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Abstract

1 Physical balance principles

When not considering electrical or electromagnetic effects there are only five
balance principles to be considered in physics, namely: the balance of mass,
balance of momentum, balance of angular momentum, balance of energy (i.e.
the first axiom of thermodynamics) and the entropy inequality (i.e. the sec-
ond axiom of thermodynamics). In every physical model these principles
must be considered. Of course, approximations to the general balance prin-
ciples can be adopted but only if these approximations can be justified by
experiments together with physical stringent modelling.

1.1 Introduction to the balance principles

In continuum mechanics there are only five postulated balance equations
where one of them being an inequality.. These equations are independent of
the actual material studied.

Balance of mass can be expressed as

p+ pdiv (%) = 0 (1)

where p [kg/m?®/s] is the rate of change of the density where the dot denotes
a time derivative following the motion (material time derivative) defined by
the velocity x [m/s].

Balance of linear momentum is



p¥k =div (T) +pb (2)

where X [m/s?] is the acceleration recorded by an observer following the
motion of the actual body of interest (material time derivative). The stress
(tensor) is denoted T [N/m?] and b [kgm?/s], or [N/m® is the so-called body
force density due to gravity.

The result from the angular momentum that will be used here is that the
stress tensor is symmetric, i.e.

i (3)
The balance of energy is
pé = tr (TD) — div(q) + pr (4)

where € [J/kg/s| is the rate of change of the internal energy where the dot
denotes a time derivative following the actual motion of the body (material
time derivative). The symmetric part of the velocity gradient is denoted D
[1/s]. And the heat fluz vector is denoted q [J/m?/s/K], or [W/m?/K]. The
external heat source is denoted r [J/kg/s|, or [W/kg] (radiation)

The second aziom of thermodynamics can be expressed as

Gpn — grad (0) - q/f — pé +tr (TD) >0 (5)

where 0 [K] is the temperature (necessarily positive) and 7 [J/kg/K/s], or
[W/kg/K] is the rate of change of the entropy.

In the following sections it will be shown how the above balance principles
can be obtained.

1.2 Global balance principles

The fact that mass cannot be ‘destroyed’, i.e. the mass cannot change, is
within the continuum concept expressed as

D

Tk
where m (R), e.g. [kg], denotes the mass of a particle denoted ®. The time
derivative D/Dt[1/s] follows the motion of the particle .

(R) =0 (6)



The global rate of change of momentum D/Dt (P (éR)) [kgm/s?], or [N]
is due to a force resultant vector R™"** [N] acting on the body or particle R.

D Dinput
5P (®) = B () ™

The rate of change of the angular momentum D/Dt (EO (§R)) [kgm?® /5], or

[Nm, or J] is due the angular force resultant vector M (R®) [Nm| con-

tributing to momentum taken for example at the origo of an introduced

coordinate system.
D

oL, (®) = M () ®
The rate of change of the total energy D/Dt (E (R)) [Nm/s], or [J/s, or W]
is due to an input of power (energy) PP (R) [W] to the body R.

D .

—E (R) = P (R 9

2B (R) = P () ()
The total energy is divided into a kinetic energy part Ej (R) and a internal
energy part E; (R), i.e.

E (?R) = L, (§R) + F; (§R) (10)

where the energy term E) (R) steams from a global acceleration force (i.e.
energy) of the body R, and the internal energy is due to internal thermal-
motion within the body R. From (9) and (10) one obtain

D D

el ) =

D W+ 3
Furthermore, the power input P"?*! (R) is divided into a mechaniqal input
part P () and a part associated with input as heat denoted QirPut (R).

B, () = P (R) (11)

P () = P () + Q7 () (12)
From (12) it is concluded that (11) takes the form
D D input input
= B — 13
5B (R) + 5 I (R) = PSS () + Q" (R) (13)

The net power N (R) [W] to the body R is defined as the sum of the me-
chanical input Pii* (R) and the rate of change of the kinetic energy of the
body R, i.e.

D

N (R) = PIZ (R) + 2 B (R) (14)
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For a body having no acceleration and which do not deform from its original
shape both Pi%* (R) and D/Dt (Ej (R)) is zero, i.e. N (R) is zero for rigid
body motion.

The rate of change of the internal energy, i.e. D/Dt(E;(R)), can now be

expressed as

D input
EE'L' (R) = N (R) + Q™ (R) (15)

where (13) and (14) is used.

At last, the general experimental observation is that the rate of change
of the entropy D/Dt (H (R)) [J/s/K] is always greater (irreversible process)
or equal (reversible process) to the input of the entropy S™“ (R) [J/s/K]
(entropy influx) to the body R.

D .
ZH ) > S (R) (16)
The nature of the inequality steams from the so-called thermal or mechanical

dissipation energy productions.

