The choice of sampling interval and input character is crucial for the model accuracy. Because of
the large difference between the small and the large time constants in the reactor, it is difficult to

get a model by identification which is accurate in the whole frequency range.

3. ADJOINT PROBLEMS ' i
8.1 Prefiltering of Sampled Input Data to the Process Computer

A basic problem in process parameter identification and estimation is the “prefiltering” of raw,
digitized process data. Below are listed the three main problem areas in this field where the use of
these data could benefit by an appropriate prefiltering technique before use by the process contiol

system.

- Additional noise contributions for the basic input and output signals of the system can
adversely affect the accuracy of estimated parameters. Therefore, a successful analysis of
this kind requires a good noise rejection technique under the following points of view,
(a) achievment of the optimum “signal-to-noise™ ratio, but (b) without disturbing the

frequency transmission characteristics of the process itself.

- For the same type of analysis sometimes only the first time derivatives of the signals of the

plant are needed.

- Frequently, data with the de-component removed are necessary for unbiased parameter esti-

mation (17).

In the first case mainly digital low-pass filters have to be designed whereas in the second and
third case, time derivative and band-pass filters are neceded, respectively. In the following chapter

a design procedure is described which allows to cffectively accomplish these tasks.
3.1.1 Design of Fading-Memory Digital (FMD-) Filters by the ”Bilineax z-transform”

To develop digital filters the so-called “bilinear z-transform’ (1,2,18,19) has been used. This
method allows one to convert a given continuous filter transfer function H(s) in the Laplace domain

into a discrete transfer function H(z) by the following substitution of the Laplacian variable,

|
g = _2:_}'_14 /19/

in swhich z denotes the discrete operator, defined as z = exp (jwT) where T is the sampling intervel

in sec.-units. The transformation obtained exhibits the same [reguency response characterisiics as fhe
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continuous filter, except for a non-linear warping of the frequency scale. Compensation for this
warping is made by replacing all characteristic corner frequencies w; of the continuous filter by
so-called ’pseudo frequencies” v; in the discrete z-domain using the relationship

v, = tan —5 1=1,2, o I 120/

2
T
Since the bilinear transformation used is purely algebraic in form, rational transfer functions in the
s-domain are represented in polynomial or factored form in the z-domain. Negative powers of z, however,
indicate how many sampling intervals a signal is delayed. Therefore, the digital filter output Y(k) at

time k can be expressed as

N M
Y(k) = Z a, Y(kn)+ % b, X(k-m) /21]
n=1 m=0 '

where X(k), X(k-1) ... are the filter inputs at time k, k-1, etc. and the cocfficients a, and b, are
functions of the pseudo frequencies v; and T. The numbers of additive terms in each sum of equa-
tion /21/, N and M, are dependent both on the type (low-, high-pass, ctc.)and on the order of the

filter in the s-domain.

The great advantages of this procedure are (a) the climination of the aliasing effect which is
inherent in the “standard z-transform™ (1), and (b) the fact that the algorithms obtained are directly
given in a recursive difference equation. Since the weighting coefficients a and by, can be inter-
preted to serve as fading parametcrs‘ to control the fading rate of the shape function (= stress
function (20)) of the filter’s memory, these filters are sometimes referred as Fading Memory Digital
(FDM-) Filters {21, 22, 20).

- Table II contains a comprehensive summary of different filter types designed in this work.

Figure 3.1a shows a typical time record of an original process output signal and represents the
output signal from a calibrated ion-chamber located below the core of the HBWR. This signal is
the response to a perturbation of the reactivity and the primary pressure by a pseudo random
binary driving function. In Figure 8.1b this record was submitted to a low-pass filter type of first
order to reject high frequency noise contributions. In order to eliminate the dc-level and to smooth
the record simultancously, the original signal was band-filtered. The resulting function is shown in
Figure 8.1c. Figure 3.1c shows the output of a first time derivative filter combined with a low-pass
filter of second order (Derivative filters must always be combined with a smoothing filter since the

derivative operator’s enhances the high frequency noise).