1.3 Summery of the global ‘balance’ postulates

The global balance relations are

D
el =10 17
—m () a7
for the mass conservation. The momentum balance is in global form
D _ _.
—_ — pinput §R 18
=P (R) = R () (18)
The angular momentum described in global form is
D - .
i Lo — Mmput {R 19
=L, (R) = W™ () (19)
and the global energy balance is
D D input input
- 1. — INPU 20
=B (R) + = B (R) = P (R) + Q77 (%) (20)

and the relation for the rate of change of entropy is
D .
S E) > 57 () ()

which is the second axiom of thermodynamics expressed in global form of a
body R.



1.4 Towards a balance description in terms of densities

The mass m (R) of a body R can be regarded as a mass density p [kg/m®].
The relation between the two can be obtained by integrate over a small
representative volume v in which the density can be properly defined, i.e.

m (R) =/§dev (22)

The global momentum P (R) [Ns], or [kgm/s] of the body R can be regarded
as an integral of the momentum vectors, i.e. px [kg/s/m?] acting within the
body as

P(R) = /ﬁ picdv (23)

where X is the velocity [m/s].

The angular momentum L, (R) [Nms|, or [kgm?/s] of the body % can be
regarded as an integral of the angular momentum vectors, i.e. xx px [kgm?/s]
within the body as

L, (%) = /§R XX pxdv (24)
The kinetic energy Ei (R) [J], or [Nm, or kgm?/s?|of the body R is

Ee(R) = /m Ly picdy (25)
and the internal energy E; (R) [J], or [Nm, or kgm?/s%] of the body R is

E;(R) = /mpsdv (26)

where € [J/kg] denotes the internal energy density.
The entropy within the body R can be expressed by the volume integral

H(®) = [ pndv (27)

where 7 is the entropy density [J/kg/K].
The rate of change of the mass can be written in terms of the rate of

change of the mass density by differentiate both sides of (22) with respect to
time, as

D%m () D% [ oo (28)
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The rate of change of the linear momentum in the body R is obtained from
(23), as

D _ D

= = — X 29
DtP (R) D /an pxdv (29)
This equation is the Euler’s first law of motion.

The rate of change of the angular momentum in the body R is
D . D .

FtLO (R) = T /ﬁxx,oxdv (30)
which is the Fuler’s second law of motion, where (24) is differentiated. In
words the Euler’s laws of motion are: (i) The total force acting on a body
is equall to the rate of change of the linear momentum of the body, (1i) The

total torque acting on a body is equal to the rate of change of the moment of
momentum of the body.

The rate of change of the kinetic energy is obtained from (25), as

D D [y .
et b 1
D (%) Dt/ae Leds (31)

where 2 = X-%. And the rate of change of the internal energy can be
obtained from (26) as

2

D D
SE® == /m pedv (32)

At last the rate of change of the entropy can be written in term of a volume
integral as 5 b
@) == [ ondv (33)
where (27) is used.
It should be carefully noted that all the volume integrals J dv above is
following the motion of the body R, and this means, further, that the time
derivative D/Dt should be interpreted as a material time derivative. That

is a derivative which is referred to an observer following the motion of the
body in question.

1.5 Reynolds transport theorem, material time deriv-
ative of volume integrals

In the above sections volume integrals where discussed. These integrals was
described as a property following the motion of the body. This type of de-
scription of volume integrals is not very useful.. Instead one often want to
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use fixed integrals in space. The Reynolds transport theorem is a mathemat-
ical relation which transforms the volume integrals following the motion to
a description where the volume integrals are fixed in space.

For a general physical property I', which may be a scalar or a vector, is
transformed from a state where the volume integral follows the motion, de-
noted with the material time derivative D/Dt in front of the volume integral,
to a state where the volume integrals are fixed in space, as

D 0 .
Ft/mI‘de = a/ﬁl"pdv+?{ml"p (X - ds) (34)

where 0/0t is a spatial derivative of the fixed volume integral Jg Tpdv it

should also be understood that the surface integral fm [p (X - ds) is fixed

in space. The velocity is denoted X and the normalized vector (directed

outwards from the boundary surface in the point considered) is denoted ds.
First, it is noted that by setting I' = 1 one obtain

D D 0 3
Em(?R)=5£/%pdvzafmpdv+j§mpx-ds (35)

which is a transformation from a material description of the volume integral
to a spatial description in terms of a fixed volume integral and a. fixed surface
integral in space. The right hand-side of (35) represents the rate of change
of the mass density from a fixed observers point of view (i.e. the spatial
description).

By setting I' = %, one obtain
Dﬂtp R) = Dﬂt/&tp)'cdv e %/ﬁp}'{d@ + .Z{m px (X - ds) (36)

this means that the right hand-side of this equation represents the spatial
description (i.e. the fixed description in space) of the rate of change of
momentum.