Summarizing the experience with the bilinear design method it can be stated that sufficient
success in the prefiltering of process raw data was obtained. In the case of an on-line application,
all the necessary computations according to equation [21/ have to be done in between two sub-

sequent samples. Prefiltering is restricted by the sampling interval and the computer speed. There-

by

fore, the digital filter algorithm should be iwplemented in assernbly language in the cases of onine

routine applications.
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Table 11

Summary of Digital Iilters Designed for Prefiltering Process Data

by means of the “bilinear z-transform” Method

’2%',2 V}IX’{*V}E{Z; f)’ = 2(?)H

P 2. x2)
¥ :4"2-2P11=Hrzxz~i~ 7)H?‘; x =2/T

IS
1t
>

]

Transfer Function in . Weighting Coefficients a,; and b, for /27 ] Frequency
the Laplace Domain the dlgltal filter algorithm in Equatlon /21] Range
H(s)
Iy
_,i,‘“_ 31: 1- 26
OJH'*' S i
bO: p g = VH/(2/T+VH) (JJ<QJH
(low-pass filter of first order) by=8
“n !
8 = f = 2a(l - vy vy <ew<eopy !
(woprts) (wgts) R e o CLsesen
82— 62 ﬁz-— a(VL‘f' VH-VLVH-l) i
(band-pass filter of first order) bg= f4 Bg= avg
b2: -/38 a = 1/(1+VLVH+VL+ VI_I)
2
w
§ (—H—ié_-_ - ay=fy B1=2(1 - 2.8)?
wyts = = (1 - 2B)~
(time derivative filter including a2— by 62_ ( 2 .
low pass filter to suppress high bg= B3 Bg=267[T W<y
frequency noise) bo= B3 B =v,/(v,*2/T)
5 1 5 a;= -(20;5/0,2) b= 1/a* 'w.<wH
[(s/wH) + 2P(s/coH)+ 1] ag= ‘(257+ﬁ2)/a2 b1= 4 bO - bg
(fourth order low-pass {ilter ag= —(25’)/)/(1«2 bo= 6 by
P=peaking factor = 0.6) ay= _,YZ/QZ b= by
@ =1+2Pa+a®, B =2(1-22)
Y =1-2Pa+a2, a -—Z/Vh
5 1 ) a1= (205/@ ) bO: X 12}14
[(S/Cjﬂ’g)' +2P(s/copy) #1177 ag= (205 +p ‘) a®  by=2by = -bg w<<opy
(§opmlst1cat4;?d time derivative ag= (9[“)/u b2: 0
filter including a fourth order 9,9 3
low-pass filter, P=0.6) ag= -y°/a” by=-bg

The computation of the pseudo frequencies vy and ¥y according to cquation [20/.
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5.2 Power Spectral Density Analysis of Sampled Process Drata

When transfer functions of a system by means of perturbation experiments have to be measured
or when reactor noise measurements are analyzed, the power spectral density function of process
data has to be determined. The standard digital computer technique most commonly used for these
purposes makes use of the Wiener-Khinchin relations, i.c. the first step in that computational pro-
cedure is the determination of the corresponding correlation function in the time domain. A sub-
sequent Fourier-transformation using an appropriate lag window weighting function yields finally

the desired “smoothed estimate” of the power spectral density function.

Due to its operational principle this indirect method pocesses the following disadvantages. (a) it
is not suited to be applied on-line without considerable amount of computational effort, (b) the
equivalent frequency bandwidth resolution AF of the power spectral density function is constant
throughout the whole spectrum. However, in most practical situations one desires to work with a
bandwidth resolution which should be relatively constant, i.e. Afff. = const. where f. is the frequency
under investigation, (c) the necessary use of any lag window weighting function to “smooth out” the
fruncation error when a correlation function of finite length is fourier-transformed sometimes gives
difficulties in the interpretation of spectral densities due to the influence of the finite side lobes

of the above mentioned frequency windows.