The rate of change of the spatial description of the angular momentum is
obtained by setting I' = x x X, i.e. (34) results in that (30) can be expressed
as

D - D 0

= = il — — : x(x-d 37
DtLo (R) Dt/{RXXdeU 6t/ﬁx><pxdv+?€mx><px(x s)  (37)
By setting " = %dzz

1 .2 1 ‘2 1 .2 e
— — — . d 38
DiEk (é.R) = _D / —szB dv = —s / pr dv +% 2p.’L‘ (X S) ( )

¥



the spatial description of the rate of change of the kinetic energy is obtained
for the body .

Equation (34) with " = ¢, yields the spatial description of the internal
energy, i.e.

D D 0 .
EEEi (R) = E/yszdv = a/gtpedv + }1‘{% pEX - ds (39)

And the rate of change of the entropy in terms of spatially fixed volume and
surface integrals is obtained by setting I = 7, i.e.

D D o} i
E'HGR)%Ft/mpndv—a/wpndv—l-f%pnx-ds (40)

Yet, only the internal acting forces and energies has been discussed. In the
next section the external acting forces and energies will be specified.

1.6 Input of energy and momentum to a body

A material or a specified body within a material of any kind can of coarse
be subjected to forces and energies from its surrounding e.g. eaternal forces
and energies can act on the boundary surface of the body R of interest. The
surrounding is here referred to as the neighboring material points located
near the body R, i.e.e the surrounding is expresses as a surface integral and
this defined surface is the boundary to the surrounding bodies.

The effect of the input of forces or energies to the system is solely deter-
mined by the stress T, the heat flux q and the radiation r and also due to
the body forces b.

Indeed, it was seen from the Reynolds transport theorem that the surface
integrals appeared also when dealing with internal physical properties. But
these surface integrals did not appear due to external acting forces or energies
on the body, but rather due to the fact that the global internal physical
properties, such as mass and total energy, was initially defined as forces and
energies following the motion of the body.

The external input of ‘force’ in equation (18) (or input of momentum

Rt (R)) at the external surface boundary to the body R and within the
body, is

Rireut () = jé Tds+ /m pbdv (41)
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where is should be noted that Tds is the so-called traction t = Tds, i.e.
the force acting on the surface per square length or simply the stress vector.
The relation t = Tds is the so-called Cauchy’s fundamental theorem for the
stress, see any text book in mechanics. The body force pb is also interpreted

as an external input of momentum, but this momentum ‘force’ acts within
the whole volume.

The external input of angular momentum M7 (R) in equation (19) is
the moment of momentum i.e.

M () = 7({, % x Tds+ /m XX pbdv (42)

The power input P2 (R) in equation (20) is due to mechanical forces such
as

pinmut () = ?({’ T'xcds (43)

And the heat input Q7 (R) in equation (20) is due to influx of heat q
through the surface boundary and due to work done by the body forces px - b
within the body and also due to local energy supply r within the material
due to, for example, radiation.

input _ R .
QM (R) = }émq ds—l—/mpx bdv—i—/aprdv (44)

The input of entropy 5™ (R) in equation (21) is defined to be caused only
by heat fluxes entering the body and due to local energy supply r within the
body and these properties are also divided by the temperature 6, i.e.

Sinput (R) = — }ém q/b - ds—l—/mpr/ﬁdv (45)

1.7 Balance principles described with fixed volume and
surface integrals in space

By using the mass balance described in terms of mass densities, i.e. equation
(22) together with the Reynolds transport theorem (35) the mass balance

equation described with fixed volume and surface integrals in space is ob-
tained as

0 .
Eép(x,t)dv:—}gmpx-ds (46)



The (linear) momentum for fixed volume and surface integrals becomes

%/mp)'(dv = —ygmp)'c (X -ds) + fi{des—}-/mpbdv (47)

where (18), (23), (29), (36) and (41) are used.
The angular momentum is obtained in the same manner

%/ﬁxxm‘cdv:—}({mxxp}'c()‘c-ds)+}{mxx Tds+/mxx,obdv (48)

where (19), (24), (30), (37) and (42) are used and where the volume and
surface integrals are fixed in space.

The energy balance with fixed volume and surface integrals becomes

%/ﬁp(e-l—%ij)dv = —}émp(e—i-%:bz)i{-ds
+ jém (T"% +q) -ds (49)
+/p5c-bdv—|—/prdv
R R

where (20), (25), (26), (31), (32), (38), (39), (43) and (44) are used.
And the second axiom of thermodynamics expressed with fixed volume
and surface integrals is

%/%pndfu = ~ﬁ€mpqu-ds— ﬁmq/e-dﬁ/&pr/@dv (50)

where (21), (27), (33), (40) and (45) are used.