Based on the previously described digital filter work, a new approach of a power spectral density
analyzer for sampled data has been developed to overcome the aforesaid adversities. The structure of
its digital algorithm makes use of the heterodyne filtering technique (19, 23, 24, 25) which provides
the transition of a certain spectral range of the actual signal to the frequency range of a low-pass
filter. Hence, the problem of moving a band-pass filter with respect to the spectram is replaced by
moving the spectrum with respect to the filter. The digital low-pass filtering - as the most crucial
part of the analyzer - is then carried out by taking advantage of the sophisticated fourth-order low

pass filter from Table L

Figure 3.2 shows the block diagram for the computational procedure in the continuous case and
Figure 8.3 presents a typical plot of the output of the analyzer for a white noise plus an isolated sine

function as the input function (upper curve) and for a pure white noise input (lower curve).

Furthermore, the analyzer allows also to evaluate time-dependent spectra when the true time
averaging procedure (averaging circuit in Fig. 8.2) is replaced by a first order fading memory (low-
pass) filter from Table IL For.more details the reader is referred to the original litevature (19). An
abbreviated version of this detailed paper is given in (25).

%.3 Special Problems in the Field of Reactor Power Noise Analysis using Self-Powered Neutron

Detectors

For control and flux distribution measurements in large water cooled power reactors more and
more self-powered neutron probes are utilized. The most commonly used detectors of this type of

construction use vanadium, rhodivm and cobalt as the emitter material.

Due to the nuclear interactions of the emitter waterials with the reactor ncutrons the cobalt

detectors show a prompt response while the vanedinm and vhedium detectors possess cither a
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prompt part and a delayed part in its dynamic response (28). The prompt part results primarily
from Compton and photo-electrons emitted after sclf-absorption of the neutron capture gammas

and the delayed part results from f-particles emitted by neutron activation products.

Therefore, for the analysis of random neutron flux fluctuations (reactor noise analysis) of power
reactors the cobalt detectors are particularly well suited. A first systematic utilization of these
detectors for reactor power noise investigations is described in (26). However, when using e.g.
vanadium detectors - possessing the lowest buwrn-up rate compared with cobalt and rhodium detectors -
only that higher frequency range f >f_ of the spectrum of the flux fluctuations can be analyzed
where the prompt part of their sensitivity becomes effective. For the determination of this critical
frequency f_ the knowledge of the ratio of the prompt to the delayed sensivity, “""7p/wd’ is necessary.
Until now, this ratio was determined by transient measureinents to be “below 10%, usually around
5% (27). The following chapter passes in review a novel technique which is based upon methods of
stochastic processes to determine the above mentioned ratio more precisely. '

3.3.1 Determination of the Ratio of the Prompt to the Delayed Response of a Vanadium Self-Powered

Heutron Detector

The method uses two detectors, the actual vanadium detector and a prompt response “reference”
cobalt detector which are located close to each other in the reactor core. Due to the inherent
fluctuations of the neutron flux (reactor nosie) the mean output currents of both detectors are
superimposed by small randomly fluctuating signals. If the mean cwrrents are suppressed and only

the fluctuating components are amplified, it can be shown (28) that these quantities can be repre-

sented by
(S0
A 4 3 A . 1 9
U\](t) = C]. Dﬁ/’ptp([) + ‘\]d JH (f) ('.0(1 - §)d§j /21‘/
o
for the vanadium detector, and
— AT o 2
Uc('[) = Cz “C gf/‘(i) 123/
for the cobalt detector
wliere
Gy, Co = Constants consisting of the nput resistances of the amplifiers and their gain factors
Wp, Wy = Prompt and delayed detector sensitivity of the vanadium detector (in Afnv)
W, = Detector sensitivity of the cobalt “reference” detector (in A/nv)
o(t) = Stochastic neutron flux fluctuations at the space point of the location of the detectors
H(t)=xe™ = Normalized impuls response function for the delayed part of the response of the
. B9 ;
vanadium detector due to the f-decay of V7% (in sec 1)
A=In2[ Ty, = Decay constant of V24 = 3,072 - 107 sec 1 (Ty, = 3.76 min).
For the analysis in the time domain, the cross corelation function between U (t) and U