1.8 Divergence theorem, fixed surface integrals to fixed
volume integrals

A physical phenomenon described with a traction on a fixed boundary surface
OR or a flux through a fixed boundary surface &% can be converted to a
volume integral with the help of the divergence theorem. Loosely speaking,
the divergence theorem states that it is immaterial if a physical ‘change’ is
recorded within the material or if the same ‘change’ is recorded as a ‘Qux’ of
the same physical property in or out throw the boundary surface of a body
R having a boundary surface denoted 9.
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Consider an arbitrary vector I, this vector is acting on a boundary surface
OR, ie. §3,T'-ds the effect of the same physical phenomenon can be recorded
within the material and becomes [gdiv(T') dv. For this case the divergence
theorem can be written as

}1{ I'-ds= / div (') dv; T = is a vector (51)
o R

where, again, ds is an out-ward drawn normalized vector (normal) to the
point at the boundary surface considered. The divergence operator is denoted
div.

By identifying the arbitrary vector I" as the mass density flux (or the mo-
mentum flux) I' = px the divergence theorem (51), gives the transformation
of a fixed surface integral to a fixed volume integral as

- ds = / div (px) d 52
}émpx s= | iv (px) dv (52)
By setting ' = 74°% in (51) one obtain
1:2 /. : 1:2¢
1 . ds) = / div (2 d 53
}[aaﬂm p(x - ds) ; v(2:c x) v (53)
By identifying the arbitrary vector as I' = epx, the result is
< ds = / div (ep%) d 54
}l{m epx - ds = | div (epx) dv (54)
and setting I = npx, gives
- ds = / div (7p%) d 55
]gﬂnpx s = | div (no%) dv (55)

The heat flux entering (or leaving) through the boundary surface R is trans-
formed to a volume integral by using I' = q in (51) to obtain

}1{ q-ds =/ div (q) dv (56)
o ®
By setting I = q /6
0-ds = / div (q/0) 57
§ ,a/6-ds = [ div(a/6) do (57)
is obtained, and by I' = Tx, one get

?,{, Ticds = /a[2 div (T%) dv (58)
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If the arbitrary property I' is a second order tensor the divergence theorem
can be written as

- Ids = /&z div(I')dv; T = is a second order tensor (59)

and by using this equation with I' = T, one obtain

mT%:L&ﬂﬂM} (60)

In the same way surface integrals which is subjected to terms including
cross-products can be transformed to volume integrals, e.g. withI'=x x T
the divergence theorem (59) gives

ﬁnxdes=/Rdlv(xxT)dv (61)

Another case of transformations is when quadratic terms of the velocity is
included. For this case the divergence theorem can be written

}Ig . I' (x-ds) = / div(' ® X)dv; T = is a vector including the velocity
R

(62)
where I is a vector including the velocity x, and where ® is the dyad product
or equally the tensor product. With I" = px, (62) gives

}ém pX (X - ds) = /m div (px ® %) dv (63)

and with I' = x x xp

f{mxxi{p()’c-ds):/ﬁdiv(p(xxic)@ic)dv (64)

is obtained.

1.9 Balance principles described only with volume in-
tegrals, and the local forms

It is an advantage to consider only fixed volume integral when establishing
the physical balance principles and the second axiom of thermodynamics.
The divergence theorem discussed earlier was used to transform surface in-
tegrals to volume integrals. All surface integrals are now replaced by its

12



corresponding volume integrals to obtain balance equations described only
with volume integrals. It should be noted that all equations are now de-
scribed with the spatial time derivatives 3/8t, i.e. a change of a physical
property as observed by a fixed observer having no motion.

The balance of mass can be brought to the form by using (46) and (52)
to yield.

% /mpdv + /mdiv (px) dv =0 (65)

Furthermore, it is realized that this equation holds for arbitrary volumes v,
this results in that (65) can be written as

% +div (px) =0 (66)
this form is referred to as the local form of the balance of mass.
The linear momentum equation (47) is reformulated by transforming the

surface integrals to volume integrals by using the divergence theorem, i.e.
(63) and (60) gives

%/mpfcdv =— /&ediv (p%x ® %) dv + /’Rdiv (T) dv+ /wpbdv (67)
The local form of the linear momentum is therefore

@ = —div (px ® X) + div (T) +pb (68)

The angular momentum is obtained by the same procedure, i.e. the an-

gular momentum equation (48) together with the divergence theorem, i.e.
equations (64) and (61), gives

0 . : .
e /&‘:XXdev = - /?Rdlv (p(x x%X) ®%)dv (69)
+/§Rdiv (x xT) dv-l—[ﬁxprdv (70)
and its corresponding local form is
0 (x X %p) . N oo :
5 = —div (p (x x X) ® X) + div (x x T) +xxpb (71)
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"The energy balance equation (49) is in terms of volume integrals written as
0 . . . : 2.

e /ﬁp (5 + %x2) dv = — /Rdlv (epx) dv — /mdlv (%x x) dv (72)
+ A div (Tx) dv + /&e div (q) dv

+/p>'(-bdv+/prdv
R R

where the divergence theorem was used, i.e. the equations (54), (53), (58)
and (56). The local form of the balance of energy, therefore, is

G L) S
+div (T%) + div (q) (73)

For entropy, i.e. the inequality (50), one obtain

%/ﬁpﬂdv > —/ﬁdiv (npx) dv — /ﬁdiv (a/6) dv+/mpr/9dfu (74)
by using (55) and (57), and its local form therefore is

OX6n) 5 —aiv (mos) - v (a/6) +or/6 (75)
1.10 Summery of the local ‘balance’ postulates described

with spatial time derivatives

The local forms of the balance principles described with the spatial time
derivatives 0/t is summarized below.
The global postulate of balance of mass (17) takes the local form

Op
ot

where, again, p is the mass density, and % is the velocity. The divergence
operator is denoted div.

The global postulate of balance of linear momentum (18) takes the local

form .
9 (px)
ot

+div (px) =0 (76)

= —div (px ® %) + div (T) +pb (77)

14



where, again, T is the stress tensor and b is the body force.

The global postulate of balance of angular momentum (19) takes the local
form 5 )
% = —div(p(x x X) ® %) +div (x x T) 4xxpb  (78)

'The balance of energy is the local postulate

0(oe+4)

ot

= —div (ep%) — div (3% (79)
+div (Tx) + div (q)
+px-b+ pr

which was obtained from the global postulate of balance of energy (19).
Apain, € is the internal energy, q is the heat flux vector and r is an external
heat source, e.g. radiation.
And at last, the second axiom of thermodynamics is the local postulate
9 (pm)

5 2 ~div (npx) — div (a/6) +or/0 (80)

where 7 is the entropy density. This form was obtained from the global
postulate for entropy, i.e. the inequality (21).

It turns out that yet another version of the balance principles can be
obtained, namely a local version similar to the above equations but in terms
of material time derivatives. The material time derivative is most often used

due to the balance principles taking a more compact and simple form using
this type of description.

1.11 Different forms of balance of mass

If R is a fixed spatial volume and OR is the boundary area of the volume R,
the axiom of balance is

% + div(px) =0 (81)

compare the derivation in previous sections.
The formula for transforming spatial time derivatives, i.e. 9I'/8¢, to

material time derivatives, i.e. T, for an arbitrary, scalar, vector or tensor
property I, is

I (x, £) = ‘2—5 (%, 1) + [erad T (x, £)] % (x, £) (82)

15



By setting I' = p,
h=%+gradp-5c (83)

'The balance of mass (81), described with a spatial time derivative of the
mass density, can therefore be written

p —grad p - x 4 div(px) = 0 (84)

by combining (81) and (83). Noting that, by partial derivation the term
div(px) can be written with the identity

div(px) = pdiv(x) + grad p - X (85)
Therefore, (84) and (85) combines to yield
p+ pdiv(x) =0 (86)

Yet, another useful form expressing balance of mass can be obtained by
considering the identities

divx =tr (grad x) = trL =trD (87)
where D is the symmetric part of the velocity gradient, i.e.

L=gradx; L=D+4+W (88)

where
D=}(L+L"); and W=}(L-L") (89)
The term W is the skew-symmetric part of the velocity gradient L.
The expressions (86) and (87) gives

p=—ptrD (90)

1.12 Material time derivative description of the Bal-
ance of momentum

The local form of balance of linear momentum is

-(?% = —div (px ® X)+div T + pb (91)
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compare previous sections, i.e. equation (77). If the rule of differentiating a
product the term on the left-hand side of (91) can be rewritten as

0(px) .0p ox .0p . 1
= L —_—= —— - 2
pn X +p6t xat-l—px p [grad %] x (92)
where or
I'(x,t) = 57 (% 1) + [grad T (x, )] X (x, £) (93)
is used with " = %, i.e.
X=—Z7 [grad x] % (94)

The term div (px ® X) in (91) can, further, be rewritten with the identity
div (px ® %) = x div (px) + p [grad %] x (95)

If (92) and (95) are used, the local version of the linear momentum for the
a:th constituent, i.e. equation (91) becomes

PR + X l% + div (px)] =divT + pb (96)

From the balance of mass (76), it is concluded that

% + div (px) =0 (97)
That is, the terms in brackets in (96) cancels due to (97), i.e. the linear
momentum in local form can be written as

p¥X =divT + pb (98)

or equally
5
£+p[grad5c]5c:divT+pb (99)

which is the corresponding version of the balance of momentum using the

spatial time derivative of the velocity x. This expression was obtained by
using equation (94).
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1.13 Balance of angular momentum gives that the stress
tensor is symmetric

The angular momentum is usually used only to show that the stress tensor
must be symmetric. This derivation will be performed in this section.