1
o R

normalized to the geometrical mean of the mean square values of these functions at zero time delay
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(the so-called correlation coefficient) is of special interest. This quantity is given by (28):

WD fWq+ F

Ry,c(0) = P E— /24
UWP'/W(;) + 2 Wp/Nd F+ 1]
where
F = [ H(E) R0 df 25
0

and R‘p‘p(g“ } is the auto-correlation function of Up(t) normalized to its mean square value.

By measwing the correlation coefficient RV,C(O) and by determining F through the procedure

of equation /25/ the ratio WP/'\f\Td can be determined.

Figures 3.4 and 3.5 show the results of the corresponding measurements. The reactor power was
7 MW. The record length and the sampling rate were 18 hours and b seconds, respectively. The
sampled data were evaluated on the GIER computer using the Halden Noise Programme system which
allows to compute auto- ‘and cross-corvelation functions as well as the corresponding power spectral
density functions. The measurement lag number was M = 350 resulting in a maximum delay time of
5 sec. x 360 = 1750 sec.

The value of I was obtained to be 0.472. Together with the measured correlation coeflicinet
Rys (0) = 0.518 from Figure 3.4 the ratio of the prompt to the delayed response of the vanadium
3 .
detector (commercial type, Model 5503, AB Atomenergi, Studsvik, Sweden) could be determined

to be Wp,/Wg = (6.2 + 0.45)%.

An alternative possibility for the V‘Jp/'i’Vd offers the analysis in the frequency domain. For this,
the ratio of the imaginary part (Quad-Power) to the real part (Co-Power) of the cross power spectral
density Uy(t) and Ug(t) as function of frequency has to be determined. The following simple

expression is obtained (28):

P(w) = Quad-Power _ W/ A . [26]
Co-Power L+W /Wa(1+ (co/?\)“)‘

Figure .6 shows the experimental measuring points which were fitted to the theoretical expression
equation /26/ by a Gaussian least squared method. The best value for V\"’P/"\J‘Jd turned out to be

(6.5 + 0.35)%.

It should be emphasize that the theoretical expressions in both the time domain (egs. [6/ and
f

/25)) and in the frequency domain (eq. [26/) contain the ratio E"&’YI/‘Q"J({ as the only free parameter.

3

Furthermore, these expressions ave independent of W, Gy and Gy, i.e. it is not necessary 1o kiow

the sensitivity of the “reference” cobalt detector as well as the amy

since these quantities cancel automatically in such a cross correlation technique.

Since the measurements are carried out without mechanical manipulations with the detectors and
- B

at constant reactor power the normal reactor operation is not disturbed. Therefore, the de

X . £
U O

fers the advantageous feature that the ratio T“.«"‘a.f.P,/“v"a?"} ol permuanently installed v

¢
detectore can he deterinined under real environmentnl veactor conditions,




Moreover, the critical frequency f. from which on the shape of the power spectral density of
the neutron flux fluctuations measured with a vanadium detector is identical with that measured
with a purely prompt responding detector (e.g. with a cobalt detector) resulted in

fo= (WyfWp) N2

{28). The numerical value of this critical frequency is about 0.008 Hz. In conclusion, this means that
wanadium detectors can also be used as in-core neutron sensors in reactor noise measurements when
one is only interested in the frequency range f > {_ of the flux fluctuation. However, this is practically

always the case.

For more details and more experimental results the reader is referred to the original paper given
in (28).
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