From the previous sections it was shown that the balance of angular
momentum could be brought to the form

W — —div (p (x x %) ® %) + div (x x T) +xx b (100)
This equation will now be simplified further.. Consider the identity
0 e N L O0p  0(xxX)
= (xX X)%+px><)’(—p[grad (x x x)] %
where or
' (x,t) = 5 (x,t) + [grad T (x, )] % (x, ) (102)
is used with I' = x x x, i.e.
—— O(xxX) .
XX X=——0—+ [grad (x x %)]x (103)
Equations (100) and (101) combines to yield
(xxfc)%—l—px;()'c = plerad (x x X)]x (104)

—div (p (x X %) ® %)
+div (x x T') +xxpb

The first term on the right hand side of (100) is rewritten with the identity
div (p(x X X) ® %) = (x X %) div (pX) + p [grad (x x %)% (105)
Combining (104) and (105) to yield

(x x %) % +pXXE = plgrad (x x %)% — (x x %) div (%) (106)
—plgrad (x x %x)]x
+div (x x T) +xxpb
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i.e.

(x x %) % +px x X= — (x x %) div (px) + div (x x T) +xxpb  (107)

This equation is further rearranged to yield

(x X X) (% + div (px)) +px X = div (x x T) + xxpb (108)
The balance of mass is

% +div (px) =0 (109)

And due to this the balance of angular momentum reduces to

px X %x=div (x x T) +xxpb (110)

This equation will be analyzed further to show that the stress tensor T is
symmetric.

Consider the identity

PX X X=px X X (111)
and also the identity

div(x x T) = xxdiv (T) (112)
+ (T2 — Tog) 11 + (Ths — Toa) iz + (Ton — Th2) s
Combining (111) and (112) with (110) to yield

px x X = xxdiv (T) (113)
+ (Tae — Tos) 11 + (Ths — Ti1) iz + (T — o) i3 + xx pb

Rearrangement of this equation gives

XX (pi&_—djv (T) — pb) = (T32 — T23) i1 (]_14)
+(Ths — Ts) i + (Toy — The) i3

Due to the linear balance of momentum, i.e.
pxX—div (T) —pb =10 (115)
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Equation (114) simplifies to
0 = (Tay — To3) iy + (T13 — Tiy) iy + (T — Th2) i3 (116)

T T
Using the rectangular base vectors i; = [1 0 O] , I = [0 il 0] ,
T
i3 = [ 001 ] one obtain

0 T3y — Tog
0|=| Tis— Ty (117)
0 Ty — The
from equation (116). That is, the stress tensor
Tu Ty Tis
T=|Ty Ty T (118)
Ty Tay Tis

is symmetric. This fact can be illustrated by writing T3y = Ths, Ti3 = T
and Ty, = T}, or equally

T=T" (119)

1.14 Summery of the balance of momentum equations:
Cauchy’s laws of motion

Cauchy’s laws of motion is simply the linear momentum equation (98) to-
gether with the fact that the stress tensor is symmetric which was shown by

using the postulate of angular momentum (110), compare previous sections.
That is

pX =divT + pb; and T =TT (120)

1.15 Balance of energy
The balance of energy can be written as
d(p(e+ ta?
(P( _ 2 )) = —div (epx) — div (%5:%&) (121)
+div (Tx) + div (q)
+p%x-b+ pr
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compare previous sections. Again, € is the internal energy, q is the heat flux
vector and r is an external heat source, e.g. radiation.
The term on the left hand side of (121) can be rewritten as

S (o(e+3) = (+3) Lol +1)  am

The two first terms on the right hand side of (121) can be rewritten, in the
same manner, as

—div (p (e +34*) %) = —(e+14?) div (p%) (123)
—grad (E + %:CZ) - pX
Using P
T (x,t) = F (x,t) + [grad T (x,t)] x (x, 1) (124)

with'= (e + %;&2), gives.

p(e+—}a'c27: p% (e +34%) + perad (e +34%) % (125)
Combining (123) and (125) gives further
div (p (e +43%) %) = (c+14%) div (o) + pm (126)
g (e +447)
Consider, also, the mass balance equation, i.e.

op . ..
el = 127
e + div (px) =0 (127)

this equation is multiplied with (e + 34?) to yield

(e +34%) % + (e + 34%) div (px) = 0 (128)

Combining (126) and (128), yields

div (p (e + 33%) %) = —% (o (e +24%)) + p(e—l—’ 142) (129)
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replace the two first terms on the right hand side in the energy balance
equation (121) with the expression given by (129) to yield the balance of

energy in the following form:
p(e +14%)=div (T"% - a)+pr+pk-b

The kinetic energy term (%:1:2) in (130) is now rewritten as

(%‘m‘?’)=(%)‘c‘- )= Lk ktix k=% %
and the term div (TTJ'c) in (130) is rewritten with the identity
div (T"%) = %-div (T) + T-grad (%)
Noting that the velocity gradient is defined as
L =grad (x)
This means that the last term in (132) alternatively can be written
T-grad (X) = T-L =trTTL
i.e. the identity (132) takes the form
div (T"%) = %-div (T) + trTL
Insertion of (131) and (135) into (130), yields
pé + pk - % = %-div (T) + trTTL—div (q) + pr + px- b
A pure rearrangement gives, further
pé + % - (p—div (T) — pb) = trT*L—div (q) + pr
And it is recalled that the linear momentum is the expression

px—div (T) —pb =0

(130)

(131)

(132)

(133)

(134)

(135)

(136)

(137)

(138)

Equation (137) and (138) gives an alternative form of the energy equation,

i.e.
pé = trTTL—div (q) + pr
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Note also that the symmetric part of the velocity gradient is defined by
D= (L+L") (140)

and also that the stress tensor is symmetric, due to the result given from
the balance of angular momentum, i.e. T = TT. This gives that the trace of
the symmetric part of the velocity gradient D and the trace of the velocity
gradient L is identical, i.e. trL =trD. Therefore, the energy balance equation
(121) takes the, more simple alternative form

pé = trTD—div (q) + pr (141)
This equation can also be written with a spatial time derivative of the internal

energy € by replacing é with ¢ = 9¢/dt+grade - x.

1.16 Second axiom of thermodynamics

The second axiom of thermodynamics can be written as

= (pn) = —div (pnx) — div (q/8) + pr/6 (142)

compare previous sections.

The first term on the right hand-side of (142) can be rewritten by the
identity

div (pnx) = ndiv (px) + px-grad (n) (143)
and the term on the left hand side of (142) can be differentiated as
Op on
= 144
(pn) "5 T Pa: (144)

That is, the second axiom of thermodynamics (142) can be written

%2 420 > ndiv (%) -

N9 T Po 2 > —ndiv px-grad (n) — div (q/6) + pr/6 (145)

where (143) and (144) is used. A pure rearrangement of this equation yields

n (% + div (x)) gt > —px-grad (n) — div (q/60) + pr/6 (146)
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And it is noted that the term in the brackets is zero due to the balance of
mass, i.e.

% +div (%) =0 (147)
This means that (146) is reduced to
s,
pr > —picgrad (n) — div (a/8) + pr/6 (148)
Using
I(x,t) = % (x,t) + [grad T (x, t)] x (x, t) (149)
with I' = 7 gives.
0
i) =, +grad (1) (150)

Therefore, equation (148) can also be written

pi > —div (q/6) + pr/6 (151)

which is an alternative form of the second axiom of thermodynamics, compare
equation (142). Again it is noted that the material time derivative can be

replaced by the spatial time derivative by using the transformation 1 =
On/0t+gradn - x.

1.17 Definitions of different thermodynamic proper-
ties

As will be shown later, it can be advantageous to use alternative thermody-
namic properties than the internal energy e and the entropy density 7.

The Helmholtz’s free energy 1 is defined by the internal energy e, the
entropy density n and by the temperature 9, as

Y =¢e—nb (152)

The chemical potential tensor K is defined by the Helmholtz’s free energy 1,
the stress tensor T and by the mass density p, as

K=yI-T"/p (153)

It should be carefully noted that the chemical potential tensor K only re-
duces to the chemical potential 4, used in classical thermochemistry, when
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assuming that the stress tensor T can sustain hydrostatic pressures only (or
thermodynamical pressures), i.e.

T=—pl; K=uI (special case!) (154)

and then the classical chemical potential u can be expressed as
=1 +p/p (special casel) (155)
1.18 Alternative versions of the Second axiom of ther-

modynamics

A special useful form of the second axiom of thermodynamics can be ob-

tained by combining the energy equation, i.e. (141), and the second axiom

of thermodynamics, written in the form illustrated in (151), by elimination

of the external heat source r, which is present in both equations of interest.
The energy equation to be used is

pé = tr (T™L) —div (q) + pr (156)
and the second axiom of thermodynamics is written as
pi +div (a/8) — pr/60 >0 (157)
This equation is rewritten as
2 (00 +0iv (a/6) ~ pr) > 0 (158)
Noting also that div (q) can be expressed with the identity
div (q) = div (qf/0) = 6 div (q/0) + grad (6) - q/6 (159)

By insertion of this identity into (158) one obtain

% (6pn + div (q) — grad (6) - q/6 — pr) > 0 (160)

The term pr is according to the balance of energy, i.e. equation (158), equal
to

pr = pé — tr (TTL) +div (q) (161)
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By elimination of pr by use of (160) and (161), the following inequality is
obtained

6pi) — grad (6) - a/6 — pé +tr (TL) > 0 (162)
which is the second axiom of thermodynamics expressed in terms of the rate
of change of the internal energy ¢ and the entropy density 7.

Naturally, one can also express the second axiom of thermodynamics with

other thermodynamic properties, for example, the Helmholtz’s free energy 15,
defined as

Vv =¢€—nb (163)

Differentiation gives _ .
Y=¢—10—nd (164)

That is, the rate of change of the entropy 7, is

R /A (165)
By replacing 7 in the inequality (162) the following equation is achieved

—onf — pip — grad (0) - q/6 + tr (TTL) >0 (166)

which is the in terms second axiom of thermodynamics expressed in terms of

the rate of change of the temperature # and the Helmholtz’s free energy 1.
Yet another form can be obtained if the definition of the chemical poten-

tial tensor K, see equation (153), is used. In order to illustrate this form

of the second axiom of thermodynamics consider, first, the balance of mass
written as

p+pdivk =0 (167)
Noting, also, that divx can be written as
divx =tr (gradx) = trL (168)

where it should be recalled that the velocity gradient L is defined as L =grad x.
Hence the postulated mass balance (167) can also be written

p = —ptrL (169)
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Consider, further, the partial differential of m ie.

pP= pb + i = o — pyp i (170)

where, also, the mass balance (169) is used. The above expression can be
written

P =p +pptiLL (171)

The expression for py in (171) is inserted into the entropy inequality (166)
to yield

—pnb— o —po trL — grad (6) - q/6 + tr (T"L) > 0 (172)
The chemical potential tensor K is defined as
K=yI-T"/p (173)
ie.
T =pyI-pK (174)

By replacing TT in (172) with the above expression one obtain

—pmb— 0% —pytrL — grad (6) - q/0 + tr (WI-pK)L) >0  (175)
noting also that
p trL =tr ((pyI) L) (176)
That is, the expression (175) simplifies to

—pnb— % —grad (6) - q/0 — tr (6KL) > 0 (177)

which is the second axiom of thermodynamics including the thermodynamic
property of K. It should be observed that the stress tensor T is not described
explicitly when using this version of the entropy inequality, but rather de-
scribed with chemical potential tensor K.

1.19 Summery of the Second axiom of thermodynam-

ics, expressed with different thermodynamic prop-
erties

"The four equivalent forms of the second axiom of thermodynamics discussed
in the previous section was:
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piy + div (a/6) — pr/6 > 0 (178)

It turned out that this also could be expressed in terms of both the rate of
change of internal energy rate € and 7, as

6o — grad (6) - q/6 — pé + tr (T"L) > 0 (179)
In terms of the rate of change of the Helmholtz’s free energy 1 and entropy
7, the second axiom of thermodynamics takes the form

—mb — pp — grad (0) - q/6 + tr (TTL) >0 (180)

The second axiom of thermodynamics including the chemical potential tensor
K, is

—pnf— W —grad () - q/8 — tr ()KL) > 0 (181)

1.20 Alternative versions of the balance of energy, us-
ing different thermodynamic properties

Some times it is advantageous to write also the energy equation in terms of

different thermodynamical properties depending on which physical problem
studied.

The energy equation already discussed in detail is

pe = tr (T"L) —div (q) + pr (182)
Consider, again, the Helmholtz’s free energy 1 defined by
Y=€e—nb (183)
Differentiation gives . _
P =¢&—nb—nb (184)

That is, the rate of change of the internal energy is
e=P+nb+nd (185)

By insertion of this expression into the balance of energy (182) an alternative
version expressing balance of energy is obtained as

b+ pid + pnb = tr (T™L) —div (q) + pr (186)
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furthermore energy balance can be expressed with the chemical potential
tensor K defined by

K =yI - T /p (187)
ie.
T =pyI-pK (188)
Again, the relation
o =pp +p trL (189)

is obtained, see previous section. insertion of py into (186) gives yet another
form expressing balance of energy, i.e.

o+ trL + pid + pnd = tr ((p¥I—pK) L) —div (q) + pr (190)
Noting also, see previous section, that
py trL =tr ((pyI) L) (191)
which means that (190) is simplified to

2% +pif + pnd = —tr (6KL) —div (q) + pr (192)

1.21 Summery of the alternative versions of the bal-
ance of energy

'The three equivalent forms of the balance of energy (i.e. the first axiom of
thermodynamics) discussed in the previous section was:

pé = tr (TTL) —div (q) + pr (193)
and _ .
pY + pnb + pnb = tr (TTL) —div (q) + pr (194)
and, at last )
o +pif + pnd = —tr (pKL) —div (q) + pr (195)

More, equivalent, forms can be formulated , for example, by introducing the
definition of the thermodynamic property entalpy.
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1.22 Summery

In this chapter the following five balance principles was derived

p+ pdiv (x) = 0 (196)

p% =div (T)+pb; T =TT (197)

pé = tr (TD) — div(q) + pr (198)

Opn — grad (0) - q/0 — pé +tr (TD) >0 (199)

It is important to not that there is more introduced physical properties
than introduced balance law’s. This means that when a material is studied,
supplementary so-called material functions, or equally, constitutive equations
must be specified. These functions is associated with a certain material often
referred to a class of a material. Of course, a material function describing for
example a stress-strain relation (which is a constitutive assumption) for plas-
tic materials and for concrete will be different. It is, however, very important
to note that the balance principles for energies and forces discussed in this
chapter is completely independent of the characteristics of the material itself.

30



